rt2400pci.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. Module: rt2400pci
  17. Abstract: rt2400pci device specific routines.
  18. Supported chipsets: RT2460.
  19. */
  20. #include <linux/delay.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/pci.h>
  25. #include <linux/eeprom_93cx6.h>
  26. #include <linux/slab.h>
  27. #include "rt2x00.h"
  28. #include "rt2x00mmio.h"
  29. #include "rt2x00pci.h"
  30. #include "rt2400pci.h"
  31. /*
  32. * Register access.
  33. * All access to the CSR registers will go through the methods
  34. * rt2x00mmio_register_read and rt2x00mmio_register_write.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attempt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. */
  44. #define WAIT_FOR_BBP(__dev, __reg) \
  45. rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  46. #define WAIT_FOR_RF(__dev, __reg) \
  47. rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  48. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  49. const unsigned int word, const u8 value)
  50. {
  51. u32 reg;
  52. mutex_lock(&rt2x00dev->csr_mutex);
  53. /*
  54. * Wait until the BBP becomes available, afterwards we
  55. * can safely write the new data into the register.
  56. */
  57. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  58. reg = 0;
  59. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  60. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  61. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  62. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  63. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  64. }
  65. mutex_unlock(&rt2x00dev->csr_mutex);
  66. }
  67. static u8 rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  68. const unsigned int word)
  69. {
  70. u32 reg;
  71. u8 value;
  72. mutex_lock(&rt2x00dev->csr_mutex);
  73. /*
  74. * Wait until the BBP becomes available, afterwards we
  75. * can safely write the read request into the register.
  76. * After the data has been written, we wait until hardware
  77. * returns the correct value, if at any time the register
  78. * doesn't become available in time, reg will be 0xffffffff
  79. * which means we return 0xff to the caller.
  80. */
  81. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  82. reg = 0;
  83. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  84. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  85. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  86. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  87. WAIT_FOR_BBP(rt2x00dev, &reg);
  88. }
  89. value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  90. mutex_unlock(&rt2x00dev->csr_mutex);
  91. return value;
  92. }
  93. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  94. const unsigned int word, const u32 value)
  95. {
  96. u32 reg;
  97. mutex_lock(&rt2x00dev->csr_mutex);
  98. /*
  99. * Wait until the RF becomes available, afterwards we
  100. * can safely write the new data into the register.
  101. */
  102. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  103. reg = 0;
  104. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  105. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  106. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  107. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  108. rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
  109. rt2x00_rf_write(rt2x00dev, word, value);
  110. }
  111. mutex_unlock(&rt2x00dev->csr_mutex);
  112. }
  113. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  114. {
  115. struct rt2x00_dev *rt2x00dev = eeprom->data;
  116. u32 reg;
  117. reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
  118. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  119. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  120. eeprom->reg_data_clock =
  121. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  122. eeprom->reg_chip_select =
  123. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  124. }
  125. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  126. {
  127. struct rt2x00_dev *rt2x00dev = eeprom->data;
  128. u32 reg = 0;
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  132. !!eeprom->reg_data_clock);
  133. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  134. !!eeprom->reg_chip_select);
  135. rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
  136. }
  137. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  138. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  139. .owner = THIS_MODULE,
  140. .csr = {
  141. .read = rt2x00mmio_register_read,
  142. .write = rt2x00mmio_register_write,
  143. .flags = RT2X00DEBUGFS_OFFSET,
  144. .word_base = CSR_REG_BASE,
  145. .word_size = sizeof(u32),
  146. .word_count = CSR_REG_SIZE / sizeof(u32),
  147. },
  148. .eeprom = {
  149. .read = rt2x00_eeprom_read,
  150. .write = rt2x00_eeprom_write,
  151. .word_base = EEPROM_BASE,
  152. .word_size = sizeof(u16),
  153. .word_count = EEPROM_SIZE / sizeof(u16),
  154. },
  155. .bbp = {
  156. .read = rt2400pci_bbp_read,
  157. .write = rt2400pci_bbp_write,
  158. .word_base = BBP_BASE,
  159. .word_size = sizeof(u8),
  160. .word_count = BBP_SIZE / sizeof(u8),
  161. },
  162. .rf = {
  163. .read = rt2x00_rf_read,
  164. .write = rt2400pci_rf_write,
  165. .word_base = RF_BASE,
  166. .word_size = sizeof(u32),
  167. .word_count = RF_SIZE / sizeof(u32),
  168. },
  169. };
  170. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  171. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  172. {
  173. u32 reg;
  174. reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
  175. return rt2x00_get_field32(reg, GPIOCSR_VAL0);
  176. }
  177. #ifdef CONFIG_RT2X00_LIB_LEDS
  178. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  179. enum led_brightness brightness)
  180. {
  181. struct rt2x00_led *led =
  182. container_of(led_cdev, struct rt2x00_led, led_dev);
  183. unsigned int enabled = brightness != LED_OFF;
  184. u32 reg;
  185. reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
  186. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  187. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  188. else if (led->type == LED_TYPE_ACTIVITY)
  189. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  190. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  191. }
  192. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  193. unsigned long *delay_on,
  194. unsigned long *delay_off)
  195. {
  196. struct rt2x00_led *led =
  197. container_of(led_cdev, struct rt2x00_led, led_dev);
  198. u32 reg;
  199. reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
  200. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  201. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  202. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  203. return 0;
  204. }
  205. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  206. struct rt2x00_led *led,
  207. enum led_type type)
  208. {
  209. led->rt2x00dev = rt2x00dev;
  210. led->type = type;
  211. led->led_dev.brightness_set = rt2400pci_brightness_set;
  212. led->led_dev.blink_set = rt2400pci_blink_set;
  213. led->flags = LED_INITIALIZED;
  214. }
  215. #endif /* CONFIG_RT2X00_LIB_LEDS */
  216. /*
  217. * Configuration handlers.
  218. */
  219. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  220. const unsigned int filter_flags)
  221. {
  222. u32 reg;
  223. /*
  224. * Start configuration steps.
  225. * Note that the version error will always be dropped
  226. * since there is no filter for it at this time.
  227. */
  228. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
  229. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  230. !(filter_flags & FIF_FCSFAIL));
  231. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  232. !(filter_flags & FIF_PLCPFAIL));
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  234. !(filter_flags & FIF_CONTROL));
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  236. !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
  237. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  238. !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
  239. !rt2x00dev->intf_ap_count);
  240. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  241. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  242. }
  243. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  244. struct rt2x00_intf *intf,
  245. struct rt2x00intf_conf *conf,
  246. const unsigned int flags)
  247. {
  248. unsigned int bcn_preload;
  249. u32 reg;
  250. if (flags & CONFIG_UPDATE_TYPE) {
  251. /*
  252. * Enable beacon config
  253. */
  254. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  255. reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
  256. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  257. rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
  258. /*
  259. * Enable synchronisation.
  260. */
  261. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  262. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  263. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  264. }
  265. if (flags & CONFIG_UPDATE_MAC)
  266. rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
  267. conf->mac, sizeof(conf->mac));
  268. if (flags & CONFIG_UPDATE_BSSID)
  269. rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
  270. conf->bssid,
  271. sizeof(conf->bssid));
  272. }
  273. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  274. struct rt2x00lib_erp *erp,
  275. u32 changed)
  276. {
  277. int preamble_mask;
  278. u32 reg;
  279. /*
  280. * When short preamble is enabled, we should set bit 0x08
  281. */
  282. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  283. preamble_mask = erp->short_preamble << 3;
  284. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
  285. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
  286. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
  287. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  288. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  289. rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
  290. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
  291. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  292. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  293. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  294. GET_DURATION(ACK_SIZE, 10));
  295. rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
  296. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
  297. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  298. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  299. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  300. GET_DURATION(ACK_SIZE, 20));
  301. rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
  302. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
  303. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  304. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  305. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  306. GET_DURATION(ACK_SIZE, 55));
  307. rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
  308. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
  309. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  310. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  311. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  312. GET_DURATION(ACK_SIZE, 110));
  313. rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
  314. }
  315. if (changed & BSS_CHANGED_BASIC_RATES)
  316. rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  317. if (changed & BSS_CHANGED_ERP_SLOT) {
  318. reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
  319. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  320. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  321. reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
  322. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  323. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  324. rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
  325. reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
  326. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  327. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  328. rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
  329. }
  330. if (changed & BSS_CHANGED_BEACON_INT) {
  331. reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
  332. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  333. erp->beacon_int * 16);
  334. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  335. erp->beacon_int * 16);
  336. rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
  337. }
  338. }
  339. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  340. struct antenna_setup *ant)
  341. {
  342. u8 r1;
  343. u8 r4;
  344. /*
  345. * We should never come here because rt2x00lib is supposed
  346. * to catch this and send us the correct antenna explicitely.
  347. */
  348. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  349. ant->tx == ANTENNA_SW_DIVERSITY);
  350. r4 = rt2400pci_bbp_read(rt2x00dev, 4);
  351. r1 = rt2400pci_bbp_read(rt2x00dev, 1);
  352. /*
  353. * Configure the TX antenna.
  354. */
  355. switch (ant->tx) {
  356. case ANTENNA_HW_DIVERSITY:
  357. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  358. break;
  359. case ANTENNA_A:
  360. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  361. break;
  362. case ANTENNA_B:
  363. default:
  364. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  365. break;
  366. }
  367. /*
  368. * Configure the RX antenna.
  369. */
  370. switch (ant->rx) {
  371. case ANTENNA_HW_DIVERSITY:
  372. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  373. break;
  374. case ANTENNA_A:
  375. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  376. break;
  377. case ANTENNA_B:
  378. default:
  379. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  380. break;
  381. }
  382. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  383. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  384. }
  385. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  386. struct rf_channel *rf)
  387. {
  388. /*
  389. * Switch on tuning bits.
  390. */
  391. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  392. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  393. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  394. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  395. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  396. /*
  397. * RF2420 chipset don't need any additional actions.
  398. */
  399. if (rt2x00_rf(rt2x00dev, RF2420))
  400. return;
  401. /*
  402. * For the RT2421 chipsets we need to write an invalid
  403. * reference clock rate to activate auto_tune.
  404. * After that we set the value back to the correct channel.
  405. */
  406. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  407. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  408. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  409. msleep(1);
  410. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  411. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  412. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  413. msleep(1);
  414. /*
  415. * Switch off tuning bits.
  416. */
  417. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  418. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  419. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  420. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  421. /*
  422. * Clear false CRC during channel switch.
  423. */
  424. rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
  425. }
  426. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  427. {
  428. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  429. }
  430. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  431. struct rt2x00lib_conf *libconf)
  432. {
  433. u32 reg;
  434. reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
  435. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  436. libconf->conf->long_frame_max_tx_count);
  437. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  438. libconf->conf->short_frame_max_tx_count);
  439. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  440. }
  441. static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
  442. struct rt2x00lib_conf *libconf)
  443. {
  444. enum dev_state state =
  445. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  446. STATE_SLEEP : STATE_AWAKE;
  447. u32 reg;
  448. if (state == STATE_SLEEP) {
  449. reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
  450. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  451. (rt2x00dev->beacon_int - 20) * 16);
  452. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  453. libconf->conf->listen_interval - 1);
  454. /* We must first disable autowake before it can be enabled */
  455. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  456. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  457. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  458. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  459. } else {
  460. reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
  461. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  462. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  463. }
  464. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  465. }
  466. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  467. struct rt2x00lib_conf *libconf,
  468. const unsigned int flags)
  469. {
  470. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  471. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  472. if (flags & IEEE80211_CONF_CHANGE_POWER)
  473. rt2400pci_config_txpower(rt2x00dev,
  474. libconf->conf->power_level);
  475. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  476. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  477. if (flags & IEEE80211_CONF_CHANGE_PS)
  478. rt2400pci_config_ps(rt2x00dev, libconf);
  479. }
  480. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  481. const int cw_min, const int cw_max)
  482. {
  483. u32 reg;
  484. reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
  485. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  486. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  487. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  488. }
  489. /*
  490. * Link tuning
  491. */
  492. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  493. struct link_qual *qual)
  494. {
  495. u32 reg;
  496. u8 bbp;
  497. /*
  498. * Update FCS error count from register.
  499. */
  500. reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
  501. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  502. /*
  503. * Update False CCA count from register.
  504. */
  505. bbp = rt2400pci_bbp_read(rt2x00dev, 39);
  506. qual->false_cca = bbp;
  507. }
  508. static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  509. struct link_qual *qual, u8 vgc_level)
  510. {
  511. if (qual->vgc_level_reg != vgc_level) {
  512. rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
  513. qual->vgc_level = vgc_level;
  514. qual->vgc_level_reg = vgc_level;
  515. }
  516. }
  517. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  518. struct link_qual *qual)
  519. {
  520. rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
  521. }
  522. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  523. struct link_qual *qual, const u32 count)
  524. {
  525. /*
  526. * The link tuner should not run longer then 60 seconds,
  527. * and should run once every 2 seconds.
  528. */
  529. if (count > 60 || !(count & 1))
  530. return;
  531. /*
  532. * Base r13 link tuning on the false cca count.
  533. */
  534. if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
  535. rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
  536. else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
  537. rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
  538. }
  539. /*
  540. * Queue handlers.
  541. */
  542. static void rt2400pci_start_queue(struct data_queue *queue)
  543. {
  544. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  545. u32 reg;
  546. switch (queue->qid) {
  547. case QID_RX:
  548. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
  549. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
  550. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  551. break;
  552. case QID_BEACON:
  553. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  554. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  555. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  556. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  557. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  558. break;
  559. default:
  560. break;
  561. }
  562. }
  563. static void rt2400pci_kick_queue(struct data_queue *queue)
  564. {
  565. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  566. u32 reg;
  567. switch (queue->qid) {
  568. case QID_AC_VO:
  569. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
  570. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  571. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  572. break;
  573. case QID_AC_VI:
  574. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
  575. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  576. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  577. break;
  578. case QID_ATIM:
  579. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
  580. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  581. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  582. break;
  583. default:
  584. break;
  585. }
  586. }
  587. static void rt2400pci_stop_queue(struct data_queue *queue)
  588. {
  589. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  590. u32 reg;
  591. switch (queue->qid) {
  592. case QID_AC_VO:
  593. case QID_AC_VI:
  594. case QID_ATIM:
  595. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
  596. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  597. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  598. break;
  599. case QID_RX:
  600. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
  601. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
  602. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  603. break;
  604. case QID_BEACON:
  605. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  606. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  607. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  608. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  609. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  610. /*
  611. * Wait for possibly running tbtt tasklets.
  612. */
  613. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  614. break;
  615. default:
  616. break;
  617. }
  618. }
  619. /*
  620. * Initialization functions.
  621. */
  622. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  623. {
  624. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  625. u32 word;
  626. if (entry->queue->qid == QID_RX) {
  627. word = rt2x00_desc_read(entry_priv->desc, 0);
  628. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  629. } else {
  630. word = rt2x00_desc_read(entry_priv->desc, 0);
  631. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  632. rt2x00_get_field32(word, TXD_W0_VALID));
  633. }
  634. }
  635. static void rt2400pci_clear_entry(struct queue_entry *entry)
  636. {
  637. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  638. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  639. u32 word;
  640. if (entry->queue->qid == QID_RX) {
  641. word = rt2x00_desc_read(entry_priv->desc, 2);
  642. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  643. rt2x00_desc_write(entry_priv->desc, 2, word);
  644. word = rt2x00_desc_read(entry_priv->desc, 1);
  645. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  646. rt2x00_desc_write(entry_priv->desc, 1, word);
  647. word = rt2x00_desc_read(entry_priv->desc, 0);
  648. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  649. rt2x00_desc_write(entry_priv->desc, 0, word);
  650. } else {
  651. word = rt2x00_desc_read(entry_priv->desc, 0);
  652. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  653. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  654. rt2x00_desc_write(entry_priv->desc, 0, word);
  655. }
  656. }
  657. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  658. {
  659. struct queue_entry_priv_mmio *entry_priv;
  660. u32 reg;
  661. /*
  662. * Initialize registers.
  663. */
  664. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
  665. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  666. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  667. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
  668. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  669. rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
  670. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  671. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
  672. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  673. entry_priv->desc_dma);
  674. rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
  675. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  676. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
  677. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  678. entry_priv->desc_dma);
  679. rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
  680. entry_priv = rt2x00dev->atim->entries[0].priv_data;
  681. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
  682. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  683. entry_priv->desc_dma);
  684. rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
  685. entry_priv = rt2x00dev->bcn->entries[0].priv_data;
  686. reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
  687. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  688. entry_priv->desc_dma);
  689. rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
  690. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
  691. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  692. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  693. rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
  694. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  695. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
  696. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  697. entry_priv->desc_dma);
  698. rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
  699. return 0;
  700. }
  701. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  702. {
  703. u32 reg;
  704. rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
  705. rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
  706. rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  707. rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
  708. reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
  709. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  710. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  711. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  712. rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
  713. reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
  714. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  715. (rt2x00dev->rx->data_size / 128));
  716. rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
  717. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  718. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  719. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  720. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  721. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  722. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  723. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  724. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  725. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  726. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  727. rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
  728. reg = rt2x00mmio_register_read(rt2x00dev, ARCSR0);
  729. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  730. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  731. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  732. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  733. rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
  734. reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  737. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  738. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  739. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  740. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  741. rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
  742. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  743. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  744. return -EBUSY;
  745. rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
  746. rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
  747. reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
  748. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  749. rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
  750. reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
  751. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  752. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  753. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  754. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  755. rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
  756. reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
  757. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  758. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  759. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  760. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  761. reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
  762. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  763. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  764. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  765. /*
  766. * We must clear the FCS and FIFO error count.
  767. * These registers are cleared on read,
  768. * so we may pass a useless variable to store the value.
  769. */
  770. reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
  771. reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
  772. return 0;
  773. }
  774. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  775. {
  776. unsigned int i;
  777. u8 value;
  778. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  779. value = rt2400pci_bbp_read(rt2x00dev, 0);
  780. if ((value != 0xff) && (value != 0x00))
  781. return 0;
  782. udelay(REGISTER_BUSY_DELAY);
  783. }
  784. rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
  785. return -EACCES;
  786. }
  787. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  788. {
  789. unsigned int i;
  790. u16 eeprom;
  791. u8 reg_id;
  792. u8 value;
  793. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  794. return -EACCES;
  795. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  796. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  797. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  798. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  799. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  800. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  801. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  802. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  803. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  804. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  805. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  806. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  807. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  808. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  809. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  810. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
  811. if (eeprom != 0xffff && eeprom != 0x0000) {
  812. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  813. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  814. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  815. }
  816. }
  817. return 0;
  818. }
  819. /*
  820. * Device state switch handlers.
  821. */
  822. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  823. enum dev_state state)
  824. {
  825. int mask = (state == STATE_RADIO_IRQ_OFF);
  826. u32 reg;
  827. unsigned long flags;
  828. /*
  829. * When interrupts are being enabled, the interrupt registers
  830. * should clear the register to assure a clean state.
  831. */
  832. if (state == STATE_RADIO_IRQ_ON) {
  833. reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
  834. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  835. }
  836. /*
  837. * Only toggle the interrupts bits we are going to use.
  838. * Non-checked interrupt bits are disabled by default.
  839. */
  840. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  841. reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
  842. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  843. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  844. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  845. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  846. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  847. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  848. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  849. if (state == STATE_RADIO_IRQ_OFF) {
  850. /*
  851. * Ensure that all tasklets are finished before
  852. * disabling the interrupts.
  853. */
  854. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  855. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  856. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  857. }
  858. }
  859. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  860. {
  861. /*
  862. * Initialize all registers.
  863. */
  864. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  865. rt2400pci_init_registers(rt2x00dev) ||
  866. rt2400pci_init_bbp(rt2x00dev)))
  867. return -EIO;
  868. return 0;
  869. }
  870. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  871. {
  872. /*
  873. * Disable power
  874. */
  875. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
  876. }
  877. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  878. enum dev_state state)
  879. {
  880. u32 reg, reg2;
  881. unsigned int i;
  882. char put_to_sleep;
  883. char bbp_state;
  884. char rf_state;
  885. put_to_sleep = (state != STATE_AWAKE);
  886. reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
  887. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  888. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  889. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  890. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  891. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  892. /*
  893. * Device is not guaranteed to be in the requested state yet.
  894. * We must wait until the register indicates that the
  895. * device has entered the correct state.
  896. */
  897. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  898. reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
  899. bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
  900. rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
  901. if (bbp_state == state && rf_state == state)
  902. return 0;
  903. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  904. msleep(10);
  905. }
  906. return -EBUSY;
  907. }
  908. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  909. enum dev_state state)
  910. {
  911. int retval = 0;
  912. switch (state) {
  913. case STATE_RADIO_ON:
  914. retval = rt2400pci_enable_radio(rt2x00dev);
  915. break;
  916. case STATE_RADIO_OFF:
  917. rt2400pci_disable_radio(rt2x00dev);
  918. break;
  919. case STATE_RADIO_IRQ_ON:
  920. case STATE_RADIO_IRQ_OFF:
  921. rt2400pci_toggle_irq(rt2x00dev, state);
  922. break;
  923. case STATE_DEEP_SLEEP:
  924. case STATE_SLEEP:
  925. case STATE_STANDBY:
  926. case STATE_AWAKE:
  927. retval = rt2400pci_set_state(rt2x00dev, state);
  928. break;
  929. default:
  930. retval = -ENOTSUPP;
  931. break;
  932. }
  933. if (unlikely(retval))
  934. rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
  935. state, retval);
  936. return retval;
  937. }
  938. /*
  939. * TX descriptor initialization
  940. */
  941. static void rt2400pci_write_tx_desc(struct queue_entry *entry,
  942. struct txentry_desc *txdesc)
  943. {
  944. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  945. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  946. __le32 *txd = entry_priv->desc;
  947. u32 word;
  948. /*
  949. * Start writing the descriptor words.
  950. */
  951. word = rt2x00_desc_read(txd, 1);
  952. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  953. rt2x00_desc_write(txd, 1, word);
  954. word = rt2x00_desc_read(txd, 2);
  955. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
  956. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
  957. rt2x00_desc_write(txd, 2, word);
  958. word = rt2x00_desc_read(txd, 3);
  959. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
  960. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  961. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  962. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
  963. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  964. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  965. rt2x00_desc_write(txd, 3, word);
  966. word = rt2x00_desc_read(txd, 4);
  967. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
  968. txdesc->u.plcp.length_low);
  969. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  970. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  971. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
  972. txdesc->u.plcp.length_high);
  973. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  974. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  975. rt2x00_desc_write(txd, 4, word);
  976. /*
  977. * Writing TXD word 0 must the last to prevent a race condition with
  978. * the device, whereby the device may take hold of the TXD before we
  979. * finished updating it.
  980. */
  981. word = rt2x00_desc_read(txd, 0);
  982. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  983. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  984. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  985. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  986. rt2x00_set_field32(&word, TXD_W0_ACK,
  987. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  988. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  989. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  990. rt2x00_set_field32(&word, TXD_W0_RTS,
  991. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  992. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  993. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  994. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  995. rt2x00_desc_write(txd, 0, word);
  996. /*
  997. * Register descriptor details in skb frame descriptor.
  998. */
  999. skbdesc->desc = txd;
  1000. skbdesc->desc_len = TXD_DESC_SIZE;
  1001. }
  1002. /*
  1003. * TX data initialization
  1004. */
  1005. static void rt2400pci_write_beacon(struct queue_entry *entry,
  1006. struct txentry_desc *txdesc)
  1007. {
  1008. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1009. u32 reg;
  1010. /*
  1011. * Disable beaconing while we are reloading the beacon data,
  1012. * otherwise we might be sending out invalid data.
  1013. */
  1014. reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
  1015. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1016. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1017. if (rt2x00queue_map_txskb(entry)) {
  1018. rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
  1019. goto out;
  1020. }
  1021. /*
  1022. * Enable beaconing again.
  1023. */
  1024. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1025. /*
  1026. * Write the TX descriptor for the beacon.
  1027. */
  1028. rt2400pci_write_tx_desc(entry, txdesc);
  1029. /*
  1030. * Dump beacon to userspace through debugfs.
  1031. */
  1032. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
  1033. out:
  1034. /*
  1035. * Enable beaconing again.
  1036. */
  1037. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1038. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1039. }
  1040. /*
  1041. * RX control handlers
  1042. */
  1043. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  1044. struct rxdone_entry_desc *rxdesc)
  1045. {
  1046. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1047. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1048. u32 word0;
  1049. u32 word2;
  1050. u32 word3;
  1051. u32 word4;
  1052. u64 tsf;
  1053. u32 rx_low;
  1054. u32 rx_high;
  1055. word0 = rt2x00_desc_read(entry_priv->desc, 0);
  1056. word2 = rt2x00_desc_read(entry_priv->desc, 2);
  1057. word3 = rt2x00_desc_read(entry_priv->desc, 3);
  1058. word4 = rt2x00_desc_read(entry_priv->desc, 4);
  1059. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1060. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1061. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1062. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1063. /*
  1064. * We only get the lower 32bits from the timestamp,
  1065. * to get the full 64bits we must complement it with
  1066. * the timestamp from get_tsf().
  1067. * Note that when a wraparound of the lower 32bits
  1068. * has occurred between the frame arrival and the get_tsf()
  1069. * call, we must decrease the higher 32bits with 1 to get
  1070. * to correct value.
  1071. */
  1072. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
  1073. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  1074. rx_high = upper_32_bits(tsf);
  1075. if ((u32)tsf <= rx_low)
  1076. rx_high--;
  1077. /*
  1078. * Obtain the status about this packet.
  1079. * The signal is the PLCP value, and needs to be stripped
  1080. * of the preamble bit (0x08).
  1081. */
  1082. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1083. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1084. rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
  1085. entry->queue->rt2x00dev->rssi_offset;
  1086. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1087. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1088. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1089. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1090. }
  1091. /*
  1092. * Interrupt functions.
  1093. */
  1094. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1095. const enum data_queue_qid queue_idx)
  1096. {
  1097. struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
  1098. struct queue_entry_priv_mmio *entry_priv;
  1099. struct queue_entry *entry;
  1100. struct txdone_entry_desc txdesc;
  1101. u32 word;
  1102. while (!rt2x00queue_empty(queue)) {
  1103. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1104. entry_priv = entry->priv_data;
  1105. word = rt2x00_desc_read(entry_priv->desc, 0);
  1106. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1107. !rt2x00_get_field32(word, TXD_W0_VALID))
  1108. break;
  1109. /*
  1110. * Obtain the status about this packet.
  1111. */
  1112. txdesc.flags = 0;
  1113. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1114. case 0: /* Success */
  1115. case 1: /* Success with retry */
  1116. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1117. break;
  1118. case 2: /* Failure, excessive retries */
  1119. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1120. /* Don't break, this is a failed frame! */
  1121. default: /* Failure */
  1122. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1123. }
  1124. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1125. rt2x00lib_txdone(entry, &txdesc);
  1126. }
  1127. }
  1128. static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  1129. struct rt2x00_field32 irq_field)
  1130. {
  1131. u32 reg;
  1132. /*
  1133. * Enable a single interrupt. The interrupt mask register
  1134. * access needs locking.
  1135. */
  1136. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1137. reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
  1138. rt2x00_set_field32(&reg, irq_field, 0);
  1139. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1140. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1141. }
  1142. static void rt2400pci_txstatus_tasklet(unsigned long data)
  1143. {
  1144. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1145. u32 reg;
  1146. /*
  1147. * Handle all tx queues.
  1148. */
  1149. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1150. rt2400pci_txdone(rt2x00dev, QID_AC_VO);
  1151. rt2400pci_txdone(rt2x00dev, QID_AC_VI);
  1152. /*
  1153. * Enable all TXDONE interrupts again.
  1154. */
  1155. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
  1156. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1157. reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
  1158. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
  1159. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
  1160. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
  1161. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1162. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1163. }
  1164. }
  1165. static void rt2400pci_tbtt_tasklet(unsigned long data)
  1166. {
  1167. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1168. rt2x00lib_beacondone(rt2x00dev);
  1169. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1170. rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
  1171. }
  1172. static void rt2400pci_rxdone_tasklet(unsigned long data)
  1173. {
  1174. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1175. if (rt2x00mmio_rxdone(rt2x00dev))
  1176. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1177. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1178. rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
  1179. }
  1180. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1181. {
  1182. struct rt2x00_dev *rt2x00dev = dev_instance;
  1183. u32 reg, mask;
  1184. /*
  1185. * Get the interrupt sources & saved to local variable.
  1186. * Write register value back to clear pending interrupts.
  1187. */
  1188. reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
  1189. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  1190. if (!reg)
  1191. return IRQ_NONE;
  1192. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1193. return IRQ_HANDLED;
  1194. mask = reg;
  1195. /*
  1196. * Schedule tasklets for interrupt handling.
  1197. */
  1198. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1199. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  1200. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1201. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1202. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
  1203. rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
  1204. rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
  1205. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  1206. /*
  1207. * Mask out all txdone interrupts.
  1208. */
  1209. rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
  1210. rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
  1211. rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
  1212. }
  1213. /*
  1214. * Disable all interrupts for which a tasklet was scheduled right now,
  1215. * the tasklet will reenable the appropriate interrupts.
  1216. */
  1217. spin_lock(&rt2x00dev->irqmask_lock);
  1218. reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
  1219. reg |= mask;
  1220. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1221. spin_unlock(&rt2x00dev->irqmask_lock);
  1222. return IRQ_HANDLED;
  1223. }
  1224. /*
  1225. * Device probe functions.
  1226. */
  1227. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1228. {
  1229. struct eeprom_93cx6 eeprom;
  1230. u32 reg;
  1231. u16 word;
  1232. u8 *mac;
  1233. reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
  1234. eeprom.data = rt2x00dev;
  1235. eeprom.register_read = rt2400pci_eepromregister_read;
  1236. eeprom.register_write = rt2400pci_eepromregister_write;
  1237. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1238. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1239. eeprom.reg_data_in = 0;
  1240. eeprom.reg_data_out = 0;
  1241. eeprom.reg_data_clock = 0;
  1242. eeprom.reg_chip_select = 0;
  1243. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1244. EEPROM_SIZE / sizeof(u16));
  1245. /*
  1246. * Start validation of the data that has been read.
  1247. */
  1248. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1249. rt2x00lib_set_mac_address(rt2x00dev, mac);
  1250. word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
  1251. if (word == 0xffff) {
  1252. rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
  1253. return -EINVAL;
  1254. }
  1255. return 0;
  1256. }
  1257. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1258. {
  1259. u32 reg;
  1260. u16 value;
  1261. u16 eeprom;
  1262. /*
  1263. * Read EEPROM word for configuration.
  1264. */
  1265. eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
  1266. /*
  1267. * Identify RF chipset.
  1268. */
  1269. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1270. reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
  1271. rt2x00_set_chip(rt2x00dev, RT2460, value,
  1272. rt2x00_get_field32(reg, CSR0_REVISION));
  1273. if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
  1274. rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
  1275. return -ENODEV;
  1276. }
  1277. /*
  1278. * Identify default antenna configuration.
  1279. */
  1280. rt2x00dev->default_ant.tx =
  1281. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1282. rt2x00dev->default_ant.rx =
  1283. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1284. /*
  1285. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1286. * I am not 100% sure about this, but the legacy drivers do not
  1287. * indicate antenna swapping in software is required when
  1288. * diversity is enabled.
  1289. */
  1290. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1291. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1292. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1293. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1294. /*
  1295. * Store led mode, for correct led behaviour.
  1296. */
  1297. #ifdef CONFIG_RT2X00_LIB_LEDS
  1298. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1299. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1300. if (value == LED_MODE_TXRX_ACTIVITY ||
  1301. value == LED_MODE_DEFAULT ||
  1302. value == LED_MODE_ASUS)
  1303. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1304. LED_TYPE_ACTIVITY);
  1305. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1306. /*
  1307. * Detect if this device has an hardware controlled radio.
  1308. */
  1309. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1310. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  1311. /*
  1312. * Check if the BBP tuning should be enabled.
  1313. */
  1314. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1315. __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
  1316. return 0;
  1317. }
  1318. /*
  1319. * RF value list for RF2420 & RF2421
  1320. * Supports: 2.4 GHz
  1321. */
  1322. static const struct rf_channel rf_vals_b[] = {
  1323. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1324. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1325. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1326. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1327. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1328. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1329. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1330. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1331. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1332. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1333. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1334. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1335. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1336. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1337. };
  1338. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1339. {
  1340. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1341. struct channel_info *info;
  1342. char *tx_power;
  1343. unsigned int i;
  1344. /*
  1345. * Initialize all hw fields.
  1346. */
  1347. ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
  1348. ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
  1349. ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
  1350. ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
  1351. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1352. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1353. rt2x00_eeprom_addr(rt2x00dev,
  1354. EEPROM_MAC_ADDR_0));
  1355. /*
  1356. * Initialize hw_mode information.
  1357. */
  1358. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1359. spec->supported_rates = SUPPORT_RATE_CCK;
  1360. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1361. spec->channels = rf_vals_b;
  1362. /*
  1363. * Create channel information array
  1364. */
  1365. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  1366. if (!info)
  1367. return -ENOMEM;
  1368. spec->channels_info = info;
  1369. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1370. for (i = 0; i < 14; i++) {
  1371. info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
  1372. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1373. }
  1374. return 0;
  1375. }
  1376. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1377. {
  1378. int retval;
  1379. u32 reg;
  1380. /*
  1381. * Allocate eeprom data.
  1382. */
  1383. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1384. if (retval)
  1385. return retval;
  1386. retval = rt2400pci_init_eeprom(rt2x00dev);
  1387. if (retval)
  1388. return retval;
  1389. /*
  1390. * Enable rfkill polling by setting GPIO direction of the
  1391. * rfkill switch GPIO pin correctly.
  1392. */
  1393. reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
  1394. rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
  1395. rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
  1396. /*
  1397. * Initialize hw specifications.
  1398. */
  1399. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1400. if (retval)
  1401. return retval;
  1402. /*
  1403. * This device requires the atim queue and DMA-mapped skbs.
  1404. */
  1405. __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1406. __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
  1407. __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
  1408. /*
  1409. * Set the rssi offset.
  1410. */
  1411. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1412. return 0;
  1413. }
  1414. /*
  1415. * IEEE80211 stack callback functions.
  1416. */
  1417. static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
  1418. struct ieee80211_vif *vif, u16 queue,
  1419. const struct ieee80211_tx_queue_params *params)
  1420. {
  1421. struct rt2x00_dev *rt2x00dev = hw->priv;
  1422. /*
  1423. * We don't support variating cw_min and cw_max variables
  1424. * per queue. So by default we only configure the TX queue,
  1425. * and ignore all other configurations.
  1426. */
  1427. if (queue != 0)
  1428. return -EINVAL;
  1429. if (rt2x00mac_conf_tx(hw, vif, queue, params))
  1430. return -EINVAL;
  1431. /*
  1432. * Write configuration to register.
  1433. */
  1434. rt2400pci_config_cw(rt2x00dev,
  1435. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1436. return 0;
  1437. }
  1438. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
  1439. struct ieee80211_vif *vif)
  1440. {
  1441. struct rt2x00_dev *rt2x00dev = hw->priv;
  1442. u64 tsf;
  1443. u32 reg;
  1444. reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
  1445. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1446. reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
  1447. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1448. return tsf;
  1449. }
  1450. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1451. {
  1452. struct rt2x00_dev *rt2x00dev = hw->priv;
  1453. u32 reg;
  1454. reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
  1455. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1456. }
  1457. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1458. .tx = rt2x00mac_tx,
  1459. .start = rt2x00mac_start,
  1460. .stop = rt2x00mac_stop,
  1461. .add_interface = rt2x00mac_add_interface,
  1462. .remove_interface = rt2x00mac_remove_interface,
  1463. .config = rt2x00mac_config,
  1464. .configure_filter = rt2x00mac_configure_filter,
  1465. .sw_scan_start = rt2x00mac_sw_scan_start,
  1466. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1467. .get_stats = rt2x00mac_get_stats,
  1468. .bss_info_changed = rt2x00mac_bss_info_changed,
  1469. .conf_tx = rt2400pci_conf_tx,
  1470. .get_tsf = rt2400pci_get_tsf,
  1471. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1472. .rfkill_poll = rt2x00mac_rfkill_poll,
  1473. .flush = rt2x00mac_flush,
  1474. .set_antenna = rt2x00mac_set_antenna,
  1475. .get_antenna = rt2x00mac_get_antenna,
  1476. .get_ringparam = rt2x00mac_get_ringparam,
  1477. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  1478. };
  1479. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1480. .irq_handler = rt2400pci_interrupt,
  1481. .txstatus_tasklet = rt2400pci_txstatus_tasklet,
  1482. .tbtt_tasklet = rt2400pci_tbtt_tasklet,
  1483. .rxdone_tasklet = rt2400pci_rxdone_tasklet,
  1484. .probe_hw = rt2400pci_probe_hw,
  1485. .initialize = rt2x00mmio_initialize,
  1486. .uninitialize = rt2x00mmio_uninitialize,
  1487. .get_entry_state = rt2400pci_get_entry_state,
  1488. .clear_entry = rt2400pci_clear_entry,
  1489. .set_device_state = rt2400pci_set_device_state,
  1490. .rfkill_poll = rt2400pci_rfkill_poll,
  1491. .link_stats = rt2400pci_link_stats,
  1492. .reset_tuner = rt2400pci_reset_tuner,
  1493. .link_tuner = rt2400pci_link_tuner,
  1494. .start_queue = rt2400pci_start_queue,
  1495. .kick_queue = rt2400pci_kick_queue,
  1496. .stop_queue = rt2400pci_stop_queue,
  1497. .flush_queue = rt2x00mmio_flush_queue,
  1498. .write_tx_desc = rt2400pci_write_tx_desc,
  1499. .write_beacon = rt2400pci_write_beacon,
  1500. .fill_rxdone = rt2400pci_fill_rxdone,
  1501. .config_filter = rt2400pci_config_filter,
  1502. .config_intf = rt2400pci_config_intf,
  1503. .config_erp = rt2400pci_config_erp,
  1504. .config_ant = rt2400pci_config_ant,
  1505. .config = rt2400pci_config,
  1506. };
  1507. static void rt2400pci_queue_init(struct data_queue *queue)
  1508. {
  1509. switch (queue->qid) {
  1510. case QID_RX:
  1511. queue->limit = 24;
  1512. queue->data_size = DATA_FRAME_SIZE;
  1513. queue->desc_size = RXD_DESC_SIZE;
  1514. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1515. break;
  1516. case QID_AC_VO:
  1517. case QID_AC_VI:
  1518. case QID_AC_BE:
  1519. case QID_AC_BK:
  1520. queue->limit = 24;
  1521. queue->data_size = DATA_FRAME_SIZE;
  1522. queue->desc_size = TXD_DESC_SIZE;
  1523. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1524. break;
  1525. case QID_BEACON:
  1526. queue->limit = 1;
  1527. queue->data_size = MGMT_FRAME_SIZE;
  1528. queue->desc_size = TXD_DESC_SIZE;
  1529. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1530. break;
  1531. case QID_ATIM:
  1532. queue->limit = 8;
  1533. queue->data_size = DATA_FRAME_SIZE;
  1534. queue->desc_size = TXD_DESC_SIZE;
  1535. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1536. break;
  1537. default:
  1538. BUG();
  1539. break;
  1540. }
  1541. }
  1542. static const struct rt2x00_ops rt2400pci_ops = {
  1543. .name = KBUILD_MODNAME,
  1544. .max_ap_intf = 1,
  1545. .eeprom_size = EEPROM_SIZE,
  1546. .rf_size = RF_SIZE,
  1547. .tx_queues = NUM_TX_QUEUES,
  1548. .queue_init = rt2400pci_queue_init,
  1549. .lib = &rt2400pci_rt2x00_ops,
  1550. .hw = &rt2400pci_mac80211_ops,
  1551. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1552. .debugfs = &rt2400pci_rt2x00debug,
  1553. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1554. };
  1555. /*
  1556. * RT2400pci module information.
  1557. */
  1558. static const struct pci_device_id rt2400pci_device_table[] = {
  1559. { PCI_DEVICE(0x1814, 0x0101) },
  1560. { 0, }
  1561. };
  1562. MODULE_AUTHOR(DRV_PROJECT);
  1563. MODULE_VERSION(DRV_VERSION);
  1564. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1565. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1566. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1567. MODULE_LICENSE("GPL");
  1568. static int rt2400pci_probe(struct pci_dev *pci_dev,
  1569. const struct pci_device_id *id)
  1570. {
  1571. return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
  1572. }
  1573. static struct pci_driver rt2400pci_driver = {
  1574. .name = KBUILD_MODNAME,
  1575. .id_table = rt2400pci_device_table,
  1576. .probe = rt2400pci_probe,
  1577. .remove = rt2x00pci_remove,
  1578. .suspend = rt2x00pci_suspend,
  1579. .resume = rt2x00pci_resume,
  1580. };
  1581. module_pci_driver(rt2400pci_driver);