msgbuf.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584
  1. /* Copyright (c) 2014 Broadcom Corporation
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  14. */
  15. /*******************************************************************************
  16. * Communicates with the dongle by using dcmd codes.
  17. * For certain dcmd codes, the dongle interprets string data from the host.
  18. ******************************************************************************/
  19. #include <linux/types.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/etherdevice.h>
  22. #include <brcmu_utils.h>
  23. #include <brcmu_wifi.h>
  24. #include "core.h"
  25. #include "debug.h"
  26. #include "proto.h"
  27. #include "msgbuf.h"
  28. #include "commonring.h"
  29. #include "flowring.h"
  30. #include "bus.h"
  31. #include "tracepoint.h"
  32. #define MSGBUF_IOCTL_RESP_TIMEOUT msecs_to_jiffies(2000)
  33. #define MSGBUF_TYPE_GEN_STATUS 0x1
  34. #define MSGBUF_TYPE_RING_STATUS 0x2
  35. #define MSGBUF_TYPE_FLOW_RING_CREATE 0x3
  36. #define MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT 0x4
  37. #define MSGBUF_TYPE_FLOW_RING_DELETE 0x5
  38. #define MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT 0x6
  39. #define MSGBUF_TYPE_FLOW_RING_FLUSH 0x7
  40. #define MSGBUF_TYPE_FLOW_RING_FLUSH_CMPLT 0x8
  41. #define MSGBUF_TYPE_IOCTLPTR_REQ 0x9
  42. #define MSGBUF_TYPE_IOCTLPTR_REQ_ACK 0xA
  43. #define MSGBUF_TYPE_IOCTLRESP_BUF_POST 0xB
  44. #define MSGBUF_TYPE_IOCTL_CMPLT 0xC
  45. #define MSGBUF_TYPE_EVENT_BUF_POST 0xD
  46. #define MSGBUF_TYPE_WL_EVENT 0xE
  47. #define MSGBUF_TYPE_TX_POST 0xF
  48. #define MSGBUF_TYPE_TX_STATUS 0x10
  49. #define MSGBUF_TYPE_RXBUF_POST 0x11
  50. #define MSGBUF_TYPE_RX_CMPLT 0x12
  51. #define MSGBUF_TYPE_LPBK_DMAXFER 0x13
  52. #define MSGBUF_TYPE_LPBK_DMAXFER_CMPLT 0x14
  53. #define NR_TX_PKTIDS 2048
  54. #define NR_RX_PKTIDS 1024
  55. #define BRCMF_IOCTL_REQ_PKTID 0xFFFE
  56. #define BRCMF_MSGBUF_MAX_PKT_SIZE 2048
  57. #define BRCMF_MSGBUF_RXBUFPOST_THRESHOLD 32
  58. #define BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST 8
  59. #define BRCMF_MSGBUF_MAX_EVENTBUF_POST 8
  60. #define BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3 0x01
  61. #define BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT 5
  62. #define BRCMF_MSGBUF_TX_FLUSH_CNT1 32
  63. #define BRCMF_MSGBUF_TX_FLUSH_CNT2 96
  64. #define BRCMF_MSGBUF_DELAY_TXWORKER_THRS 96
  65. #define BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS 32
  66. #define BRCMF_MSGBUF_UPDATE_RX_PTR_THRS 48
  67. struct msgbuf_common_hdr {
  68. u8 msgtype;
  69. u8 ifidx;
  70. u8 flags;
  71. u8 rsvd0;
  72. __le32 request_id;
  73. };
  74. struct msgbuf_ioctl_req_hdr {
  75. struct msgbuf_common_hdr msg;
  76. __le32 cmd;
  77. __le16 trans_id;
  78. __le16 input_buf_len;
  79. __le16 output_buf_len;
  80. __le16 rsvd0[3];
  81. struct msgbuf_buf_addr req_buf_addr;
  82. __le32 rsvd1[2];
  83. };
  84. struct msgbuf_tx_msghdr {
  85. struct msgbuf_common_hdr msg;
  86. u8 txhdr[ETH_HLEN];
  87. u8 flags;
  88. u8 seg_cnt;
  89. struct msgbuf_buf_addr metadata_buf_addr;
  90. struct msgbuf_buf_addr data_buf_addr;
  91. __le16 metadata_buf_len;
  92. __le16 data_len;
  93. __le32 rsvd0;
  94. };
  95. struct msgbuf_rx_bufpost {
  96. struct msgbuf_common_hdr msg;
  97. __le16 metadata_buf_len;
  98. __le16 data_buf_len;
  99. __le32 rsvd0;
  100. struct msgbuf_buf_addr metadata_buf_addr;
  101. struct msgbuf_buf_addr data_buf_addr;
  102. };
  103. struct msgbuf_rx_ioctl_resp_or_event {
  104. struct msgbuf_common_hdr msg;
  105. __le16 host_buf_len;
  106. __le16 rsvd0[3];
  107. struct msgbuf_buf_addr host_buf_addr;
  108. __le32 rsvd1[4];
  109. };
  110. struct msgbuf_completion_hdr {
  111. __le16 status;
  112. __le16 flow_ring_id;
  113. };
  114. struct msgbuf_rx_event {
  115. struct msgbuf_common_hdr msg;
  116. struct msgbuf_completion_hdr compl_hdr;
  117. __le16 event_data_len;
  118. __le16 seqnum;
  119. __le16 rsvd0[4];
  120. };
  121. struct msgbuf_ioctl_resp_hdr {
  122. struct msgbuf_common_hdr msg;
  123. struct msgbuf_completion_hdr compl_hdr;
  124. __le16 resp_len;
  125. __le16 trans_id;
  126. __le32 cmd;
  127. __le32 rsvd0;
  128. };
  129. struct msgbuf_tx_status {
  130. struct msgbuf_common_hdr msg;
  131. struct msgbuf_completion_hdr compl_hdr;
  132. __le16 metadata_len;
  133. __le16 tx_status;
  134. };
  135. struct msgbuf_rx_complete {
  136. struct msgbuf_common_hdr msg;
  137. struct msgbuf_completion_hdr compl_hdr;
  138. __le16 metadata_len;
  139. __le16 data_len;
  140. __le16 data_offset;
  141. __le16 flags;
  142. __le32 rx_status_0;
  143. __le32 rx_status_1;
  144. __le32 rsvd0;
  145. };
  146. struct msgbuf_tx_flowring_create_req {
  147. struct msgbuf_common_hdr msg;
  148. u8 da[ETH_ALEN];
  149. u8 sa[ETH_ALEN];
  150. u8 tid;
  151. u8 if_flags;
  152. __le16 flow_ring_id;
  153. u8 tc;
  154. u8 priority;
  155. __le16 int_vector;
  156. __le16 max_items;
  157. __le16 len_item;
  158. struct msgbuf_buf_addr flow_ring_addr;
  159. };
  160. struct msgbuf_tx_flowring_delete_req {
  161. struct msgbuf_common_hdr msg;
  162. __le16 flow_ring_id;
  163. __le16 reason;
  164. __le32 rsvd0[7];
  165. };
  166. struct msgbuf_flowring_create_resp {
  167. struct msgbuf_common_hdr msg;
  168. struct msgbuf_completion_hdr compl_hdr;
  169. __le32 rsvd0[3];
  170. };
  171. struct msgbuf_flowring_delete_resp {
  172. struct msgbuf_common_hdr msg;
  173. struct msgbuf_completion_hdr compl_hdr;
  174. __le32 rsvd0[3];
  175. };
  176. struct msgbuf_flowring_flush_resp {
  177. struct msgbuf_common_hdr msg;
  178. struct msgbuf_completion_hdr compl_hdr;
  179. __le32 rsvd0[3];
  180. };
  181. struct brcmf_msgbuf_work_item {
  182. struct list_head queue;
  183. u32 flowid;
  184. int ifidx;
  185. u8 sa[ETH_ALEN];
  186. u8 da[ETH_ALEN];
  187. };
  188. struct brcmf_msgbuf {
  189. struct brcmf_pub *drvr;
  190. struct brcmf_commonring **commonrings;
  191. struct brcmf_commonring **flowrings;
  192. dma_addr_t *flowring_dma_handle;
  193. u16 max_flowrings;
  194. u16 max_submissionrings;
  195. u16 max_completionrings;
  196. u16 rx_dataoffset;
  197. u32 max_rxbufpost;
  198. u16 rx_metadata_offset;
  199. u32 rxbufpost;
  200. u32 max_ioctlrespbuf;
  201. u32 cur_ioctlrespbuf;
  202. u32 max_eventbuf;
  203. u32 cur_eventbuf;
  204. void *ioctbuf;
  205. dma_addr_t ioctbuf_handle;
  206. u32 ioctbuf_phys_hi;
  207. u32 ioctbuf_phys_lo;
  208. int ioctl_resp_status;
  209. u32 ioctl_resp_ret_len;
  210. u32 ioctl_resp_pktid;
  211. u16 data_seq_no;
  212. u16 ioctl_seq_no;
  213. u32 reqid;
  214. wait_queue_head_t ioctl_resp_wait;
  215. bool ctl_completed;
  216. struct brcmf_msgbuf_pktids *tx_pktids;
  217. struct brcmf_msgbuf_pktids *rx_pktids;
  218. struct brcmf_flowring *flow;
  219. struct workqueue_struct *txflow_wq;
  220. struct work_struct txflow_work;
  221. unsigned long *flow_map;
  222. unsigned long *txstatus_done_map;
  223. struct work_struct flowring_work;
  224. spinlock_t flowring_work_lock;
  225. struct list_head work_queue;
  226. };
  227. struct brcmf_msgbuf_pktid {
  228. atomic_t allocated;
  229. u16 data_offset;
  230. struct sk_buff *skb;
  231. dma_addr_t physaddr;
  232. };
  233. struct brcmf_msgbuf_pktids {
  234. u32 array_size;
  235. u32 last_allocated_idx;
  236. enum dma_data_direction direction;
  237. struct brcmf_msgbuf_pktid *array;
  238. };
  239. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf);
  240. static struct brcmf_msgbuf_pktids *
  241. brcmf_msgbuf_init_pktids(u32 nr_array_entries,
  242. enum dma_data_direction direction)
  243. {
  244. struct brcmf_msgbuf_pktid *array;
  245. struct brcmf_msgbuf_pktids *pktids;
  246. array = kcalloc(nr_array_entries, sizeof(*array), GFP_KERNEL);
  247. if (!array)
  248. return NULL;
  249. pktids = kzalloc(sizeof(*pktids), GFP_KERNEL);
  250. if (!pktids) {
  251. kfree(array);
  252. return NULL;
  253. }
  254. pktids->array = array;
  255. pktids->array_size = nr_array_entries;
  256. return pktids;
  257. }
  258. static int
  259. brcmf_msgbuf_alloc_pktid(struct device *dev,
  260. struct brcmf_msgbuf_pktids *pktids,
  261. struct sk_buff *skb, u16 data_offset,
  262. dma_addr_t *physaddr, u32 *idx)
  263. {
  264. struct brcmf_msgbuf_pktid *array;
  265. u32 count;
  266. array = pktids->array;
  267. *physaddr = dma_map_single(dev, skb->data + data_offset,
  268. skb->len - data_offset, pktids->direction);
  269. if (dma_mapping_error(dev, *physaddr)) {
  270. brcmf_err("dma_map_single failed !!\n");
  271. return -ENOMEM;
  272. }
  273. *idx = pktids->last_allocated_idx;
  274. count = 0;
  275. do {
  276. (*idx)++;
  277. if (*idx == pktids->array_size)
  278. *idx = 0;
  279. if (array[*idx].allocated.counter == 0)
  280. if (atomic_cmpxchg(&array[*idx].allocated, 0, 1) == 0)
  281. break;
  282. count++;
  283. } while (count < pktids->array_size);
  284. if (count == pktids->array_size)
  285. return -ENOMEM;
  286. array[*idx].data_offset = data_offset;
  287. array[*idx].physaddr = *physaddr;
  288. array[*idx].skb = skb;
  289. pktids->last_allocated_idx = *idx;
  290. return 0;
  291. }
  292. static struct sk_buff *
  293. brcmf_msgbuf_get_pktid(struct device *dev, struct brcmf_msgbuf_pktids *pktids,
  294. u32 idx)
  295. {
  296. struct brcmf_msgbuf_pktid *pktid;
  297. struct sk_buff *skb;
  298. if (idx >= pktids->array_size) {
  299. brcmf_err("Invalid packet id %d (max %d)\n", idx,
  300. pktids->array_size);
  301. return NULL;
  302. }
  303. if (pktids->array[idx].allocated.counter) {
  304. pktid = &pktids->array[idx];
  305. dma_unmap_single(dev, pktid->physaddr,
  306. pktid->skb->len - pktid->data_offset,
  307. pktids->direction);
  308. skb = pktid->skb;
  309. pktid->allocated.counter = 0;
  310. return skb;
  311. } else {
  312. brcmf_err("Invalid packet id %d (not in use)\n", idx);
  313. }
  314. return NULL;
  315. }
  316. static void
  317. brcmf_msgbuf_release_array(struct device *dev,
  318. struct brcmf_msgbuf_pktids *pktids)
  319. {
  320. struct brcmf_msgbuf_pktid *array;
  321. struct brcmf_msgbuf_pktid *pktid;
  322. u32 count;
  323. array = pktids->array;
  324. count = 0;
  325. do {
  326. if (array[count].allocated.counter) {
  327. pktid = &array[count];
  328. dma_unmap_single(dev, pktid->physaddr,
  329. pktid->skb->len - pktid->data_offset,
  330. pktids->direction);
  331. brcmu_pkt_buf_free_skb(pktid->skb);
  332. }
  333. count++;
  334. } while (count < pktids->array_size);
  335. kfree(array);
  336. kfree(pktids);
  337. }
  338. static void brcmf_msgbuf_release_pktids(struct brcmf_msgbuf *msgbuf)
  339. {
  340. if (msgbuf->rx_pktids)
  341. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  342. msgbuf->rx_pktids);
  343. if (msgbuf->tx_pktids)
  344. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  345. msgbuf->tx_pktids);
  346. }
  347. static int brcmf_msgbuf_tx_ioctl(struct brcmf_pub *drvr, int ifidx,
  348. uint cmd, void *buf, uint len)
  349. {
  350. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  351. struct brcmf_commonring *commonring;
  352. struct msgbuf_ioctl_req_hdr *request;
  353. u16 buf_len;
  354. void *ret_ptr;
  355. int err;
  356. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  357. brcmf_commonring_lock(commonring);
  358. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  359. if (!ret_ptr) {
  360. brcmf_err("Failed to reserve space in commonring\n");
  361. brcmf_commonring_unlock(commonring);
  362. return -ENOMEM;
  363. }
  364. msgbuf->reqid++;
  365. request = (struct msgbuf_ioctl_req_hdr *)ret_ptr;
  366. request->msg.msgtype = MSGBUF_TYPE_IOCTLPTR_REQ;
  367. request->msg.ifidx = (u8)ifidx;
  368. request->msg.flags = 0;
  369. request->msg.request_id = cpu_to_le32(BRCMF_IOCTL_REQ_PKTID);
  370. request->cmd = cpu_to_le32(cmd);
  371. request->output_buf_len = cpu_to_le16(len);
  372. request->trans_id = cpu_to_le16(msgbuf->reqid);
  373. buf_len = min_t(u16, len, BRCMF_TX_IOCTL_MAX_MSG_SIZE);
  374. request->input_buf_len = cpu_to_le16(buf_len);
  375. request->req_buf_addr.high_addr = cpu_to_le32(msgbuf->ioctbuf_phys_hi);
  376. request->req_buf_addr.low_addr = cpu_to_le32(msgbuf->ioctbuf_phys_lo);
  377. if (buf)
  378. memcpy(msgbuf->ioctbuf, buf, buf_len);
  379. else
  380. memset(msgbuf->ioctbuf, 0, buf_len);
  381. err = brcmf_commonring_write_complete(commonring);
  382. brcmf_commonring_unlock(commonring);
  383. return err;
  384. }
  385. static int brcmf_msgbuf_ioctl_resp_wait(struct brcmf_msgbuf *msgbuf)
  386. {
  387. return wait_event_timeout(msgbuf->ioctl_resp_wait,
  388. msgbuf->ctl_completed,
  389. MSGBUF_IOCTL_RESP_TIMEOUT);
  390. }
  391. static void brcmf_msgbuf_ioctl_resp_wake(struct brcmf_msgbuf *msgbuf)
  392. {
  393. msgbuf->ctl_completed = true;
  394. wake_up(&msgbuf->ioctl_resp_wait);
  395. }
  396. static int brcmf_msgbuf_query_dcmd(struct brcmf_pub *drvr, int ifidx,
  397. uint cmd, void *buf, uint len, int *fwerr)
  398. {
  399. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  400. struct sk_buff *skb = NULL;
  401. int timeout;
  402. int err;
  403. brcmf_dbg(MSGBUF, "ifidx=%d, cmd=%d, len=%d\n", ifidx, cmd, len);
  404. *fwerr = 0;
  405. msgbuf->ctl_completed = false;
  406. err = brcmf_msgbuf_tx_ioctl(drvr, ifidx, cmd, buf, len);
  407. if (err)
  408. return err;
  409. timeout = brcmf_msgbuf_ioctl_resp_wait(msgbuf);
  410. if (!timeout) {
  411. brcmf_err("Timeout on response for query command\n");
  412. return -EIO;
  413. }
  414. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  415. msgbuf->rx_pktids,
  416. msgbuf->ioctl_resp_pktid);
  417. if (msgbuf->ioctl_resp_ret_len != 0) {
  418. if (!skb)
  419. return -EBADF;
  420. memcpy(buf, skb->data, (len < msgbuf->ioctl_resp_ret_len) ?
  421. len : msgbuf->ioctl_resp_ret_len);
  422. }
  423. brcmu_pkt_buf_free_skb(skb);
  424. *fwerr = msgbuf->ioctl_resp_status;
  425. return 0;
  426. }
  427. static int brcmf_msgbuf_set_dcmd(struct brcmf_pub *drvr, int ifidx,
  428. uint cmd, void *buf, uint len, int *fwerr)
  429. {
  430. return brcmf_msgbuf_query_dcmd(drvr, ifidx, cmd, buf, len, fwerr);
  431. }
  432. static int brcmf_msgbuf_hdrpull(struct brcmf_pub *drvr, bool do_fws,
  433. struct sk_buff *skb, struct brcmf_if **ifp)
  434. {
  435. return -ENODEV;
  436. }
  437. static void brcmf_msgbuf_rxreorder(struct brcmf_if *ifp, struct sk_buff *skb)
  438. {
  439. }
  440. static void
  441. brcmf_msgbuf_remove_flowring(struct brcmf_msgbuf *msgbuf, u16 flowid)
  442. {
  443. u32 dma_sz;
  444. void *dma_buf;
  445. brcmf_dbg(MSGBUF, "Removing flowring %d\n", flowid);
  446. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  447. dma_buf = msgbuf->flowrings[flowid]->buf_addr;
  448. dma_free_coherent(msgbuf->drvr->bus_if->dev, dma_sz, dma_buf,
  449. msgbuf->flowring_dma_handle[flowid]);
  450. brcmf_flowring_delete(msgbuf->flow, flowid);
  451. }
  452. static struct brcmf_msgbuf_work_item *
  453. brcmf_msgbuf_dequeue_work(struct brcmf_msgbuf *msgbuf)
  454. {
  455. struct brcmf_msgbuf_work_item *work = NULL;
  456. ulong flags;
  457. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  458. if (!list_empty(&msgbuf->work_queue)) {
  459. work = list_first_entry(&msgbuf->work_queue,
  460. struct brcmf_msgbuf_work_item, queue);
  461. list_del(&work->queue);
  462. }
  463. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  464. return work;
  465. }
  466. static u32
  467. brcmf_msgbuf_flowring_create_worker(struct brcmf_msgbuf *msgbuf,
  468. struct brcmf_msgbuf_work_item *work)
  469. {
  470. struct msgbuf_tx_flowring_create_req *create;
  471. struct brcmf_commonring *commonring;
  472. void *ret_ptr;
  473. u32 flowid;
  474. void *dma_buf;
  475. u32 dma_sz;
  476. u64 address;
  477. int err;
  478. flowid = work->flowid;
  479. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  480. dma_buf = dma_alloc_coherent(msgbuf->drvr->bus_if->dev, dma_sz,
  481. &msgbuf->flowring_dma_handle[flowid],
  482. GFP_KERNEL);
  483. if (!dma_buf) {
  484. brcmf_err("dma_alloc_coherent failed\n");
  485. brcmf_flowring_delete(msgbuf->flow, flowid);
  486. return BRCMF_FLOWRING_INVALID_ID;
  487. }
  488. brcmf_commonring_config(msgbuf->flowrings[flowid],
  489. BRCMF_H2D_TXFLOWRING_MAX_ITEM,
  490. BRCMF_H2D_TXFLOWRING_ITEMSIZE, dma_buf);
  491. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  492. brcmf_commonring_lock(commonring);
  493. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  494. if (!ret_ptr) {
  495. brcmf_err("Failed to reserve space in commonring\n");
  496. brcmf_commonring_unlock(commonring);
  497. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  498. return BRCMF_FLOWRING_INVALID_ID;
  499. }
  500. create = (struct msgbuf_tx_flowring_create_req *)ret_ptr;
  501. create->msg.msgtype = MSGBUF_TYPE_FLOW_RING_CREATE;
  502. create->msg.ifidx = work->ifidx;
  503. create->msg.request_id = 0;
  504. create->tid = brcmf_flowring_tid(msgbuf->flow, flowid);
  505. create->flow_ring_id = cpu_to_le16(flowid +
  506. BRCMF_H2D_MSGRING_FLOWRING_IDSTART);
  507. memcpy(create->sa, work->sa, ETH_ALEN);
  508. memcpy(create->da, work->da, ETH_ALEN);
  509. address = (u64)msgbuf->flowring_dma_handle[flowid];
  510. create->flow_ring_addr.high_addr = cpu_to_le32(address >> 32);
  511. create->flow_ring_addr.low_addr = cpu_to_le32(address & 0xffffffff);
  512. create->max_items = cpu_to_le16(BRCMF_H2D_TXFLOWRING_MAX_ITEM);
  513. create->len_item = cpu_to_le16(BRCMF_H2D_TXFLOWRING_ITEMSIZE);
  514. brcmf_dbg(MSGBUF, "Send Flow Create Req flow ID %d for peer %pM prio %d ifindex %d\n",
  515. flowid, work->da, create->tid, work->ifidx);
  516. err = brcmf_commonring_write_complete(commonring);
  517. brcmf_commonring_unlock(commonring);
  518. if (err) {
  519. brcmf_err("Failed to write commonring\n");
  520. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  521. return BRCMF_FLOWRING_INVALID_ID;
  522. }
  523. return flowid;
  524. }
  525. static void brcmf_msgbuf_flowring_worker(struct work_struct *work)
  526. {
  527. struct brcmf_msgbuf *msgbuf;
  528. struct brcmf_msgbuf_work_item *create;
  529. msgbuf = container_of(work, struct brcmf_msgbuf, flowring_work);
  530. while ((create = brcmf_msgbuf_dequeue_work(msgbuf))) {
  531. brcmf_msgbuf_flowring_create_worker(msgbuf, create);
  532. kfree(create);
  533. }
  534. }
  535. static u32 brcmf_msgbuf_flowring_create(struct brcmf_msgbuf *msgbuf, int ifidx,
  536. struct sk_buff *skb)
  537. {
  538. struct brcmf_msgbuf_work_item *create;
  539. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  540. u32 flowid;
  541. ulong flags;
  542. create = kzalloc(sizeof(*create), GFP_ATOMIC);
  543. if (create == NULL)
  544. return BRCMF_FLOWRING_INVALID_ID;
  545. flowid = brcmf_flowring_create(msgbuf->flow, eh->h_dest,
  546. skb->priority, ifidx);
  547. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  548. kfree(create);
  549. return flowid;
  550. }
  551. create->flowid = flowid;
  552. create->ifidx = ifidx;
  553. memcpy(create->sa, eh->h_source, ETH_ALEN);
  554. memcpy(create->da, eh->h_dest, ETH_ALEN);
  555. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  556. list_add_tail(&create->queue, &msgbuf->work_queue);
  557. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  558. schedule_work(&msgbuf->flowring_work);
  559. return flowid;
  560. }
  561. static void brcmf_msgbuf_txflow(struct brcmf_msgbuf *msgbuf, u16 flowid)
  562. {
  563. struct brcmf_flowring *flow = msgbuf->flow;
  564. struct brcmf_commonring *commonring;
  565. void *ret_ptr;
  566. u32 count;
  567. struct sk_buff *skb;
  568. dma_addr_t physaddr;
  569. u32 pktid;
  570. struct msgbuf_tx_msghdr *tx_msghdr;
  571. u64 address;
  572. commonring = msgbuf->flowrings[flowid];
  573. if (!brcmf_commonring_write_available(commonring))
  574. return;
  575. brcmf_commonring_lock(commonring);
  576. count = BRCMF_MSGBUF_TX_FLUSH_CNT2 - BRCMF_MSGBUF_TX_FLUSH_CNT1;
  577. while (brcmf_flowring_qlen(flow, flowid)) {
  578. skb = brcmf_flowring_dequeue(flow, flowid);
  579. if (skb == NULL) {
  580. brcmf_err("No SKB, but qlen %d\n",
  581. brcmf_flowring_qlen(flow, flowid));
  582. break;
  583. }
  584. skb_orphan(skb);
  585. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  586. msgbuf->tx_pktids, skb, ETH_HLEN,
  587. &physaddr, &pktid)) {
  588. brcmf_flowring_reinsert(flow, flowid, skb);
  589. brcmf_err("No PKTID available !!\n");
  590. break;
  591. }
  592. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  593. if (!ret_ptr) {
  594. brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  595. msgbuf->tx_pktids, pktid);
  596. brcmf_flowring_reinsert(flow, flowid, skb);
  597. break;
  598. }
  599. count++;
  600. tx_msghdr = (struct msgbuf_tx_msghdr *)ret_ptr;
  601. tx_msghdr->msg.msgtype = MSGBUF_TYPE_TX_POST;
  602. tx_msghdr->msg.request_id = cpu_to_le32(pktid);
  603. tx_msghdr->msg.ifidx = brcmf_flowring_ifidx_get(flow, flowid);
  604. tx_msghdr->flags = BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3;
  605. tx_msghdr->flags |= (skb->priority & 0x07) <<
  606. BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT;
  607. tx_msghdr->seg_cnt = 1;
  608. memcpy(tx_msghdr->txhdr, skb->data, ETH_HLEN);
  609. tx_msghdr->data_len = cpu_to_le16(skb->len - ETH_HLEN);
  610. address = (u64)physaddr;
  611. tx_msghdr->data_buf_addr.high_addr = cpu_to_le32(address >> 32);
  612. tx_msghdr->data_buf_addr.low_addr =
  613. cpu_to_le32(address & 0xffffffff);
  614. tx_msghdr->metadata_buf_len = 0;
  615. tx_msghdr->metadata_buf_addr.high_addr = 0;
  616. tx_msghdr->metadata_buf_addr.low_addr = 0;
  617. atomic_inc(&commonring->outstanding_tx);
  618. if (count >= BRCMF_MSGBUF_TX_FLUSH_CNT2) {
  619. brcmf_commonring_write_complete(commonring);
  620. count = 0;
  621. }
  622. }
  623. if (count)
  624. brcmf_commonring_write_complete(commonring);
  625. brcmf_commonring_unlock(commonring);
  626. }
  627. static void brcmf_msgbuf_txflow_worker(struct work_struct *worker)
  628. {
  629. struct brcmf_msgbuf *msgbuf;
  630. u32 flowid;
  631. msgbuf = container_of(worker, struct brcmf_msgbuf, txflow_work);
  632. for_each_set_bit(flowid, msgbuf->flow_map, msgbuf->max_flowrings) {
  633. clear_bit(flowid, msgbuf->flow_map);
  634. brcmf_msgbuf_txflow(msgbuf, flowid);
  635. }
  636. }
  637. static int brcmf_msgbuf_schedule_txdata(struct brcmf_msgbuf *msgbuf, u32 flowid,
  638. bool force)
  639. {
  640. struct brcmf_commonring *commonring;
  641. set_bit(flowid, msgbuf->flow_map);
  642. commonring = msgbuf->flowrings[flowid];
  643. if ((force) || (atomic_read(&commonring->outstanding_tx) <
  644. BRCMF_MSGBUF_DELAY_TXWORKER_THRS))
  645. queue_work(msgbuf->txflow_wq, &msgbuf->txflow_work);
  646. return 0;
  647. }
  648. static int brcmf_msgbuf_tx_queue_data(struct brcmf_pub *drvr, int ifidx,
  649. struct sk_buff *skb)
  650. {
  651. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  652. struct brcmf_flowring *flow = msgbuf->flow;
  653. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  654. u32 flowid;
  655. u32 queue_count;
  656. bool force;
  657. flowid = brcmf_flowring_lookup(flow, eh->h_dest, skb->priority, ifidx);
  658. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  659. flowid = brcmf_msgbuf_flowring_create(msgbuf, ifidx, skb);
  660. if (flowid == BRCMF_FLOWRING_INVALID_ID)
  661. return -ENOMEM;
  662. }
  663. queue_count = brcmf_flowring_enqueue(flow, flowid, skb);
  664. force = ((queue_count % BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS) == 0);
  665. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, force);
  666. return 0;
  667. }
  668. static void
  669. brcmf_msgbuf_configure_addr_mode(struct brcmf_pub *drvr, int ifidx,
  670. enum proto_addr_mode addr_mode)
  671. {
  672. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  673. brcmf_flowring_configure_addr_mode(msgbuf->flow, ifidx, addr_mode);
  674. }
  675. static void
  676. brcmf_msgbuf_delete_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  677. {
  678. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  679. brcmf_flowring_delete_peer(msgbuf->flow, ifidx, peer);
  680. }
  681. static void
  682. brcmf_msgbuf_add_tdls_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  683. {
  684. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  685. brcmf_flowring_add_tdls_peer(msgbuf->flow, ifidx, peer);
  686. }
  687. static void
  688. brcmf_msgbuf_process_ioctl_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  689. {
  690. struct msgbuf_ioctl_resp_hdr *ioctl_resp;
  691. ioctl_resp = (struct msgbuf_ioctl_resp_hdr *)buf;
  692. msgbuf->ioctl_resp_status =
  693. (s16)le16_to_cpu(ioctl_resp->compl_hdr.status);
  694. msgbuf->ioctl_resp_ret_len = le16_to_cpu(ioctl_resp->resp_len);
  695. msgbuf->ioctl_resp_pktid = le32_to_cpu(ioctl_resp->msg.request_id);
  696. brcmf_msgbuf_ioctl_resp_wake(msgbuf);
  697. if (msgbuf->cur_ioctlrespbuf)
  698. msgbuf->cur_ioctlrespbuf--;
  699. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  700. }
  701. static void
  702. brcmf_msgbuf_process_txstatus(struct brcmf_msgbuf *msgbuf, void *buf)
  703. {
  704. struct brcmf_commonring *commonring;
  705. struct msgbuf_tx_status *tx_status;
  706. u32 idx;
  707. struct sk_buff *skb;
  708. u16 flowid;
  709. tx_status = (struct msgbuf_tx_status *)buf;
  710. idx = le32_to_cpu(tx_status->msg.request_id);
  711. flowid = le16_to_cpu(tx_status->compl_hdr.flow_ring_id);
  712. flowid -= BRCMF_H2D_MSGRING_FLOWRING_IDSTART;
  713. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  714. msgbuf->tx_pktids, idx);
  715. if (!skb)
  716. return;
  717. set_bit(flowid, msgbuf->txstatus_done_map);
  718. commonring = msgbuf->flowrings[flowid];
  719. atomic_dec(&commonring->outstanding_tx);
  720. brcmf_txfinalize(brcmf_get_ifp(msgbuf->drvr, tx_status->msg.ifidx),
  721. skb, true);
  722. }
  723. static u32 brcmf_msgbuf_rxbuf_data_post(struct brcmf_msgbuf *msgbuf, u32 count)
  724. {
  725. struct brcmf_commonring *commonring;
  726. void *ret_ptr;
  727. struct sk_buff *skb;
  728. u16 alloced;
  729. u32 pktlen;
  730. dma_addr_t physaddr;
  731. struct msgbuf_rx_bufpost *rx_bufpost;
  732. u64 address;
  733. u32 pktid;
  734. u32 i;
  735. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_RXPOST_SUBMIT];
  736. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  737. count,
  738. &alloced);
  739. if (!ret_ptr) {
  740. brcmf_dbg(MSGBUF, "Failed to reserve space in commonring\n");
  741. return 0;
  742. }
  743. for (i = 0; i < alloced; i++) {
  744. rx_bufpost = (struct msgbuf_rx_bufpost *)ret_ptr;
  745. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  746. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  747. if (skb == NULL) {
  748. brcmf_err("Failed to alloc SKB\n");
  749. brcmf_commonring_write_cancel(commonring, alloced - i);
  750. break;
  751. }
  752. pktlen = skb->len;
  753. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  754. msgbuf->rx_pktids, skb, 0,
  755. &physaddr, &pktid)) {
  756. dev_kfree_skb_any(skb);
  757. brcmf_err("No PKTID available !!\n");
  758. brcmf_commonring_write_cancel(commonring, alloced - i);
  759. break;
  760. }
  761. if (msgbuf->rx_metadata_offset) {
  762. address = (u64)physaddr;
  763. rx_bufpost->metadata_buf_len =
  764. cpu_to_le16(msgbuf->rx_metadata_offset);
  765. rx_bufpost->metadata_buf_addr.high_addr =
  766. cpu_to_le32(address >> 32);
  767. rx_bufpost->metadata_buf_addr.low_addr =
  768. cpu_to_le32(address & 0xffffffff);
  769. skb_pull(skb, msgbuf->rx_metadata_offset);
  770. pktlen = skb->len;
  771. physaddr += msgbuf->rx_metadata_offset;
  772. }
  773. rx_bufpost->msg.msgtype = MSGBUF_TYPE_RXBUF_POST;
  774. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  775. address = (u64)physaddr;
  776. rx_bufpost->data_buf_len = cpu_to_le16((u16)pktlen);
  777. rx_bufpost->data_buf_addr.high_addr =
  778. cpu_to_le32(address >> 32);
  779. rx_bufpost->data_buf_addr.low_addr =
  780. cpu_to_le32(address & 0xffffffff);
  781. ret_ptr += brcmf_commonring_len_item(commonring);
  782. }
  783. if (i)
  784. brcmf_commonring_write_complete(commonring);
  785. return i;
  786. }
  787. static void
  788. brcmf_msgbuf_rxbuf_data_fill(struct brcmf_msgbuf *msgbuf)
  789. {
  790. u32 fillbufs;
  791. u32 retcount;
  792. fillbufs = msgbuf->max_rxbufpost - msgbuf->rxbufpost;
  793. while (fillbufs) {
  794. retcount = brcmf_msgbuf_rxbuf_data_post(msgbuf, fillbufs);
  795. if (!retcount)
  796. break;
  797. msgbuf->rxbufpost += retcount;
  798. fillbufs -= retcount;
  799. }
  800. }
  801. static void
  802. brcmf_msgbuf_update_rxbufpost_count(struct brcmf_msgbuf *msgbuf, u16 rxcnt)
  803. {
  804. msgbuf->rxbufpost -= rxcnt;
  805. if (msgbuf->rxbufpost <= (msgbuf->max_rxbufpost -
  806. BRCMF_MSGBUF_RXBUFPOST_THRESHOLD))
  807. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  808. }
  809. static u32
  810. brcmf_msgbuf_rxbuf_ctrl_post(struct brcmf_msgbuf *msgbuf, bool event_buf,
  811. u32 count)
  812. {
  813. struct brcmf_commonring *commonring;
  814. void *ret_ptr;
  815. struct sk_buff *skb;
  816. u16 alloced;
  817. u32 pktlen;
  818. dma_addr_t physaddr;
  819. struct msgbuf_rx_ioctl_resp_or_event *rx_bufpost;
  820. u64 address;
  821. u32 pktid;
  822. u32 i;
  823. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  824. brcmf_commonring_lock(commonring);
  825. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  826. count,
  827. &alloced);
  828. if (!ret_ptr) {
  829. brcmf_err("Failed to reserve space in commonring\n");
  830. brcmf_commonring_unlock(commonring);
  831. return 0;
  832. }
  833. for (i = 0; i < alloced; i++) {
  834. rx_bufpost = (struct msgbuf_rx_ioctl_resp_or_event *)ret_ptr;
  835. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  836. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  837. if (skb == NULL) {
  838. brcmf_err("Failed to alloc SKB\n");
  839. brcmf_commonring_write_cancel(commonring, alloced - i);
  840. break;
  841. }
  842. pktlen = skb->len;
  843. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  844. msgbuf->rx_pktids, skb, 0,
  845. &physaddr, &pktid)) {
  846. dev_kfree_skb_any(skb);
  847. brcmf_err("No PKTID available !!\n");
  848. brcmf_commonring_write_cancel(commonring, alloced - i);
  849. break;
  850. }
  851. if (event_buf)
  852. rx_bufpost->msg.msgtype = MSGBUF_TYPE_EVENT_BUF_POST;
  853. else
  854. rx_bufpost->msg.msgtype =
  855. MSGBUF_TYPE_IOCTLRESP_BUF_POST;
  856. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  857. address = (u64)physaddr;
  858. rx_bufpost->host_buf_len = cpu_to_le16((u16)pktlen);
  859. rx_bufpost->host_buf_addr.high_addr =
  860. cpu_to_le32(address >> 32);
  861. rx_bufpost->host_buf_addr.low_addr =
  862. cpu_to_le32(address & 0xffffffff);
  863. ret_ptr += brcmf_commonring_len_item(commonring);
  864. }
  865. if (i)
  866. brcmf_commonring_write_complete(commonring);
  867. brcmf_commonring_unlock(commonring);
  868. return i;
  869. }
  870. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf)
  871. {
  872. u32 count;
  873. count = msgbuf->max_ioctlrespbuf - msgbuf->cur_ioctlrespbuf;
  874. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, false, count);
  875. msgbuf->cur_ioctlrespbuf += count;
  876. }
  877. static void brcmf_msgbuf_rxbuf_event_post(struct brcmf_msgbuf *msgbuf)
  878. {
  879. u32 count;
  880. count = msgbuf->max_eventbuf - msgbuf->cur_eventbuf;
  881. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, true, count);
  882. msgbuf->cur_eventbuf += count;
  883. }
  884. static void brcmf_msgbuf_process_event(struct brcmf_msgbuf *msgbuf, void *buf)
  885. {
  886. struct msgbuf_rx_event *event;
  887. u32 idx;
  888. u16 buflen;
  889. struct sk_buff *skb;
  890. struct brcmf_if *ifp;
  891. event = (struct msgbuf_rx_event *)buf;
  892. idx = le32_to_cpu(event->msg.request_id);
  893. buflen = le16_to_cpu(event->event_data_len);
  894. if (msgbuf->cur_eventbuf)
  895. msgbuf->cur_eventbuf--;
  896. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  897. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  898. msgbuf->rx_pktids, idx);
  899. if (!skb)
  900. return;
  901. if (msgbuf->rx_dataoffset)
  902. skb_pull(skb, msgbuf->rx_dataoffset);
  903. skb_trim(skb, buflen);
  904. ifp = brcmf_get_ifp(msgbuf->drvr, event->msg.ifidx);
  905. if (!ifp || !ifp->ndev) {
  906. brcmf_err("Received pkt for invalid ifidx %d\n",
  907. event->msg.ifidx);
  908. goto exit;
  909. }
  910. skb->protocol = eth_type_trans(skb, ifp->ndev);
  911. brcmf_fweh_process_skb(ifp->drvr, skb);
  912. exit:
  913. brcmu_pkt_buf_free_skb(skb);
  914. }
  915. static void
  916. brcmf_msgbuf_process_rx_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  917. {
  918. struct msgbuf_rx_complete *rx_complete;
  919. struct sk_buff *skb;
  920. u16 data_offset;
  921. u16 buflen;
  922. u32 idx;
  923. struct brcmf_if *ifp;
  924. brcmf_msgbuf_update_rxbufpost_count(msgbuf, 1);
  925. rx_complete = (struct msgbuf_rx_complete *)buf;
  926. data_offset = le16_to_cpu(rx_complete->data_offset);
  927. buflen = le16_to_cpu(rx_complete->data_len);
  928. idx = le32_to_cpu(rx_complete->msg.request_id);
  929. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  930. msgbuf->rx_pktids, idx);
  931. if (!skb)
  932. return;
  933. if (data_offset)
  934. skb_pull(skb, data_offset);
  935. else if (msgbuf->rx_dataoffset)
  936. skb_pull(skb, msgbuf->rx_dataoffset);
  937. skb_trim(skb, buflen);
  938. ifp = brcmf_get_ifp(msgbuf->drvr, rx_complete->msg.ifidx);
  939. if (!ifp || !ifp->ndev) {
  940. brcmf_err("Received pkt for invalid ifidx %d\n",
  941. rx_complete->msg.ifidx);
  942. brcmu_pkt_buf_free_skb(skb);
  943. return;
  944. }
  945. skb->protocol = eth_type_trans(skb, ifp->ndev);
  946. brcmf_netif_rx(ifp, skb);
  947. }
  948. static void
  949. brcmf_msgbuf_process_flow_ring_create_response(struct brcmf_msgbuf *msgbuf,
  950. void *buf)
  951. {
  952. struct msgbuf_flowring_create_resp *flowring_create_resp;
  953. u16 status;
  954. u16 flowid;
  955. flowring_create_resp = (struct msgbuf_flowring_create_resp *)buf;
  956. flowid = le16_to_cpu(flowring_create_resp->compl_hdr.flow_ring_id);
  957. flowid -= BRCMF_H2D_MSGRING_FLOWRING_IDSTART;
  958. status = le16_to_cpu(flowring_create_resp->compl_hdr.status);
  959. if (status) {
  960. brcmf_err("Flowring creation failed, code %d\n", status);
  961. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  962. return;
  963. }
  964. brcmf_dbg(MSGBUF, "Flowring %d Create response status %d\n", flowid,
  965. status);
  966. brcmf_flowring_open(msgbuf->flow, flowid);
  967. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, true);
  968. }
  969. static void
  970. brcmf_msgbuf_process_flow_ring_delete_response(struct brcmf_msgbuf *msgbuf,
  971. void *buf)
  972. {
  973. struct msgbuf_flowring_delete_resp *flowring_delete_resp;
  974. u16 status;
  975. u16 flowid;
  976. flowring_delete_resp = (struct msgbuf_flowring_delete_resp *)buf;
  977. flowid = le16_to_cpu(flowring_delete_resp->compl_hdr.flow_ring_id);
  978. flowid -= BRCMF_H2D_MSGRING_FLOWRING_IDSTART;
  979. status = le16_to_cpu(flowring_delete_resp->compl_hdr.status);
  980. if (status) {
  981. brcmf_err("Flowring deletion failed, code %d\n", status);
  982. brcmf_flowring_delete(msgbuf->flow, flowid);
  983. return;
  984. }
  985. brcmf_dbg(MSGBUF, "Flowring %d Delete response status %d\n", flowid,
  986. status);
  987. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  988. }
  989. static void brcmf_msgbuf_process_msgtype(struct brcmf_msgbuf *msgbuf, void *buf)
  990. {
  991. struct msgbuf_common_hdr *msg;
  992. msg = (struct msgbuf_common_hdr *)buf;
  993. switch (msg->msgtype) {
  994. case MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT:
  995. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT\n");
  996. brcmf_msgbuf_process_flow_ring_create_response(msgbuf, buf);
  997. break;
  998. case MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT:
  999. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT\n");
  1000. brcmf_msgbuf_process_flow_ring_delete_response(msgbuf, buf);
  1001. break;
  1002. case MSGBUF_TYPE_IOCTLPTR_REQ_ACK:
  1003. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTLPTR_REQ_ACK\n");
  1004. break;
  1005. case MSGBUF_TYPE_IOCTL_CMPLT:
  1006. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTL_CMPLT\n");
  1007. brcmf_msgbuf_process_ioctl_complete(msgbuf, buf);
  1008. break;
  1009. case MSGBUF_TYPE_WL_EVENT:
  1010. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_WL_EVENT\n");
  1011. brcmf_msgbuf_process_event(msgbuf, buf);
  1012. break;
  1013. case MSGBUF_TYPE_TX_STATUS:
  1014. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_TX_STATUS\n");
  1015. brcmf_msgbuf_process_txstatus(msgbuf, buf);
  1016. break;
  1017. case MSGBUF_TYPE_RX_CMPLT:
  1018. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_RX_CMPLT\n");
  1019. brcmf_msgbuf_process_rx_complete(msgbuf, buf);
  1020. break;
  1021. default:
  1022. brcmf_err("Unsupported msgtype %d\n", msg->msgtype);
  1023. break;
  1024. }
  1025. }
  1026. static void brcmf_msgbuf_process_rx(struct brcmf_msgbuf *msgbuf,
  1027. struct brcmf_commonring *commonring)
  1028. {
  1029. void *buf;
  1030. u16 count;
  1031. u16 processed;
  1032. again:
  1033. buf = brcmf_commonring_get_read_ptr(commonring, &count);
  1034. if (buf == NULL)
  1035. return;
  1036. processed = 0;
  1037. while (count) {
  1038. brcmf_msgbuf_process_msgtype(msgbuf,
  1039. buf + msgbuf->rx_dataoffset);
  1040. buf += brcmf_commonring_len_item(commonring);
  1041. processed++;
  1042. if (processed == BRCMF_MSGBUF_UPDATE_RX_PTR_THRS) {
  1043. brcmf_commonring_read_complete(commonring, processed);
  1044. processed = 0;
  1045. }
  1046. count--;
  1047. }
  1048. if (processed)
  1049. brcmf_commonring_read_complete(commonring, processed);
  1050. if (commonring->r_ptr == 0)
  1051. goto again;
  1052. }
  1053. int brcmf_proto_msgbuf_rx_trigger(struct device *dev)
  1054. {
  1055. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1056. struct brcmf_pub *drvr = bus_if->drvr;
  1057. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1058. struct brcmf_commonring *commonring;
  1059. void *buf;
  1060. u32 flowid;
  1061. int qlen;
  1062. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_RX_COMPLETE];
  1063. brcmf_msgbuf_process_rx(msgbuf, buf);
  1064. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_TX_COMPLETE];
  1065. brcmf_msgbuf_process_rx(msgbuf, buf);
  1066. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_CONTROL_COMPLETE];
  1067. brcmf_msgbuf_process_rx(msgbuf, buf);
  1068. for_each_set_bit(flowid, msgbuf->txstatus_done_map,
  1069. msgbuf->max_flowrings) {
  1070. clear_bit(flowid, msgbuf->txstatus_done_map);
  1071. commonring = msgbuf->flowrings[flowid];
  1072. qlen = brcmf_flowring_qlen(msgbuf->flow, flowid);
  1073. if ((qlen > BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS) ||
  1074. ((qlen) && (atomic_read(&commonring->outstanding_tx) <
  1075. BRCMF_MSGBUF_TRICKLE_TXWORKER_THRS)))
  1076. brcmf_msgbuf_schedule_txdata(msgbuf, flowid, true);
  1077. }
  1078. return 0;
  1079. }
  1080. void brcmf_msgbuf_delete_flowring(struct brcmf_pub *drvr, u16 flowid)
  1081. {
  1082. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1083. struct msgbuf_tx_flowring_delete_req *delete;
  1084. struct brcmf_commonring *commonring;
  1085. void *ret_ptr;
  1086. u8 ifidx;
  1087. int err;
  1088. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  1089. brcmf_commonring_lock(commonring);
  1090. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  1091. if (!ret_ptr) {
  1092. brcmf_err("FW unaware, flowring will be removed !!\n");
  1093. brcmf_commonring_unlock(commonring);
  1094. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1095. return;
  1096. }
  1097. delete = (struct msgbuf_tx_flowring_delete_req *)ret_ptr;
  1098. ifidx = brcmf_flowring_ifidx_get(msgbuf->flow, flowid);
  1099. delete->msg.msgtype = MSGBUF_TYPE_FLOW_RING_DELETE;
  1100. delete->msg.ifidx = ifidx;
  1101. delete->msg.request_id = 0;
  1102. delete->flow_ring_id = cpu_to_le16(flowid +
  1103. BRCMF_H2D_MSGRING_FLOWRING_IDSTART);
  1104. delete->reason = 0;
  1105. brcmf_dbg(MSGBUF, "Send Flow Delete Req flow ID %d, ifindex %d\n",
  1106. flowid, ifidx);
  1107. err = brcmf_commonring_write_complete(commonring);
  1108. brcmf_commonring_unlock(commonring);
  1109. if (err) {
  1110. brcmf_err("Failed to submit RING_DELETE, flowring will be removed\n");
  1111. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1112. }
  1113. }
  1114. #ifdef DEBUG
  1115. static int brcmf_msgbuf_stats_read(struct seq_file *seq, void *data)
  1116. {
  1117. struct brcmf_bus *bus_if = dev_get_drvdata(seq->private);
  1118. struct brcmf_pub *drvr = bus_if->drvr;
  1119. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1120. struct brcmf_commonring *commonring;
  1121. u16 i;
  1122. struct brcmf_flowring_ring *ring;
  1123. struct brcmf_flowring_hash *hash;
  1124. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  1125. seq_printf(seq, "h2d_ctl_submit: rp %4u, wp %4u, depth %4u\n",
  1126. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1127. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_RXPOST_SUBMIT];
  1128. seq_printf(seq, "h2d_rx_submit: rp %4u, wp %4u, depth %4u\n",
  1129. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1130. commonring = msgbuf->commonrings[BRCMF_D2H_MSGRING_CONTROL_COMPLETE];
  1131. seq_printf(seq, "d2h_ctl_cmplt: rp %4u, wp %4u, depth %4u\n",
  1132. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1133. commonring = msgbuf->commonrings[BRCMF_D2H_MSGRING_TX_COMPLETE];
  1134. seq_printf(seq, "d2h_tx_cmplt: rp %4u, wp %4u, depth %4u\n",
  1135. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1136. commonring = msgbuf->commonrings[BRCMF_D2H_MSGRING_RX_COMPLETE];
  1137. seq_printf(seq, "d2h_rx_cmplt: rp %4u, wp %4u, depth %4u\n",
  1138. commonring->r_ptr, commonring->w_ptr, commonring->depth);
  1139. seq_printf(seq, "\nh2d_flowrings: depth %u\n",
  1140. BRCMF_H2D_TXFLOWRING_MAX_ITEM);
  1141. seq_puts(seq, "Active flowrings:\n");
  1142. hash = msgbuf->flow->hash;
  1143. for (i = 0; i < msgbuf->flow->nrofrings; i++) {
  1144. if (!msgbuf->flow->rings[i])
  1145. continue;
  1146. ring = msgbuf->flow->rings[i];
  1147. if (ring->status != RING_OPEN)
  1148. continue;
  1149. commonring = msgbuf->flowrings[i];
  1150. hash = &msgbuf->flow->hash[ring->hash_id];
  1151. seq_printf(seq, "id %3u: rp %4u, wp %4u, qlen %4u, blocked %u\n"
  1152. " ifidx %u, fifo %u, da %pM\n",
  1153. i, commonring->r_ptr, commonring->w_ptr,
  1154. skb_queue_len(&ring->skblist), ring->blocked,
  1155. hash->ifidx, hash->fifo, hash->mac);
  1156. }
  1157. return 0;
  1158. }
  1159. #else
  1160. static int brcmf_msgbuf_stats_read(struct seq_file *seq, void *data)
  1161. {
  1162. return 0;
  1163. }
  1164. #endif
  1165. static void brcmf_msgbuf_debugfs_create(struct brcmf_pub *drvr)
  1166. {
  1167. brcmf_debugfs_add_entry(drvr, "msgbuf_stats", brcmf_msgbuf_stats_read);
  1168. }
  1169. int brcmf_proto_msgbuf_attach(struct brcmf_pub *drvr)
  1170. {
  1171. struct brcmf_bus_msgbuf *if_msgbuf;
  1172. struct brcmf_msgbuf *msgbuf;
  1173. u64 address;
  1174. u32 count;
  1175. if_msgbuf = drvr->bus_if->msgbuf;
  1176. if (if_msgbuf->max_flowrings >= BRCMF_FLOWRING_HASHSIZE) {
  1177. brcmf_err("driver not configured for this many flowrings %d\n",
  1178. if_msgbuf->max_flowrings);
  1179. if_msgbuf->max_flowrings = BRCMF_FLOWRING_HASHSIZE - 1;
  1180. }
  1181. msgbuf = kzalloc(sizeof(*msgbuf), GFP_KERNEL);
  1182. if (!msgbuf)
  1183. goto fail;
  1184. msgbuf->txflow_wq = create_singlethread_workqueue("msgbuf_txflow");
  1185. if (msgbuf->txflow_wq == NULL) {
  1186. brcmf_err("workqueue creation failed\n");
  1187. goto fail;
  1188. }
  1189. INIT_WORK(&msgbuf->txflow_work, brcmf_msgbuf_txflow_worker);
  1190. count = BITS_TO_LONGS(if_msgbuf->max_flowrings);
  1191. count = count * sizeof(unsigned long);
  1192. msgbuf->flow_map = kzalloc(count, GFP_KERNEL);
  1193. if (!msgbuf->flow_map)
  1194. goto fail;
  1195. msgbuf->txstatus_done_map = kzalloc(count, GFP_KERNEL);
  1196. if (!msgbuf->txstatus_done_map)
  1197. goto fail;
  1198. msgbuf->drvr = drvr;
  1199. msgbuf->ioctbuf = dma_alloc_coherent(drvr->bus_if->dev,
  1200. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1201. &msgbuf->ioctbuf_handle,
  1202. GFP_KERNEL);
  1203. if (!msgbuf->ioctbuf)
  1204. goto fail;
  1205. address = (u64)msgbuf->ioctbuf_handle;
  1206. msgbuf->ioctbuf_phys_hi = address >> 32;
  1207. msgbuf->ioctbuf_phys_lo = address & 0xffffffff;
  1208. drvr->proto->hdrpull = brcmf_msgbuf_hdrpull;
  1209. drvr->proto->query_dcmd = brcmf_msgbuf_query_dcmd;
  1210. drvr->proto->set_dcmd = brcmf_msgbuf_set_dcmd;
  1211. drvr->proto->tx_queue_data = brcmf_msgbuf_tx_queue_data;
  1212. drvr->proto->configure_addr_mode = brcmf_msgbuf_configure_addr_mode;
  1213. drvr->proto->delete_peer = brcmf_msgbuf_delete_peer;
  1214. drvr->proto->add_tdls_peer = brcmf_msgbuf_add_tdls_peer;
  1215. drvr->proto->rxreorder = brcmf_msgbuf_rxreorder;
  1216. drvr->proto->debugfs_create = brcmf_msgbuf_debugfs_create;
  1217. drvr->proto->pd = msgbuf;
  1218. init_waitqueue_head(&msgbuf->ioctl_resp_wait);
  1219. msgbuf->commonrings =
  1220. (struct brcmf_commonring **)if_msgbuf->commonrings;
  1221. msgbuf->flowrings = (struct brcmf_commonring **)if_msgbuf->flowrings;
  1222. msgbuf->max_flowrings = if_msgbuf->max_flowrings;
  1223. msgbuf->flowring_dma_handle =
  1224. kcalloc(msgbuf->max_flowrings,
  1225. sizeof(*msgbuf->flowring_dma_handle), GFP_KERNEL);
  1226. if (!msgbuf->flowring_dma_handle)
  1227. goto fail;
  1228. msgbuf->rx_dataoffset = if_msgbuf->rx_dataoffset;
  1229. msgbuf->max_rxbufpost = if_msgbuf->max_rxbufpost;
  1230. msgbuf->max_ioctlrespbuf = BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST;
  1231. msgbuf->max_eventbuf = BRCMF_MSGBUF_MAX_EVENTBUF_POST;
  1232. msgbuf->tx_pktids = brcmf_msgbuf_init_pktids(NR_TX_PKTIDS,
  1233. DMA_TO_DEVICE);
  1234. if (!msgbuf->tx_pktids)
  1235. goto fail;
  1236. msgbuf->rx_pktids = brcmf_msgbuf_init_pktids(NR_RX_PKTIDS,
  1237. DMA_FROM_DEVICE);
  1238. if (!msgbuf->rx_pktids)
  1239. goto fail;
  1240. msgbuf->flow = brcmf_flowring_attach(drvr->bus_if->dev,
  1241. if_msgbuf->max_flowrings);
  1242. if (!msgbuf->flow)
  1243. goto fail;
  1244. brcmf_dbg(MSGBUF, "Feeding buffers, rx data %d, rx event %d, rx ioctl resp %d\n",
  1245. msgbuf->max_rxbufpost, msgbuf->max_eventbuf,
  1246. msgbuf->max_ioctlrespbuf);
  1247. count = 0;
  1248. do {
  1249. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  1250. if (msgbuf->max_rxbufpost != msgbuf->rxbufpost)
  1251. msleep(10);
  1252. else
  1253. break;
  1254. count++;
  1255. } while (count < 10);
  1256. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  1257. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  1258. INIT_WORK(&msgbuf->flowring_work, brcmf_msgbuf_flowring_worker);
  1259. spin_lock_init(&msgbuf->flowring_work_lock);
  1260. INIT_LIST_HEAD(&msgbuf->work_queue);
  1261. return 0;
  1262. fail:
  1263. if (msgbuf) {
  1264. kfree(msgbuf->flow_map);
  1265. kfree(msgbuf->txstatus_done_map);
  1266. brcmf_msgbuf_release_pktids(msgbuf);
  1267. kfree(msgbuf->flowring_dma_handle);
  1268. if (msgbuf->ioctbuf)
  1269. dma_free_coherent(drvr->bus_if->dev,
  1270. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1271. msgbuf->ioctbuf,
  1272. msgbuf->ioctbuf_handle);
  1273. kfree(msgbuf);
  1274. }
  1275. return -ENOMEM;
  1276. }
  1277. void brcmf_proto_msgbuf_detach(struct brcmf_pub *drvr)
  1278. {
  1279. struct brcmf_msgbuf *msgbuf;
  1280. struct brcmf_msgbuf_work_item *work;
  1281. brcmf_dbg(TRACE, "Enter\n");
  1282. if (drvr->proto->pd) {
  1283. msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1284. cancel_work_sync(&msgbuf->flowring_work);
  1285. while (!list_empty(&msgbuf->work_queue)) {
  1286. work = list_first_entry(&msgbuf->work_queue,
  1287. struct brcmf_msgbuf_work_item,
  1288. queue);
  1289. list_del(&work->queue);
  1290. kfree(work);
  1291. }
  1292. kfree(msgbuf->flow_map);
  1293. kfree(msgbuf->txstatus_done_map);
  1294. if (msgbuf->txflow_wq)
  1295. destroy_workqueue(msgbuf->txflow_wq);
  1296. brcmf_flowring_detach(msgbuf->flow);
  1297. dma_free_coherent(drvr->bus_if->dev,
  1298. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1299. msgbuf->ioctbuf, msgbuf->ioctbuf_handle);
  1300. brcmf_msgbuf_release_pktids(msgbuf);
  1301. kfree(msgbuf->flowring_dma_handle);
  1302. kfree(msgbuf);
  1303. drvr->proto->pd = NULL;
  1304. }
  1305. }