htt_tx.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. static u8 ath10k_htt_tx_txq_calc_size(size_t count)
  24. {
  25. int exp;
  26. int factor;
  27. exp = 0;
  28. factor = count >> 7;
  29. while (factor >= 64 && exp < 4) {
  30. factor >>= 3;
  31. exp++;
  32. }
  33. if (exp == 4)
  34. return 0xff;
  35. if (count > 0)
  36. factor = max(1, factor);
  37. return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
  38. SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
  39. }
  40. static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  41. struct ieee80211_txq *txq)
  42. {
  43. struct ath10k *ar = hw->priv;
  44. struct ath10k_sta *arsta;
  45. struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
  46. unsigned long frame_cnt;
  47. unsigned long byte_cnt;
  48. int idx;
  49. u32 bit;
  50. u16 peer_id;
  51. u8 tid;
  52. u8 count;
  53. lockdep_assert_held(&ar->htt.tx_lock);
  54. if (!ar->htt.tx_q_state.enabled)
  55. return;
  56. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  57. return;
  58. if (txq->sta) {
  59. arsta = (void *)txq->sta->drv_priv;
  60. peer_id = arsta->peer_id;
  61. } else {
  62. peer_id = arvif->peer_id;
  63. }
  64. tid = txq->tid;
  65. bit = BIT(peer_id % 32);
  66. idx = peer_id / 32;
  67. ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
  68. count = ath10k_htt_tx_txq_calc_size(byte_cnt);
  69. if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
  70. unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
  71. ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
  72. peer_id, tid);
  73. return;
  74. }
  75. ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
  76. ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
  77. ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
  78. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
  79. peer_id, tid, count);
  80. }
  81. static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
  82. {
  83. u32 seq;
  84. size_t size;
  85. lockdep_assert_held(&ar->htt.tx_lock);
  86. if (!ar->htt.tx_q_state.enabled)
  87. return;
  88. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  89. return;
  90. seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
  91. seq++;
  92. ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
  93. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
  94. seq);
  95. size = sizeof(*ar->htt.tx_q_state.vaddr);
  96. dma_sync_single_for_device(ar->dev,
  97. ar->htt.tx_q_state.paddr,
  98. size,
  99. DMA_TO_DEVICE);
  100. }
  101. void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  102. struct ieee80211_txq *txq)
  103. {
  104. struct ath10k *ar = hw->priv;
  105. spin_lock_bh(&ar->htt.tx_lock);
  106. __ath10k_htt_tx_txq_recalc(hw, txq);
  107. spin_unlock_bh(&ar->htt.tx_lock);
  108. }
  109. void ath10k_htt_tx_txq_sync(struct ath10k *ar)
  110. {
  111. spin_lock_bh(&ar->htt.tx_lock);
  112. __ath10k_htt_tx_txq_sync(ar);
  113. spin_unlock_bh(&ar->htt.tx_lock);
  114. }
  115. void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
  116. struct ieee80211_txq *txq)
  117. {
  118. struct ath10k *ar = hw->priv;
  119. spin_lock_bh(&ar->htt.tx_lock);
  120. __ath10k_htt_tx_txq_recalc(hw, txq);
  121. __ath10k_htt_tx_txq_sync(ar);
  122. spin_unlock_bh(&ar->htt.tx_lock);
  123. }
  124. void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  125. {
  126. lockdep_assert_held(&htt->tx_lock);
  127. htt->num_pending_tx--;
  128. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  129. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  130. }
  131. int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
  132. {
  133. lockdep_assert_held(&htt->tx_lock);
  134. if (htt->num_pending_tx >= htt->max_num_pending_tx)
  135. return -EBUSY;
  136. htt->num_pending_tx++;
  137. if (htt->num_pending_tx == htt->max_num_pending_tx)
  138. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  139. return 0;
  140. }
  141. int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
  142. bool is_presp)
  143. {
  144. struct ath10k *ar = htt->ar;
  145. lockdep_assert_held(&htt->tx_lock);
  146. if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
  147. return 0;
  148. if (is_presp &&
  149. ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
  150. return -EBUSY;
  151. htt->num_pending_mgmt_tx++;
  152. return 0;
  153. }
  154. void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
  155. {
  156. lockdep_assert_held(&htt->tx_lock);
  157. if (!htt->ar->hw_params.max_probe_resp_desc_thres)
  158. return;
  159. htt->num_pending_mgmt_tx--;
  160. }
  161. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  162. {
  163. struct ath10k *ar = htt->ar;
  164. int ret;
  165. lockdep_assert_held(&htt->tx_lock);
  166. ret = idr_alloc(&htt->pending_tx, skb, 0,
  167. htt->max_num_pending_tx, GFP_ATOMIC);
  168. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  169. return ret;
  170. }
  171. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  172. {
  173. struct ath10k *ar = htt->ar;
  174. lockdep_assert_held(&htt->tx_lock);
  175. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  176. idr_remove(&htt->pending_tx, msdu_id);
  177. }
  178. static void ath10k_htt_tx_free_cont_txbuf_32(struct ath10k_htt *htt)
  179. {
  180. struct ath10k *ar = htt->ar;
  181. size_t size;
  182. if (!htt->txbuf.vaddr_txbuff_32)
  183. return;
  184. size = htt->txbuf.size;
  185. dma_free_coherent(ar->dev, size, htt->txbuf.vaddr_txbuff_32,
  186. htt->txbuf.paddr);
  187. htt->txbuf.vaddr_txbuff_32 = NULL;
  188. }
  189. static int ath10k_htt_tx_alloc_cont_txbuf_32(struct ath10k_htt *htt)
  190. {
  191. struct ath10k *ar = htt->ar;
  192. size_t size;
  193. size = htt->max_num_pending_tx *
  194. sizeof(struct ath10k_htt_txbuf_32);
  195. htt->txbuf.vaddr_txbuff_32 = dma_alloc_coherent(ar->dev, size,
  196. &htt->txbuf.paddr,
  197. GFP_KERNEL);
  198. if (!htt->txbuf.vaddr_txbuff_32)
  199. return -ENOMEM;
  200. htt->txbuf.size = size;
  201. return 0;
  202. }
  203. static void ath10k_htt_tx_free_cont_txbuf_64(struct ath10k_htt *htt)
  204. {
  205. struct ath10k *ar = htt->ar;
  206. size_t size;
  207. if (!htt->txbuf.vaddr_txbuff_64)
  208. return;
  209. size = htt->txbuf.size;
  210. dma_free_coherent(ar->dev, size, htt->txbuf.vaddr_txbuff_64,
  211. htt->txbuf.paddr);
  212. htt->txbuf.vaddr_txbuff_64 = NULL;
  213. }
  214. static int ath10k_htt_tx_alloc_cont_txbuf_64(struct ath10k_htt *htt)
  215. {
  216. struct ath10k *ar = htt->ar;
  217. size_t size;
  218. size = htt->max_num_pending_tx *
  219. sizeof(struct ath10k_htt_txbuf_64);
  220. htt->txbuf.vaddr_txbuff_64 = dma_alloc_coherent(ar->dev, size,
  221. &htt->txbuf.paddr,
  222. GFP_KERNEL);
  223. if (!htt->txbuf.vaddr_txbuff_64)
  224. return -ENOMEM;
  225. htt->txbuf.size = size;
  226. return 0;
  227. }
  228. static void ath10k_htt_tx_free_cont_frag_desc_32(struct ath10k_htt *htt)
  229. {
  230. size_t size;
  231. if (!htt->frag_desc.vaddr_desc_32)
  232. return;
  233. size = htt->max_num_pending_tx *
  234. sizeof(struct htt_msdu_ext_desc);
  235. dma_free_coherent(htt->ar->dev,
  236. size,
  237. htt->frag_desc.vaddr_desc_32,
  238. htt->frag_desc.paddr);
  239. htt->frag_desc.vaddr_desc_32 = NULL;
  240. }
  241. static int ath10k_htt_tx_alloc_cont_frag_desc_32(struct ath10k_htt *htt)
  242. {
  243. struct ath10k *ar = htt->ar;
  244. size_t size;
  245. if (!ar->hw_params.continuous_frag_desc)
  246. return 0;
  247. size = htt->max_num_pending_tx *
  248. sizeof(struct htt_msdu_ext_desc);
  249. htt->frag_desc.vaddr_desc_32 = dma_alloc_coherent(ar->dev, size,
  250. &htt->frag_desc.paddr,
  251. GFP_KERNEL);
  252. if (!htt->frag_desc.vaddr_desc_32) {
  253. ath10k_err(ar, "failed to alloc fragment desc memory\n");
  254. return -ENOMEM;
  255. }
  256. htt->frag_desc.size = size;
  257. return 0;
  258. }
  259. static void ath10k_htt_tx_free_cont_frag_desc_64(struct ath10k_htt *htt)
  260. {
  261. size_t size;
  262. if (!htt->frag_desc.vaddr_desc_64)
  263. return;
  264. size = htt->max_num_pending_tx *
  265. sizeof(struct htt_msdu_ext_desc_64);
  266. dma_free_coherent(htt->ar->dev,
  267. size,
  268. htt->frag_desc.vaddr_desc_64,
  269. htt->frag_desc.paddr);
  270. htt->frag_desc.vaddr_desc_64 = NULL;
  271. }
  272. static int ath10k_htt_tx_alloc_cont_frag_desc_64(struct ath10k_htt *htt)
  273. {
  274. struct ath10k *ar = htt->ar;
  275. size_t size;
  276. if (!ar->hw_params.continuous_frag_desc)
  277. return 0;
  278. size = htt->max_num_pending_tx *
  279. sizeof(struct htt_msdu_ext_desc_64);
  280. htt->frag_desc.vaddr_desc_64 = dma_alloc_coherent(ar->dev, size,
  281. &htt->frag_desc.paddr,
  282. GFP_KERNEL);
  283. if (!htt->frag_desc.vaddr_desc_64) {
  284. ath10k_err(ar, "failed to alloc fragment desc memory\n");
  285. return -ENOMEM;
  286. }
  287. htt->frag_desc.size = size;
  288. return 0;
  289. }
  290. static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
  291. {
  292. struct ath10k *ar = htt->ar;
  293. size_t size;
  294. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  295. ar->running_fw->fw_file.fw_features))
  296. return;
  297. size = sizeof(*htt->tx_q_state.vaddr);
  298. dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
  299. kfree(htt->tx_q_state.vaddr);
  300. }
  301. static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
  302. {
  303. struct ath10k *ar = htt->ar;
  304. size_t size;
  305. int ret;
  306. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  307. ar->running_fw->fw_file.fw_features))
  308. return 0;
  309. htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
  310. htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
  311. htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
  312. size = sizeof(*htt->tx_q_state.vaddr);
  313. htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
  314. if (!htt->tx_q_state.vaddr)
  315. return -ENOMEM;
  316. htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
  317. size, DMA_TO_DEVICE);
  318. ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
  319. if (ret) {
  320. ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
  321. kfree(htt->tx_q_state.vaddr);
  322. return -EIO;
  323. }
  324. return 0;
  325. }
  326. static void ath10k_htt_tx_free_txdone_fifo(struct ath10k_htt *htt)
  327. {
  328. WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
  329. kfifo_free(&htt->txdone_fifo);
  330. }
  331. static int ath10k_htt_tx_alloc_txdone_fifo(struct ath10k_htt *htt)
  332. {
  333. int ret;
  334. size_t size;
  335. size = roundup_pow_of_two(htt->max_num_pending_tx);
  336. ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
  337. return ret;
  338. }
  339. static int ath10k_htt_tx_alloc_buf(struct ath10k_htt *htt)
  340. {
  341. struct ath10k *ar = htt->ar;
  342. int ret;
  343. ret = ath10k_htt_alloc_txbuff(htt);
  344. if (ret) {
  345. ath10k_err(ar, "failed to alloc cont tx buffer: %d\n", ret);
  346. return ret;
  347. }
  348. ret = ath10k_htt_alloc_frag_desc(htt);
  349. if (ret) {
  350. ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
  351. goto free_txbuf;
  352. }
  353. ret = ath10k_htt_tx_alloc_txq(htt);
  354. if (ret) {
  355. ath10k_err(ar, "failed to alloc txq: %d\n", ret);
  356. goto free_frag_desc;
  357. }
  358. ret = ath10k_htt_tx_alloc_txdone_fifo(htt);
  359. if (ret) {
  360. ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
  361. goto free_txq;
  362. }
  363. return 0;
  364. free_txq:
  365. ath10k_htt_tx_free_txq(htt);
  366. free_frag_desc:
  367. ath10k_htt_free_frag_desc(htt);
  368. free_txbuf:
  369. ath10k_htt_free_txbuff(htt);
  370. return ret;
  371. }
  372. int ath10k_htt_tx_start(struct ath10k_htt *htt)
  373. {
  374. struct ath10k *ar = htt->ar;
  375. int ret;
  376. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  377. htt->max_num_pending_tx);
  378. spin_lock_init(&htt->tx_lock);
  379. idr_init(&htt->pending_tx);
  380. if (htt->tx_mem_allocated)
  381. return 0;
  382. ret = ath10k_htt_tx_alloc_buf(htt);
  383. if (ret)
  384. goto free_idr_pending_tx;
  385. htt->tx_mem_allocated = true;
  386. return 0;
  387. free_idr_pending_tx:
  388. idr_destroy(&htt->pending_tx);
  389. return ret;
  390. }
  391. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  392. {
  393. struct ath10k *ar = ctx;
  394. struct ath10k_htt *htt = &ar->htt;
  395. struct htt_tx_done tx_done = {0};
  396. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  397. tx_done.msdu_id = msdu_id;
  398. tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
  399. ath10k_txrx_tx_unref(htt, &tx_done);
  400. return 0;
  401. }
  402. void ath10k_htt_tx_destroy(struct ath10k_htt *htt)
  403. {
  404. if (!htt->tx_mem_allocated)
  405. return;
  406. ath10k_htt_free_txbuff(htt);
  407. ath10k_htt_tx_free_txq(htt);
  408. ath10k_htt_free_frag_desc(htt);
  409. ath10k_htt_tx_free_txdone_fifo(htt);
  410. htt->tx_mem_allocated = false;
  411. }
  412. void ath10k_htt_tx_stop(struct ath10k_htt *htt)
  413. {
  414. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  415. idr_destroy(&htt->pending_tx);
  416. }
  417. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  418. {
  419. ath10k_htt_tx_stop(htt);
  420. ath10k_htt_tx_destroy(htt);
  421. }
  422. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  423. {
  424. dev_kfree_skb_any(skb);
  425. }
  426. void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  427. {
  428. dev_kfree_skb_any(skb);
  429. }
  430. EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
  431. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  432. {
  433. struct ath10k *ar = htt->ar;
  434. struct sk_buff *skb;
  435. struct htt_cmd *cmd;
  436. int len = 0;
  437. int ret;
  438. len += sizeof(cmd->hdr);
  439. len += sizeof(cmd->ver_req);
  440. skb = ath10k_htc_alloc_skb(ar, len);
  441. if (!skb)
  442. return -ENOMEM;
  443. skb_put(skb, len);
  444. cmd = (struct htt_cmd *)skb->data;
  445. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  446. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  447. if (ret) {
  448. dev_kfree_skb_any(skb);
  449. return ret;
  450. }
  451. return 0;
  452. }
  453. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  454. {
  455. struct ath10k *ar = htt->ar;
  456. struct htt_stats_req *req;
  457. struct sk_buff *skb;
  458. struct htt_cmd *cmd;
  459. int len = 0, ret;
  460. len += sizeof(cmd->hdr);
  461. len += sizeof(cmd->stats_req);
  462. skb = ath10k_htc_alloc_skb(ar, len);
  463. if (!skb)
  464. return -ENOMEM;
  465. skb_put(skb, len);
  466. cmd = (struct htt_cmd *)skb->data;
  467. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  468. req = &cmd->stats_req;
  469. memset(req, 0, sizeof(*req));
  470. /* currently we support only max 8 bit masks so no need to worry
  471. * about endian support
  472. */
  473. req->upload_types[0] = mask;
  474. req->reset_types[0] = mask;
  475. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  476. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  477. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  478. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  479. if (ret) {
  480. ath10k_warn(ar, "failed to send htt type stats request: %d",
  481. ret);
  482. dev_kfree_skb_any(skb);
  483. return ret;
  484. }
  485. return 0;
  486. }
  487. static int ath10k_htt_send_frag_desc_bank_cfg_32(struct ath10k_htt *htt)
  488. {
  489. struct ath10k *ar = htt->ar;
  490. struct sk_buff *skb;
  491. struct htt_cmd *cmd;
  492. struct htt_frag_desc_bank_cfg32 *cfg;
  493. int ret, size;
  494. u8 info;
  495. if (!ar->hw_params.continuous_frag_desc)
  496. return 0;
  497. if (!htt->frag_desc.paddr) {
  498. ath10k_warn(ar, "invalid frag desc memory\n");
  499. return -EINVAL;
  500. }
  501. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg32);
  502. skb = ath10k_htc_alloc_skb(ar, size);
  503. if (!skb)
  504. return -ENOMEM;
  505. skb_put(skb, size);
  506. cmd = (struct htt_cmd *)skb->data;
  507. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  508. info = 0;
  509. info |= SM(htt->tx_q_state.type,
  510. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  511. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  512. ar->running_fw->fw_file.fw_features))
  513. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  514. cfg = &cmd->frag_desc_bank_cfg32;
  515. cfg->info = info;
  516. cfg->num_banks = 1;
  517. cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
  518. cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
  519. cfg->bank_id[0].bank_min_id = 0;
  520. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  521. 1);
  522. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  523. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  524. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  525. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  526. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  527. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  528. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  529. if (ret) {
  530. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  531. ret);
  532. dev_kfree_skb_any(skb);
  533. return ret;
  534. }
  535. return 0;
  536. }
  537. static int ath10k_htt_send_frag_desc_bank_cfg_64(struct ath10k_htt *htt)
  538. {
  539. struct ath10k *ar = htt->ar;
  540. struct sk_buff *skb;
  541. struct htt_cmd *cmd;
  542. struct htt_frag_desc_bank_cfg64 *cfg;
  543. int ret, size;
  544. u8 info;
  545. if (!ar->hw_params.continuous_frag_desc)
  546. return 0;
  547. if (!htt->frag_desc.paddr) {
  548. ath10k_warn(ar, "invalid frag desc memory\n");
  549. return -EINVAL;
  550. }
  551. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg64);
  552. skb = ath10k_htc_alloc_skb(ar, size);
  553. if (!skb)
  554. return -ENOMEM;
  555. skb_put(skb, size);
  556. cmd = (struct htt_cmd *)skb->data;
  557. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  558. info = 0;
  559. info |= SM(htt->tx_q_state.type,
  560. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  561. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  562. ar->running_fw->fw_file.fw_features))
  563. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  564. cfg = &cmd->frag_desc_bank_cfg64;
  565. cfg->info = info;
  566. cfg->num_banks = 1;
  567. cfg->desc_size = sizeof(struct htt_msdu_ext_desc_64);
  568. cfg->bank_base_addrs[0] = __cpu_to_le64(htt->frag_desc.paddr);
  569. cfg->bank_id[0].bank_min_id = 0;
  570. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  571. 1);
  572. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  573. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  574. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  575. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  576. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  577. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  578. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  579. if (ret) {
  580. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  581. ret);
  582. dev_kfree_skb_any(skb);
  583. return ret;
  584. }
  585. return 0;
  586. }
  587. static void ath10k_htt_fill_rx_desc_offset_32(void *rx_ring)
  588. {
  589. struct htt_rx_ring_setup_ring32 *ring =
  590. (struct htt_rx_ring_setup_ring32 *)rx_ring;
  591. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  592. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  593. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  594. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  595. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  596. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  597. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  598. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  599. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  600. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  601. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  602. #undef desc_offset
  603. }
  604. static void ath10k_htt_fill_rx_desc_offset_64(void *rx_ring)
  605. {
  606. struct htt_rx_ring_setup_ring64 *ring =
  607. (struct htt_rx_ring_setup_ring64 *)rx_ring;
  608. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  609. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  610. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  611. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  612. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  613. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  614. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  615. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  616. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  617. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  618. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  619. #undef desc_offset
  620. }
  621. static int ath10k_htt_send_rx_ring_cfg_32(struct ath10k_htt *htt)
  622. {
  623. struct ath10k *ar = htt->ar;
  624. struct sk_buff *skb;
  625. struct htt_cmd *cmd;
  626. struct htt_rx_ring_setup_ring32 *ring;
  627. const int num_rx_ring = 1;
  628. u16 flags;
  629. u32 fw_idx;
  630. int len;
  631. int ret;
  632. /*
  633. * the HW expects the buffer to be an integral number of 4-byte
  634. * "words"
  635. */
  636. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  637. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  638. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup_32.hdr)
  639. + (sizeof(*ring) * num_rx_ring);
  640. skb = ath10k_htc_alloc_skb(ar, len);
  641. if (!skb)
  642. return -ENOMEM;
  643. skb_put(skb, len);
  644. cmd = (struct htt_cmd *)skb->data;
  645. ring = &cmd->rx_setup_32.rings[0];
  646. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  647. cmd->rx_setup_32.hdr.num_rings = 1;
  648. /* FIXME: do we need all of this? */
  649. flags = 0;
  650. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  651. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  652. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  653. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  654. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  655. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  656. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  657. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  658. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  659. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  660. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  661. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  662. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  663. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  664. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  665. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  666. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  667. ring->fw_idx_shadow_reg_paddr =
  668. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  669. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  670. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  671. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  672. ring->flags = __cpu_to_le16(flags);
  673. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  674. ath10k_htt_fill_rx_desc_offset_32(ring);
  675. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  676. if (ret) {
  677. dev_kfree_skb_any(skb);
  678. return ret;
  679. }
  680. return 0;
  681. }
  682. static int ath10k_htt_send_rx_ring_cfg_64(struct ath10k_htt *htt)
  683. {
  684. struct ath10k *ar = htt->ar;
  685. struct sk_buff *skb;
  686. struct htt_cmd *cmd;
  687. struct htt_rx_ring_setup_ring64 *ring;
  688. const int num_rx_ring = 1;
  689. u16 flags;
  690. u32 fw_idx;
  691. int len;
  692. int ret;
  693. /* HW expects the buffer to be an integral number of 4-byte
  694. * "words"
  695. */
  696. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  697. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  698. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup_64.hdr)
  699. + (sizeof(*ring) * num_rx_ring);
  700. skb = ath10k_htc_alloc_skb(ar, len);
  701. if (!skb)
  702. return -ENOMEM;
  703. skb_put(skb, len);
  704. cmd = (struct htt_cmd *)skb->data;
  705. ring = &cmd->rx_setup_64.rings[0];
  706. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  707. cmd->rx_setup_64.hdr.num_rings = 1;
  708. flags = 0;
  709. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  710. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  711. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  712. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  713. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  714. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  715. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  716. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  717. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  718. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  719. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  720. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  721. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  722. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  723. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  724. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  725. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  726. ring->fw_idx_shadow_reg_paddr = __cpu_to_le64(htt->rx_ring.alloc_idx.paddr);
  727. ring->rx_ring_base_paddr = __cpu_to_le64(htt->rx_ring.base_paddr);
  728. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  729. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  730. ring->flags = __cpu_to_le16(flags);
  731. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  732. ath10k_htt_fill_rx_desc_offset_64(ring);
  733. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  734. if (ret) {
  735. dev_kfree_skb_any(skb);
  736. return ret;
  737. }
  738. return 0;
  739. }
  740. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  741. u8 max_subfrms_ampdu,
  742. u8 max_subfrms_amsdu)
  743. {
  744. struct ath10k *ar = htt->ar;
  745. struct htt_aggr_conf *aggr_conf;
  746. struct sk_buff *skb;
  747. struct htt_cmd *cmd;
  748. int len;
  749. int ret;
  750. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  751. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  752. return -EINVAL;
  753. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  754. return -EINVAL;
  755. len = sizeof(cmd->hdr);
  756. len += sizeof(cmd->aggr_conf);
  757. skb = ath10k_htc_alloc_skb(ar, len);
  758. if (!skb)
  759. return -ENOMEM;
  760. skb_put(skb, len);
  761. cmd = (struct htt_cmd *)skb->data;
  762. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  763. aggr_conf = &cmd->aggr_conf;
  764. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  765. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  766. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  767. aggr_conf->max_num_amsdu_subframes,
  768. aggr_conf->max_num_ampdu_subframes);
  769. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  770. if (ret) {
  771. dev_kfree_skb_any(skb);
  772. return ret;
  773. }
  774. return 0;
  775. }
  776. int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
  777. __le32 token,
  778. __le16 fetch_seq_num,
  779. struct htt_tx_fetch_record *records,
  780. size_t num_records)
  781. {
  782. struct sk_buff *skb;
  783. struct htt_cmd *cmd;
  784. const u16 resp_id = 0;
  785. int len = 0;
  786. int ret;
  787. /* Response IDs are echo-ed back only for host driver convienence
  788. * purposes. They aren't used for anything in the driver yet so use 0.
  789. */
  790. len += sizeof(cmd->hdr);
  791. len += sizeof(cmd->tx_fetch_resp);
  792. len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
  793. skb = ath10k_htc_alloc_skb(ar, len);
  794. if (!skb)
  795. return -ENOMEM;
  796. skb_put(skb, len);
  797. cmd = (struct htt_cmd *)skb->data;
  798. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
  799. cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
  800. cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
  801. cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
  802. cmd->tx_fetch_resp.token = token;
  803. memcpy(cmd->tx_fetch_resp.records, records,
  804. sizeof(records[0]) * num_records);
  805. ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
  806. if (ret) {
  807. ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
  808. goto err_free_skb;
  809. }
  810. return 0;
  811. err_free_skb:
  812. dev_kfree_skb_any(skb);
  813. return ret;
  814. }
  815. static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
  816. {
  817. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  818. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  819. struct ath10k_vif *arvif;
  820. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
  821. return ar->scan.vdev_id;
  822. } else if (cb->vif) {
  823. arvif = (void *)cb->vif->drv_priv;
  824. return arvif->vdev_id;
  825. } else if (ar->monitor_started) {
  826. return ar->monitor_vdev_id;
  827. } else {
  828. return 0;
  829. }
  830. }
  831. static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
  832. {
  833. struct ieee80211_hdr *hdr = (void *)skb->data;
  834. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  835. if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
  836. return HTT_DATA_TX_EXT_TID_MGMT;
  837. else if (cb->flags & ATH10K_SKB_F_QOS)
  838. return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
  839. else
  840. return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
  841. }
  842. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  843. {
  844. struct ath10k *ar = htt->ar;
  845. struct device *dev = ar->dev;
  846. struct sk_buff *txdesc = NULL;
  847. struct htt_cmd *cmd;
  848. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  849. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  850. int len = 0;
  851. int msdu_id = -1;
  852. int res;
  853. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  854. len += sizeof(cmd->hdr);
  855. len += sizeof(cmd->mgmt_tx);
  856. spin_lock_bh(&htt->tx_lock);
  857. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  858. spin_unlock_bh(&htt->tx_lock);
  859. if (res < 0)
  860. goto err;
  861. msdu_id = res;
  862. if ((ieee80211_is_action(hdr->frame_control) ||
  863. ieee80211_is_deauth(hdr->frame_control) ||
  864. ieee80211_is_disassoc(hdr->frame_control)) &&
  865. ieee80211_has_protected(hdr->frame_control)) {
  866. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  867. }
  868. txdesc = ath10k_htc_alloc_skb(ar, len);
  869. if (!txdesc) {
  870. res = -ENOMEM;
  871. goto err_free_msdu_id;
  872. }
  873. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  874. DMA_TO_DEVICE);
  875. res = dma_mapping_error(dev, skb_cb->paddr);
  876. if (res) {
  877. res = -EIO;
  878. goto err_free_txdesc;
  879. }
  880. skb_put(txdesc, len);
  881. cmd = (struct htt_cmd *)txdesc->data;
  882. memset(cmd, 0, len);
  883. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  884. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  885. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  886. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  887. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  888. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  889. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  890. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  891. if (res)
  892. goto err_unmap_msdu;
  893. return 0;
  894. err_unmap_msdu:
  895. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  896. err_free_txdesc:
  897. dev_kfree_skb_any(txdesc);
  898. err_free_msdu_id:
  899. spin_lock_bh(&htt->tx_lock);
  900. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  901. spin_unlock_bh(&htt->tx_lock);
  902. err:
  903. return res;
  904. }
  905. static int ath10k_htt_tx_32(struct ath10k_htt *htt,
  906. enum ath10k_hw_txrx_mode txmode,
  907. struct sk_buff *msdu)
  908. {
  909. struct ath10k *ar = htt->ar;
  910. struct device *dev = ar->dev;
  911. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  912. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  913. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  914. struct ath10k_hif_sg_item sg_items[2];
  915. struct ath10k_htt_txbuf_32 *txbuf;
  916. struct htt_data_tx_desc_frag *frags;
  917. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  918. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  919. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  920. int prefetch_len;
  921. int res;
  922. u8 flags0 = 0;
  923. u16 msdu_id, flags1 = 0;
  924. u16 freq = 0;
  925. u32 frags_paddr = 0;
  926. u32 txbuf_paddr;
  927. struct htt_msdu_ext_desc *ext_desc = NULL;
  928. struct htt_msdu_ext_desc *ext_desc_t = NULL;
  929. spin_lock_bh(&htt->tx_lock);
  930. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  931. spin_unlock_bh(&htt->tx_lock);
  932. if (res < 0)
  933. goto err;
  934. msdu_id = res;
  935. prefetch_len = min(htt->prefetch_len, msdu->len);
  936. prefetch_len = roundup(prefetch_len, 4);
  937. txbuf = htt->txbuf.vaddr_txbuff_32 + msdu_id;
  938. txbuf_paddr = htt->txbuf.paddr +
  939. (sizeof(struct ath10k_htt_txbuf_32) * msdu_id);
  940. if ((ieee80211_is_action(hdr->frame_control) ||
  941. ieee80211_is_deauth(hdr->frame_control) ||
  942. ieee80211_is_disassoc(hdr->frame_control)) &&
  943. ieee80211_has_protected(hdr->frame_control)) {
  944. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  945. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  946. txmode == ATH10K_HW_TXRX_RAW &&
  947. ieee80211_has_protected(hdr->frame_control)) {
  948. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  949. }
  950. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  951. DMA_TO_DEVICE);
  952. res = dma_mapping_error(dev, skb_cb->paddr);
  953. if (res) {
  954. res = -EIO;
  955. goto err_free_msdu_id;
  956. }
  957. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  958. freq = ar->scan.roc_freq;
  959. switch (txmode) {
  960. case ATH10K_HW_TXRX_RAW:
  961. case ATH10K_HW_TXRX_NATIVE_WIFI:
  962. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  963. /* pass through */
  964. case ATH10K_HW_TXRX_ETHERNET:
  965. if (ar->hw_params.continuous_frag_desc) {
  966. ext_desc_t = htt->frag_desc.vaddr_desc_32;
  967. memset(&ext_desc_t[msdu_id], 0,
  968. sizeof(struct htt_msdu_ext_desc));
  969. frags = (struct htt_data_tx_desc_frag *)
  970. &ext_desc_t[msdu_id].frags;
  971. ext_desc = &ext_desc_t[msdu_id];
  972. frags[0].tword_addr.paddr_lo =
  973. __cpu_to_le32(skb_cb->paddr);
  974. frags[0].tword_addr.paddr_hi = 0;
  975. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  976. frags_paddr = htt->frag_desc.paddr +
  977. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  978. } else {
  979. frags = txbuf->frags;
  980. frags[0].dword_addr.paddr =
  981. __cpu_to_le32(skb_cb->paddr);
  982. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  983. frags[1].dword_addr.paddr = 0;
  984. frags[1].dword_addr.len = 0;
  985. frags_paddr = txbuf_paddr;
  986. }
  987. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  988. break;
  989. case ATH10K_HW_TXRX_MGMT:
  990. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  991. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  992. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  993. frags_paddr = skb_cb->paddr;
  994. break;
  995. }
  996. /* Normally all commands go through HTC which manages tx credits for
  997. * each endpoint and notifies when tx is completed.
  998. *
  999. * HTT endpoint is creditless so there's no need to care about HTC
  1000. * flags. In that case it is trivial to fill the HTC header here.
  1001. *
  1002. * MSDU transmission is considered completed upon HTT event. This
  1003. * implies no relevant resources can be freed until after the event is
  1004. * received. That's why HTC tx completion handler itself is ignored by
  1005. * setting NULL to transfer_context for all sg items.
  1006. *
  1007. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  1008. * as it's a waste of resources. By bypassing HTC it is possible to
  1009. * avoid extra memory allocations, compress data structures and thus
  1010. * improve performance.
  1011. */
  1012. txbuf->htc_hdr.eid = htt->eid;
  1013. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  1014. sizeof(txbuf->cmd_tx) +
  1015. prefetch_len);
  1016. txbuf->htc_hdr.flags = 0;
  1017. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  1018. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  1019. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  1020. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  1021. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  1022. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  1023. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  1024. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  1025. if (ar->hw_params.continuous_frag_desc)
  1026. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  1027. }
  1028. /* Prevent firmware from sending up tx inspection requests. There's
  1029. * nothing ath10k can do with frames requested for inspection so force
  1030. * it to simply rely a regular tx completion with discard status.
  1031. */
  1032. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  1033. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  1034. txbuf->cmd_tx.flags0 = flags0;
  1035. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  1036. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  1037. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  1038. txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  1039. if (ath10k_mac_tx_frm_has_freq(ar)) {
  1040. txbuf->cmd_tx.offchan_tx.peerid =
  1041. __cpu_to_le16(HTT_INVALID_PEERID);
  1042. txbuf->cmd_tx.offchan_tx.freq =
  1043. __cpu_to_le16(freq);
  1044. } else {
  1045. txbuf->cmd_tx.peerid =
  1046. __cpu_to_le32(HTT_INVALID_PEERID);
  1047. }
  1048. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  1049. ath10k_dbg(ar, ATH10K_DBG_HTT,
  1050. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %pad, msdu_paddr %pad vdev %hhu tid %hhu freq %hu\n",
  1051. flags0, flags1, msdu->len, msdu_id, &frags_paddr,
  1052. &skb_cb->paddr, vdev_id, tid, freq);
  1053. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  1054. msdu->data, msdu->len);
  1055. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  1056. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  1057. sg_items[0].transfer_id = 0;
  1058. sg_items[0].transfer_context = NULL;
  1059. sg_items[0].vaddr = &txbuf->htc_hdr;
  1060. sg_items[0].paddr = txbuf_paddr +
  1061. sizeof(txbuf->frags);
  1062. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  1063. sizeof(txbuf->cmd_hdr) +
  1064. sizeof(txbuf->cmd_tx);
  1065. sg_items[1].transfer_id = 0;
  1066. sg_items[1].transfer_context = NULL;
  1067. sg_items[1].vaddr = msdu->data;
  1068. sg_items[1].paddr = skb_cb->paddr;
  1069. sg_items[1].len = prefetch_len;
  1070. res = ath10k_hif_tx_sg(htt->ar,
  1071. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  1072. sg_items, ARRAY_SIZE(sg_items));
  1073. if (res)
  1074. goto err_unmap_msdu;
  1075. return 0;
  1076. err_unmap_msdu:
  1077. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  1078. err_free_msdu_id:
  1079. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  1080. err:
  1081. return res;
  1082. }
  1083. static int ath10k_htt_tx_64(struct ath10k_htt *htt,
  1084. enum ath10k_hw_txrx_mode txmode,
  1085. struct sk_buff *msdu)
  1086. {
  1087. struct ath10k *ar = htt->ar;
  1088. struct device *dev = ar->dev;
  1089. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  1090. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  1091. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  1092. struct ath10k_hif_sg_item sg_items[2];
  1093. struct ath10k_htt_txbuf_64 *txbuf;
  1094. struct htt_data_tx_desc_frag *frags;
  1095. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  1096. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  1097. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  1098. int prefetch_len;
  1099. int res;
  1100. u8 flags0 = 0;
  1101. u16 msdu_id, flags1 = 0;
  1102. u16 freq = 0;
  1103. dma_addr_t frags_paddr = 0;
  1104. u32 txbuf_paddr;
  1105. struct htt_msdu_ext_desc_64 *ext_desc = NULL;
  1106. struct htt_msdu_ext_desc_64 *ext_desc_t = NULL;
  1107. spin_lock_bh(&htt->tx_lock);
  1108. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  1109. spin_unlock_bh(&htt->tx_lock);
  1110. if (res < 0)
  1111. goto err;
  1112. msdu_id = res;
  1113. prefetch_len = min(htt->prefetch_len, msdu->len);
  1114. prefetch_len = roundup(prefetch_len, 4);
  1115. txbuf = htt->txbuf.vaddr_txbuff_64 + msdu_id;
  1116. txbuf_paddr = htt->txbuf.paddr +
  1117. (sizeof(struct ath10k_htt_txbuf_64) * msdu_id);
  1118. if ((ieee80211_is_action(hdr->frame_control) ||
  1119. ieee80211_is_deauth(hdr->frame_control) ||
  1120. ieee80211_is_disassoc(hdr->frame_control)) &&
  1121. ieee80211_has_protected(hdr->frame_control)) {
  1122. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  1123. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  1124. txmode == ATH10K_HW_TXRX_RAW &&
  1125. ieee80211_has_protected(hdr->frame_control)) {
  1126. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  1127. }
  1128. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  1129. DMA_TO_DEVICE);
  1130. res = dma_mapping_error(dev, skb_cb->paddr);
  1131. if (res) {
  1132. res = -EIO;
  1133. goto err_free_msdu_id;
  1134. }
  1135. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  1136. freq = ar->scan.roc_freq;
  1137. switch (txmode) {
  1138. case ATH10K_HW_TXRX_RAW:
  1139. case ATH10K_HW_TXRX_NATIVE_WIFI:
  1140. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  1141. /* pass through */
  1142. case ATH10K_HW_TXRX_ETHERNET:
  1143. if (ar->hw_params.continuous_frag_desc) {
  1144. ext_desc_t = htt->frag_desc.vaddr_desc_64;
  1145. memset(&ext_desc_t[msdu_id], 0,
  1146. sizeof(struct htt_msdu_ext_desc_64));
  1147. frags = (struct htt_data_tx_desc_frag *)
  1148. &ext_desc_t[msdu_id].frags;
  1149. ext_desc = &ext_desc_t[msdu_id];
  1150. frags[0].tword_addr.paddr_lo =
  1151. __cpu_to_le32(skb_cb->paddr);
  1152. frags[0].tword_addr.paddr_hi =
  1153. __cpu_to_le16(upper_32_bits(skb_cb->paddr));
  1154. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  1155. frags_paddr = htt->frag_desc.paddr +
  1156. (sizeof(struct htt_msdu_ext_desc_64) * msdu_id);
  1157. } else {
  1158. frags = txbuf->frags;
  1159. frags[0].tword_addr.paddr_lo =
  1160. __cpu_to_le32(skb_cb->paddr);
  1161. frags[0].tword_addr.paddr_hi =
  1162. __cpu_to_le16(upper_32_bits(skb_cb->paddr));
  1163. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  1164. frags[1].tword_addr.paddr_lo = 0;
  1165. frags[1].tword_addr.paddr_hi = 0;
  1166. frags[1].tword_addr.len_16 = 0;
  1167. }
  1168. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  1169. break;
  1170. case ATH10K_HW_TXRX_MGMT:
  1171. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  1172. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  1173. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  1174. frags_paddr = skb_cb->paddr;
  1175. break;
  1176. }
  1177. /* Normally all commands go through HTC which manages tx credits for
  1178. * each endpoint and notifies when tx is completed.
  1179. *
  1180. * HTT endpoint is creditless so there's no need to care about HTC
  1181. * flags. In that case it is trivial to fill the HTC header here.
  1182. *
  1183. * MSDU transmission is considered completed upon HTT event. This
  1184. * implies no relevant resources can be freed until after the event is
  1185. * received. That's why HTC tx completion handler itself is ignored by
  1186. * setting NULL to transfer_context for all sg items.
  1187. *
  1188. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  1189. * as it's a waste of resources. By bypassing HTC it is possible to
  1190. * avoid extra memory allocations, compress data structures and thus
  1191. * improve performance.
  1192. */
  1193. txbuf->htc_hdr.eid = htt->eid;
  1194. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  1195. sizeof(txbuf->cmd_tx) +
  1196. prefetch_len);
  1197. txbuf->htc_hdr.flags = 0;
  1198. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  1199. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  1200. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  1201. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  1202. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  1203. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  1204. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  1205. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  1206. if (ar->hw_params.continuous_frag_desc) {
  1207. memset(ext_desc->tso_flag, 0, sizeof(ext_desc->tso_flag));
  1208. ext_desc->tso_flag[3] |=
  1209. __cpu_to_le32(HTT_MSDU_CHECKSUM_ENABLE_64);
  1210. }
  1211. }
  1212. /* Prevent firmware from sending up tx inspection requests. There's
  1213. * nothing ath10k can do with frames requested for inspection so force
  1214. * it to simply rely a regular tx completion with discard status.
  1215. */
  1216. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  1217. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  1218. txbuf->cmd_tx.flags0 = flags0;
  1219. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  1220. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  1221. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  1222. /* fill fragment descriptor */
  1223. txbuf->cmd_tx.frags_paddr = __cpu_to_le64(frags_paddr);
  1224. if (ath10k_mac_tx_frm_has_freq(ar)) {
  1225. txbuf->cmd_tx.offchan_tx.peerid =
  1226. __cpu_to_le16(HTT_INVALID_PEERID);
  1227. txbuf->cmd_tx.offchan_tx.freq =
  1228. __cpu_to_le16(freq);
  1229. } else {
  1230. txbuf->cmd_tx.peerid =
  1231. __cpu_to_le32(HTT_INVALID_PEERID);
  1232. }
  1233. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  1234. ath10k_dbg(ar, ATH10K_DBG_HTT,
  1235. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %pad, msdu_paddr %pad vdev %hhu tid %hhu freq %hu\n",
  1236. flags0, flags1, msdu->len, msdu_id, &frags_paddr,
  1237. &skb_cb->paddr, vdev_id, tid, freq);
  1238. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  1239. msdu->data, msdu->len);
  1240. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  1241. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  1242. sg_items[0].transfer_id = 0;
  1243. sg_items[0].transfer_context = NULL;
  1244. sg_items[0].vaddr = &txbuf->htc_hdr;
  1245. sg_items[0].paddr = txbuf_paddr +
  1246. sizeof(txbuf->frags);
  1247. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  1248. sizeof(txbuf->cmd_hdr) +
  1249. sizeof(txbuf->cmd_tx);
  1250. sg_items[1].transfer_id = 0;
  1251. sg_items[1].transfer_context = NULL;
  1252. sg_items[1].vaddr = msdu->data;
  1253. sg_items[1].paddr = skb_cb->paddr;
  1254. sg_items[1].len = prefetch_len;
  1255. res = ath10k_hif_tx_sg(htt->ar,
  1256. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  1257. sg_items, ARRAY_SIZE(sg_items));
  1258. if (res)
  1259. goto err_unmap_msdu;
  1260. return 0;
  1261. err_unmap_msdu:
  1262. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  1263. err_free_msdu_id:
  1264. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  1265. err:
  1266. return res;
  1267. }
  1268. static const struct ath10k_htt_tx_ops htt_tx_ops_32 = {
  1269. .htt_send_rx_ring_cfg = ath10k_htt_send_rx_ring_cfg_32,
  1270. .htt_send_frag_desc_bank_cfg = ath10k_htt_send_frag_desc_bank_cfg_32,
  1271. .htt_alloc_frag_desc = ath10k_htt_tx_alloc_cont_frag_desc_32,
  1272. .htt_free_frag_desc = ath10k_htt_tx_free_cont_frag_desc_32,
  1273. .htt_tx = ath10k_htt_tx_32,
  1274. .htt_alloc_txbuff = ath10k_htt_tx_alloc_cont_txbuf_32,
  1275. .htt_free_txbuff = ath10k_htt_tx_free_cont_txbuf_32,
  1276. };
  1277. static const struct ath10k_htt_tx_ops htt_tx_ops_64 = {
  1278. .htt_send_rx_ring_cfg = ath10k_htt_send_rx_ring_cfg_64,
  1279. .htt_send_frag_desc_bank_cfg = ath10k_htt_send_frag_desc_bank_cfg_64,
  1280. .htt_alloc_frag_desc = ath10k_htt_tx_alloc_cont_frag_desc_64,
  1281. .htt_free_frag_desc = ath10k_htt_tx_free_cont_frag_desc_64,
  1282. .htt_tx = ath10k_htt_tx_64,
  1283. .htt_alloc_txbuff = ath10k_htt_tx_alloc_cont_txbuf_64,
  1284. .htt_free_txbuff = ath10k_htt_tx_free_cont_txbuf_64,
  1285. };
  1286. void ath10k_htt_set_tx_ops(struct ath10k_htt *htt)
  1287. {
  1288. struct ath10k *ar = htt->ar;
  1289. if (ar->hw_params.target_64bit)
  1290. htt->tx_ops = &htt_tx_ops_64;
  1291. else
  1292. htt->tx_ops = &htt_tx_ops_32;
  1293. }