vrf.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456
  1. /*
  2. * vrf.c: device driver to encapsulate a VRF space
  3. *
  4. * Copyright (c) 2015 Cumulus Networks. All rights reserved.
  5. * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
  6. * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
  7. *
  8. * Based on dummy, team and ipvlan drivers
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ip.h>
  20. #include <linux/init.h>
  21. #include <linux/moduleparam.h>
  22. #include <linux/netfilter.h>
  23. #include <linux/rtnetlink.h>
  24. #include <net/rtnetlink.h>
  25. #include <linux/u64_stats_sync.h>
  26. #include <linux/hashtable.h>
  27. #include <linux/inetdevice.h>
  28. #include <net/arp.h>
  29. #include <net/ip.h>
  30. #include <net/ip_fib.h>
  31. #include <net/ip6_fib.h>
  32. #include <net/ip6_route.h>
  33. #include <net/route.h>
  34. #include <net/addrconf.h>
  35. #include <net/l3mdev.h>
  36. #include <net/fib_rules.h>
  37. #include <net/netns/generic.h>
  38. #define DRV_NAME "vrf"
  39. #define DRV_VERSION "1.0"
  40. #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
  41. static unsigned int vrf_net_id;
  42. struct net_vrf {
  43. struct rtable __rcu *rth;
  44. struct rt6_info __rcu *rt6;
  45. #if IS_ENABLED(CONFIG_IPV6)
  46. struct fib6_table *fib6_table;
  47. #endif
  48. u32 tb_id;
  49. };
  50. struct pcpu_dstats {
  51. u64 tx_pkts;
  52. u64 tx_bytes;
  53. u64 tx_drps;
  54. u64 rx_pkts;
  55. u64 rx_bytes;
  56. u64 rx_drps;
  57. struct u64_stats_sync syncp;
  58. };
  59. static void vrf_rx_stats(struct net_device *dev, int len)
  60. {
  61. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  62. u64_stats_update_begin(&dstats->syncp);
  63. dstats->rx_pkts++;
  64. dstats->rx_bytes += len;
  65. u64_stats_update_end(&dstats->syncp);
  66. }
  67. static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  68. {
  69. vrf_dev->stats.tx_errors++;
  70. kfree_skb(skb);
  71. }
  72. static void vrf_get_stats64(struct net_device *dev,
  73. struct rtnl_link_stats64 *stats)
  74. {
  75. int i;
  76. for_each_possible_cpu(i) {
  77. const struct pcpu_dstats *dstats;
  78. u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  79. unsigned int start;
  80. dstats = per_cpu_ptr(dev->dstats, i);
  81. do {
  82. start = u64_stats_fetch_begin_irq(&dstats->syncp);
  83. tbytes = dstats->tx_bytes;
  84. tpkts = dstats->tx_pkts;
  85. tdrops = dstats->tx_drps;
  86. rbytes = dstats->rx_bytes;
  87. rpkts = dstats->rx_pkts;
  88. } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  89. stats->tx_bytes += tbytes;
  90. stats->tx_packets += tpkts;
  91. stats->tx_dropped += tdrops;
  92. stats->rx_bytes += rbytes;
  93. stats->rx_packets += rpkts;
  94. }
  95. }
  96. /* by default VRF devices do not have a qdisc and are expected
  97. * to be created with only a single queue.
  98. */
  99. static bool qdisc_tx_is_default(const struct net_device *dev)
  100. {
  101. struct netdev_queue *txq;
  102. struct Qdisc *qdisc;
  103. if (dev->num_tx_queues > 1)
  104. return false;
  105. txq = netdev_get_tx_queue(dev, 0);
  106. qdisc = rcu_access_pointer(txq->qdisc);
  107. return !qdisc->enqueue;
  108. }
  109. /* Local traffic destined to local address. Reinsert the packet to rx
  110. * path, similar to loopback handling.
  111. */
  112. static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
  113. struct dst_entry *dst)
  114. {
  115. int len = skb->len;
  116. skb_orphan(skb);
  117. skb_dst_set(skb, dst);
  118. /* set pkt_type to avoid skb hitting packet taps twice -
  119. * once on Tx and again in Rx processing
  120. */
  121. skb->pkt_type = PACKET_LOOPBACK;
  122. skb->protocol = eth_type_trans(skb, dev);
  123. if (likely(netif_rx(skb) == NET_RX_SUCCESS))
  124. vrf_rx_stats(dev, len);
  125. else
  126. this_cpu_inc(dev->dstats->rx_drps);
  127. return NETDEV_TX_OK;
  128. }
  129. #if IS_ENABLED(CONFIG_IPV6)
  130. static int vrf_ip6_local_out(struct net *net, struct sock *sk,
  131. struct sk_buff *skb)
  132. {
  133. int err;
  134. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
  135. sk, skb, NULL, skb_dst(skb)->dev, dst_output);
  136. if (likely(err == 1))
  137. err = dst_output(net, sk, skb);
  138. return err;
  139. }
  140. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  141. struct net_device *dev)
  142. {
  143. const struct ipv6hdr *iph = ipv6_hdr(skb);
  144. struct net *net = dev_net(skb->dev);
  145. struct flowi6 fl6 = {
  146. /* needed to match OIF rule */
  147. .flowi6_oif = dev->ifindex,
  148. .flowi6_iif = LOOPBACK_IFINDEX,
  149. .daddr = iph->daddr,
  150. .saddr = iph->saddr,
  151. .flowlabel = ip6_flowinfo(iph),
  152. .flowi6_mark = skb->mark,
  153. .flowi6_proto = iph->nexthdr,
  154. .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
  155. };
  156. int ret = NET_XMIT_DROP;
  157. struct dst_entry *dst;
  158. struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
  159. dst = ip6_route_output(net, NULL, &fl6);
  160. if (dst == dst_null)
  161. goto err;
  162. skb_dst_drop(skb);
  163. /* if dst.dev is loopback or the VRF device again this is locally
  164. * originated traffic destined to a local address. Short circuit
  165. * to Rx path
  166. */
  167. if (dst->dev == dev)
  168. return vrf_local_xmit(skb, dev, dst);
  169. skb_dst_set(skb, dst);
  170. /* strip the ethernet header added for pass through VRF device */
  171. __skb_pull(skb, skb_network_offset(skb));
  172. ret = vrf_ip6_local_out(net, skb->sk, skb);
  173. if (unlikely(net_xmit_eval(ret)))
  174. dev->stats.tx_errors++;
  175. else
  176. ret = NET_XMIT_SUCCESS;
  177. return ret;
  178. err:
  179. vrf_tx_error(dev, skb);
  180. return NET_XMIT_DROP;
  181. }
  182. #else
  183. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  184. struct net_device *dev)
  185. {
  186. vrf_tx_error(dev, skb);
  187. return NET_XMIT_DROP;
  188. }
  189. #endif
  190. /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
  191. static int vrf_ip_local_out(struct net *net, struct sock *sk,
  192. struct sk_buff *skb)
  193. {
  194. int err;
  195. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  196. skb, NULL, skb_dst(skb)->dev, dst_output);
  197. if (likely(err == 1))
  198. err = dst_output(net, sk, skb);
  199. return err;
  200. }
  201. static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
  202. struct net_device *vrf_dev)
  203. {
  204. struct iphdr *ip4h = ip_hdr(skb);
  205. int ret = NET_XMIT_DROP;
  206. struct flowi4 fl4 = {
  207. /* needed to match OIF rule */
  208. .flowi4_oif = vrf_dev->ifindex,
  209. .flowi4_iif = LOOPBACK_IFINDEX,
  210. .flowi4_tos = RT_TOS(ip4h->tos),
  211. .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
  212. .flowi4_proto = ip4h->protocol,
  213. .daddr = ip4h->daddr,
  214. .saddr = ip4h->saddr,
  215. };
  216. struct net *net = dev_net(vrf_dev);
  217. struct rtable *rt;
  218. rt = ip_route_output_flow(net, &fl4, NULL);
  219. if (IS_ERR(rt))
  220. goto err;
  221. skb_dst_drop(skb);
  222. /* if dst.dev is loopback or the VRF device again this is locally
  223. * originated traffic destined to a local address. Short circuit
  224. * to Rx path
  225. */
  226. if (rt->dst.dev == vrf_dev)
  227. return vrf_local_xmit(skb, vrf_dev, &rt->dst);
  228. skb_dst_set(skb, &rt->dst);
  229. /* strip the ethernet header added for pass through VRF device */
  230. __skb_pull(skb, skb_network_offset(skb));
  231. if (!ip4h->saddr) {
  232. ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
  233. RT_SCOPE_LINK);
  234. }
  235. ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
  236. if (unlikely(net_xmit_eval(ret)))
  237. vrf_dev->stats.tx_errors++;
  238. else
  239. ret = NET_XMIT_SUCCESS;
  240. out:
  241. return ret;
  242. err:
  243. vrf_tx_error(vrf_dev, skb);
  244. goto out;
  245. }
  246. static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
  247. {
  248. switch (skb->protocol) {
  249. case htons(ETH_P_IP):
  250. return vrf_process_v4_outbound(skb, dev);
  251. case htons(ETH_P_IPV6):
  252. return vrf_process_v6_outbound(skb, dev);
  253. default:
  254. vrf_tx_error(dev, skb);
  255. return NET_XMIT_DROP;
  256. }
  257. }
  258. static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
  259. {
  260. int len = skb->len;
  261. netdev_tx_t ret = is_ip_tx_frame(skb, dev);
  262. if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
  263. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  264. u64_stats_update_begin(&dstats->syncp);
  265. dstats->tx_pkts++;
  266. dstats->tx_bytes += len;
  267. u64_stats_update_end(&dstats->syncp);
  268. } else {
  269. this_cpu_inc(dev->dstats->tx_drps);
  270. }
  271. return ret;
  272. }
  273. static int vrf_finish_direct(struct net *net, struct sock *sk,
  274. struct sk_buff *skb)
  275. {
  276. struct net_device *vrf_dev = skb->dev;
  277. if (!list_empty(&vrf_dev->ptype_all) &&
  278. likely(skb_headroom(skb) >= ETH_HLEN)) {
  279. struct ethhdr *eth = skb_push(skb, ETH_HLEN);
  280. ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
  281. eth_zero_addr(eth->h_dest);
  282. eth->h_proto = skb->protocol;
  283. rcu_read_lock_bh();
  284. dev_queue_xmit_nit(skb, vrf_dev);
  285. rcu_read_unlock_bh();
  286. skb_pull(skb, ETH_HLEN);
  287. }
  288. return 1;
  289. }
  290. #if IS_ENABLED(CONFIG_IPV6)
  291. /* modelled after ip6_finish_output2 */
  292. static int vrf_finish_output6(struct net *net, struct sock *sk,
  293. struct sk_buff *skb)
  294. {
  295. struct dst_entry *dst = skb_dst(skb);
  296. struct net_device *dev = dst->dev;
  297. struct neighbour *neigh;
  298. struct in6_addr *nexthop;
  299. int ret;
  300. nf_reset(skb);
  301. skb->protocol = htons(ETH_P_IPV6);
  302. skb->dev = dev;
  303. rcu_read_lock_bh();
  304. nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
  305. neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
  306. if (unlikely(!neigh))
  307. neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
  308. if (!IS_ERR(neigh)) {
  309. sock_confirm_neigh(skb, neigh);
  310. ret = neigh_output(neigh, skb);
  311. rcu_read_unlock_bh();
  312. return ret;
  313. }
  314. rcu_read_unlock_bh();
  315. IP6_INC_STATS(dev_net(dst->dev),
  316. ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
  317. kfree_skb(skb);
  318. return -EINVAL;
  319. }
  320. /* modelled after ip6_output */
  321. static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
  322. {
  323. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  324. net, sk, skb, NULL, skb_dst(skb)->dev,
  325. vrf_finish_output6,
  326. !(IP6CB(skb)->flags & IP6SKB_REROUTED));
  327. }
  328. /* set dst on skb to send packet to us via dev_xmit path. Allows
  329. * packet to go through device based features such as qdisc, netfilter
  330. * hooks and packet sockets with skb->dev set to vrf device.
  331. */
  332. static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
  333. struct sk_buff *skb)
  334. {
  335. struct net_vrf *vrf = netdev_priv(vrf_dev);
  336. struct dst_entry *dst = NULL;
  337. struct rt6_info *rt6;
  338. rcu_read_lock();
  339. rt6 = rcu_dereference(vrf->rt6);
  340. if (likely(rt6)) {
  341. dst = &rt6->dst;
  342. dst_hold(dst);
  343. }
  344. rcu_read_unlock();
  345. if (unlikely(!dst)) {
  346. vrf_tx_error(vrf_dev, skb);
  347. return NULL;
  348. }
  349. skb_dst_drop(skb);
  350. skb_dst_set(skb, dst);
  351. return skb;
  352. }
  353. static int vrf_output6_direct(struct net *net, struct sock *sk,
  354. struct sk_buff *skb)
  355. {
  356. skb->protocol = htons(ETH_P_IPV6);
  357. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  358. net, sk, skb, NULL, skb->dev,
  359. vrf_finish_direct,
  360. !(IPCB(skb)->flags & IPSKB_REROUTED));
  361. }
  362. static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
  363. struct sock *sk,
  364. struct sk_buff *skb)
  365. {
  366. struct net *net = dev_net(vrf_dev);
  367. int err;
  368. skb->dev = vrf_dev;
  369. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
  370. skb, NULL, vrf_dev, vrf_output6_direct);
  371. if (likely(err == 1))
  372. err = vrf_output6_direct(net, sk, skb);
  373. /* reset skb device */
  374. if (likely(err == 1))
  375. nf_reset(skb);
  376. else
  377. skb = NULL;
  378. return skb;
  379. }
  380. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  381. struct sock *sk,
  382. struct sk_buff *skb)
  383. {
  384. /* don't divert link scope packets */
  385. if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
  386. return skb;
  387. if (qdisc_tx_is_default(vrf_dev))
  388. return vrf_ip6_out_direct(vrf_dev, sk, skb);
  389. return vrf_ip6_out_redirect(vrf_dev, skb);
  390. }
  391. /* holding rtnl */
  392. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  393. {
  394. struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
  395. struct net *net = dev_net(dev);
  396. struct dst_entry *dst;
  397. RCU_INIT_POINTER(vrf->rt6, NULL);
  398. synchronize_rcu();
  399. /* move dev in dst's to loopback so this VRF device can be deleted
  400. * - based on dst_ifdown
  401. */
  402. if (rt6) {
  403. dst = &rt6->dst;
  404. dev_put(dst->dev);
  405. dst->dev = net->loopback_dev;
  406. dev_hold(dst->dev);
  407. dst_release(dst);
  408. }
  409. }
  410. static int vrf_rt6_create(struct net_device *dev)
  411. {
  412. int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
  413. struct net_vrf *vrf = netdev_priv(dev);
  414. struct net *net = dev_net(dev);
  415. struct rt6_info *rt6;
  416. int rc = -ENOMEM;
  417. /* IPv6 can be CONFIG enabled and then disabled runtime */
  418. if (!ipv6_mod_enabled())
  419. return 0;
  420. vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
  421. if (!vrf->fib6_table)
  422. goto out;
  423. /* create a dst for routing packets out a VRF device */
  424. rt6 = ip6_dst_alloc(net, dev, flags);
  425. if (!rt6)
  426. goto out;
  427. rt6->dst.output = vrf_output6;
  428. rcu_assign_pointer(vrf->rt6, rt6);
  429. rc = 0;
  430. out:
  431. return rc;
  432. }
  433. #else
  434. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  435. struct sock *sk,
  436. struct sk_buff *skb)
  437. {
  438. return skb;
  439. }
  440. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  441. {
  442. }
  443. static int vrf_rt6_create(struct net_device *dev)
  444. {
  445. return 0;
  446. }
  447. #endif
  448. /* modelled after ip_finish_output2 */
  449. static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  450. {
  451. struct dst_entry *dst = skb_dst(skb);
  452. struct rtable *rt = (struct rtable *)dst;
  453. struct net_device *dev = dst->dev;
  454. unsigned int hh_len = LL_RESERVED_SPACE(dev);
  455. struct neighbour *neigh;
  456. u32 nexthop;
  457. int ret = -EINVAL;
  458. nf_reset(skb);
  459. /* Be paranoid, rather than too clever. */
  460. if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
  461. struct sk_buff *skb2;
  462. skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
  463. if (!skb2) {
  464. ret = -ENOMEM;
  465. goto err;
  466. }
  467. if (skb->sk)
  468. skb_set_owner_w(skb2, skb->sk);
  469. consume_skb(skb);
  470. skb = skb2;
  471. }
  472. rcu_read_lock_bh();
  473. nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
  474. neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
  475. if (unlikely(!neigh))
  476. neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
  477. if (!IS_ERR(neigh)) {
  478. sock_confirm_neigh(skb, neigh);
  479. ret = neigh_output(neigh, skb);
  480. rcu_read_unlock_bh();
  481. return ret;
  482. }
  483. rcu_read_unlock_bh();
  484. err:
  485. vrf_tx_error(skb->dev, skb);
  486. return ret;
  487. }
  488. static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  489. {
  490. struct net_device *dev = skb_dst(skb)->dev;
  491. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  492. skb->dev = dev;
  493. skb->protocol = htons(ETH_P_IP);
  494. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  495. net, sk, skb, NULL, dev,
  496. vrf_finish_output,
  497. !(IPCB(skb)->flags & IPSKB_REROUTED));
  498. }
  499. /* set dst on skb to send packet to us via dev_xmit path. Allows
  500. * packet to go through device based features such as qdisc, netfilter
  501. * hooks and packet sockets with skb->dev set to vrf device.
  502. */
  503. static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
  504. struct sk_buff *skb)
  505. {
  506. struct net_vrf *vrf = netdev_priv(vrf_dev);
  507. struct dst_entry *dst = NULL;
  508. struct rtable *rth;
  509. rcu_read_lock();
  510. rth = rcu_dereference(vrf->rth);
  511. if (likely(rth)) {
  512. dst = &rth->dst;
  513. dst_hold(dst);
  514. }
  515. rcu_read_unlock();
  516. if (unlikely(!dst)) {
  517. vrf_tx_error(vrf_dev, skb);
  518. return NULL;
  519. }
  520. skb_dst_drop(skb);
  521. skb_dst_set(skb, dst);
  522. return skb;
  523. }
  524. static int vrf_output_direct(struct net *net, struct sock *sk,
  525. struct sk_buff *skb)
  526. {
  527. skb->protocol = htons(ETH_P_IP);
  528. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  529. net, sk, skb, NULL, skb->dev,
  530. vrf_finish_direct,
  531. !(IPCB(skb)->flags & IPSKB_REROUTED));
  532. }
  533. static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
  534. struct sock *sk,
  535. struct sk_buff *skb)
  536. {
  537. struct net *net = dev_net(vrf_dev);
  538. int err;
  539. skb->dev = vrf_dev;
  540. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  541. skb, NULL, vrf_dev, vrf_output_direct);
  542. if (likely(err == 1))
  543. err = vrf_output_direct(net, sk, skb);
  544. /* reset skb device */
  545. if (likely(err == 1))
  546. nf_reset(skb);
  547. else
  548. skb = NULL;
  549. return skb;
  550. }
  551. static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
  552. struct sock *sk,
  553. struct sk_buff *skb)
  554. {
  555. /* don't divert multicast or local broadcast */
  556. if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
  557. ipv4_is_lbcast(ip_hdr(skb)->daddr))
  558. return skb;
  559. if (qdisc_tx_is_default(vrf_dev))
  560. return vrf_ip_out_direct(vrf_dev, sk, skb);
  561. return vrf_ip_out_redirect(vrf_dev, skb);
  562. }
  563. /* called with rcu lock held */
  564. static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
  565. struct sock *sk,
  566. struct sk_buff *skb,
  567. u16 proto)
  568. {
  569. switch (proto) {
  570. case AF_INET:
  571. return vrf_ip_out(vrf_dev, sk, skb);
  572. case AF_INET6:
  573. return vrf_ip6_out(vrf_dev, sk, skb);
  574. }
  575. return skb;
  576. }
  577. /* holding rtnl */
  578. static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
  579. {
  580. struct rtable *rth = rtnl_dereference(vrf->rth);
  581. struct net *net = dev_net(dev);
  582. struct dst_entry *dst;
  583. RCU_INIT_POINTER(vrf->rth, NULL);
  584. synchronize_rcu();
  585. /* move dev in dst's to loopback so this VRF device can be deleted
  586. * - based on dst_ifdown
  587. */
  588. if (rth) {
  589. dst = &rth->dst;
  590. dev_put(dst->dev);
  591. dst->dev = net->loopback_dev;
  592. dev_hold(dst->dev);
  593. dst_release(dst);
  594. }
  595. }
  596. static int vrf_rtable_create(struct net_device *dev)
  597. {
  598. struct net_vrf *vrf = netdev_priv(dev);
  599. struct rtable *rth;
  600. if (!fib_new_table(dev_net(dev), vrf->tb_id))
  601. return -ENOMEM;
  602. /* create a dst for routing packets out through a VRF device */
  603. rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
  604. if (!rth)
  605. return -ENOMEM;
  606. rth->dst.output = vrf_output;
  607. rcu_assign_pointer(vrf->rth, rth);
  608. return 0;
  609. }
  610. /**************************** device handling ********************/
  611. /* cycle interface to flush neighbor cache and move routes across tables */
  612. static void cycle_netdev(struct net_device *dev)
  613. {
  614. unsigned int flags = dev->flags;
  615. int ret;
  616. if (!netif_running(dev))
  617. return;
  618. ret = dev_change_flags(dev, flags & ~IFF_UP);
  619. if (ret >= 0)
  620. ret = dev_change_flags(dev, flags);
  621. if (ret < 0) {
  622. netdev_err(dev,
  623. "Failed to cycle device %s; route tables might be wrong!\n",
  624. dev->name);
  625. }
  626. }
  627. static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  628. struct netlink_ext_ack *extack)
  629. {
  630. int ret;
  631. /* do not allow loopback device to be enslaved to a VRF.
  632. * The vrf device acts as the loopback for the vrf.
  633. */
  634. if (port_dev == dev_net(dev)->loopback_dev) {
  635. NL_SET_ERR_MSG(extack,
  636. "Can not enslave loopback device to a VRF");
  637. return -EOPNOTSUPP;
  638. }
  639. port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
  640. ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
  641. if (ret < 0)
  642. goto err;
  643. cycle_netdev(port_dev);
  644. return 0;
  645. err:
  646. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  647. return ret;
  648. }
  649. static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
  650. struct netlink_ext_ack *extack)
  651. {
  652. if (netif_is_l3_master(port_dev)) {
  653. NL_SET_ERR_MSG(extack,
  654. "Can not enslave an L3 master device to a VRF");
  655. return -EINVAL;
  656. }
  657. if (netif_is_l3_slave(port_dev))
  658. return -EINVAL;
  659. return do_vrf_add_slave(dev, port_dev, extack);
  660. }
  661. /* inverse of do_vrf_add_slave */
  662. static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  663. {
  664. netdev_upper_dev_unlink(port_dev, dev);
  665. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  666. cycle_netdev(port_dev);
  667. return 0;
  668. }
  669. static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  670. {
  671. return do_vrf_del_slave(dev, port_dev);
  672. }
  673. static void vrf_dev_uninit(struct net_device *dev)
  674. {
  675. struct net_vrf *vrf = netdev_priv(dev);
  676. vrf_rtable_release(dev, vrf);
  677. vrf_rt6_release(dev, vrf);
  678. free_percpu(dev->dstats);
  679. dev->dstats = NULL;
  680. }
  681. static int vrf_dev_init(struct net_device *dev)
  682. {
  683. struct net_vrf *vrf = netdev_priv(dev);
  684. dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
  685. if (!dev->dstats)
  686. goto out_nomem;
  687. /* create the default dst which points back to us */
  688. if (vrf_rtable_create(dev) != 0)
  689. goto out_stats;
  690. if (vrf_rt6_create(dev) != 0)
  691. goto out_rth;
  692. dev->flags = IFF_MASTER | IFF_NOARP;
  693. /* MTU is irrelevant for VRF device; set to 64k similar to lo */
  694. dev->mtu = 64 * 1024;
  695. /* similarly, oper state is irrelevant; set to up to avoid confusion */
  696. dev->operstate = IF_OPER_UP;
  697. netdev_lockdep_set_classes(dev);
  698. return 0;
  699. out_rth:
  700. vrf_rtable_release(dev, vrf);
  701. out_stats:
  702. free_percpu(dev->dstats);
  703. dev->dstats = NULL;
  704. out_nomem:
  705. return -ENOMEM;
  706. }
  707. static const struct net_device_ops vrf_netdev_ops = {
  708. .ndo_init = vrf_dev_init,
  709. .ndo_uninit = vrf_dev_uninit,
  710. .ndo_start_xmit = vrf_xmit,
  711. .ndo_get_stats64 = vrf_get_stats64,
  712. .ndo_add_slave = vrf_add_slave,
  713. .ndo_del_slave = vrf_del_slave,
  714. };
  715. static u32 vrf_fib_table(const struct net_device *dev)
  716. {
  717. struct net_vrf *vrf = netdev_priv(dev);
  718. return vrf->tb_id;
  719. }
  720. static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
  721. {
  722. kfree_skb(skb);
  723. return 0;
  724. }
  725. static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
  726. struct sk_buff *skb,
  727. struct net_device *dev)
  728. {
  729. struct net *net = dev_net(dev);
  730. if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
  731. skb = NULL; /* kfree_skb(skb) handled by nf code */
  732. return skb;
  733. }
  734. #if IS_ENABLED(CONFIG_IPV6)
  735. /* neighbor handling is done with actual device; do not want
  736. * to flip skb->dev for those ndisc packets. This really fails
  737. * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
  738. * a start.
  739. */
  740. static bool ipv6_ndisc_frame(const struct sk_buff *skb)
  741. {
  742. const struct ipv6hdr *iph = ipv6_hdr(skb);
  743. bool rc = false;
  744. if (iph->nexthdr == NEXTHDR_ICMP) {
  745. const struct icmp6hdr *icmph;
  746. struct icmp6hdr _icmph;
  747. icmph = skb_header_pointer(skb, sizeof(*iph),
  748. sizeof(_icmph), &_icmph);
  749. if (!icmph)
  750. goto out;
  751. switch (icmph->icmp6_type) {
  752. case NDISC_ROUTER_SOLICITATION:
  753. case NDISC_ROUTER_ADVERTISEMENT:
  754. case NDISC_NEIGHBOUR_SOLICITATION:
  755. case NDISC_NEIGHBOUR_ADVERTISEMENT:
  756. case NDISC_REDIRECT:
  757. rc = true;
  758. break;
  759. }
  760. }
  761. out:
  762. return rc;
  763. }
  764. static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
  765. const struct net_device *dev,
  766. struct flowi6 *fl6,
  767. int ifindex,
  768. const struct sk_buff *skb,
  769. int flags)
  770. {
  771. struct net_vrf *vrf = netdev_priv(dev);
  772. return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
  773. }
  774. static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
  775. int ifindex)
  776. {
  777. const struct ipv6hdr *iph = ipv6_hdr(skb);
  778. struct flowi6 fl6 = {
  779. .flowi6_iif = ifindex,
  780. .flowi6_mark = skb->mark,
  781. .flowi6_proto = iph->nexthdr,
  782. .daddr = iph->daddr,
  783. .saddr = iph->saddr,
  784. .flowlabel = ip6_flowinfo(iph),
  785. };
  786. struct net *net = dev_net(vrf_dev);
  787. struct rt6_info *rt6;
  788. rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
  789. RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
  790. if (unlikely(!rt6))
  791. return;
  792. if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
  793. return;
  794. skb_dst_set(skb, &rt6->dst);
  795. }
  796. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  797. struct sk_buff *skb)
  798. {
  799. int orig_iif = skb->skb_iif;
  800. bool need_strict;
  801. /* loopback traffic; do not push through packet taps again.
  802. * Reset pkt_type for upper layers to process skb
  803. */
  804. if (skb->pkt_type == PACKET_LOOPBACK) {
  805. skb->dev = vrf_dev;
  806. skb->skb_iif = vrf_dev->ifindex;
  807. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  808. skb->pkt_type = PACKET_HOST;
  809. goto out;
  810. }
  811. /* if packet is NDISC or addressed to multicast or link-local
  812. * then keep the ingress interface
  813. */
  814. need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
  815. if (!ipv6_ndisc_frame(skb) && !need_strict) {
  816. vrf_rx_stats(vrf_dev, skb->len);
  817. skb->dev = vrf_dev;
  818. skb->skb_iif = vrf_dev->ifindex;
  819. if (!list_empty(&vrf_dev->ptype_all)) {
  820. skb_push(skb, skb->mac_len);
  821. dev_queue_xmit_nit(skb, vrf_dev);
  822. skb_pull(skb, skb->mac_len);
  823. }
  824. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  825. }
  826. if (need_strict)
  827. vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
  828. skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
  829. out:
  830. return skb;
  831. }
  832. #else
  833. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  834. struct sk_buff *skb)
  835. {
  836. return skb;
  837. }
  838. #endif
  839. static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
  840. struct sk_buff *skb)
  841. {
  842. skb->dev = vrf_dev;
  843. skb->skb_iif = vrf_dev->ifindex;
  844. IPCB(skb)->flags |= IPSKB_L3SLAVE;
  845. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  846. goto out;
  847. /* loopback traffic; do not push through packet taps again.
  848. * Reset pkt_type for upper layers to process skb
  849. */
  850. if (skb->pkt_type == PACKET_LOOPBACK) {
  851. skb->pkt_type = PACKET_HOST;
  852. goto out;
  853. }
  854. vrf_rx_stats(vrf_dev, skb->len);
  855. if (!list_empty(&vrf_dev->ptype_all)) {
  856. skb_push(skb, skb->mac_len);
  857. dev_queue_xmit_nit(skb, vrf_dev);
  858. skb_pull(skb, skb->mac_len);
  859. }
  860. skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
  861. out:
  862. return skb;
  863. }
  864. /* called with rcu lock held */
  865. static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
  866. struct sk_buff *skb,
  867. u16 proto)
  868. {
  869. switch (proto) {
  870. case AF_INET:
  871. return vrf_ip_rcv(vrf_dev, skb);
  872. case AF_INET6:
  873. return vrf_ip6_rcv(vrf_dev, skb);
  874. }
  875. return skb;
  876. }
  877. #if IS_ENABLED(CONFIG_IPV6)
  878. /* send to link-local or multicast address via interface enslaved to
  879. * VRF device. Force lookup to VRF table without changing flow struct
  880. */
  881. static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
  882. struct flowi6 *fl6)
  883. {
  884. struct net *net = dev_net(dev);
  885. int flags = RT6_LOOKUP_F_IFACE;
  886. struct dst_entry *dst = NULL;
  887. struct rt6_info *rt;
  888. /* VRF device does not have a link-local address and
  889. * sending packets to link-local or mcast addresses over
  890. * a VRF device does not make sense
  891. */
  892. if (fl6->flowi6_oif == dev->ifindex) {
  893. dst = &net->ipv6.ip6_null_entry->dst;
  894. dst_hold(dst);
  895. return dst;
  896. }
  897. if (!ipv6_addr_any(&fl6->saddr))
  898. flags |= RT6_LOOKUP_F_HAS_SADDR;
  899. rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
  900. if (rt)
  901. dst = &rt->dst;
  902. return dst;
  903. }
  904. #endif
  905. static const struct l3mdev_ops vrf_l3mdev_ops = {
  906. .l3mdev_fib_table = vrf_fib_table,
  907. .l3mdev_l3_rcv = vrf_l3_rcv,
  908. .l3mdev_l3_out = vrf_l3_out,
  909. #if IS_ENABLED(CONFIG_IPV6)
  910. .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
  911. #endif
  912. };
  913. static void vrf_get_drvinfo(struct net_device *dev,
  914. struct ethtool_drvinfo *info)
  915. {
  916. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  917. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  918. }
  919. static const struct ethtool_ops vrf_ethtool_ops = {
  920. .get_drvinfo = vrf_get_drvinfo,
  921. };
  922. static inline size_t vrf_fib_rule_nl_size(void)
  923. {
  924. size_t sz;
  925. sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
  926. sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
  927. sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
  928. sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
  929. return sz;
  930. }
  931. static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
  932. {
  933. struct fib_rule_hdr *frh;
  934. struct nlmsghdr *nlh;
  935. struct sk_buff *skb;
  936. int err;
  937. if (family == AF_INET6 && !ipv6_mod_enabled())
  938. return 0;
  939. skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
  940. if (!skb)
  941. return -ENOMEM;
  942. nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
  943. if (!nlh)
  944. goto nla_put_failure;
  945. /* rule only needs to appear once */
  946. nlh->nlmsg_flags |= NLM_F_EXCL;
  947. frh = nlmsg_data(nlh);
  948. memset(frh, 0, sizeof(*frh));
  949. frh->family = family;
  950. frh->action = FR_ACT_TO_TBL;
  951. if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
  952. goto nla_put_failure;
  953. if (nla_put_u8(skb, FRA_L3MDEV, 1))
  954. goto nla_put_failure;
  955. if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
  956. goto nla_put_failure;
  957. nlmsg_end(skb, nlh);
  958. /* fib_nl_{new,del}rule handling looks for net from skb->sk */
  959. skb->sk = dev_net(dev)->rtnl;
  960. if (add_it) {
  961. err = fib_nl_newrule(skb, nlh, NULL);
  962. if (err == -EEXIST)
  963. err = 0;
  964. } else {
  965. err = fib_nl_delrule(skb, nlh, NULL);
  966. if (err == -ENOENT)
  967. err = 0;
  968. }
  969. nlmsg_free(skb);
  970. return err;
  971. nla_put_failure:
  972. nlmsg_free(skb);
  973. return -EMSGSIZE;
  974. }
  975. static int vrf_add_fib_rules(const struct net_device *dev)
  976. {
  977. int err;
  978. err = vrf_fib_rule(dev, AF_INET, true);
  979. if (err < 0)
  980. goto out_err;
  981. err = vrf_fib_rule(dev, AF_INET6, true);
  982. if (err < 0)
  983. goto ipv6_err;
  984. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  985. err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
  986. if (err < 0)
  987. goto ipmr_err;
  988. #endif
  989. return 0;
  990. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  991. ipmr_err:
  992. vrf_fib_rule(dev, AF_INET6, false);
  993. #endif
  994. ipv6_err:
  995. vrf_fib_rule(dev, AF_INET, false);
  996. out_err:
  997. netdev_err(dev, "Failed to add FIB rules.\n");
  998. return err;
  999. }
  1000. static void vrf_setup(struct net_device *dev)
  1001. {
  1002. ether_setup(dev);
  1003. /* Initialize the device structure. */
  1004. dev->netdev_ops = &vrf_netdev_ops;
  1005. dev->l3mdev_ops = &vrf_l3mdev_ops;
  1006. dev->ethtool_ops = &vrf_ethtool_ops;
  1007. dev->needs_free_netdev = true;
  1008. /* Fill in device structure with ethernet-generic values. */
  1009. eth_hw_addr_random(dev);
  1010. /* don't acquire vrf device's netif_tx_lock when transmitting */
  1011. dev->features |= NETIF_F_LLTX;
  1012. /* don't allow vrf devices to change network namespaces. */
  1013. dev->features |= NETIF_F_NETNS_LOCAL;
  1014. /* does not make sense for a VLAN to be added to a vrf device */
  1015. dev->features |= NETIF_F_VLAN_CHALLENGED;
  1016. /* enable offload features */
  1017. dev->features |= NETIF_F_GSO_SOFTWARE;
  1018. dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
  1019. dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
  1020. dev->hw_features = dev->features;
  1021. dev->hw_enc_features = dev->features;
  1022. /* default to no qdisc; user can add if desired */
  1023. dev->priv_flags |= IFF_NO_QUEUE;
  1024. }
  1025. static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
  1026. struct netlink_ext_ack *extack)
  1027. {
  1028. if (tb[IFLA_ADDRESS]) {
  1029. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
  1030. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1031. return -EINVAL;
  1032. }
  1033. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
  1034. NL_SET_ERR_MSG(extack, "Invalid hardware address");
  1035. return -EADDRNOTAVAIL;
  1036. }
  1037. }
  1038. return 0;
  1039. }
  1040. static void vrf_dellink(struct net_device *dev, struct list_head *head)
  1041. {
  1042. struct net_device *port_dev;
  1043. struct list_head *iter;
  1044. netdev_for_each_lower_dev(dev, port_dev, iter)
  1045. vrf_del_slave(dev, port_dev);
  1046. unregister_netdevice_queue(dev, head);
  1047. }
  1048. static int vrf_newlink(struct net *src_net, struct net_device *dev,
  1049. struct nlattr *tb[], struct nlattr *data[],
  1050. struct netlink_ext_ack *extack)
  1051. {
  1052. struct net_vrf *vrf = netdev_priv(dev);
  1053. bool *add_fib_rules;
  1054. struct net *net;
  1055. int err;
  1056. if (!data || !data[IFLA_VRF_TABLE]) {
  1057. NL_SET_ERR_MSG(extack, "VRF table id is missing");
  1058. return -EINVAL;
  1059. }
  1060. vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
  1061. if (vrf->tb_id == RT_TABLE_UNSPEC) {
  1062. NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
  1063. "Invalid VRF table id");
  1064. return -EINVAL;
  1065. }
  1066. dev->priv_flags |= IFF_L3MDEV_MASTER;
  1067. err = register_netdevice(dev);
  1068. if (err)
  1069. goto out;
  1070. net = dev_net(dev);
  1071. add_fib_rules = net_generic(net, vrf_net_id);
  1072. if (*add_fib_rules) {
  1073. err = vrf_add_fib_rules(dev);
  1074. if (err) {
  1075. unregister_netdevice(dev);
  1076. goto out;
  1077. }
  1078. *add_fib_rules = false;
  1079. }
  1080. out:
  1081. return err;
  1082. }
  1083. static size_t vrf_nl_getsize(const struct net_device *dev)
  1084. {
  1085. return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
  1086. }
  1087. static int vrf_fillinfo(struct sk_buff *skb,
  1088. const struct net_device *dev)
  1089. {
  1090. struct net_vrf *vrf = netdev_priv(dev);
  1091. return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
  1092. }
  1093. static size_t vrf_get_slave_size(const struct net_device *bond_dev,
  1094. const struct net_device *slave_dev)
  1095. {
  1096. return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
  1097. }
  1098. static int vrf_fill_slave_info(struct sk_buff *skb,
  1099. const struct net_device *vrf_dev,
  1100. const struct net_device *slave_dev)
  1101. {
  1102. struct net_vrf *vrf = netdev_priv(vrf_dev);
  1103. if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
  1104. return -EMSGSIZE;
  1105. return 0;
  1106. }
  1107. static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
  1108. [IFLA_VRF_TABLE] = { .type = NLA_U32 },
  1109. };
  1110. static struct rtnl_link_ops vrf_link_ops __read_mostly = {
  1111. .kind = DRV_NAME,
  1112. .priv_size = sizeof(struct net_vrf),
  1113. .get_size = vrf_nl_getsize,
  1114. .policy = vrf_nl_policy,
  1115. .validate = vrf_validate,
  1116. .fill_info = vrf_fillinfo,
  1117. .get_slave_size = vrf_get_slave_size,
  1118. .fill_slave_info = vrf_fill_slave_info,
  1119. .newlink = vrf_newlink,
  1120. .dellink = vrf_dellink,
  1121. .setup = vrf_setup,
  1122. .maxtype = IFLA_VRF_MAX,
  1123. };
  1124. static int vrf_device_event(struct notifier_block *unused,
  1125. unsigned long event, void *ptr)
  1126. {
  1127. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1128. /* only care about unregister events to drop slave references */
  1129. if (event == NETDEV_UNREGISTER) {
  1130. struct net_device *vrf_dev;
  1131. if (!netif_is_l3_slave(dev))
  1132. goto out;
  1133. vrf_dev = netdev_master_upper_dev_get(dev);
  1134. vrf_del_slave(vrf_dev, dev);
  1135. }
  1136. out:
  1137. return NOTIFY_DONE;
  1138. }
  1139. static struct notifier_block vrf_notifier_block __read_mostly = {
  1140. .notifier_call = vrf_device_event,
  1141. };
  1142. /* Initialize per network namespace state */
  1143. static int __net_init vrf_netns_init(struct net *net)
  1144. {
  1145. bool *add_fib_rules = net_generic(net, vrf_net_id);
  1146. *add_fib_rules = true;
  1147. return 0;
  1148. }
  1149. static struct pernet_operations vrf_net_ops __net_initdata = {
  1150. .init = vrf_netns_init,
  1151. .id = &vrf_net_id,
  1152. .size = sizeof(bool),
  1153. };
  1154. static int __init vrf_init_module(void)
  1155. {
  1156. int rc;
  1157. register_netdevice_notifier(&vrf_notifier_block);
  1158. rc = register_pernet_subsys(&vrf_net_ops);
  1159. if (rc < 0)
  1160. goto error;
  1161. rc = rtnl_link_register(&vrf_link_ops);
  1162. if (rc < 0) {
  1163. unregister_pernet_subsys(&vrf_net_ops);
  1164. goto error;
  1165. }
  1166. return 0;
  1167. error:
  1168. unregister_netdevice_notifier(&vrf_notifier_block);
  1169. return rc;
  1170. }
  1171. module_init(vrf_init_module);
  1172. MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
  1173. MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
  1174. MODULE_LICENSE("GPL");
  1175. MODULE_ALIAS_RTNL_LINK(DRV_NAME);
  1176. MODULE_VERSION(DRV_VERSION);