sfp.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116
  1. #include <linux/delay.h>
  2. #include <linux/gpio/consumer.h>
  3. #include <linux/i2c.h>
  4. #include <linux/interrupt.h>
  5. #include <linux/jiffies.h>
  6. #include <linux/module.h>
  7. #include <linux/mutex.h>
  8. #include <linux/of.h>
  9. #include <linux/phy.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/rtnetlink.h>
  12. #include <linux/slab.h>
  13. #include <linux/workqueue.h>
  14. #include "mdio-i2c.h"
  15. #include "sfp.h"
  16. #include "swphy.h"
  17. enum {
  18. GPIO_MODDEF0,
  19. GPIO_LOS,
  20. GPIO_TX_FAULT,
  21. GPIO_TX_DISABLE,
  22. GPIO_RATE_SELECT,
  23. GPIO_MAX,
  24. SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  25. SFP_F_LOS = BIT(GPIO_LOS),
  26. SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  27. SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  28. SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  29. SFP_E_INSERT = 0,
  30. SFP_E_REMOVE,
  31. SFP_E_DEV_DOWN,
  32. SFP_E_DEV_UP,
  33. SFP_E_TX_FAULT,
  34. SFP_E_TX_CLEAR,
  35. SFP_E_LOS_HIGH,
  36. SFP_E_LOS_LOW,
  37. SFP_E_TIMEOUT,
  38. SFP_MOD_EMPTY = 0,
  39. SFP_MOD_PROBE,
  40. SFP_MOD_HPOWER,
  41. SFP_MOD_PRESENT,
  42. SFP_MOD_ERROR,
  43. SFP_DEV_DOWN = 0,
  44. SFP_DEV_UP,
  45. SFP_S_DOWN = 0,
  46. SFP_S_INIT,
  47. SFP_S_WAIT_LOS,
  48. SFP_S_LINK_UP,
  49. SFP_S_TX_FAULT,
  50. SFP_S_REINIT,
  51. SFP_S_TX_DISABLE,
  52. };
  53. static const char *gpio_of_names[] = {
  54. "mod-def0",
  55. "los",
  56. "tx-fault",
  57. "tx-disable",
  58. "rate-select0",
  59. };
  60. static const enum gpiod_flags gpio_flags[] = {
  61. GPIOD_IN,
  62. GPIOD_IN,
  63. GPIOD_IN,
  64. GPIOD_ASIS,
  65. GPIOD_ASIS,
  66. };
  67. #define T_INIT_JIFFIES msecs_to_jiffies(300)
  68. #define T_RESET_US 10
  69. #define T_FAULT_RECOVER msecs_to_jiffies(1000)
  70. /* SFP module presence detection is poor: the three MOD DEF signals are
  71. * the same length on the PCB, which means it's possible for MOD DEF 0 to
  72. * connect before the I2C bus on MOD DEF 1/2.
  73. *
  74. * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
  75. * be deasserted) but makes no mention of the earliest time before we can
  76. * access the I2C EEPROM. However, Avago modules require 300ms.
  77. */
  78. #define T_PROBE_INIT msecs_to_jiffies(300)
  79. #define T_HPOWER_LEVEL msecs_to_jiffies(300)
  80. #define T_PROBE_RETRY msecs_to_jiffies(100)
  81. /* SFP modules appear to always have their PHY configured for bus address
  82. * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
  83. */
  84. #define SFP_PHY_ADDR 22
  85. /* Give this long for the PHY to reset. */
  86. #define T_PHY_RESET_MS 50
  87. static DEFINE_MUTEX(sfp_mutex);
  88. struct sff_data {
  89. unsigned int gpios;
  90. bool (*module_supported)(const struct sfp_eeprom_id *id);
  91. };
  92. struct sfp {
  93. struct device *dev;
  94. struct i2c_adapter *i2c;
  95. struct mii_bus *i2c_mii;
  96. struct sfp_bus *sfp_bus;
  97. struct phy_device *mod_phy;
  98. const struct sff_data *type;
  99. u32 max_power_mW;
  100. unsigned int (*get_state)(struct sfp *);
  101. void (*set_state)(struct sfp *, unsigned int);
  102. int (*read)(struct sfp *, bool, u8, void *, size_t);
  103. int (*write)(struct sfp *, bool, u8, void *, size_t);
  104. struct gpio_desc *gpio[GPIO_MAX];
  105. unsigned int state;
  106. struct delayed_work poll;
  107. struct delayed_work timeout;
  108. struct mutex sm_mutex;
  109. unsigned char sm_mod_state;
  110. unsigned char sm_dev_state;
  111. unsigned short sm_state;
  112. unsigned int sm_retries;
  113. struct sfp_eeprom_id id;
  114. };
  115. static bool sff_module_supported(const struct sfp_eeprom_id *id)
  116. {
  117. return id->base.phys_id == SFP_PHYS_ID_SFF &&
  118. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
  119. }
  120. static const struct sff_data sff_data = {
  121. .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
  122. .module_supported = sff_module_supported,
  123. };
  124. static bool sfp_module_supported(const struct sfp_eeprom_id *id)
  125. {
  126. return id->base.phys_id == SFP_PHYS_ID_SFP &&
  127. id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
  128. }
  129. static const struct sff_data sfp_data = {
  130. .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
  131. SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
  132. .module_supported = sfp_module_supported,
  133. };
  134. static const struct of_device_id sfp_of_match[] = {
  135. { .compatible = "sff,sff", .data = &sff_data, },
  136. { .compatible = "sff,sfp", .data = &sfp_data, },
  137. { },
  138. };
  139. MODULE_DEVICE_TABLE(of, sfp_of_match);
  140. static unsigned long poll_jiffies;
  141. static unsigned int sfp_gpio_get_state(struct sfp *sfp)
  142. {
  143. unsigned int i, state, v;
  144. for (i = state = 0; i < GPIO_MAX; i++) {
  145. if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
  146. continue;
  147. v = gpiod_get_value_cansleep(sfp->gpio[i]);
  148. if (v)
  149. state |= BIT(i);
  150. }
  151. return state;
  152. }
  153. static unsigned int sff_gpio_get_state(struct sfp *sfp)
  154. {
  155. return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
  156. }
  157. static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
  158. {
  159. if (state & SFP_F_PRESENT) {
  160. /* If the module is present, drive the signals */
  161. if (sfp->gpio[GPIO_TX_DISABLE])
  162. gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
  163. state & SFP_F_TX_DISABLE);
  164. if (state & SFP_F_RATE_SELECT)
  165. gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
  166. state & SFP_F_RATE_SELECT);
  167. } else {
  168. /* Otherwise, let them float to the pull-ups */
  169. if (sfp->gpio[GPIO_TX_DISABLE])
  170. gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
  171. if (state & SFP_F_RATE_SELECT)
  172. gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
  173. }
  174. }
  175. static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
  176. size_t len)
  177. {
  178. struct i2c_msg msgs[2];
  179. u8 bus_addr = a2 ? 0x51 : 0x50;
  180. int ret;
  181. msgs[0].addr = bus_addr;
  182. msgs[0].flags = 0;
  183. msgs[0].len = 1;
  184. msgs[0].buf = &dev_addr;
  185. msgs[1].addr = bus_addr;
  186. msgs[1].flags = I2C_M_RD;
  187. msgs[1].len = len;
  188. msgs[1].buf = buf;
  189. ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
  190. if (ret < 0)
  191. return ret;
  192. return ret == ARRAY_SIZE(msgs) ? len : 0;
  193. }
  194. static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
  195. size_t len)
  196. {
  197. struct i2c_msg msgs[1];
  198. u8 bus_addr = a2 ? 0x51 : 0x50;
  199. int ret;
  200. msgs[0].addr = bus_addr;
  201. msgs[0].flags = 0;
  202. msgs[0].len = 1 + len;
  203. msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
  204. if (!msgs[0].buf)
  205. return -ENOMEM;
  206. msgs[0].buf[0] = dev_addr;
  207. memcpy(&msgs[0].buf[1], buf, len);
  208. ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
  209. kfree(msgs[0].buf);
  210. if (ret < 0)
  211. return ret;
  212. return ret == ARRAY_SIZE(msgs) ? len : 0;
  213. }
  214. static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
  215. {
  216. struct mii_bus *i2c_mii;
  217. int ret;
  218. if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
  219. return -EINVAL;
  220. sfp->i2c = i2c;
  221. sfp->read = sfp_i2c_read;
  222. sfp->write = sfp_i2c_write;
  223. i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
  224. if (IS_ERR(i2c_mii))
  225. return PTR_ERR(i2c_mii);
  226. i2c_mii->name = "SFP I2C Bus";
  227. i2c_mii->phy_mask = ~0;
  228. ret = mdiobus_register(i2c_mii);
  229. if (ret < 0) {
  230. mdiobus_free(i2c_mii);
  231. return ret;
  232. }
  233. sfp->i2c_mii = i2c_mii;
  234. return 0;
  235. }
  236. /* Interface */
  237. static unsigned int sfp_get_state(struct sfp *sfp)
  238. {
  239. return sfp->get_state(sfp);
  240. }
  241. static void sfp_set_state(struct sfp *sfp, unsigned int state)
  242. {
  243. sfp->set_state(sfp, state);
  244. }
  245. static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
  246. {
  247. return sfp->read(sfp, a2, addr, buf, len);
  248. }
  249. static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
  250. {
  251. return sfp->write(sfp, a2, addr, buf, len);
  252. }
  253. static unsigned int sfp_check(void *buf, size_t len)
  254. {
  255. u8 *p, check;
  256. for (p = buf, check = 0; len; p++, len--)
  257. check += *p;
  258. return check;
  259. }
  260. /* Helpers */
  261. static void sfp_module_tx_disable(struct sfp *sfp)
  262. {
  263. dev_dbg(sfp->dev, "tx disable %u -> %u\n",
  264. sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
  265. sfp->state |= SFP_F_TX_DISABLE;
  266. sfp_set_state(sfp, sfp->state);
  267. }
  268. static void sfp_module_tx_enable(struct sfp *sfp)
  269. {
  270. dev_dbg(sfp->dev, "tx disable %u -> %u\n",
  271. sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
  272. sfp->state &= ~SFP_F_TX_DISABLE;
  273. sfp_set_state(sfp, sfp->state);
  274. }
  275. static void sfp_module_tx_fault_reset(struct sfp *sfp)
  276. {
  277. unsigned int state = sfp->state;
  278. if (state & SFP_F_TX_DISABLE)
  279. return;
  280. sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
  281. udelay(T_RESET_US);
  282. sfp_set_state(sfp, state);
  283. }
  284. /* SFP state machine */
  285. static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
  286. {
  287. if (timeout)
  288. mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
  289. timeout);
  290. else
  291. cancel_delayed_work(&sfp->timeout);
  292. }
  293. static void sfp_sm_next(struct sfp *sfp, unsigned int state,
  294. unsigned int timeout)
  295. {
  296. sfp->sm_state = state;
  297. sfp_sm_set_timer(sfp, timeout);
  298. }
  299. static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
  300. unsigned int timeout)
  301. {
  302. sfp->sm_mod_state = state;
  303. sfp_sm_set_timer(sfp, timeout);
  304. }
  305. static void sfp_sm_phy_detach(struct sfp *sfp)
  306. {
  307. phy_stop(sfp->mod_phy);
  308. sfp_remove_phy(sfp->sfp_bus);
  309. phy_device_remove(sfp->mod_phy);
  310. phy_device_free(sfp->mod_phy);
  311. sfp->mod_phy = NULL;
  312. }
  313. static void sfp_sm_probe_phy(struct sfp *sfp)
  314. {
  315. struct phy_device *phy;
  316. int err;
  317. msleep(T_PHY_RESET_MS);
  318. phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
  319. if (phy == ERR_PTR(-ENODEV)) {
  320. dev_info(sfp->dev, "no PHY detected\n");
  321. return;
  322. }
  323. if (IS_ERR(phy)) {
  324. dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
  325. return;
  326. }
  327. err = sfp_add_phy(sfp->sfp_bus, phy);
  328. if (err) {
  329. phy_device_remove(phy);
  330. phy_device_free(phy);
  331. dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
  332. return;
  333. }
  334. sfp->mod_phy = phy;
  335. phy_start(phy);
  336. }
  337. static void sfp_sm_link_up(struct sfp *sfp)
  338. {
  339. sfp_link_up(sfp->sfp_bus);
  340. sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
  341. }
  342. static void sfp_sm_link_down(struct sfp *sfp)
  343. {
  344. sfp_link_down(sfp->sfp_bus);
  345. }
  346. static void sfp_sm_link_check_los(struct sfp *sfp)
  347. {
  348. unsigned int los = sfp->state & SFP_F_LOS;
  349. /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
  350. * are set, we assume that no LOS signal is available.
  351. */
  352. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
  353. los ^= SFP_F_LOS;
  354. else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
  355. los = 0;
  356. if (los)
  357. sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
  358. else
  359. sfp_sm_link_up(sfp);
  360. }
  361. static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
  362. {
  363. return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
  364. event == SFP_E_LOS_LOW) ||
  365. (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
  366. event == SFP_E_LOS_HIGH);
  367. }
  368. static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
  369. {
  370. return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
  371. event == SFP_E_LOS_HIGH) ||
  372. (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
  373. event == SFP_E_LOS_LOW);
  374. }
  375. static void sfp_sm_fault(struct sfp *sfp, bool warn)
  376. {
  377. if (sfp->sm_retries && !--sfp->sm_retries) {
  378. dev_err(sfp->dev,
  379. "module persistently indicates fault, disabling\n");
  380. sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
  381. } else {
  382. if (warn)
  383. dev_err(sfp->dev, "module transmit fault indicated\n");
  384. sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
  385. }
  386. }
  387. static void sfp_sm_mod_init(struct sfp *sfp)
  388. {
  389. sfp_module_tx_enable(sfp);
  390. /* Wait t_init before indicating that the link is up, provided the
  391. * current state indicates no TX_FAULT. If TX_FAULT clears before
  392. * this time, that's fine too.
  393. */
  394. sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
  395. sfp->sm_retries = 5;
  396. /* Setting the serdes link mode is guesswork: there's no
  397. * field in the EEPROM which indicates what mode should
  398. * be used.
  399. *
  400. * If it's a gigabit-only fiber module, it probably does
  401. * not have a PHY, so switch to 802.3z negotiation mode.
  402. * Otherwise, switch to SGMII mode (which is required to
  403. * support non-gigabit speeds) and probe for a PHY.
  404. */
  405. if (sfp->id.base.e1000_base_t ||
  406. sfp->id.base.e100_base_lx ||
  407. sfp->id.base.e100_base_fx)
  408. sfp_sm_probe_phy(sfp);
  409. }
  410. static int sfp_sm_mod_hpower(struct sfp *sfp)
  411. {
  412. u32 power;
  413. u8 val;
  414. int err;
  415. power = 1000;
  416. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
  417. power = 1500;
  418. if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
  419. power = 2000;
  420. if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
  421. (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
  422. SFP_DIAGMON_DDM) {
  423. /* The module appears not to implement bus address 0xa2,
  424. * or requires an address change sequence, so assume that
  425. * the module powers up in the indicated power mode.
  426. */
  427. if (power > sfp->max_power_mW) {
  428. dev_err(sfp->dev,
  429. "Host does not support %u.%uW modules\n",
  430. power / 1000, (power / 100) % 10);
  431. return -EINVAL;
  432. }
  433. return 0;
  434. }
  435. if (power > sfp->max_power_mW) {
  436. dev_warn(sfp->dev,
  437. "Host does not support %u.%uW modules, module left in power mode 1\n",
  438. power / 1000, (power / 100) % 10);
  439. return 0;
  440. }
  441. if (power <= 1000)
  442. return 0;
  443. err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
  444. if (err != sizeof(val)) {
  445. dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
  446. err = -EAGAIN;
  447. goto err;
  448. }
  449. val |= BIT(0);
  450. err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
  451. if (err != sizeof(val)) {
  452. dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
  453. err = -EAGAIN;
  454. goto err;
  455. }
  456. dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
  457. power / 1000, (power / 100) % 10);
  458. return T_HPOWER_LEVEL;
  459. err:
  460. return err;
  461. }
  462. static int sfp_sm_mod_probe(struct sfp *sfp)
  463. {
  464. /* SFP module inserted - read I2C data */
  465. struct sfp_eeprom_id id;
  466. bool cotsworks;
  467. u8 check;
  468. int ret;
  469. ret = sfp_read(sfp, false, 0, &id, sizeof(id));
  470. if (ret < 0) {
  471. dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
  472. return -EAGAIN;
  473. }
  474. if (ret != sizeof(id)) {
  475. dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
  476. return -EAGAIN;
  477. }
  478. /* Cotsworks do not seem to update the checksums when they
  479. * do the final programming with the final module part number,
  480. * serial number and date code.
  481. */
  482. cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
  483. /* Validate the checksum over the base structure */
  484. check = sfp_check(&id.base, sizeof(id.base) - 1);
  485. if (check != id.base.cc_base) {
  486. if (cotsworks) {
  487. dev_warn(sfp->dev,
  488. "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
  489. check, id.base.cc_base);
  490. } else {
  491. dev_err(sfp->dev,
  492. "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
  493. check, id.base.cc_base);
  494. print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
  495. 16, 1, &id, sizeof(id), true);
  496. return -EINVAL;
  497. }
  498. }
  499. check = sfp_check(&id.ext, sizeof(id.ext) - 1);
  500. if (check != id.ext.cc_ext) {
  501. if (cotsworks) {
  502. dev_warn(sfp->dev,
  503. "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
  504. check, id.ext.cc_ext);
  505. } else {
  506. dev_err(sfp->dev,
  507. "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
  508. check, id.ext.cc_ext);
  509. print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
  510. 16, 1, &id, sizeof(id), true);
  511. memset(&id.ext, 0, sizeof(id.ext));
  512. }
  513. }
  514. sfp->id = id;
  515. dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
  516. (int)sizeof(id.base.vendor_name), id.base.vendor_name,
  517. (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
  518. (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
  519. (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
  520. (int)sizeof(id.ext.datecode), id.ext.datecode);
  521. /* Check whether we support this module */
  522. if (!sfp->type->module_supported(&sfp->id)) {
  523. dev_err(sfp->dev,
  524. "module is not supported - phys id 0x%02x 0x%02x\n",
  525. sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
  526. return -EINVAL;
  527. }
  528. /* If the module requires address swap mode, warn about it */
  529. if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
  530. dev_warn(sfp->dev,
  531. "module address swap to access page 0xA2 is not supported.\n");
  532. ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
  533. if (ret < 0)
  534. return ret;
  535. return sfp_sm_mod_hpower(sfp);
  536. }
  537. static void sfp_sm_mod_remove(struct sfp *sfp)
  538. {
  539. sfp_module_remove(sfp->sfp_bus);
  540. if (sfp->mod_phy)
  541. sfp_sm_phy_detach(sfp);
  542. sfp_module_tx_disable(sfp);
  543. memset(&sfp->id, 0, sizeof(sfp->id));
  544. dev_info(sfp->dev, "module removed\n");
  545. }
  546. static void sfp_sm_event(struct sfp *sfp, unsigned int event)
  547. {
  548. mutex_lock(&sfp->sm_mutex);
  549. dev_dbg(sfp->dev, "SM: enter %u:%u:%u event %u\n",
  550. sfp->sm_mod_state, sfp->sm_dev_state, sfp->sm_state, event);
  551. /* This state machine tracks the insert/remove state of
  552. * the module, and handles probing the on-board EEPROM.
  553. */
  554. switch (sfp->sm_mod_state) {
  555. default:
  556. if (event == SFP_E_INSERT) {
  557. sfp_module_tx_disable(sfp);
  558. sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
  559. }
  560. break;
  561. case SFP_MOD_PROBE:
  562. if (event == SFP_E_REMOVE) {
  563. sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
  564. } else if (event == SFP_E_TIMEOUT) {
  565. int val = sfp_sm_mod_probe(sfp);
  566. if (val == 0)
  567. sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
  568. else if (val > 0)
  569. sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
  570. else if (val != -EAGAIN)
  571. sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
  572. else
  573. sfp_sm_set_timer(sfp, T_PROBE_RETRY);
  574. }
  575. break;
  576. case SFP_MOD_HPOWER:
  577. if (event == SFP_E_TIMEOUT) {
  578. sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
  579. break;
  580. }
  581. /* fallthrough */
  582. case SFP_MOD_PRESENT:
  583. case SFP_MOD_ERROR:
  584. if (event == SFP_E_REMOVE) {
  585. sfp_sm_mod_remove(sfp);
  586. sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
  587. }
  588. break;
  589. }
  590. /* This state machine tracks the netdev up/down state */
  591. switch (sfp->sm_dev_state) {
  592. default:
  593. if (event == SFP_E_DEV_UP)
  594. sfp->sm_dev_state = SFP_DEV_UP;
  595. break;
  596. case SFP_DEV_UP:
  597. if (event == SFP_E_DEV_DOWN) {
  598. /* If the module has a PHY, avoid raising TX disable
  599. * as this resets the PHY. Otherwise, raise it to
  600. * turn the laser off.
  601. */
  602. if (!sfp->mod_phy)
  603. sfp_module_tx_disable(sfp);
  604. sfp->sm_dev_state = SFP_DEV_DOWN;
  605. }
  606. break;
  607. }
  608. /* Some events are global */
  609. if (sfp->sm_state != SFP_S_DOWN &&
  610. (sfp->sm_mod_state != SFP_MOD_PRESENT ||
  611. sfp->sm_dev_state != SFP_DEV_UP)) {
  612. if (sfp->sm_state == SFP_S_LINK_UP &&
  613. sfp->sm_dev_state == SFP_DEV_UP)
  614. sfp_sm_link_down(sfp);
  615. if (sfp->mod_phy)
  616. sfp_sm_phy_detach(sfp);
  617. sfp_sm_next(sfp, SFP_S_DOWN, 0);
  618. mutex_unlock(&sfp->sm_mutex);
  619. return;
  620. }
  621. /* The main state machine */
  622. switch (sfp->sm_state) {
  623. case SFP_S_DOWN:
  624. if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
  625. sfp->sm_dev_state == SFP_DEV_UP)
  626. sfp_sm_mod_init(sfp);
  627. break;
  628. case SFP_S_INIT:
  629. if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
  630. sfp_sm_fault(sfp, true);
  631. else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
  632. sfp_sm_link_check_los(sfp);
  633. break;
  634. case SFP_S_WAIT_LOS:
  635. if (event == SFP_E_TX_FAULT)
  636. sfp_sm_fault(sfp, true);
  637. else if (sfp_los_event_inactive(sfp, event))
  638. sfp_sm_link_up(sfp);
  639. break;
  640. case SFP_S_LINK_UP:
  641. if (event == SFP_E_TX_FAULT) {
  642. sfp_sm_link_down(sfp);
  643. sfp_sm_fault(sfp, true);
  644. } else if (sfp_los_event_active(sfp, event)) {
  645. sfp_sm_link_down(sfp);
  646. sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
  647. }
  648. break;
  649. case SFP_S_TX_FAULT:
  650. if (event == SFP_E_TIMEOUT) {
  651. sfp_module_tx_fault_reset(sfp);
  652. sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
  653. }
  654. break;
  655. case SFP_S_REINIT:
  656. if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
  657. sfp_sm_fault(sfp, false);
  658. } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
  659. dev_info(sfp->dev, "module transmit fault recovered\n");
  660. sfp_sm_link_check_los(sfp);
  661. }
  662. break;
  663. case SFP_S_TX_DISABLE:
  664. break;
  665. }
  666. dev_dbg(sfp->dev, "SM: exit %u:%u:%u\n",
  667. sfp->sm_mod_state, sfp->sm_dev_state, sfp->sm_state);
  668. mutex_unlock(&sfp->sm_mutex);
  669. }
  670. static void sfp_start(struct sfp *sfp)
  671. {
  672. sfp_sm_event(sfp, SFP_E_DEV_UP);
  673. }
  674. static void sfp_stop(struct sfp *sfp)
  675. {
  676. sfp_sm_event(sfp, SFP_E_DEV_DOWN);
  677. }
  678. static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
  679. {
  680. /* locking... and check module is present */
  681. if (sfp->id.ext.sff8472_compliance &&
  682. !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
  683. modinfo->type = ETH_MODULE_SFF_8472;
  684. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  685. } else {
  686. modinfo->type = ETH_MODULE_SFF_8079;
  687. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  688. }
  689. return 0;
  690. }
  691. static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
  692. u8 *data)
  693. {
  694. unsigned int first, last, len;
  695. int ret;
  696. if (ee->len == 0)
  697. return -EINVAL;
  698. first = ee->offset;
  699. last = ee->offset + ee->len;
  700. if (first < ETH_MODULE_SFF_8079_LEN) {
  701. len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
  702. len -= first;
  703. ret = sfp_read(sfp, false, first, data, len);
  704. if (ret < 0)
  705. return ret;
  706. first += len;
  707. data += len;
  708. }
  709. if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
  710. len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
  711. len -= first;
  712. first -= ETH_MODULE_SFF_8079_LEN;
  713. ret = sfp_read(sfp, true, first, data, len);
  714. if (ret < 0)
  715. return ret;
  716. }
  717. return 0;
  718. }
  719. static const struct sfp_socket_ops sfp_module_ops = {
  720. .start = sfp_start,
  721. .stop = sfp_stop,
  722. .module_info = sfp_module_info,
  723. .module_eeprom = sfp_module_eeprom,
  724. };
  725. static void sfp_timeout(struct work_struct *work)
  726. {
  727. struct sfp *sfp = container_of(work, struct sfp, timeout.work);
  728. rtnl_lock();
  729. sfp_sm_event(sfp, SFP_E_TIMEOUT);
  730. rtnl_unlock();
  731. }
  732. static void sfp_check_state(struct sfp *sfp)
  733. {
  734. unsigned int state, i, changed;
  735. state = sfp_get_state(sfp);
  736. changed = state ^ sfp->state;
  737. changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
  738. for (i = 0; i < GPIO_MAX; i++)
  739. if (changed & BIT(i))
  740. dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
  741. !!(sfp->state & BIT(i)), !!(state & BIT(i)));
  742. state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
  743. sfp->state = state;
  744. rtnl_lock();
  745. if (changed & SFP_F_PRESENT)
  746. sfp_sm_event(sfp, state & SFP_F_PRESENT ?
  747. SFP_E_INSERT : SFP_E_REMOVE);
  748. if (changed & SFP_F_TX_FAULT)
  749. sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
  750. SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
  751. if (changed & SFP_F_LOS)
  752. sfp_sm_event(sfp, state & SFP_F_LOS ?
  753. SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
  754. rtnl_unlock();
  755. }
  756. static irqreturn_t sfp_irq(int irq, void *data)
  757. {
  758. struct sfp *sfp = data;
  759. sfp_check_state(sfp);
  760. return IRQ_HANDLED;
  761. }
  762. static void sfp_poll(struct work_struct *work)
  763. {
  764. struct sfp *sfp = container_of(work, struct sfp, poll.work);
  765. sfp_check_state(sfp);
  766. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  767. }
  768. static struct sfp *sfp_alloc(struct device *dev)
  769. {
  770. struct sfp *sfp;
  771. sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
  772. if (!sfp)
  773. return ERR_PTR(-ENOMEM);
  774. sfp->dev = dev;
  775. mutex_init(&sfp->sm_mutex);
  776. INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
  777. INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
  778. return sfp;
  779. }
  780. static void sfp_cleanup(void *data)
  781. {
  782. struct sfp *sfp = data;
  783. cancel_delayed_work_sync(&sfp->poll);
  784. cancel_delayed_work_sync(&sfp->timeout);
  785. if (sfp->i2c_mii) {
  786. mdiobus_unregister(sfp->i2c_mii);
  787. mdiobus_free(sfp->i2c_mii);
  788. }
  789. if (sfp->i2c)
  790. i2c_put_adapter(sfp->i2c);
  791. kfree(sfp);
  792. }
  793. static int sfp_probe(struct platform_device *pdev)
  794. {
  795. const struct sff_data *sff;
  796. struct sfp *sfp;
  797. bool poll = false;
  798. int irq, err, i;
  799. sfp = sfp_alloc(&pdev->dev);
  800. if (IS_ERR(sfp))
  801. return PTR_ERR(sfp);
  802. platform_set_drvdata(pdev, sfp);
  803. err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
  804. if (err < 0)
  805. return err;
  806. sff = sfp->type = &sfp_data;
  807. if (pdev->dev.of_node) {
  808. struct device_node *node = pdev->dev.of_node;
  809. const struct of_device_id *id;
  810. struct i2c_adapter *i2c;
  811. struct device_node *np;
  812. id = of_match_node(sfp_of_match, node);
  813. if (WARN_ON(!id))
  814. return -EINVAL;
  815. sff = sfp->type = id->data;
  816. np = of_parse_phandle(node, "i2c-bus", 0);
  817. if (!np) {
  818. dev_err(sfp->dev, "missing 'i2c-bus' property\n");
  819. return -ENODEV;
  820. }
  821. i2c = of_find_i2c_adapter_by_node(np);
  822. of_node_put(np);
  823. if (!i2c)
  824. return -EPROBE_DEFER;
  825. err = sfp_i2c_configure(sfp, i2c);
  826. if (err < 0) {
  827. i2c_put_adapter(i2c);
  828. return err;
  829. }
  830. }
  831. for (i = 0; i < GPIO_MAX; i++)
  832. if (sff->gpios & BIT(i)) {
  833. sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
  834. gpio_of_names[i], gpio_flags[i]);
  835. if (IS_ERR(sfp->gpio[i]))
  836. return PTR_ERR(sfp->gpio[i]);
  837. }
  838. sfp->get_state = sfp_gpio_get_state;
  839. sfp->set_state = sfp_gpio_set_state;
  840. /* Modules that have no detect signal are always present */
  841. if (!(sfp->gpio[GPIO_MODDEF0]))
  842. sfp->get_state = sff_gpio_get_state;
  843. device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
  844. &sfp->max_power_mW);
  845. if (!sfp->max_power_mW)
  846. sfp->max_power_mW = 1000;
  847. dev_info(sfp->dev, "Host maximum power %u.%uW\n",
  848. sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
  849. sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
  850. if (!sfp->sfp_bus)
  851. return -ENOMEM;
  852. /* Get the initial state, and always signal TX disable,
  853. * since the network interface will not be up.
  854. */
  855. sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
  856. if (sfp->gpio[GPIO_RATE_SELECT] &&
  857. gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
  858. sfp->state |= SFP_F_RATE_SELECT;
  859. sfp_set_state(sfp, sfp->state);
  860. sfp_module_tx_disable(sfp);
  861. rtnl_lock();
  862. if (sfp->state & SFP_F_PRESENT)
  863. sfp_sm_event(sfp, SFP_E_INSERT);
  864. rtnl_unlock();
  865. for (i = 0; i < GPIO_MAX; i++) {
  866. if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
  867. continue;
  868. irq = gpiod_to_irq(sfp->gpio[i]);
  869. if (!irq) {
  870. poll = true;
  871. continue;
  872. }
  873. err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
  874. IRQF_ONESHOT |
  875. IRQF_TRIGGER_RISING |
  876. IRQF_TRIGGER_FALLING,
  877. dev_name(sfp->dev), sfp);
  878. if (err)
  879. poll = true;
  880. }
  881. if (poll)
  882. mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
  883. /* We could have an issue in cases no Tx disable pin is available or
  884. * wired as modules using a laser as their light source will continue to
  885. * be active when the fiber is removed. This could be a safety issue and
  886. * we should at least warn the user about that.
  887. */
  888. if (!sfp->gpio[GPIO_TX_DISABLE])
  889. dev_warn(sfp->dev,
  890. "No tx_disable pin: SFP modules will always be emitting.\n");
  891. return 0;
  892. }
  893. static int sfp_remove(struct platform_device *pdev)
  894. {
  895. struct sfp *sfp = platform_get_drvdata(pdev);
  896. sfp_unregister_socket(sfp->sfp_bus);
  897. return 0;
  898. }
  899. static struct platform_driver sfp_driver = {
  900. .probe = sfp_probe,
  901. .remove = sfp_remove,
  902. .driver = {
  903. .name = "sfp",
  904. .of_match_table = sfp_of_match,
  905. },
  906. };
  907. static int sfp_init(void)
  908. {
  909. poll_jiffies = msecs_to_jiffies(100);
  910. return platform_driver_register(&sfp_driver);
  911. }
  912. module_init(sfp_init);
  913. static void sfp_exit(void)
  914. {
  915. platform_driver_unregister(&sfp_driver);
  916. }
  917. module_exit(sfp_exit);
  918. MODULE_ALIAS("platform:sfp");
  919. MODULE_AUTHOR("Russell King");
  920. MODULE_LICENSE("GPL v2");