dp83640.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555
  1. /*
  2. * Driver for the National Semiconductor DP83640 PHYTER
  3. *
  4. * Copyright (C) 2010 OMICRON electronics GmbH
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21. #include <linux/crc32.h>
  22. #include <linux/ethtool.h>
  23. #include <linux/kernel.h>
  24. #include <linux/list.h>
  25. #include <linux/mii.h>
  26. #include <linux/module.h>
  27. #include <linux/net_tstamp.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/if_vlan.h>
  30. #include <linux/phy.h>
  31. #include <linux/ptp_classify.h>
  32. #include <linux/ptp_clock_kernel.h>
  33. #include "dp83640_reg.h"
  34. #define DP83640_PHY_ID 0x20005ce1
  35. #define PAGESEL 0x13
  36. #define MAX_RXTS 64
  37. #define N_EXT_TS 6
  38. #define N_PER_OUT 7
  39. #define PSF_PTPVER 2
  40. #define PSF_EVNT 0x4000
  41. #define PSF_RX 0x2000
  42. #define PSF_TX 0x1000
  43. #define EXT_EVENT 1
  44. #define CAL_EVENT 7
  45. #define CAL_TRIGGER 1
  46. #define DP83640_N_PINS 12
  47. #define MII_DP83640_MICR 0x11
  48. #define MII_DP83640_MISR 0x12
  49. #define MII_DP83640_MICR_OE 0x1
  50. #define MII_DP83640_MICR_IE 0x2
  51. #define MII_DP83640_MISR_RHF_INT_EN 0x01
  52. #define MII_DP83640_MISR_FHF_INT_EN 0x02
  53. #define MII_DP83640_MISR_ANC_INT_EN 0x04
  54. #define MII_DP83640_MISR_DUP_INT_EN 0x08
  55. #define MII_DP83640_MISR_SPD_INT_EN 0x10
  56. #define MII_DP83640_MISR_LINK_INT_EN 0x20
  57. #define MII_DP83640_MISR_ED_INT_EN 0x40
  58. #define MII_DP83640_MISR_LQ_INT_EN 0x80
  59. /* phyter seems to miss the mark by 16 ns */
  60. #define ADJTIME_FIX 16
  61. #define SKB_TIMESTAMP_TIMEOUT 2 /* jiffies */
  62. #if defined(__BIG_ENDIAN)
  63. #define ENDIAN_FLAG 0
  64. #elif defined(__LITTLE_ENDIAN)
  65. #define ENDIAN_FLAG PSF_ENDIAN
  66. #endif
  67. struct dp83640_skb_info {
  68. int ptp_type;
  69. unsigned long tmo;
  70. };
  71. struct phy_rxts {
  72. u16 ns_lo; /* ns[15:0] */
  73. u16 ns_hi; /* overflow[1:0], ns[29:16] */
  74. u16 sec_lo; /* sec[15:0] */
  75. u16 sec_hi; /* sec[31:16] */
  76. u16 seqid; /* sequenceId[15:0] */
  77. u16 msgtype; /* messageType[3:0], hash[11:0] */
  78. };
  79. struct phy_txts {
  80. u16 ns_lo; /* ns[15:0] */
  81. u16 ns_hi; /* overflow[1:0], ns[29:16] */
  82. u16 sec_lo; /* sec[15:0] */
  83. u16 sec_hi; /* sec[31:16] */
  84. };
  85. struct rxts {
  86. struct list_head list;
  87. unsigned long tmo;
  88. u64 ns;
  89. u16 seqid;
  90. u8 msgtype;
  91. u16 hash;
  92. };
  93. struct dp83640_clock;
  94. struct dp83640_private {
  95. struct list_head list;
  96. struct dp83640_clock *clock;
  97. struct phy_device *phydev;
  98. struct delayed_work ts_work;
  99. int hwts_tx_en;
  100. int hwts_rx_en;
  101. int layer;
  102. int version;
  103. /* remember state of cfg0 during calibration */
  104. int cfg0;
  105. /* remember the last event time stamp */
  106. struct phy_txts edata;
  107. /* list of rx timestamps */
  108. struct list_head rxts;
  109. struct list_head rxpool;
  110. struct rxts rx_pool_data[MAX_RXTS];
  111. /* protects above three fields from concurrent access */
  112. spinlock_t rx_lock;
  113. /* queues of incoming and outgoing packets */
  114. struct sk_buff_head rx_queue;
  115. struct sk_buff_head tx_queue;
  116. };
  117. struct dp83640_clock {
  118. /* keeps the instance in the 'phyter_clocks' list */
  119. struct list_head list;
  120. /* we create one clock instance per MII bus */
  121. struct mii_bus *bus;
  122. /* protects extended registers from concurrent access */
  123. struct mutex extreg_lock;
  124. /* remembers which page was last selected */
  125. int page;
  126. /* our advertised capabilities */
  127. struct ptp_clock_info caps;
  128. /* protects the three fields below from concurrent access */
  129. struct mutex clock_lock;
  130. /* the one phyter from which we shall read */
  131. struct dp83640_private *chosen;
  132. /* list of the other attached phyters, not chosen */
  133. struct list_head phylist;
  134. /* reference to our PTP hardware clock */
  135. struct ptp_clock *ptp_clock;
  136. };
  137. /* globals */
  138. enum {
  139. CALIBRATE_GPIO,
  140. PEROUT_GPIO,
  141. EXTTS0_GPIO,
  142. EXTTS1_GPIO,
  143. EXTTS2_GPIO,
  144. EXTTS3_GPIO,
  145. EXTTS4_GPIO,
  146. EXTTS5_GPIO,
  147. GPIO_TABLE_SIZE
  148. };
  149. static int chosen_phy = -1;
  150. static ushort gpio_tab[GPIO_TABLE_SIZE] = {
  151. 1, 2, 3, 4, 8, 9, 10, 11
  152. };
  153. module_param(chosen_phy, int, 0444);
  154. module_param_array(gpio_tab, ushort, NULL, 0444);
  155. MODULE_PARM_DESC(chosen_phy, \
  156. "The address of the PHY to use for the ancillary clock features");
  157. MODULE_PARM_DESC(gpio_tab, \
  158. "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
  159. static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
  160. {
  161. int i, index;
  162. for (i = 0; i < DP83640_N_PINS; i++) {
  163. snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
  164. pd[i].index = i;
  165. }
  166. for (i = 0; i < GPIO_TABLE_SIZE; i++) {
  167. if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
  168. pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
  169. return;
  170. }
  171. }
  172. index = gpio_tab[CALIBRATE_GPIO] - 1;
  173. pd[index].func = PTP_PF_PHYSYNC;
  174. pd[index].chan = 0;
  175. index = gpio_tab[PEROUT_GPIO] - 1;
  176. pd[index].func = PTP_PF_PEROUT;
  177. pd[index].chan = 0;
  178. for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
  179. index = gpio_tab[i] - 1;
  180. pd[index].func = PTP_PF_EXTTS;
  181. pd[index].chan = i - EXTTS0_GPIO;
  182. }
  183. }
  184. /* a list of clocks and a mutex to protect it */
  185. static LIST_HEAD(phyter_clocks);
  186. static DEFINE_MUTEX(phyter_clocks_lock);
  187. static void rx_timestamp_work(struct work_struct *work);
  188. /* extended register access functions */
  189. #define BROADCAST_ADDR 31
  190. static inline int broadcast_write(struct phy_device *phydev, u32 regnum,
  191. u16 val)
  192. {
  193. return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val);
  194. }
  195. /* Caller must hold extreg_lock. */
  196. static int ext_read(struct phy_device *phydev, int page, u32 regnum)
  197. {
  198. struct dp83640_private *dp83640 = phydev->priv;
  199. int val;
  200. if (dp83640->clock->page != page) {
  201. broadcast_write(phydev, PAGESEL, page);
  202. dp83640->clock->page = page;
  203. }
  204. val = phy_read(phydev, regnum);
  205. return val;
  206. }
  207. /* Caller must hold extreg_lock. */
  208. static void ext_write(int broadcast, struct phy_device *phydev,
  209. int page, u32 regnum, u16 val)
  210. {
  211. struct dp83640_private *dp83640 = phydev->priv;
  212. if (dp83640->clock->page != page) {
  213. broadcast_write(phydev, PAGESEL, page);
  214. dp83640->clock->page = page;
  215. }
  216. if (broadcast)
  217. broadcast_write(phydev, regnum, val);
  218. else
  219. phy_write(phydev, regnum, val);
  220. }
  221. /* Caller must hold extreg_lock. */
  222. static int tdr_write(int bc, struct phy_device *dev,
  223. const struct timespec64 *ts, u16 cmd)
  224. {
  225. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */
  226. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */
  227. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
  228. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/
  229. ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
  230. return 0;
  231. }
  232. /* convert phy timestamps into driver timestamps */
  233. static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
  234. {
  235. u32 sec;
  236. sec = p->sec_lo;
  237. sec |= p->sec_hi << 16;
  238. rxts->ns = p->ns_lo;
  239. rxts->ns |= (p->ns_hi & 0x3fff) << 16;
  240. rxts->ns += ((u64)sec) * 1000000000ULL;
  241. rxts->seqid = p->seqid;
  242. rxts->msgtype = (p->msgtype >> 12) & 0xf;
  243. rxts->hash = p->msgtype & 0x0fff;
  244. rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
  245. }
  246. static u64 phy2txts(struct phy_txts *p)
  247. {
  248. u64 ns;
  249. u32 sec;
  250. sec = p->sec_lo;
  251. sec |= p->sec_hi << 16;
  252. ns = p->ns_lo;
  253. ns |= (p->ns_hi & 0x3fff) << 16;
  254. ns += ((u64)sec) * 1000000000ULL;
  255. return ns;
  256. }
  257. static int periodic_output(struct dp83640_clock *clock,
  258. struct ptp_clock_request *clkreq, bool on,
  259. int trigger)
  260. {
  261. struct dp83640_private *dp83640 = clock->chosen;
  262. struct phy_device *phydev = dp83640->phydev;
  263. u32 sec, nsec, pwidth;
  264. u16 gpio, ptp_trig, val;
  265. if (on) {
  266. gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
  267. trigger);
  268. if (gpio < 1)
  269. return -EINVAL;
  270. } else {
  271. gpio = 0;
  272. }
  273. ptp_trig = TRIG_WR |
  274. (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
  275. (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
  276. TRIG_PER |
  277. TRIG_PULSE;
  278. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  279. if (!on) {
  280. val |= TRIG_DIS;
  281. mutex_lock(&clock->extreg_lock);
  282. ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
  283. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  284. mutex_unlock(&clock->extreg_lock);
  285. return 0;
  286. }
  287. sec = clkreq->perout.start.sec;
  288. nsec = clkreq->perout.start.nsec;
  289. pwidth = clkreq->perout.period.sec * 1000000000UL;
  290. pwidth += clkreq->perout.period.nsec;
  291. pwidth /= 2;
  292. mutex_lock(&clock->extreg_lock);
  293. ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
  294. /*load trigger*/
  295. val |= TRIG_LOAD;
  296. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  297. ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */
  298. ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */
  299. ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */
  300. ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */
  301. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
  302. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */
  303. /* Triggers 0 and 1 has programmable pulsewidth2 */
  304. if (trigger < 2) {
  305. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
  306. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
  307. }
  308. /*enable trigger*/
  309. val &= ~TRIG_LOAD;
  310. val |= TRIG_EN;
  311. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  312. mutex_unlock(&clock->extreg_lock);
  313. return 0;
  314. }
  315. /* ptp clock methods */
  316. static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
  317. {
  318. struct dp83640_clock *clock =
  319. container_of(ptp, struct dp83640_clock, caps);
  320. struct phy_device *phydev = clock->chosen->phydev;
  321. u64 rate;
  322. int neg_adj = 0;
  323. u16 hi, lo;
  324. if (scaled_ppm < 0) {
  325. neg_adj = 1;
  326. scaled_ppm = -scaled_ppm;
  327. }
  328. rate = scaled_ppm;
  329. rate <<= 13;
  330. rate = div_u64(rate, 15625);
  331. hi = (rate >> 16) & PTP_RATE_HI_MASK;
  332. if (neg_adj)
  333. hi |= PTP_RATE_DIR;
  334. lo = rate & 0xffff;
  335. mutex_lock(&clock->extreg_lock);
  336. ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
  337. ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
  338. mutex_unlock(&clock->extreg_lock);
  339. return 0;
  340. }
  341. static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
  342. {
  343. struct dp83640_clock *clock =
  344. container_of(ptp, struct dp83640_clock, caps);
  345. struct phy_device *phydev = clock->chosen->phydev;
  346. struct timespec64 ts;
  347. int err;
  348. delta += ADJTIME_FIX;
  349. ts = ns_to_timespec64(delta);
  350. mutex_lock(&clock->extreg_lock);
  351. err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
  352. mutex_unlock(&clock->extreg_lock);
  353. return err;
  354. }
  355. static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
  356. struct timespec64 *ts)
  357. {
  358. struct dp83640_clock *clock =
  359. container_of(ptp, struct dp83640_clock, caps);
  360. struct phy_device *phydev = clock->chosen->phydev;
  361. unsigned int val[4];
  362. mutex_lock(&clock->extreg_lock);
  363. ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
  364. val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
  365. val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
  366. val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
  367. val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
  368. mutex_unlock(&clock->extreg_lock);
  369. ts->tv_nsec = val[0] | (val[1] << 16);
  370. ts->tv_sec = val[2] | (val[3] << 16);
  371. return 0;
  372. }
  373. static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
  374. const struct timespec64 *ts)
  375. {
  376. struct dp83640_clock *clock =
  377. container_of(ptp, struct dp83640_clock, caps);
  378. struct phy_device *phydev = clock->chosen->phydev;
  379. int err;
  380. mutex_lock(&clock->extreg_lock);
  381. err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
  382. mutex_unlock(&clock->extreg_lock);
  383. return err;
  384. }
  385. static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
  386. struct ptp_clock_request *rq, int on)
  387. {
  388. struct dp83640_clock *clock =
  389. container_of(ptp, struct dp83640_clock, caps);
  390. struct phy_device *phydev = clock->chosen->phydev;
  391. unsigned int index;
  392. u16 evnt, event_num, gpio_num;
  393. switch (rq->type) {
  394. case PTP_CLK_REQ_EXTTS:
  395. index = rq->extts.index;
  396. if (index >= N_EXT_TS)
  397. return -EINVAL;
  398. event_num = EXT_EVENT + index;
  399. evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
  400. if (on) {
  401. gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
  402. PTP_PF_EXTTS, index);
  403. if (gpio_num < 1)
  404. return -EINVAL;
  405. evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
  406. if (rq->extts.flags & PTP_FALLING_EDGE)
  407. evnt |= EVNT_FALL;
  408. else
  409. evnt |= EVNT_RISE;
  410. }
  411. mutex_lock(&clock->extreg_lock);
  412. ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
  413. mutex_unlock(&clock->extreg_lock);
  414. return 0;
  415. case PTP_CLK_REQ_PEROUT:
  416. if (rq->perout.index >= N_PER_OUT)
  417. return -EINVAL;
  418. return periodic_output(clock, rq, on, rq->perout.index);
  419. default:
  420. break;
  421. }
  422. return -EOPNOTSUPP;
  423. }
  424. static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
  425. enum ptp_pin_function func, unsigned int chan)
  426. {
  427. struct dp83640_clock *clock =
  428. container_of(ptp, struct dp83640_clock, caps);
  429. if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
  430. !list_empty(&clock->phylist))
  431. return 1;
  432. if (func == PTP_PF_PHYSYNC)
  433. return 1;
  434. return 0;
  435. }
  436. static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
  437. static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
  438. static void enable_status_frames(struct phy_device *phydev, bool on)
  439. {
  440. struct dp83640_private *dp83640 = phydev->priv;
  441. struct dp83640_clock *clock = dp83640->clock;
  442. u16 cfg0 = 0, ver;
  443. if (on)
  444. cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
  445. ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
  446. mutex_lock(&clock->extreg_lock);
  447. ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
  448. ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
  449. mutex_unlock(&clock->extreg_lock);
  450. if (!phydev->attached_dev) {
  451. pr_warn("expected to find an attached netdevice\n");
  452. return;
  453. }
  454. if (on) {
  455. if (dev_mc_add(phydev->attached_dev, status_frame_dst))
  456. pr_warn("failed to add mc address\n");
  457. } else {
  458. if (dev_mc_del(phydev->attached_dev, status_frame_dst))
  459. pr_warn("failed to delete mc address\n");
  460. }
  461. }
  462. static bool is_status_frame(struct sk_buff *skb, int type)
  463. {
  464. struct ethhdr *h = eth_hdr(skb);
  465. if (PTP_CLASS_V2_L2 == type &&
  466. !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
  467. return true;
  468. else
  469. return false;
  470. }
  471. static int expired(struct rxts *rxts)
  472. {
  473. return time_after(jiffies, rxts->tmo);
  474. }
  475. /* Caller must hold rx_lock. */
  476. static void prune_rx_ts(struct dp83640_private *dp83640)
  477. {
  478. struct list_head *this, *next;
  479. struct rxts *rxts;
  480. list_for_each_safe(this, next, &dp83640->rxts) {
  481. rxts = list_entry(this, struct rxts, list);
  482. if (expired(rxts)) {
  483. list_del_init(&rxts->list);
  484. list_add(&rxts->list, &dp83640->rxpool);
  485. }
  486. }
  487. }
  488. /* synchronize the phyters so they act as one clock */
  489. static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
  490. {
  491. int val;
  492. phy_write(phydev, PAGESEL, 0);
  493. val = phy_read(phydev, PHYCR2);
  494. if (on)
  495. val |= BC_WRITE;
  496. else
  497. val &= ~BC_WRITE;
  498. phy_write(phydev, PHYCR2, val);
  499. phy_write(phydev, PAGESEL, init_page);
  500. }
  501. static void recalibrate(struct dp83640_clock *clock)
  502. {
  503. s64 now, diff;
  504. struct phy_txts event_ts;
  505. struct timespec64 ts;
  506. struct list_head *this;
  507. struct dp83640_private *tmp;
  508. struct phy_device *master = clock->chosen->phydev;
  509. u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
  510. trigger = CAL_TRIGGER;
  511. cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
  512. if (cal_gpio < 1) {
  513. pr_err("PHY calibration pin not available - PHY is not calibrated.");
  514. return;
  515. }
  516. mutex_lock(&clock->extreg_lock);
  517. /*
  518. * enable broadcast, disable status frames, enable ptp clock
  519. */
  520. list_for_each(this, &clock->phylist) {
  521. tmp = list_entry(this, struct dp83640_private, list);
  522. enable_broadcast(tmp->phydev, clock->page, 1);
  523. tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
  524. ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
  525. ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
  526. }
  527. enable_broadcast(master, clock->page, 1);
  528. cfg0 = ext_read(master, PAGE5, PSF_CFG0);
  529. ext_write(0, master, PAGE5, PSF_CFG0, 0);
  530. ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
  531. /*
  532. * enable an event timestamp
  533. */
  534. evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
  535. evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
  536. evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
  537. list_for_each(this, &clock->phylist) {
  538. tmp = list_entry(this, struct dp83640_private, list);
  539. ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
  540. }
  541. ext_write(0, master, PAGE5, PTP_EVNT, evnt);
  542. /*
  543. * configure a trigger
  544. */
  545. ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
  546. ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
  547. ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
  548. ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
  549. /* load trigger */
  550. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  551. val |= TRIG_LOAD;
  552. ext_write(0, master, PAGE4, PTP_CTL, val);
  553. /* enable trigger */
  554. val &= ~TRIG_LOAD;
  555. val |= TRIG_EN;
  556. ext_write(0, master, PAGE4, PTP_CTL, val);
  557. /* disable trigger */
  558. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  559. val |= TRIG_DIS;
  560. ext_write(0, master, PAGE4, PTP_CTL, val);
  561. /*
  562. * read out and correct offsets
  563. */
  564. val = ext_read(master, PAGE4, PTP_STS);
  565. pr_info("master PTP_STS 0x%04hx\n", val);
  566. val = ext_read(master, PAGE4, PTP_ESTS);
  567. pr_info("master PTP_ESTS 0x%04hx\n", val);
  568. event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA);
  569. event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA);
  570. event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
  571. event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
  572. now = phy2txts(&event_ts);
  573. list_for_each(this, &clock->phylist) {
  574. tmp = list_entry(this, struct dp83640_private, list);
  575. val = ext_read(tmp->phydev, PAGE4, PTP_STS);
  576. pr_info("slave PTP_STS 0x%04hx\n", val);
  577. val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
  578. pr_info("slave PTP_ESTS 0x%04hx\n", val);
  579. event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  580. event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  581. event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  582. event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  583. diff = now - (s64) phy2txts(&event_ts);
  584. pr_info("slave offset %lld nanoseconds\n", diff);
  585. diff += ADJTIME_FIX;
  586. ts = ns_to_timespec64(diff);
  587. tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
  588. }
  589. /*
  590. * restore status frames
  591. */
  592. list_for_each(this, &clock->phylist) {
  593. tmp = list_entry(this, struct dp83640_private, list);
  594. ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
  595. }
  596. ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
  597. mutex_unlock(&clock->extreg_lock);
  598. }
  599. /* time stamping methods */
  600. static inline u16 exts_chan_to_edata(int ch)
  601. {
  602. return 1 << ((ch + EXT_EVENT) * 2);
  603. }
  604. static int decode_evnt(struct dp83640_private *dp83640,
  605. void *data, int len, u16 ests)
  606. {
  607. struct phy_txts *phy_txts;
  608. struct ptp_clock_event event;
  609. int i, parsed;
  610. int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
  611. u16 ext_status = 0;
  612. /* calculate length of the event timestamp status message */
  613. if (ests & MULT_EVNT)
  614. parsed = (words + 2) * sizeof(u16);
  615. else
  616. parsed = (words + 1) * sizeof(u16);
  617. /* check if enough data is available */
  618. if (len < parsed)
  619. return len;
  620. if (ests & MULT_EVNT) {
  621. ext_status = *(u16 *) data;
  622. data += sizeof(ext_status);
  623. }
  624. phy_txts = data;
  625. switch (words) { /* fall through in every case */
  626. case 3:
  627. dp83640->edata.sec_hi = phy_txts->sec_hi;
  628. case 2:
  629. dp83640->edata.sec_lo = phy_txts->sec_lo;
  630. case 1:
  631. dp83640->edata.ns_hi = phy_txts->ns_hi;
  632. case 0:
  633. dp83640->edata.ns_lo = phy_txts->ns_lo;
  634. }
  635. if (!ext_status) {
  636. i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
  637. ext_status = exts_chan_to_edata(i);
  638. }
  639. event.type = PTP_CLOCK_EXTTS;
  640. event.timestamp = phy2txts(&dp83640->edata);
  641. /* Compensate for input path and synchronization delays */
  642. event.timestamp -= 35;
  643. for (i = 0; i < N_EXT_TS; i++) {
  644. if (ext_status & exts_chan_to_edata(i)) {
  645. event.index = i;
  646. ptp_clock_event(dp83640->clock->ptp_clock, &event);
  647. }
  648. }
  649. return parsed;
  650. }
  651. #define DP83640_PACKET_HASH_OFFSET 20
  652. #define DP83640_PACKET_HASH_LEN 10
  653. static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
  654. {
  655. u16 *seqid, hash;
  656. unsigned int offset = 0;
  657. u8 *msgtype, *data = skb_mac_header(skb);
  658. /* check sequenceID, messageType, 12 bit hash of offset 20-29 */
  659. if (type & PTP_CLASS_VLAN)
  660. offset += VLAN_HLEN;
  661. switch (type & PTP_CLASS_PMASK) {
  662. case PTP_CLASS_IPV4:
  663. offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
  664. break;
  665. case PTP_CLASS_IPV6:
  666. offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
  667. break;
  668. case PTP_CLASS_L2:
  669. offset += ETH_HLEN;
  670. break;
  671. default:
  672. return 0;
  673. }
  674. if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
  675. return 0;
  676. if (unlikely(type & PTP_CLASS_V1))
  677. msgtype = data + offset + OFF_PTP_CONTROL;
  678. else
  679. msgtype = data + offset;
  680. if (rxts->msgtype != (*msgtype & 0xf))
  681. return 0;
  682. seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
  683. if (rxts->seqid != ntohs(*seqid))
  684. return 0;
  685. hash = ether_crc(DP83640_PACKET_HASH_LEN,
  686. data + offset + DP83640_PACKET_HASH_OFFSET) >> 20;
  687. if (rxts->hash != hash)
  688. return 0;
  689. return 1;
  690. }
  691. static void decode_rxts(struct dp83640_private *dp83640,
  692. struct phy_rxts *phy_rxts)
  693. {
  694. struct rxts *rxts;
  695. struct skb_shared_hwtstamps *shhwtstamps = NULL;
  696. struct sk_buff *skb;
  697. unsigned long flags;
  698. u8 overflow;
  699. overflow = (phy_rxts->ns_hi >> 14) & 0x3;
  700. if (overflow)
  701. pr_debug("rx timestamp queue overflow, count %d\n", overflow);
  702. spin_lock_irqsave(&dp83640->rx_lock, flags);
  703. prune_rx_ts(dp83640);
  704. if (list_empty(&dp83640->rxpool)) {
  705. pr_debug("rx timestamp pool is empty\n");
  706. goto out;
  707. }
  708. rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
  709. list_del_init(&rxts->list);
  710. phy2rxts(phy_rxts, rxts);
  711. spin_lock(&dp83640->rx_queue.lock);
  712. skb_queue_walk(&dp83640->rx_queue, skb) {
  713. struct dp83640_skb_info *skb_info;
  714. skb_info = (struct dp83640_skb_info *)skb->cb;
  715. if (match(skb, skb_info->ptp_type, rxts)) {
  716. __skb_unlink(skb, &dp83640->rx_queue);
  717. shhwtstamps = skb_hwtstamps(skb);
  718. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  719. shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
  720. list_add(&rxts->list, &dp83640->rxpool);
  721. break;
  722. }
  723. }
  724. spin_unlock(&dp83640->rx_queue.lock);
  725. if (!shhwtstamps)
  726. list_add_tail(&rxts->list, &dp83640->rxts);
  727. out:
  728. spin_unlock_irqrestore(&dp83640->rx_lock, flags);
  729. if (shhwtstamps)
  730. netif_rx_ni(skb);
  731. }
  732. static void decode_txts(struct dp83640_private *dp83640,
  733. struct phy_txts *phy_txts)
  734. {
  735. struct skb_shared_hwtstamps shhwtstamps;
  736. struct sk_buff *skb;
  737. u64 ns;
  738. u8 overflow;
  739. /* We must already have the skb that triggered this. */
  740. skb = skb_dequeue(&dp83640->tx_queue);
  741. if (!skb) {
  742. pr_debug("have timestamp but tx_queue empty\n");
  743. return;
  744. }
  745. overflow = (phy_txts->ns_hi >> 14) & 0x3;
  746. if (overflow) {
  747. pr_debug("tx timestamp queue overflow, count %d\n", overflow);
  748. while (skb) {
  749. kfree_skb(skb);
  750. skb = skb_dequeue(&dp83640->tx_queue);
  751. }
  752. return;
  753. }
  754. ns = phy2txts(phy_txts);
  755. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  756. shhwtstamps.hwtstamp = ns_to_ktime(ns);
  757. skb_complete_tx_timestamp(skb, &shhwtstamps);
  758. }
  759. static void decode_status_frame(struct dp83640_private *dp83640,
  760. struct sk_buff *skb)
  761. {
  762. struct phy_rxts *phy_rxts;
  763. struct phy_txts *phy_txts;
  764. u8 *ptr;
  765. int len, size;
  766. u16 ests, type;
  767. ptr = skb->data + 2;
  768. for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
  769. type = *(u16 *)ptr;
  770. ests = type & 0x0fff;
  771. type = type & 0xf000;
  772. len -= sizeof(type);
  773. ptr += sizeof(type);
  774. if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
  775. phy_rxts = (struct phy_rxts *) ptr;
  776. decode_rxts(dp83640, phy_rxts);
  777. size = sizeof(*phy_rxts);
  778. } else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
  779. phy_txts = (struct phy_txts *) ptr;
  780. decode_txts(dp83640, phy_txts);
  781. size = sizeof(*phy_txts);
  782. } else if (PSF_EVNT == type) {
  783. size = decode_evnt(dp83640, ptr, len, ests);
  784. } else {
  785. size = 0;
  786. break;
  787. }
  788. ptr += size;
  789. }
  790. }
  791. static int is_sync(struct sk_buff *skb, int type)
  792. {
  793. u8 *data = skb->data, *msgtype;
  794. unsigned int offset = 0;
  795. if (type & PTP_CLASS_VLAN)
  796. offset += VLAN_HLEN;
  797. switch (type & PTP_CLASS_PMASK) {
  798. case PTP_CLASS_IPV4:
  799. offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
  800. break;
  801. case PTP_CLASS_IPV6:
  802. offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
  803. break;
  804. case PTP_CLASS_L2:
  805. offset += ETH_HLEN;
  806. break;
  807. default:
  808. return 0;
  809. }
  810. if (type & PTP_CLASS_V1)
  811. offset += OFF_PTP_CONTROL;
  812. if (skb->len < offset + 1)
  813. return 0;
  814. msgtype = data + offset;
  815. return (*msgtype & 0xf) == 0;
  816. }
  817. static void dp83640_free_clocks(void)
  818. {
  819. struct dp83640_clock *clock;
  820. struct list_head *this, *next;
  821. mutex_lock(&phyter_clocks_lock);
  822. list_for_each_safe(this, next, &phyter_clocks) {
  823. clock = list_entry(this, struct dp83640_clock, list);
  824. if (!list_empty(&clock->phylist)) {
  825. pr_warn("phy list non-empty while unloading\n");
  826. BUG();
  827. }
  828. list_del(&clock->list);
  829. mutex_destroy(&clock->extreg_lock);
  830. mutex_destroy(&clock->clock_lock);
  831. put_device(&clock->bus->dev);
  832. kfree(clock->caps.pin_config);
  833. kfree(clock);
  834. }
  835. mutex_unlock(&phyter_clocks_lock);
  836. }
  837. static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
  838. {
  839. INIT_LIST_HEAD(&clock->list);
  840. clock->bus = bus;
  841. mutex_init(&clock->extreg_lock);
  842. mutex_init(&clock->clock_lock);
  843. INIT_LIST_HEAD(&clock->phylist);
  844. clock->caps.owner = THIS_MODULE;
  845. sprintf(clock->caps.name, "dp83640 timer");
  846. clock->caps.max_adj = 1953124;
  847. clock->caps.n_alarm = 0;
  848. clock->caps.n_ext_ts = N_EXT_TS;
  849. clock->caps.n_per_out = N_PER_OUT;
  850. clock->caps.n_pins = DP83640_N_PINS;
  851. clock->caps.pps = 0;
  852. clock->caps.adjfine = ptp_dp83640_adjfine;
  853. clock->caps.adjtime = ptp_dp83640_adjtime;
  854. clock->caps.gettime64 = ptp_dp83640_gettime;
  855. clock->caps.settime64 = ptp_dp83640_settime;
  856. clock->caps.enable = ptp_dp83640_enable;
  857. clock->caps.verify = ptp_dp83640_verify;
  858. /*
  859. * Convert the module param defaults into a dynamic pin configuration.
  860. */
  861. dp83640_gpio_defaults(clock->caps.pin_config);
  862. /*
  863. * Get a reference to this bus instance.
  864. */
  865. get_device(&bus->dev);
  866. }
  867. static int choose_this_phy(struct dp83640_clock *clock,
  868. struct phy_device *phydev)
  869. {
  870. if (chosen_phy == -1 && !clock->chosen)
  871. return 1;
  872. if (chosen_phy == phydev->mdio.addr)
  873. return 1;
  874. return 0;
  875. }
  876. static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
  877. {
  878. if (clock)
  879. mutex_lock(&clock->clock_lock);
  880. return clock;
  881. }
  882. /*
  883. * Look up and lock a clock by bus instance.
  884. * If there is no clock for this bus, then create it first.
  885. */
  886. static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
  887. {
  888. struct dp83640_clock *clock = NULL, *tmp;
  889. struct list_head *this;
  890. mutex_lock(&phyter_clocks_lock);
  891. list_for_each(this, &phyter_clocks) {
  892. tmp = list_entry(this, struct dp83640_clock, list);
  893. if (tmp->bus == bus) {
  894. clock = tmp;
  895. break;
  896. }
  897. }
  898. if (clock)
  899. goto out;
  900. clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
  901. if (!clock)
  902. goto out;
  903. clock->caps.pin_config = kcalloc(DP83640_N_PINS,
  904. sizeof(struct ptp_pin_desc),
  905. GFP_KERNEL);
  906. if (!clock->caps.pin_config) {
  907. kfree(clock);
  908. clock = NULL;
  909. goto out;
  910. }
  911. dp83640_clock_init(clock, bus);
  912. list_add_tail(&phyter_clocks, &clock->list);
  913. out:
  914. mutex_unlock(&phyter_clocks_lock);
  915. return dp83640_clock_get(clock);
  916. }
  917. static void dp83640_clock_put(struct dp83640_clock *clock)
  918. {
  919. mutex_unlock(&clock->clock_lock);
  920. }
  921. static int dp83640_probe(struct phy_device *phydev)
  922. {
  923. struct dp83640_clock *clock;
  924. struct dp83640_private *dp83640;
  925. int err = -ENOMEM, i;
  926. if (phydev->mdio.addr == BROADCAST_ADDR)
  927. return 0;
  928. clock = dp83640_clock_get_bus(phydev->mdio.bus);
  929. if (!clock)
  930. goto no_clock;
  931. dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
  932. if (!dp83640)
  933. goto no_memory;
  934. dp83640->phydev = phydev;
  935. INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work);
  936. INIT_LIST_HEAD(&dp83640->rxts);
  937. INIT_LIST_HEAD(&dp83640->rxpool);
  938. for (i = 0; i < MAX_RXTS; i++)
  939. list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
  940. phydev->priv = dp83640;
  941. spin_lock_init(&dp83640->rx_lock);
  942. skb_queue_head_init(&dp83640->rx_queue);
  943. skb_queue_head_init(&dp83640->tx_queue);
  944. dp83640->clock = clock;
  945. if (choose_this_phy(clock, phydev)) {
  946. clock->chosen = dp83640;
  947. clock->ptp_clock = ptp_clock_register(&clock->caps,
  948. &phydev->mdio.dev);
  949. if (IS_ERR(clock->ptp_clock)) {
  950. err = PTR_ERR(clock->ptp_clock);
  951. goto no_register;
  952. }
  953. } else
  954. list_add_tail(&dp83640->list, &clock->phylist);
  955. dp83640_clock_put(clock);
  956. return 0;
  957. no_register:
  958. clock->chosen = NULL;
  959. kfree(dp83640);
  960. no_memory:
  961. dp83640_clock_put(clock);
  962. no_clock:
  963. return err;
  964. }
  965. static void dp83640_remove(struct phy_device *phydev)
  966. {
  967. struct dp83640_clock *clock;
  968. struct list_head *this, *next;
  969. struct dp83640_private *tmp, *dp83640 = phydev->priv;
  970. if (phydev->mdio.addr == BROADCAST_ADDR)
  971. return;
  972. enable_status_frames(phydev, false);
  973. cancel_delayed_work_sync(&dp83640->ts_work);
  974. skb_queue_purge(&dp83640->rx_queue);
  975. skb_queue_purge(&dp83640->tx_queue);
  976. clock = dp83640_clock_get(dp83640->clock);
  977. if (dp83640 == clock->chosen) {
  978. ptp_clock_unregister(clock->ptp_clock);
  979. clock->chosen = NULL;
  980. } else {
  981. list_for_each_safe(this, next, &clock->phylist) {
  982. tmp = list_entry(this, struct dp83640_private, list);
  983. if (tmp == dp83640) {
  984. list_del_init(&tmp->list);
  985. break;
  986. }
  987. }
  988. }
  989. dp83640_clock_put(clock);
  990. kfree(dp83640);
  991. }
  992. static int dp83640_soft_reset(struct phy_device *phydev)
  993. {
  994. int ret;
  995. ret = genphy_soft_reset(phydev);
  996. if (ret < 0)
  997. return ret;
  998. /* From DP83640 datasheet: "Software driver code must wait 3 us
  999. * following a software reset before allowing further serial MII
  1000. * operations with the DP83640."
  1001. */
  1002. udelay(10); /* Taking udelay inaccuracy into account */
  1003. return 0;
  1004. }
  1005. static int dp83640_config_init(struct phy_device *phydev)
  1006. {
  1007. struct dp83640_private *dp83640 = phydev->priv;
  1008. struct dp83640_clock *clock = dp83640->clock;
  1009. if (clock->chosen && !list_empty(&clock->phylist))
  1010. recalibrate(clock);
  1011. else {
  1012. mutex_lock(&clock->extreg_lock);
  1013. enable_broadcast(phydev, clock->page, 1);
  1014. mutex_unlock(&clock->extreg_lock);
  1015. }
  1016. enable_status_frames(phydev, true);
  1017. mutex_lock(&clock->extreg_lock);
  1018. ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
  1019. mutex_unlock(&clock->extreg_lock);
  1020. return 0;
  1021. }
  1022. static int dp83640_ack_interrupt(struct phy_device *phydev)
  1023. {
  1024. int err = phy_read(phydev, MII_DP83640_MISR);
  1025. if (err < 0)
  1026. return err;
  1027. return 0;
  1028. }
  1029. static int dp83640_config_intr(struct phy_device *phydev)
  1030. {
  1031. int micr;
  1032. int misr;
  1033. int err;
  1034. if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
  1035. misr = phy_read(phydev, MII_DP83640_MISR);
  1036. if (misr < 0)
  1037. return misr;
  1038. misr |=
  1039. (MII_DP83640_MISR_ANC_INT_EN |
  1040. MII_DP83640_MISR_DUP_INT_EN |
  1041. MII_DP83640_MISR_SPD_INT_EN |
  1042. MII_DP83640_MISR_LINK_INT_EN);
  1043. err = phy_write(phydev, MII_DP83640_MISR, misr);
  1044. if (err < 0)
  1045. return err;
  1046. micr = phy_read(phydev, MII_DP83640_MICR);
  1047. if (micr < 0)
  1048. return micr;
  1049. micr |=
  1050. (MII_DP83640_MICR_OE |
  1051. MII_DP83640_MICR_IE);
  1052. return phy_write(phydev, MII_DP83640_MICR, micr);
  1053. } else {
  1054. micr = phy_read(phydev, MII_DP83640_MICR);
  1055. if (micr < 0)
  1056. return micr;
  1057. micr &=
  1058. ~(MII_DP83640_MICR_OE |
  1059. MII_DP83640_MICR_IE);
  1060. err = phy_write(phydev, MII_DP83640_MICR, micr);
  1061. if (err < 0)
  1062. return err;
  1063. misr = phy_read(phydev, MII_DP83640_MISR);
  1064. if (misr < 0)
  1065. return misr;
  1066. misr &=
  1067. ~(MII_DP83640_MISR_ANC_INT_EN |
  1068. MII_DP83640_MISR_DUP_INT_EN |
  1069. MII_DP83640_MISR_SPD_INT_EN |
  1070. MII_DP83640_MISR_LINK_INT_EN);
  1071. return phy_write(phydev, MII_DP83640_MISR, misr);
  1072. }
  1073. }
  1074. static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
  1075. {
  1076. struct dp83640_private *dp83640 = phydev->priv;
  1077. struct hwtstamp_config cfg;
  1078. u16 txcfg0, rxcfg0;
  1079. if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
  1080. return -EFAULT;
  1081. if (cfg.flags) /* reserved for future extensions */
  1082. return -EINVAL;
  1083. if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
  1084. return -ERANGE;
  1085. dp83640->hwts_tx_en = cfg.tx_type;
  1086. switch (cfg.rx_filter) {
  1087. case HWTSTAMP_FILTER_NONE:
  1088. dp83640->hwts_rx_en = 0;
  1089. dp83640->layer = 0;
  1090. dp83640->version = 0;
  1091. break;
  1092. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  1093. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  1094. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  1095. dp83640->hwts_rx_en = 1;
  1096. dp83640->layer = PTP_CLASS_L4;
  1097. dp83640->version = PTP_CLASS_V1;
  1098. break;
  1099. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  1100. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  1101. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  1102. dp83640->hwts_rx_en = 1;
  1103. dp83640->layer = PTP_CLASS_L4;
  1104. dp83640->version = PTP_CLASS_V2;
  1105. break;
  1106. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1107. case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
  1108. case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
  1109. dp83640->hwts_rx_en = 1;
  1110. dp83640->layer = PTP_CLASS_L2;
  1111. dp83640->version = PTP_CLASS_V2;
  1112. break;
  1113. case HWTSTAMP_FILTER_PTP_V2_EVENT:
  1114. case HWTSTAMP_FILTER_PTP_V2_SYNC:
  1115. case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
  1116. dp83640->hwts_rx_en = 1;
  1117. dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
  1118. dp83640->version = PTP_CLASS_V2;
  1119. break;
  1120. default:
  1121. return -ERANGE;
  1122. }
  1123. txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
  1124. rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
  1125. if (dp83640->layer & PTP_CLASS_L2) {
  1126. txcfg0 |= TX_L2_EN;
  1127. rxcfg0 |= RX_L2_EN;
  1128. }
  1129. if (dp83640->layer & PTP_CLASS_L4) {
  1130. txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
  1131. rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
  1132. }
  1133. if (dp83640->hwts_tx_en)
  1134. txcfg0 |= TX_TS_EN;
  1135. if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
  1136. txcfg0 |= SYNC_1STEP | CHK_1STEP;
  1137. if (dp83640->hwts_rx_en)
  1138. rxcfg0 |= RX_TS_EN;
  1139. mutex_lock(&dp83640->clock->extreg_lock);
  1140. ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
  1141. ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
  1142. mutex_unlock(&dp83640->clock->extreg_lock);
  1143. return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
  1144. }
  1145. static void rx_timestamp_work(struct work_struct *work)
  1146. {
  1147. struct dp83640_private *dp83640 =
  1148. container_of(work, struct dp83640_private, ts_work.work);
  1149. struct sk_buff *skb;
  1150. /* Deliver expired packets. */
  1151. while ((skb = skb_dequeue(&dp83640->rx_queue))) {
  1152. struct dp83640_skb_info *skb_info;
  1153. skb_info = (struct dp83640_skb_info *)skb->cb;
  1154. if (!time_after(jiffies, skb_info->tmo)) {
  1155. skb_queue_head(&dp83640->rx_queue, skb);
  1156. break;
  1157. }
  1158. netif_rx_ni(skb);
  1159. }
  1160. if (!skb_queue_empty(&dp83640->rx_queue))
  1161. schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
  1162. }
  1163. static bool dp83640_rxtstamp(struct phy_device *phydev,
  1164. struct sk_buff *skb, int type)
  1165. {
  1166. struct dp83640_private *dp83640 = phydev->priv;
  1167. struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
  1168. struct list_head *this, *next;
  1169. struct rxts *rxts;
  1170. struct skb_shared_hwtstamps *shhwtstamps = NULL;
  1171. unsigned long flags;
  1172. if (is_status_frame(skb, type)) {
  1173. decode_status_frame(dp83640, skb);
  1174. kfree_skb(skb);
  1175. return true;
  1176. }
  1177. if (!dp83640->hwts_rx_en)
  1178. return false;
  1179. if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0)
  1180. return false;
  1181. spin_lock_irqsave(&dp83640->rx_lock, flags);
  1182. prune_rx_ts(dp83640);
  1183. list_for_each_safe(this, next, &dp83640->rxts) {
  1184. rxts = list_entry(this, struct rxts, list);
  1185. if (match(skb, type, rxts)) {
  1186. shhwtstamps = skb_hwtstamps(skb);
  1187. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  1188. shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
  1189. list_del_init(&rxts->list);
  1190. list_add(&rxts->list, &dp83640->rxpool);
  1191. break;
  1192. }
  1193. }
  1194. spin_unlock_irqrestore(&dp83640->rx_lock, flags);
  1195. if (!shhwtstamps) {
  1196. skb_info->ptp_type = type;
  1197. skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
  1198. skb_queue_tail(&dp83640->rx_queue, skb);
  1199. schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
  1200. } else {
  1201. netif_rx_ni(skb);
  1202. }
  1203. return true;
  1204. }
  1205. static void dp83640_txtstamp(struct phy_device *phydev,
  1206. struct sk_buff *skb, int type)
  1207. {
  1208. struct dp83640_private *dp83640 = phydev->priv;
  1209. switch (dp83640->hwts_tx_en) {
  1210. case HWTSTAMP_TX_ONESTEP_SYNC:
  1211. if (is_sync(skb, type)) {
  1212. kfree_skb(skb);
  1213. return;
  1214. }
  1215. /* fall through */
  1216. case HWTSTAMP_TX_ON:
  1217. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1218. skb_queue_tail(&dp83640->tx_queue, skb);
  1219. break;
  1220. case HWTSTAMP_TX_OFF:
  1221. default:
  1222. kfree_skb(skb);
  1223. break;
  1224. }
  1225. }
  1226. static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
  1227. {
  1228. struct dp83640_private *dp83640 = dev->priv;
  1229. info->so_timestamping =
  1230. SOF_TIMESTAMPING_TX_HARDWARE |
  1231. SOF_TIMESTAMPING_RX_HARDWARE |
  1232. SOF_TIMESTAMPING_RAW_HARDWARE;
  1233. info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
  1234. info->tx_types =
  1235. (1 << HWTSTAMP_TX_OFF) |
  1236. (1 << HWTSTAMP_TX_ON) |
  1237. (1 << HWTSTAMP_TX_ONESTEP_SYNC);
  1238. info->rx_filters =
  1239. (1 << HWTSTAMP_FILTER_NONE) |
  1240. (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
  1241. (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
  1242. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1243. (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
  1244. return 0;
  1245. }
  1246. static struct phy_driver dp83640_driver = {
  1247. .phy_id = DP83640_PHY_ID,
  1248. .phy_id_mask = 0xfffffff0,
  1249. .name = "NatSemi DP83640",
  1250. .features = PHY_BASIC_FEATURES,
  1251. .flags = PHY_HAS_INTERRUPT,
  1252. .probe = dp83640_probe,
  1253. .remove = dp83640_remove,
  1254. .soft_reset = dp83640_soft_reset,
  1255. .config_init = dp83640_config_init,
  1256. .ack_interrupt = dp83640_ack_interrupt,
  1257. .config_intr = dp83640_config_intr,
  1258. .ts_info = dp83640_ts_info,
  1259. .hwtstamp = dp83640_hwtstamp,
  1260. .rxtstamp = dp83640_rxtstamp,
  1261. .txtstamp = dp83640_txtstamp,
  1262. };
  1263. static int __init dp83640_init(void)
  1264. {
  1265. return phy_driver_register(&dp83640_driver, THIS_MODULE);
  1266. }
  1267. static void __exit dp83640_exit(void)
  1268. {
  1269. dp83640_free_clocks();
  1270. phy_driver_unregister(&dp83640_driver);
  1271. }
  1272. MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
  1273. MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
  1274. MODULE_LICENSE("GPL");
  1275. module_init(dp83640_init);
  1276. module_exit(dp83640_exit);
  1277. static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
  1278. { DP83640_PHY_ID, 0xfffffff0 },
  1279. { }
  1280. };
  1281. MODULE_DEVICE_TABLE(mdio, dp83640_tbl);