mcr20a.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416
  1. /*
  2. * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2
  8. * as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/gpio.h>
  19. #include <linux/spi/spi.h>
  20. #include <linux/workqueue.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/of_gpio.h>
  24. #include <linux/regmap.h>
  25. #include <linux/ieee802154.h>
  26. #include <linux/debugfs.h>
  27. #include <net/mac802154.h>
  28. #include <net/cfg802154.h>
  29. #include <linux/device.h>
  30. #include "mcr20a.h"
  31. #define SPI_COMMAND_BUFFER 3
  32. #define REGISTER_READ BIT(7)
  33. #define REGISTER_WRITE (0 << 7)
  34. #define REGISTER_ACCESS (0 << 6)
  35. #define PACKET_BUFF_BURST_ACCESS BIT(6)
  36. #define PACKET_BUFF_BYTE_ACCESS BIT(5)
  37. #define MCR20A_WRITE_REG(x) (x)
  38. #define MCR20A_READ_REG(x) (REGISTER_READ | (x))
  39. #define MCR20A_BURST_READ_PACKET_BUF (0xC0)
  40. #define MCR20A_BURST_WRITE_PACKET_BUF (0x40)
  41. #define MCR20A_CMD_REG 0x80
  42. #define MCR20A_CMD_REG_MASK 0x3f
  43. #define MCR20A_CMD_WRITE 0x40
  44. #define MCR20A_CMD_FB 0x20
  45. /* Number of Interrupt Request Status Register */
  46. #define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
  47. /* MCR20A CCA Type */
  48. enum {
  49. MCR20A_CCA_ED, // energy detect - CCA bit not active,
  50. // not to be used for T and CCCA sequences
  51. MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
  52. MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
  53. MCR20A_CCA_MODE3
  54. };
  55. enum {
  56. MCR20A_XCVSEQ_IDLE = 0x00,
  57. MCR20A_XCVSEQ_RX = 0x01,
  58. MCR20A_XCVSEQ_TX = 0x02,
  59. MCR20A_XCVSEQ_CCA = 0x03,
  60. MCR20A_XCVSEQ_TR = 0x04,
  61. MCR20A_XCVSEQ_CCCA = 0x05,
  62. };
  63. /* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
  64. #define MCR20A_MIN_CHANNEL (11)
  65. #define MCR20A_MAX_CHANNEL (26)
  66. #define MCR20A_CHANNEL_SPACING (5)
  67. /* MCR20A CCA Threshold constans */
  68. #define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
  69. #define MCR20A_MAX_CCA_THRESHOLD (0x00U)
  70. /* version 0C */
  71. #define MCR20A_OVERWRITE_VERSION (0x0C)
  72. /* MCR20A PLL configurations */
  73. static const u8 PLL_INT[16] = {
  74. /* 2405 */ 0x0B, /* 2410 */ 0x0B, /* 2415 */ 0x0B,
  75. /* 2420 */ 0x0B, /* 2425 */ 0x0B, /* 2430 */ 0x0B,
  76. /* 2435 */ 0x0C, /* 2440 */ 0x0C, /* 2445 */ 0x0C,
  77. /* 2450 */ 0x0C, /* 2455 */ 0x0C, /* 2460 */ 0x0C,
  78. /* 2465 */ 0x0D, /* 2470 */ 0x0D, /* 2475 */ 0x0D,
  79. /* 2480 */ 0x0D
  80. };
  81. static const u8 PLL_FRAC[16] = {
  82. /* 2405 */ 0x28, /* 2410 */ 0x50, /* 2415 */ 0x78,
  83. /* 2420 */ 0xA0, /* 2425 */ 0xC8, /* 2430 */ 0xF0,
  84. /* 2435 */ 0x18, /* 2440 */ 0x40, /* 2445 */ 0x68,
  85. /* 2450 */ 0x90, /* 2455 */ 0xB8, /* 2460 */ 0xE0,
  86. /* 2465 */ 0x08, /* 2470 */ 0x30, /* 2475 */ 0x58,
  87. /* 2480 */ 0x80
  88. };
  89. static const struct reg_sequence mar20a_iar_overwrites[] = {
  90. { IAR_MISC_PAD_CTRL, 0x02 },
  91. { IAR_VCO_CTRL1, 0xB3 },
  92. { IAR_VCO_CTRL2, 0x07 },
  93. { IAR_PA_TUNING, 0x71 },
  94. { IAR_CHF_IBUF, 0x2F },
  95. { IAR_CHF_QBUF, 0x2F },
  96. { IAR_CHF_IRIN, 0x24 },
  97. { IAR_CHF_QRIN, 0x24 },
  98. { IAR_CHF_IL, 0x24 },
  99. { IAR_CHF_QL, 0x24 },
  100. { IAR_CHF_CC1, 0x32 },
  101. { IAR_CHF_CCL, 0x1D },
  102. { IAR_CHF_CC2, 0x2D },
  103. { IAR_CHF_IROUT, 0x24 },
  104. { IAR_CHF_QROUT, 0x24 },
  105. { IAR_PA_CAL, 0x28 },
  106. { IAR_AGC_THR1, 0x55 },
  107. { IAR_AGC_THR2, 0x2D },
  108. { IAR_ATT_RSSI1, 0x5F },
  109. { IAR_ATT_RSSI2, 0x8F },
  110. { IAR_RSSI_OFFSET, 0x61 },
  111. { IAR_CHF_PMA_GAIN, 0x03 },
  112. { IAR_CCA1_THRESH, 0x50 },
  113. { IAR_CORR_NVAL, 0x13 },
  114. { IAR_ACKDELAY, 0x3D },
  115. };
  116. #define MCR20A_VALID_CHANNELS (0x07FFF800)
  117. struct mcr20a_platform_data {
  118. int rst_gpio;
  119. };
  120. #define MCR20A_MAX_BUF (127)
  121. #define printdev(X) (&X->spi->dev)
  122. /* regmap information for Direct Access Register (DAR) access */
  123. #define MCR20A_DAR_WRITE 0x01
  124. #define MCR20A_DAR_READ 0x00
  125. #define MCR20A_DAR_NUMREGS 0x3F
  126. /* regmap information for Indirect Access Register (IAR) access */
  127. #define MCR20A_IAR_ACCESS 0x80
  128. #define MCR20A_IAR_NUMREGS 0xBEFF
  129. /* Read/Write SPI Commands for DAR and IAR registers. */
  130. #define MCR20A_READSHORT(reg) ((reg) << 1)
  131. #define MCR20A_WRITESHORT(reg) ((reg) << 1 | 1)
  132. #define MCR20A_READLONG(reg) (1 << 15 | (reg) << 5)
  133. #define MCR20A_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  134. /* Type definitions for link configuration of instantiable layers */
  135. #define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
  136. static bool
  137. mcr20a_dar_writeable(struct device *dev, unsigned int reg)
  138. {
  139. switch (reg) {
  140. case DAR_IRQ_STS1:
  141. case DAR_IRQ_STS2:
  142. case DAR_IRQ_STS3:
  143. case DAR_PHY_CTRL1:
  144. case DAR_PHY_CTRL2:
  145. case DAR_PHY_CTRL3:
  146. case DAR_PHY_CTRL4:
  147. case DAR_SRC_CTRL:
  148. case DAR_SRC_ADDRS_SUM_LSB:
  149. case DAR_SRC_ADDRS_SUM_MSB:
  150. case DAR_T3CMP_LSB:
  151. case DAR_T3CMP_MSB:
  152. case DAR_T3CMP_USB:
  153. case DAR_T2PRIMECMP_LSB:
  154. case DAR_T2PRIMECMP_MSB:
  155. case DAR_T1CMP_LSB:
  156. case DAR_T1CMP_MSB:
  157. case DAR_T1CMP_USB:
  158. case DAR_T2CMP_LSB:
  159. case DAR_T2CMP_MSB:
  160. case DAR_T2CMP_USB:
  161. case DAR_T4CMP_LSB:
  162. case DAR_T4CMP_MSB:
  163. case DAR_T4CMP_USB:
  164. case DAR_PLL_INT0:
  165. case DAR_PLL_FRAC0_LSB:
  166. case DAR_PLL_FRAC0_MSB:
  167. case DAR_PA_PWR:
  168. /* no DAR_ACM */
  169. case DAR_OVERWRITE_VER:
  170. case DAR_CLK_OUT_CTRL:
  171. case DAR_PWR_MODES:
  172. return true;
  173. default:
  174. return false;
  175. }
  176. }
  177. static bool
  178. mcr20a_dar_readable(struct device *dev, unsigned int reg)
  179. {
  180. bool rc;
  181. /* all writeable are also readable */
  182. rc = mcr20a_dar_writeable(dev, reg);
  183. if (rc)
  184. return rc;
  185. /* readonly regs */
  186. switch (reg) {
  187. case DAR_RX_FRM_LEN:
  188. case DAR_CCA1_ED_FNL:
  189. case DAR_EVENT_TMR_LSB:
  190. case DAR_EVENT_TMR_MSB:
  191. case DAR_EVENT_TMR_USB:
  192. case DAR_TIMESTAMP_LSB:
  193. case DAR_TIMESTAMP_MSB:
  194. case DAR_TIMESTAMP_USB:
  195. case DAR_SEQ_STATE:
  196. case DAR_LQI_VALUE:
  197. case DAR_RSSI_CCA_CONT:
  198. return true;
  199. default:
  200. return false;
  201. }
  202. }
  203. static bool
  204. mcr20a_dar_volatile(struct device *dev, unsigned int reg)
  205. {
  206. /* can be changed during runtime */
  207. switch (reg) {
  208. case DAR_IRQ_STS1:
  209. case DAR_IRQ_STS2:
  210. case DAR_IRQ_STS3:
  211. /* use them in spi_async and regmap so it's volatile */
  212. return true;
  213. default:
  214. return false;
  215. }
  216. }
  217. static bool
  218. mcr20a_dar_precious(struct device *dev, unsigned int reg)
  219. {
  220. /* don't clear irq line on read */
  221. switch (reg) {
  222. case DAR_IRQ_STS1:
  223. case DAR_IRQ_STS2:
  224. case DAR_IRQ_STS3:
  225. return true;
  226. default:
  227. return false;
  228. }
  229. }
  230. static const struct regmap_config mcr20a_dar_regmap = {
  231. .name = "mcr20a_dar",
  232. .reg_bits = 8,
  233. .val_bits = 8,
  234. .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE,
  235. .read_flag_mask = REGISTER_ACCESS | REGISTER_READ,
  236. .cache_type = REGCACHE_RBTREE,
  237. .writeable_reg = mcr20a_dar_writeable,
  238. .readable_reg = mcr20a_dar_readable,
  239. .volatile_reg = mcr20a_dar_volatile,
  240. .precious_reg = mcr20a_dar_precious,
  241. .fast_io = true,
  242. .can_multi_write = true,
  243. };
  244. static bool
  245. mcr20a_iar_writeable(struct device *dev, unsigned int reg)
  246. {
  247. switch (reg) {
  248. case IAR_XTAL_TRIM:
  249. case IAR_PMC_LP_TRIM:
  250. case IAR_MACPANID0_LSB:
  251. case IAR_MACPANID0_MSB:
  252. case IAR_MACSHORTADDRS0_LSB:
  253. case IAR_MACSHORTADDRS0_MSB:
  254. case IAR_MACLONGADDRS0_0:
  255. case IAR_MACLONGADDRS0_8:
  256. case IAR_MACLONGADDRS0_16:
  257. case IAR_MACLONGADDRS0_24:
  258. case IAR_MACLONGADDRS0_32:
  259. case IAR_MACLONGADDRS0_40:
  260. case IAR_MACLONGADDRS0_48:
  261. case IAR_MACLONGADDRS0_56:
  262. case IAR_RX_FRAME_FILTER:
  263. case IAR_PLL_INT1:
  264. case IAR_PLL_FRAC1_LSB:
  265. case IAR_PLL_FRAC1_MSB:
  266. case IAR_MACPANID1_LSB:
  267. case IAR_MACPANID1_MSB:
  268. case IAR_MACSHORTADDRS1_LSB:
  269. case IAR_MACSHORTADDRS1_MSB:
  270. case IAR_MACLONGADDRS1_0:
  271. case IAR_MACLONGADDRS1_8:
  272. case IAR_MACLONGADDRS1_16:
  273. case IAR_MACLONGADDRS1_24:
  274. case IAR_MACLONGADDRS1_32:
  275. case IAR_MACLONGADDRS1_40:
  276. case IAR_MACLONGADDRS1_48:
  277. case IAR_MACLONGADDRS1_56:
  278. case IAR_DUAL_PAN_CTRL:
  279. case IAR_DUAL_PAN_DWELL:
  280. case IAR_CCA1_THRESH:
  281. case IAR_CCA1_ED_OFFSET_COMP:
  282. case IAR_LQI_OFFSET_COMP:
  283. case IAR_CCA_CTRL:
  284. case IAR_CCA2_CORR_PEAKS:
  285. case IAR_CCA2_CORR_THRESH:
  286. case IAR_TMR_PRESCALE:
  287. case IAR_ANT_PAD_CTRL:
  288. case IAR_MISC_PAD_CTRL:
  289. case IAR_BSM_CTRL:
  290. case IAR_RNG:
  291. case IAR_RX_WTR_MARK:
  292. case IAR_SOFT_RESET:
  293. case IAR_TXDELAY:
  294. case IAR_ACKDELAY:
  295. case IAR_CORR_NVAL:
  296. case IAR_ANT_AGC_CTRL:
  297. case IAR_AGC_THR1:
  298. case IAR_AGC_THR2:
  299. case IAR_PA_CAL:
  300. case IAR_ATT_RSSI1:
  301. case IAR_ATT_RSSI2:
  302. case IAR_RSSI_OFFSET:
  303. case IAR_XTAL_CTRL:
  304. case IAR_CHF_PMA_GAIN:
  305. case IAR_CHF_IBUF:
  306. case IAR_CHF_QBUF:
  307. case IAR_CHF_IRIN:
  308. case IAR_CHF_QRIN:
  309. case IAR_CHF_IL:
  310. case IAR_CHF_QL:
  311. case IAR_CHF_CC1:
  312. case IAR_CHF_CCL:
  313. case IAR_CHF_CC2:
  314. case IAR_CHF_IROUT:
  315. case IAR_CHF_QROUT:
  316. case IAR_PA_TUNING:
  317. case IAR_VCO_CTRL1:
  318. case IAR_VCO_CTRL2:
  319. return true;
  320. default:
  321. return false;
  322. }
  323. }
  324. static bool
  325. mcr20a_iar_readable(struct device *dev, unsigned int reg)
  326. {
  327. bool rc;
  328. /* all writeable are also readable */
  329. rc = mcr20a_iar_writeable(dev, reg);
  330. if (rc)
  331. return rc;
  332. /* readonly regs */
  333. switch (reg) {
  334. case IAR_PART_ID:
  335. case IAR_DUAL_PAN_STS:
  336. case IAR_RX_BYTE_COUNT:
  337. case IAR_FILTERFAIL_CODE1:
  338. case IAR_FILTERFAIL_CODE2:
  339. case IAR_RSSI:
  340. return true;
  341. default:
  342. return false;
  343. }
  344. }
  345. static bool
  346. mcr20a_iar_volatile(struct device *dev, unsigned int reg)
  347. {
  348. /* can be changed during runtime */
  349. switch (reg) {
  350. case IAR_DUAL_PAN_STS:
  351. case IAR_RX_BYTE_COUNT:
  352. case IAR_FILTERFAIL_CODE1:
  353. case IAR_FILTERFAIL_CODE2:
  354. case IAR_RSSI:
  355. return true;
  356. default:
  357. return false;
  358. }
  359. }
  360. static const struct regmap_config mcr20a_iar_regmap = {
  361. .name = "mcr20a_iar",
  362. .reg_bits = 16,
  363. .val_bits = 8,
  364. .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
  365. .read_flag_mask = REGISTER_ACCESS | REGISTER_READ | IAR_INDEX,
  366. .cache_type = REGCACHE_RBTREE,
  367. .writeable_reg = mcr20a_iar_writeable,
  368. .readable_reg = mcr20a_iar_readable,
  369. .volatile_reg = mcr20a_iar_volatile,
  370. .fast_io = true,
  371. };
  372. struct mcr20a_local {
  373. struct spi_device *spi;
  374. struct ieee802154_hw *hw;
  375. struct mcr20a_platform_data *pdata;
  376. struct regmap *regmap_dar;
  377. struct regmap *regmap_iar;
  378. u8 *buf;
  379. bool is_tx;
  380. /* for writing tx buffer */
  381. struct spi_message tx_buf_msg;
  382. u8 tx_header[1];
  383. /* burst buffer write command */
  384. struct spi_transfer tx_xfer_header;
  385. u8 tx_len[1];
  386. /* len of tx packet */
  387. struct spi_transfer tx_xfer_len;
  388. /* data of tx packet */
  389. struct spi_transfer tx_xfer_buf;
  390. struct sk_buff *tx_skb;
  391. /* for read length rxfifo */
  392. struct spi_message reg_msg;
  393. u8 reg_cmd[1];
  394. u8 reg_data[MCR20A_IRQSTS_NUM];
  395. struct spi_transfer reg_xfer_cmd;
  396. struct spi_transfer reg_xfer_data;
  397. /* receive handling */
  398. struct spi_message rx_buf_msg;
  399. u8 rx_header[1];
  400. struct spi_transfer rx_xfer_header;
  401. u8 rx_lqi[1];
  402. struct spi_transfer rx_xfer_lqi;
  403. u8 rx_buf[MCR20A_MAX_BUF];
  404. struct spi_transfer rx_xfer_buf;
  405. /* isr handling for reading intstat */
  406. struct spi_message irq_msg;
  407. u8 irq_header[1];
  408. u8 irq_data[MCR20A_IRQSTS_NUM];
  409. struct spi_transfer irq_xfer_data;
  410. struct spi_transfer irq_xfer_header;
  411. };
  412. static void
  413. mcr20a_write_tx_buf_complete(void *context)
  414. {
  415. struct mcr20a_local *lp = context;
  416. int ret;
  417. dev_dbg(printdev(lp), "%s\n", __func__);
  418. lp->reg_msg.complete = NULL;
  419. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
  420. lp->reg_data[0] = MCR20A_XCVSEQ_TX;
  421. lp->reg_xfer_data.len = 1;
  422. ret = spi_async(lp->spi, &lp->reg_msg);
  423. if (ret)
  424. dev_err(printdev(lp), "failed to set SEQ TX\n");
  425. }
  426. static int
  427. mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
  428. {
  429. struct mcr20a_local *lp = hw->priv;
  430. dev_dbg(printdev(lp), "%s\n", __func__);
  431. lp->tx_skb = skb;
  432. print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
  433. skb->data, skb->len, 0);
  434. lp->is_tx = 1;
  435. lp->reg_msg.complete = NULL;
  436. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
  437. lp->reg_data[0] = MCR20A_XCVSEQ_IDLE;
  438. lp->reg_xfer_data.len = 1;
  439. return spi_async(lp->spi, &lp->reg_msg);
  440. }
  441. static int
  442. mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
  443. {
  444. WARN_ON(!level);
  445. *level = 0xbe;
  446. return 0;
  447. }
  448. static int
  449. mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
  450. {
  451. struct mcr20a_local *lp = hw->priv;
  452. int ret;
  453. dev_dbg(printdev(lp), "%s\n", __func__);
  454. /* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
  455. ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
  456. if (ret)
  457. return ret;
  458. ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
  459. if (ret)
  460. return ret;
  461. ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
  462. PLL_FRAC[channel - 11]);
  463. if (ret)
  464. return ret;
  465. return 0;
  466. }
  467. static int
  468. mcr20a_start(struct ieee802154_hw *hw)
  469. {
  470. struct mcr20a_local *lp = hw->priv;
  471. int ret;
  472. dev_dbg(printdev(lp), "%s\n", __func__);
  473. /* No slotted operation */
  474. dev_dbg(printdev(lp), "no slotted operation\n");
  475. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  476. DAR_PHY_CTRL1_SLOTTED, 0x0);
  477. /* enable irq */
  478. enable_irq(lp->spi->irq);
  479. /* Unmask SEQ interrupt */
  480. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
  481. DAR_PHY_CTRL2_SEQMSK, 0x0);
  482. /* Start the RX sequence */
  483. dev_dbg(printdev(lp), "start the RX sequence\n");
  484. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  485. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
  486. return 0;
  487. }
  488. static void
  489. mcr20a_stop(struct ieee802154_hw *hw)
  490. {
  491. struct mcr20a_local *lp = hw->priv;
  492. dev_dbg(printdev(lp), "%s\n", __func__);
  493. /* stop all running sequence */
  494. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  495. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
  496. /* disable irq */
  497. disable_irq(lp->spi->irq);
  498. }
  499. static int
  500. mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
  501. struct ieee802154_hw_addr_filt *filt,
  502. unsigned long changed)
  503. {
  504. struct mcr20a_local *lp = hw->priv;
  505. dev_dbg(printdev(lp), "%s\n", __func__);
  506. if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
  507. u16 addr = le16_to_cpu(filt->short_addr);
  508. regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
  509. regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
  510. }
  511. if (changed & IEEE802154_AFILT_PANID_CHANGED) {
  512. u16 pan = le16_to_cpu(filt->pan_id);
  513. regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
  514. regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
  515. }
  516. if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
  517. u8 addr[8], i;
  518. memcpy(addr, &filt->ieee_addr, 8);
  519. for (i = 0; i < 8; i++)
  520. regmap_write(lp->regmap_iar,
  521. IAR_MACLONGADDRS0_0 + i, addr[i]);
  522. }
  523. if (changed & IEEE802154_AFILT_PANC_CHANGED) {
  524. if (filt->pan_coord) {
  525. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  526. DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
  527. } else {
  528. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  529. DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
  530. }
  531. }
  532. return 0;
  533. }
  534. /* -30 dBm to 10 dBm */
  535. #define MCR20A_MAX_TX_POWERS 0x14
  536. static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
  537. -3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
  538. -1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
  539. };
  540. static int
  541. mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
  542. {
  543. struct mcr20a_local *lp = hw->priv;
  544. u32 i;
  545. dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
  546. for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
  547. if (lp->hw->phy->supported.tx_powers[i] == mbm)
  548. return regmap_write(lp->regmap_dar, DAR_PA_PWR,
  549. ((i + 8) & 0x1F));
  550. }
  551. return -EINVAL;
  552. }
  553. #define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
  554. static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
  555. static int
  556. mcr20a_set_cca_mode(struct ieee802154_hw *hw,
  557. const struct wpan_phy_cca *cca)
  558. {
  559. struct mcr20a_local *lp = hw->priv;
  560. unsigned int cca_mode = 0xff;
  561. bool cca_mode_and = false;
  562. int ret;
  563. dev_dbg(printdev(lp), "%s\n", __func__);
  564. /* mapping 802.15.4 to driver spec */
  565. switch (cca->mode) {
  566. case NL802154_CCA_ENERGY:
  567. cca_mode = MCR20A_CCA_MODE1;
  568. break;
  569. case NL802154_CCA_CARRIER:
  570. cca_mode = MCR20A_CCA_MODE2;
  571. break;
  572. case NL802154_CCA_ENERGY_CARRIER:
  573. switch (cca->opt) {
  574. case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
  575. cca_mode = MCR20A_CCA_MODE3;
  576. cca_mode_and = true;
  577. break;
  578. case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
  579. cca_mode = MCR20A_CCA_MODE3;
  580. cca_mode_and = false;
  581. break;
  582. default:
  583. return -EINVAL;
  584. }
  585. break;
  586. default:
  587. return -EINVAL;
  588. }
  589. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  590. DAR_PHY_CTRL4_CCATYPE_MASK,
  591. cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
  592. if (ret < 0)
  593. return ret;
  594. if (cca_mode == MCR20A_CCA_MODE3) {
  595. if (cca_mode_and) {
  596. ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
  597. IAR_CCA_CTRL_CCA3_AND_NOT_OR,
  598. 0x08);
  599. } else {
  600. ret = regmap_update_bits(lp->regmap_iar,
  601. IAR_CCA_CTRL,
  602. IAR_CCA_CTRL_CCA3_AND_NOT_OR,
  603. 0x00);
  604. }
  605. if (ret < 0)
  606. return ret;
  607. }
  608. return ret;
  609. }
  610. static int
  611. mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
  612. {
  613. struct mcr20a_local *lp = hw->priv;
  614. u32 i;
  615. dev_dbg(printdev(lp), "%s\n", __func__);
  616. for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
  617. if (hw->phy->supported.cca_ed_levels[i] == mbm)
  618. return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
  619. }
  620. return 0;
  621. }
  622. static int
  623. mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
  624. {
  625. struct mcr20a_local *lp = hw->priv;
  626. int ret;
  627. u8 rx_frame_filter_reg = 0x0;
  628. dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
  629. if (on) {
  630. /* All frame types accepted*/
  631. rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
  632. rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
  633. IAR_RX_FRAME_FLT_NS_FT);
  634. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  635. DAR_PHY_CTRL4_PROMISCUOUS,
  636. DAR_PHY_CTRL4_PROMISCUOUS);
  637. if (ret < 0)
  638. return ret;
  639. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  640. rx_frame_filter_reg);
  641. if (ret < 0)
  642. return ret;
  643. } else {
  644. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  645. DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
  646. if (ret < 0)
  647. return ret;
  648. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  649. IAR_RX_FRAME_FLT_FRM_VER |
  650. IAR_RX_FRAME_FLT_BEACON_FT |
  651. IAR_RX_FRAME_FLT_DATA_FT |
  652. IAR_RX_FRAME_FLT_CMD_FT);
  653. if (ret < 0)
  654. return ret;
  655. }
  656. return 0;
  657. }
  658. static const struct ieee802154_ops mcr20a_hw_ops = {
  659. .owner = THIS_MODULE,
  660. .xmit_async = mcr20a_xmit,
  661. .ed = mcr20a_ed,
  662. .set_channel = mcr20a_set_channel,
  663. .start = mcr20a_start,
  664. .stop = mcr20a_stop,
  665. .set_hw_addr_filt = mcr20a_set_hw_addr_filt,
  666. .set_txpower = mcr20a_set_txpower,
  667. .set_cca_mode = mcr20a_set_cca_mode,
  668. .set_cca_ed_level = mcr20a_set_cca_ed_level,
  669. .set_promiscuous_mode = mcr20a_set_promiscuous_mode,
  670. };
  671. static int
  672. mcr20a_request_rx(struct mcr20a_local *lp)
  673. {
  674. dev_dbg(printdev(lp), "%s\n", __func__);
  675. /* Start the RX sequence */
  676. regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
  677. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
  678. return 0;
  679. }
  680. static void
  681. mcr20a_handle_rx_read_buf_complete(void *context)
  682. {
  683. struct mcr20a_local *lp = context;
  684. u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
  685. struct sk_buff *skb;
  686. dev_dbg(printdev(lp), "%s\n", __func__);
  687. dev_dbg(printdev(lp), "RX is done\n");
  688. if (!ieee802154_is_valid_psdu_len(len)) {
  689. dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
  690. len = IEEE802154_MTU;
  691. }
  692. len = len - 2; /* get rid of frame check field */
  693. skb = dev_alloc_skb(len);
  694. if (!skb)
  695. return;
  696. memcpy(skb_put(skb, len), lp->rx_buf, len);
  697. ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
  698. print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
  699. lp->rx_buf, len, 0);
  700. pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
  701. /* start RX sequence */
  702. mcr20a_request_rx(lp);
  703. }
  704. static void
  705. mcr20a_handle_rx_read_len_complete(void *context)
  706. {
  707. struct mcr20a_local *lp = context;
  708. u8 len;
  709. int ret;
  710. dev_dbg(printdev(lp), "%s\n", __func__);
  711. /* get the length of received frame */
  712. len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
  713. dev_dbg(printdev(lp), "frame len : %d\n", len);
  714. /* prepare to read the rx buf */
  715. lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
  716. lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
  717. lp->rx_xfer_buf.len = len;
  718. ret = spi_async(lp->spi, &lp->rx_buf_msg);
  719. if (ret)
  720. dev_err(printdev(lp), "failed to read rx buffer length\n");
  721. }
  722. static int
  723. mcr20a_handle_rx(struct mcr20a_local *lp)
  724. {
  725. dev_dbg(printdev(lp), "%s\n", __func__);
  726. lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
  727. lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
  728. lp->reg_xfer_data.len = 1;
  729. return spi_async(lp->spi, &lp->reg_msg);
  730. }
  731. static int
  732. mcr20a_handle_tx_complete(struct mcr20a_local *lp)
  733. {
  734. dev_dbg(printdev(lp), "%s\n", __func__);
  735. ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
  736. return mcr20a_request_rx(lp);
  737. }
  738. static int
  739. mcr20a_handle_tx(struct mcr20a_local *lp)
  740. {
  741. int ret;
  742. dev_dbg(printdev(lp), "%s\n", __func__);
  743. /* write tx buffer */
  744. lp->tx_header[0] = MCR20A_BURST_WRITE_PACKET_BUF;
  745. /* add 2 bytes of FCS */
  746. lp->tx_len[0] = lp->tx_skb->len + 2;
  747. lp->tx_xfer_buf.tx_buf = lp->tx_skb->data;
  748. /* add 1 byte psduLength */
  749. lp->tx_xfer_buf.len = lp->tx_skb->len + 1;
  750. ret = spi_async(lp->spi, &lp->tx_buf_msg);
  751. if (ret) {
  752. dev_err(printdev(lp), "SPI write Failed for TX buf\n");
  753. return ret;
  754. }
  755. return 0;
  756. }
  757. static void
  758. mcr20a_irq_clean_complete(void *context)
  759. {
  760. struct mcr20a_local *lp = context;
  761. u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
  762. dev_dbg(printdev(lp), "%s\n", __func__);
  763. enable_irq(lp->spi->irq);
  764. dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
  765. lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
  766. switch (seq_state) {
  767. /* TX IRQ, RX IRQ and SEQ IRQ */
  768. case (0x03):
  769. if (lp->is_tx) {
  770. lp->is_tx = 0;
  771. dev_dbg(printdev(lp), "TX is done. No ACK\n");
  772. mcr20a_handle_tx_complete(lp);
  773. }
  774. break;
  775. case (0x05):
  776. /* rx is starting */
  777. dev_dbg(printdev(lp), "RX is starting\n");
  778. mcr20a_handle_rx(lp);
  779. break;
  780. case (0x07):
  781. if (lp->is_tx) {
  782. /* tx is done */
  783. lp->is_tx = 0;
  784. dev_dbg(printdev(lp), "TX is done. Get ACK\n");
  785. mcr20a_handle_tx_complete(lp);
  786. } else {
  787. /* rx is starting */
  788. dev_dbg(printdev(lp), "RX is starting\n");
  789. mcr20a_handle_rx(lp);
  790. }
  791. break;
  792. case (0x01):
  793. if (lp->is_tx) {
  794. dev_dbg(printdev(lp), "TX is starting\n");
  795. mcr20a_handle_tx(lp);
  796. } else {
  797. dev_dbg(printdev(lp), "MCR20A is stop\n");
  798. }
  799. break;
  800. }
  801. }
  802. static void mcr20a_irq_status_complete(void *context)
  803. {
  804. int ret;
  805. struct mcr20a_local *lp = context;
  806. dev_dbg(printdev(lp), "%s\n", __func__);
  807. regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
  808. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
  809. lp->reg_msg.complete = mcr20a_irq_clean_complete;
  810. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
  811. memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
  812. lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
  813. ret = spi_async(lp->spi, &lp->reg_msg);
  814. if (ret)
  815. dev_err(printdev(lp), "failed to clean irq status\n");
  816. }
  817. static irqreturn_t mcr20a_irq_isr(int irq, void *data)
  818. {
  819. struct mcr20a_local *lp = data;
  820. int ret;
  821. disable_irq_nosync(irq);
  822. lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
  823. /* read IRQSTSx */
  824. ret = spi_async(lp->spi, &lp->irq_msg);
  825. if (ret) {
  826. enable_irq(irq);
  827. return IRQ_NONE;
  828. }
  829. return IRQ_HANDLED;
  830. }
  831. static int mcr20a_get_platform_data(struct spi_device *spi,
  832. struct mcr20a_platform_data *pdata)
  833. {
  834. int ret = 0;
  835. if (!spi->dev.of_node)
  836. return -EINVAL;
  837. pdata->rst_gpio = of_get_named_gpio(spi->dev.of_node, "rst_b-gpio", 0);
  838. dev_dbg(&spi->dev, "rst_b-gpio: %d\n", pdata->rst_gpio);
  839. return ret;
  840. }
  841. static void mcr20a_hw_setup(struct mcr20a_local *lp)
  842. {
  843. u8 i;
  844. struct ieee802154_hw *hw = lp->hw;
  845. struct wpan_phy *phy = lp->hw->phy;
  846. dev_dbg(printdev(lp), "%s\n", __func__);
  847. phy->symbol_duration = 16;
  848. phy->lifs_period = 40;
  849. phy->sifs_period = 12;
  850. hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
  851. IEEE802154_HW_AFILT |
  852. IEEE802154_HW_PROMISCUOUS;
  853. phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
  854. WPAN_PHY_FLAG_CCA_MODE;
  855. phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
  856. BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
  857. phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
  858. BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
  859. /* initiating cca_ed_levels */
  860. for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
  861. ++i) {
  862. mcr20a_ed_levels[i] = -i * 100;
  863. }
  864. phy->supported.cca_ed_levels = mcr20a_ed_levels;
  865. phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
  866. phy->cca.mode = NL802154_CCA_ENERGY;
  867. phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
  868. phy->current_page = 0;
  869. /* MCR20A default reset value */
  870. phy->current_channel = 20;
  871. phy->symbol_duration = 16;
  872. phy->supported.tx_powers = mcr20a_powers;
  873. phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
  874. phy->cca_ed_level = phy->supported.cca_ed_levels[75];
  875. phy->transmit_power = phy->supported.tx_powers[0x0F];
  876. }
  877. static void
  878. mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
  879. {
  880. spi_message_init(&lp->tx_buf_msg);
  881. lp->tx_buf_msg.context = lp;
  882. lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
  883. lp->tx_xfer_header.len = 1;
  884. lp->tx_xfer_header.tx_buf = lp->tx_header;
  885. lp->tx_xfer_len.len = 1;
  886. lp->tx_xfer_len.tx_buf = lp->tx_len;
  887. spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
  888. spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
  889. spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
  890. }
  891. static void
  892. mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
  893. {
  894. spi_message_init(&lp->reg_msg);
  895. lp->reg_msg.context = lp;
  896. lp->reg_xfer_cmd.len = 1;
  897. lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
  898. lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
  899. lp->reg_xfer_data.rx_buf = lp->reg_data;
  900. lp->reg_xfer_data.tx_buf = lp->reg_data;
  901. spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
  902. spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
  903. spi_message_init(&lp->rx_buf_msg);
  904. lp->rx_buf_msg.context = lp;
  905. lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
  906. lp->rx_xfer_header.len = 1;
  907. lp->rx_xfer_header.tx_buf = lp->rx_header;
  908. lp->rx_xfer_header.rx_buf = lp->rx_header;
  909. lp->rx_xfer_buf.rx_buf = lp->rx_buf;
  910. lp->rx_xfer_lqi.len = 1;
  911. lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
  912. spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
  913. spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
  914. spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
  915. }
  916. static void
  917. mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
  918. {
  919. spi_message_init(&lp->irq_msg);
  920. lp->irq_msg.context = lp;
  921. lp->irq_msg.complete = mcr20a_irq_status_complete;
  922. lp->irq_xfer_header.len = 1;
  923. lp->irq_xfer_header.tx_buf = lp->irq_header;
  924. lp->irq_xfer_header.rx_buf = lp->irq_header;
  925. lp->irq_xfer_data.len = MCR20A_IRQSTS_NUM;
  926. lp->irq_xfer_data.rx_buf = lp->irq_data;
  927. spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
  928. spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
  929. }
  930. static int
  931. mcr20a_phy_init(struct mcr20a_local *lp)
  932. {
  933. u8 index;
  934. unsigned int phy_reg = 0;
  935. int ret;
  936. dev_dbg(printdev(lp), "%s\n", __func__);
  937. /* Disable Tristate on COCO MISO for SPI reads */
  938. ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
  939. if (ret)
  940. goto err_ret;
  941. /* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
  942. * immediately after init
  943. */
  944. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
  945. if (ret)
  946. goto err_ret;
  947. /* Clear all PP IRQ bits in IRQSTS2 */
  948. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
  949. DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
  950. DAR_IRQSTS2_WAKE_IRQ);
  951. if (ret)
  952. goto err_ret;
  953. /* Disable all timer interrupts */
  954. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
  955. if (ret)
  956. goto err_ret;
  957. /* PHY_CTRL1 : default HW settings + AUTOACK enabled */
  958. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  959. DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
  960. /* PHY_CTRL2 : disable all interrupts */
  961. ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
  962. if (ret)
  963. goto err_ret;
  964. /* PHY_CTRL3 : disable all timers and remaining interrupts */
  965. ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
  966. DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
  967. DAR_PHY_CTRL3_WAKE_MSK);
  968. if (ret)
  969. goto err_ret;
  970. /* SRC_CTRL : enable Acknowledge Frame Pending and
  971. * Source Address Matching Enable
  972. */
  973. ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
  974. DAR_SRC_CTRL_ACK_FRM_PND |
  975. (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
  976. if (ret)
  977. goto err_ret;
  978. /* RX_FRAME_FILTER */
  979. /* FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
  980. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  981. IAR_RX_FRAME_FLT_FRM_VER |
  982. IAR_RX_FRAME_FLT_BEACON_FT |
  983. IAR_RX_FRAME_FLT_DATA_FT |
  984. IAR_RX_FRAME_FLT_CMD_FT);
  985. if (ret)
  986. goto err_ret;
  987. dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
  988. MCR20A_OVERWRITE_VERSION);
  989. /* Overwrites direct registers */
  990. ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
  991. MCR20A_OVERWRITE_VERSION);
  992. if (ret)
  993. goto err_ret;
  994. /* Overwrites indirect registers */
  995. ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
  996. ARRAY_SIZE(mar20a_iar_overwrites));
  997. if (ret)
  998. goto err_ret;
  999. /* Clear HW indirect queue */
  1000. dev_dbg(printdev(lp), "clear HW indirect queue\n");
  1001. for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
  1002. phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
  1003. DAR_SRC_CTRL_INDEX_SHIFT)
  1004. | (DAR_SRC_CTRL_SRCADDR_EN)
  1005. | (DAR_SRC_CTRL_INDEX_DISABLE));
  1006. ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
  1007. if (ret)
  1008. goto err_ret;
  1009. phy_reg = 0;
  1010. }
  1011. /* Assign HW Indirect hash table to PAN0 */
  1012. ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
  1013. if (ret)
  1014. goto err_ret;
  1015. /* Clear current lvl */
  1016. phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
  1017. /* Set new lvl */
  1018. phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
  1019. IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
  1020. ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
  1021. if (ret)
  1022. goto err_ret;
  1023. /* Set CCA threshold to -75 dBm */
  1024. ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
  1025. if (ret)
  1026. goto err_ret;
  1027. /* Set prescaller to obtain 1 symbol (16us) timebase */
  1028. ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
  1029. if (ret)
  1030. goto err_ret;
  1031. /* Enable autodoze mode. */
  1032. ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
  1033. DAR_PWR_MODES_AUTODOZE,
  1034. DAR_PWR_MODES_AUTODOZE);
  1035. if (ret)
  1036. goto err_ret;
  1037. /* Disable clk_out */
  1038. ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
  1039. DAR_CLK_OUT_CTRL_EN, 0x0);
  1040. if (ret)
  1041. goto err_ret;
  1042. return 0;
  1043. err_ret:
  1044. return ret;
  1045. }
  1046. static int
  1047. mcr20a_probe(struct spi_device *spi)
  1048. {
  1049. struct ieee802154_hw *hw;
  1050. struct mcr20a_local *lp;
  1051. struct mcr20a_platform_data *pdata;
  1052. int irq_type;
  1053. int ret = -ENOMEM;
  1054. dev_dbg(&spi->dev, "%s\n", __func__);
  1055. if (!spi->irq) {
  1056. dev_err(&spi->dev, "no IRQ specified\n");
  1057. return -EINVAL;
  1058. }
  1059. pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  1060. if (!pdata)
  1061. return -ENOMEM;
  1062. /* set mcr20a platform data */
  1063. ret = mcr20a_get_platform_data(spi, pdata);
  1064. if (ret < 0) {
  1065. dev_crit(&spi->dev, "mcr20a_get_platform_data failed.\n");
  1066. goto free_pdata;
  1067. }
  1068. /* init reset gpio */
  1069. if (gpio_is_valid(pdata->rst_gpio)) {
  1070. ret = devm_gpio_request_one(&spi->dev, pdata->rst_gpio,
  1071. GPIOF_OUT_INIT_HIGH, "reset");
  1072. if (ret)
  1073. goto free_pdata;
  1074. }
  1075. /* reset mcr20a */
  1076. if (gpio_is_valid(pdata->rst_gpio)) {
  1077. usleep_range(10, 20);
  1078. gpio_set_value_cansleep(pdata->rst_gpio, 0);
  1079. usleep_range(10, 20);
  1080. gpio_set_value_cansleep(pdata->rst_gpio, 1);
  1081. usleep_range(120, 240);
  1082. }
  1083. /* allocate ieee802154_hw and private data */
  1084. hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
  1085. if (!hw) {
  1086. dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
  1087. ret = -ENOMEM;
  1088. goto free_pdata;
  1089. }
  1090. /* init mcr20a local data */
  1091. lp = hw->priv;
  1092. lp->hw = hw;
  1093. lp->spi = spi;
  1094. lp->spi->dev.platform_data = pdata;
  1095. lp->pdata = pdata;
  1096. /* init ieee802154_hw */
  1097. hw->parent = &spi->dev;
  1098. ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
  1099. /* init buf */
  1100. lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
  1101. if (!lp->buf) {
  1102. ret = -ENOMEM;
  1103. goto free_dev;
  1104. }
  1105. mcr20a_setup_tx_spi_messages(lp);
  1106. mcr20a_setup_rx_spi_messages(lp);
  1107. mcr20a_setup_irq_spi_messages(lp);
  1108. /* setup regmap */
  1109. lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
  1110. if (IS_ERR(lp->regmap_dar)) {
  1111. ret = PTR_ERR(lp->regmap_dar);
  1112. dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
  1113. ret);
  1114. goto free_dev;
  1115. }
  1116. lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
  1117. if (IS_ERR(lp->regmap_iar)) {
  1118. ret = PTR_ERR(lp->regmap_iar);
  1119. dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
  1120. goto free_dev;
  1121. }
  1122. mcr20a_hw_setup(lp);
  1123. spi_set_drvdata(spi, lp);
  1124. ret = mcr20a_phy_init(lp);
  1125. if (ret < 0) {
  1126. dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
  1127. goto free_dev;
  1128. }
  1129. irq_type = irq_get_trigger_type(spi->irq);
  1130. if (!irq_type)
  1131. irq_type = IRQF_TRIGGER_FALLING;
  1132. ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
  1133. irq_type, dev_name(&spi->dev), lp);
  1134. if (ret) {
  1135. dev_err(&spi->dev, "could not request_irq for mcr20a\n");
  1136. ret = -ENODEV;
  1137. goto free_dev;
  1138. }
  1139. /* disable_irq by default and wait for starting hardware */
  1140. disable_irq(spi->irq);
  1141. ret = ieee802154_register_hw(hw);
  1142. if (ret) {
  1143. dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
  1144. goto free_dev;
  1145. }
  1146. return ret;
  1147. free_dev:
  1148. ieee802154_free_hw(lp->hw);
  1149. free_pdata:
  1150. kfree(pdata);
  1151. return ret;
  1152. }
  1153. static int mcr20a_remove(struct spi_device *spi)
  1154. {
  1155. struct mcr20a_local *lp = spi_get_drvdata(spi);
  1156. dev_dbg(&spi->dev, "%s\n", __func__);
  1157. ieee802154_unregister_hw(lp->hw);
  1158. ieee802154_free_hw(lp->hw);
  1159. return 0;
  1160. }
  1161. static const struct of_device_id mcr20a_of_match[] = {
  1162. { .compatible = "nxp,mcr20a", },
  1163. { },
  1164. };
  1165. MODULE_DEVICE_TABLE(of, mcr20a_of_match);
  1166. static const struct spi_device_id mcr20a_device_id[] = {
  1167. { .name = "mcr20a", },
  1168. { },
  1169. };
  1170. MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
  1171. static struct spi_driver mcr20a_driver = {
  1172. .id_table = mcr20a_device_id,
  1173. .driver = {
  1174. .of_match_table = of_match_ptr(mcr20a_of_match),
  1175. .name = "mcr20a",
  1176. },
  1177. .probe = mcr20a_probe,
  1178. .remove = mcr20a_remove,
  1179. };
  1180. module_spi_driver(mcr20a_driver);
  1181. MODULE_DESCRIPTION("MCR20A Transceiver Driver");
  1182. MODULE_LICENSE("GPL v2");
  1183. MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");