niu.c 229 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* niu.c: Neptune ethernet driver.
  3. *
  4. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/interrupt.h>
  10. #include <linux/pci.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/ethtool.h>
  14. #include <linux/etherdevice.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/mii.h>
  19. #include <linux/if.h>
  20. #include <linux/if_ether.h>
  21. #include <linux/if_vlan.h>
  22. #include <linux/ip.h>
  23. #include <linux/in.h>
  24. #include <linux/ipv6.h>
  25. #include <linux/log2.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/crc32.h>
  28. #include <linux/list.h>
  29. #include <linux/slab.h>
  30. #include <linux/io.h>
  31. #include <linux/of_device.h>
  32. #include "niu.h"
  33. #define DRV_MODULE_NAME "niu"
  34. #define DRV_MODULE_VERSION "1.1"
  35. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  36. static char version[] =
  37. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  38. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  39. MODULE_DESCRIPTION("NIU ethernet driver");
  40. MODULE_LICENSE("GPL");
  41. MODULE_VERSION(DRV_MODULE_VERSION);
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  46. }
  47. static void writeq(u64 val, void __iomem *reg)
  48. {
  49. writel(val & 0xffffffff, reg);
  50. writel(val >> 32, reg + 0x4UL);
  51. }
  52. #endif
  53. static const struct pci_device_id niu_pci_tbl[] = {
  54. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  55. {}
  56. };
  57. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  58. #define NIU_TX_TIMEOUT (5 * HZ)
  59. #define nr64(reg) readq(np->regs + (reg))
  60. #define nw64(reg, val) writeq((val), np->regs + (reg))
  61. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  62. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  63. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  64. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  65. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  66. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  67. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  68. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  69. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  70. static int niu_debug;
  71. static int debug = -1;
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "NIU debug level");
  74. #define niu_lock_parent(np, flags) \
  75. spin_lock_irqsave(&np->parent->lock, flags)
  76. #define niu_unlock_parent(np, flags) \
  77. spin_unlock_irqrestore(&np->parent->lock, flags)
  78. static int serdes_init_10g_serdes(struct niu *np);
  79. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  80. u64 bits, int limit, int delay)
  81. {
  82. while (--limit >= 0) {
  83. u64 val = nr64_mac(reg);
  84. if (!(val & bits))
  85. break;
  86. udelay(delay);
  87. }
  88. if (limit < 0)
  89. return -ENODEV;
  90. return 0;
  91. }
  92. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  93. u64 bits, int limit, int delay,
  94. const char *reg_name)
  95. {
  96. int err;
  97. nw64_mac(reg, bits);
  98. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  99. if (err)
  100. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  101. (unsigned long long)bits, reg_name,
  102. (unsigned long long)nr64_mac(reg));
  103. return err;
  104. }
  105. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  106. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  107. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  108. })
  109. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  110. u64 bits, int limit, int delay)
  111. {
  112. while (--limit >= 0) {
  113. u64 val = nr64_ipp(reg);
  114. if (!(val & bits))
  115. break;
  116. udelay(delay);
  117. }
  118. if (limit < 0)
  119. return -ENODEV;
  120. return 0;
  121. }
  122. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay,
  124. const char *reg_name)
  125. {
  126. int err;
  127. u64 val;
  128. val = nr64_ipp(reg);
  129. val |= bits;
  130. nw64_ipp(reg, val);
  131. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  132. if (err)
  133. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  134. (unsigned long long)bits, reg_name,
  135. (unsigned long long)nr64_ipp(reg));
  136. return err;
  137. }
  138. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  139. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  140. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  141. })
  142. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  143. u64 bits, int limit, int delay)
  144. {
  145. while (--limit >= 0) {
  146. u64 val = nr64(reg);
  147. if (!(val & bits))
  148. break;
  149. udelay(delay);
  150. }
  151. if (limit < 0)
  152. return -ENODEV;
  153. return 0;
  154. }
  155. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  156. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  157. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  158. })
  159. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  160. u64 bits, int limit, int delay,
  161. const char *reg_name)
  162. {
  163. int err;
  164. nw64(reg, bits);
  165. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  166. if (err)
  167. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  168. (unsigned long long)bits, reg_name,
  169. (unsigned long long)nr64(reg));
  170. return err;
  171. }
  172. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  173. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  174. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  175. })
  176. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  177. {
  178. u64 val = (u64) lp->timer;
  179. if (on)
  180. val |= LDG_IMGMT_ARM;
  181. nw64(LDG_IMGMT(lp->ldg_num), val);
  182. }
  183. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  184. {
  185. unsigned long mask_reg, bits;
  186. u64 val;
  187. if (ldn < 0 || ldn > LDN_MAX)
  188. return -EINVAL;
  189. if (ldn < 64) {
  190. mask_reg = LD_IM0(ldn);
  191. bits = LD_IM0_MASK;
  192. } else {
  193. mask_reg = LD_IM1(ldn - 64);
  194. bits = LD_IM1_MASK;
  195. }
  196. val = nr64(mask_reg);
  197. if (on)
  198. val &= ~bits;
  199. else
  200. val |= bits;
  201. nw64(mask_reg, val);
  202. return 0;
  203. }
  204. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  205. {
  206. struct niu_parent *parent = np->parent;
  207. int i;
  208. for (i = 0; i <= LDN_MAX; i++) {
  209. int err;
  210. if (parent->ldg_map[i] != lp->ldg_num)
  211. continue;
  212. err = niu_ldn_irq_enable(np, i, on);
  213. if (err)
  214. return err;
  215. }
  216. return 0;
  217. }
  218. static int niu_enable_interrupts(struct niu *np, int on)
  219. {
  220. int i;
  221. for (i = 0; i < np->num_ldg; i++) {
  222. struct niu_ldg *lp = &np->ldg[i];
  223. int err;
  224. err = niu_enable_ldn_in_ldg(np, lp, on);
  225. if (err)
  226. return err;
  227. }
  228. for (i = 0; i < np->num_ldg; i++)
  229. niu_ldg_rearm(np, &np->ldg[i], on);
  230. return 0;
  231. }
  232. static u32 phy_encode(u32 type, int port)
  233. {
  234. return type << (port * 2);
  235. }
  236. static u32 phy_decode(u32 val, int port)
  237. {
  238. return (val >> (port * 2)) & PORT_TYPE_MASK;
  239. }
  240. static int mdio_wait(struct niu *np)
  241. {
  242. int limit = 1000;
  243. u64 val;
  244. while (--limit > 0) {
  245. val = nr64(MIF_FRAME_OUTPUT);
  246. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  247. return val & MIF_FRAME_OUTPUT_DATA;
  248. udelay(10);
  249. }
  250. return -ENODEV;
  251. }
  252. static int mdio_read(struct niu *np, int port, int dev, int reg)
  253. {
  254. int err;
  255. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  256. err = mdio_wait(np);
  257. if (err < 0)
  258. return err;
  259. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  260. return mdio_wait(np);
  261. }
  262. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  263. {
  264. int err;
  265. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  266. err = mdio_wait(np);
  267. if (err < 0)
  268. return err;
  269. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  270. err = mdio_wait(np);
  271. if (err < 0)
  272. return err;
  273. return 0;
  274. }
  275. static int mii_read(struct niu *np, int port, int reg)
  276. {
  277. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  278. return mdio_wait(np);
  279. }
  280. static int mii_write(struct niu *np, int port, int reg, int data)
  281. {
  282. int err;
  283. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  284. err = mdio_wait(np);
  285. if (err < 0)
  286. return err;
  287. return 0;
  288. }
  289. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  290. {
  291. int err;
  292. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  293. ESR2_TI_PLL_TX_CFG_L(channel),
  294. val & 0xffff);
  295. if (!err)
  296. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  297. ESR2_TI_PLL_TX_CFG_H(channel),
  298. val >> 16);
  299. return err;
  300. }
  301. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  302. {
  303. int err;
  304. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  305. ESR2_TI_PLL_RX_CFG_L(channel),
  306. val & 0xffff);
  307. if (!err)
  308. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  309. ESR2_TI_PLL_RX_CFG_H(channel),
  310. val >> 16);
  311. return err;
  312. }
  313. /* Mode is always 10G fiber. */
  314. static int serdes_init_niu_10g_fiber(struct niu *np)
  315. {
  316. struct niu_link_config *lp = &np->link_config;
  317. u32 tx_cfg, rx_cfg;
  318. unsigned long i;
  319. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  320. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  321. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  322. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  323. if (lp->loopback_mode == LOOPBACK_PHY) {
  324. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  325. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  326. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  327. tx_cfg |= PLL_TX_CFG_ENTEST;
  328. rx_cfg |= PLL_RX_CFG_ENTEST;
  329. }
  330. /* Initialize all 4 lanes of the SERDES. */
  331. for (i = 0; i < 4; i++) {
  332. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  333. if (err)
  334. return err;
  335. }
  336. for (i = 0; i < 4; i++) {
  337. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  338. if (err)
  339. return err;
  340. }
  341. return 0;
  342. }
  343. static int serdes_init_niu_1g_serdes(struct niu *np)
  344. {
  345. struct niu_link_config *lp = &np->link_config;
  346. u16 pll_cfg, pll_sts;
  347. int max_retry = 100;
  348. u64 uninitialized_var(sig), mask, val;
  349. u32 tx_cfg, rx_cfg;
  350. unsigned long i;
  351. int err;
  352. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  353. PLL_TX_CFG_RATE_HALF);
  354. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  355. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  356. PLL_RX_CFG_RATE_HALF);
  357. if (np->port == 0)
  358. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  359. if (lp->loopback_mode == LOOPBACK_PHY) {
  360. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  361. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  362. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  363. tx_cfg |= PLL_TX_CFG_ENTEST;
  364. rx_cfg |= PLL_RX_CFG_ENTEST;
  365. }
  366. /* Initialize PLL for 1G */
  367. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  368. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  369. ESR2_TI_PLL_CFG_L, pll_cfg);
  370. if (err) {
  371. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  372. np->port, __func__);
  373. return err;
  374. }
  375. pll_sts = PLL_CFG_ENPLL;
  376. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  377. ESR2_TI_PLL_STS_L, pll_sts);
  378. if (err) {
  379. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  380. np->port, __func__);
  381. return err;
  382. }
  383. udelay(200);
  384. /* Initialize all 4 lanes of the SERDES. */
  385. for (i = 0; i < 4; i++) {
  386. err = esr2_set_tx_cfg(np, i, tx_cfg);
  387. if (err)
  388. return err;
  389. }
  390. for (i = 0; i < 4; i++) {
  391. err = esr2_set_rx_cfg(np, i, rx_cfg);
  392. if (err)
  393. return err;
  394. }
  395. switch (np->port) {
  396. case 0:
  397. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  398. mask = val;
  399. break;
  400. case 1:
  401. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  402. mask = val;
  403. break;
  404. default:
  405. return -EINVAL;
  406. }
  407. while (max_retry--) {
  408. sig = nr64(ESR_INT_SIGNALS);
  409. if ((sig & mask) == val)
  410. break;
  411. mdelay(500);
  412. }
  413. if ((sig & mask) != val) {
  414. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  415. np->port, (int)(sig & mask), (int)val);
  416. return -ENODEV;
  417. }
  418. return 0;
  419. }
  420. static int serdes_init_niu_10g_serdes(struct niu *np)
  421. {
  422. struct niu_link_config *lp = &np->link_config;
  423. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  424. int max_retry = 100;
  425. u64 uninitialized_var(sig), mask, val;
  426. unsigned long i;
  427. int err;
  428. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  429. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  430. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  431. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  432. if (lp->loopback_mode == LOOPBACK_PHY) {
  433. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  434. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  435. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  436. tx_cfg |= PLL_TX_CFG_ENTEST;
  437. rx_cfg |= PLL_RX_CFG_ENTEST;
  438. }
  439. /* Initialize PLL for 10G */
  440. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  441. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  442. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  443. if (err) {
  444. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  445. np->port, __func__);
  446. return err;
  447. }
  448. pll_sts = PLL_CFG_ENPLL;
  449. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  450. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  451. if (err) {
  452. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  453. np->port, __func__);
  454. return err;
  455. }
  456. udelay(200);
  457. /* Initialize all 4 lanes of the SERDES. */
  458. for (i = 0; i < 4; i++) {
  459. err = esr2_set_tx_cfg(np, i, tx_cfg);
  460. if (err)
  461. return err;
  462. }
  463. for (i = 0; i < 4; i++) {
  464. err = esr2_set_rx_cfg(np, i, rx_cfg);
  465. if (err)
  466. return err;
  467. }
  468. /* check if serdes is ready */
  469. switch (np->port) {
  470. case 0:
  471. mask = ESR_INT_SIGNALS_P0_BITS;
  472. val = (ESR_INT_SRDY0_P0 |
  473. ESR_INT_DET0_P0 |
  474. ESR_INT_XSRDY_P0 |
  475. ESR_INT_XDP_P0_CH3 |
  476. ESR_INT_XDP_P0_CH2 |
  477. ESR_INT_XDP_P0_CH1 |
  478. ESR_INT_XDP_P0_CH0);
  479. break;
  480. case 1:
  481. mask = ESR_INT_SIGNALS_P1_BITS;
  482. val = (ESR_INT_SRDY0_P1 |
  483. ESR_INT_DET0_P1 |
  484. ESR_INT_XSRDY_P1 |
  485. ESR_INT_XDP_P1_CH3 |
  486. ESR_INT_XDP_P1_CH2 |
  487. ESR_INT_XDP_P1_CH1 |
  488. ESR_INT_XDP_P1_CH0);
  489. break;
  490. default:
  491. return -EINVAL;
  492. }
  493. while (max_retry--) {
  494. sig = nr64(ESR_INT_SIGNALS);
  495. if ((sig & mask) == val)
  496. break;
  497. mdelay(500);
  498. }
  499. if ((sig & mask) != val) {
  500. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  501. np->port, (int)(sig & mask), (int)val);
  502. /* 10G failed, try initializing at 1G */
  503. err = serdes_init_niu_1g_serdes(np);
  504. if (!err) {
  505. np->flags &= ~NIU_FLAGS_10G;
  506. np->mac_xcvr = MAC_XCVR_PCS;
  507. } else {
  508. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  509. np->port);
  510. return -ENODEV;
  511. }
  512. }
  513. return 0;
  514. }
  515. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  516. {
  517. int err;
  518. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  519. if (err >= 0) {
  520. *val = (err & 0xffff);
  521. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  522. ESR_RXTX_CTRL_H(chan));
  523. if (err >= 0)
  524. *val |= ((err & 0xffff) << 16);
  525. err = 0;
  526. }
  527. return err;
  528. }
  529. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  530. {
  531. int err;
  532. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  533. ESR_GLUE_CTRL0_L(chan));
  534. if (err >= 0) {
  535. *val = (err & 0xffff);
  536. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  537. ESR_GLUE_CTRL0_H(chan));
  538. if (err >= 0) {
  539. *val |= ((err & 0xffff) << 16);
  540. err = 0;
  541. }
  542. }
  543. return err;
  544. }
  545. static int esr_read_reset(struct niu *np, u32 *val)
  546. {
  547. int err;
  548. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  549. ESR_RXTX_RESET_CTRL_L);
  550. if (err >= 0) {
  551. *val = (err & 0xffff);
  552. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  553. ESR_RXTX_RESET_CTRL_H);
  554. if (err >= 0) {
  555. *val |= ((err & 0xffff) << 16);
  556. err = 0;
  557. }
  558. }
  559. return err;
  560. }
  561. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  562. {
  563. int err;
  564. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  565. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  566. if (!err)
  567. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  568. ESR_RXTX_CTRL_H(chan), (val >> 16));
  569. return err;
  570. }
  571. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  572. {
  573. int err;
  574. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  575. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  576. if (!err)
  577. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  578. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  579. return err;
  580. }
  581. static int esr_reset(struct niu *np)
  582. {
  583. u32 uninitialized_var(reset);
  584. int err;
  585. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  586. ESR_RXTX_RESET_CTRL_L, 0x0000);
  587. if (err)
  588. return err;
  589. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  590. ESR_RXTX_RESET_CTRL_H, 0xffff);
  591. if (err)
  592. return err;
  593. udelay(200);
  594. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  595. ESR_RXTX_RESET_CTRL_L, 0xffff);
  596. if (err)
  597. return err;
  598. udelay(200);
  599. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  600. ESR_RXTX_RESET_CTRL_H, 0x0000);
  601. if (err)
  602. return err;
  603. udelay(200);
  604. err = esr_read_reset(np, &reset);
  605. if (err)
  606. return err;
  607. if (reset != 0) {
  608. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  609. np->port, reset);
  610. return -ENODEV;
  611. }
  612. return 0;
  613. }
  614. static int serdes_init_10g(struct niu *np)
  615. {
  616. struct niu_link_config *lp = &np->link_config;
  617. unsigned long ctrl_reg, test_cfg_reg, i;
  618. u64 ctrl_val, test_cfg_val, sig, mask, val;
  619. int err;
  620. switch (np->port) {
  621. case 0:
  622. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  623. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  624. break;
  625. case 1:
  626. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  627. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  628. break;
  629. default:
  630. return -EINVAL;
  631. }
  632. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  633. ENET_SERDES_CTRL_SDET_1 |
  634. ENET_SERDES_CTRL_SDET_2 |
  635. ENET_SERDES_CTRL_SDET_3 |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  637. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  638. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  639. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  641. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  642. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  643. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  644. test_cfg_val = 0;
  645. if (lp->loopback_mode == LOOPBACK_PHY) {
  646. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  647. ENET_SERDES_TEST_MD_0_SHIFT) |
  648. (ENET_TEST_MD_PAD_LOOPBACK <<
  649. ENET_SERDES_TEST_MD_1_SHIFT) |
  650. (ENET_TEST_MD_PAD_LOOPBACK <<
  651. ENET_SERDES_TEST_MD_2_SHIFT) |
  652. (ENET_TEST_MD_PAD_LOOPBACK <<
  653. ENET_SERDES_TEST_MD_3_SHIFT));
  654. }
  655. nw64(ctrl_reg, ctrl_val);
  656. nw64(test_cfg_reg, test_cfg_val);
  657. /* Initialize all 4 lanes of the SERDES. */
  658. for (i = 0; i < 4; i++) {
  659. u32 rxtx_ctrl, glue0;
  660. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  661. if (err)
  662. return err;
  663. err = esr_read_glue0(np, i, &glue0);
  664. if (err)
  665. return err;
  666. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  667. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  668. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  669. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  670. ESR_GLUE_CTRL0_THCNT |
  671. ESR_GLUE_CTRL0_BLTIME);
  672. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  673. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  674. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  675. (BLTIME_300_CYCLES <<
  676. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  677. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  678. if (err)
  679. return err;
  680. err = esr_write_glue0(np, i, glue0);
  681. if (err)
  682. return err;
  683. }
  684. err = esr_reset(np);
  685. if (err)
  686. return err;
  687. sig = nr64(ESR_INT_SIGNALS);
  688. switch (np->port) {
  689. case 0:
  690. mask = ESR_INT_SIGNALS_P0_BITS;
  691. val = (ESR_INT_SRDY0_P0 |
  692. ESR_INT_DET0_P0 |
  693. ESR_INT_XSRDY_P0 |
  694. ESR_INT_XDP_P0_CH3 |
  695. ESR_INT_XDP_P0_CH2 |
  696. ESR_INT_XDP_P0_CH1 |
  697. ESR_INT_XDP_P0_CH0);
  698. break;
  699. case 1:
  700. mask = ESR_INT_SIGNALS_P1_BITS;
  701. val = (ESR_INT_SRDY0_P1 |
  702. ESR_INT_DET0_P1 |
  703. ESR_INT_XSRDY_P1 |
  704. ESR_INT_XDP_P1_CH3 |
  705. ESR_INT_XDP_P1_CH2 |
  706. ESR_INT_XDP_P1_CH1 |
  707. ESR_INT_XDP_P1_CH0);
  708. break;
  709. default:
  710. return -EINVAL;
  711. }
  712. if ((sig & mask) != val) {
  713. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  714. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  715. return 0;
  716. }
  717. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  718. np->port, (int)(sig & mask), (int)val);
  719. return -ENODEV;
  720. }
  721. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  722. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  723. return 0;
  724. }
  725. static int serdes_init_1g(struct niu *np)
  726. {
  727. u64 val;
  728. val = nr64(ENET_SERDES_1_PLL_CFG);
  729. val &= ~ENET_SERDES_PLL_FBDIV2;
  730. switch (np->port) {
  731. case 0:
  732. val |= ENET_SERDES_PLL_HRATE0;
  733. break;
  734. case 1:
  735. val |= ENET_SERDES_PLL_HRATE1;
  736. break;
  737. case 2:
  738. val |= ENET_SERDES_PLL_HRATE2;
  739. break;
  740. case 3:
  741. val |= ENET_SERDES_PLL_HRATE3;
  742. break;
  743. default:
  744. return -EINVAL;
  745. }
  746. nw64(ENET_SERDES_1_PLL_CFG, val);
  747. return 0;
  748. }
  749. static int serdes_init_1g_serdes(struct niu *np)
  750. {
  751. struct niu_link_config *lp = &np->link_config;
  752. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  753. u64 ctrl_val, test_cfg_val, sig, mask, val;
  754. int err;
  755. u64 reset_val, val_rd;
  756. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  757. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  758. ENET_SERDES_PLL_FBDIV0;
  759. switch (np->port) {
  760. case 0:
  761. reset_val = ENET_SERDES_RESET_0;
  762. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  763. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  764. pll_cfg = ENET_SERDES_0_PLL_CFG;
  765. break;
  766. case 1:
  767. reset_val = ENET_SERDES_RESET_1;
  768. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  769. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  770. pll_cfg = ENET_SERDES_1_PLL_CFG;
  771. break;
  772. default:
  773. return -EINVAL;
  774. }
  775. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  776. ENET_SERDES_CTRL_SDET_1 |
  777. ENET_SERDES_CTRL_SDET_2 |
  778. ENET_SERDES_CTRL_SDET_3 |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  780. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  781. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  782. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  784. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  785. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  786. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  787. test_cfg_val = 0;
  788. if (lp->loopback_mode == LOOPBACK_PHY) {
  789. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  790. ENET_SERDES_TEST_MD_0_SHIFT) |
  791. (ENET_TEST_MD_PAD_LOOPBACK <<
  792. ENET_SERDES_TEST_MD_1_SHIFT) |
  793. (ENET_TEST_MD_PAD_LOOPBACK <<
  794. ENET_SERDES_TEST_MD_2_SHIFT) |
  795. (ENET_TEST_MD_PAD_LOOPBACK <<
  796. ENET_SERDES_TEST_MD_3_SHIFT));
  797. }
  798. nw64(ENET_SERDES_RESET, reset_val);
  799. mdelay(20);
  800. val_rd = nr64(ENET_SERDES_RESET);
  801. val_rd &= ~reset_val;
  802. nw64(pll_cfg, val);
  803. nw64(ctrl_reg, ctrl_val);
  804. nw64(test_cfg_reg, test_cfg_val);
  805. nw64(ENET_SERDES_RESET, val_rd);
  806. mdelay(2000);
  807. /* Initialize all 4 lanes of the SERDES. */
  808. for (i = 0; i < 4; i++) {
  809. u32 rxtx_ctrl, glue0;
  810. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  811. if (err)
  812. return err;
  813. err = esr_read_glue0(np, i, &glue0);
  814. if (err)
  815. return err;
  816. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  817. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  818. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  819. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  820. ESR_GLUE_CTRL0_THCNT |
  821. ESR_GLUE_CTRL0_BLTIME);
  822. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  823. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  824. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  825. (BLTIME_300_CYCLES <<
  826. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  827. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  828. if (err)
  829. return err;
  830. err = esr_write_glue0(np, i, glue0);
  831. if (err)
  832. return err;
  833. }
  834. sig = nr64(ESR_INT_SIGNALS);
  835. switch (np->port) {
  836. case 0:
  837. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  838. mask = val;
  839. break;
  840. case 1:
  841. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  842. mask = val;
  843. break;
  844. default:
  845. return -EINVAL;
  846. }
  847. if ((sig & mask) != val) {
  848. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  849. np->port, (int)(sig & mask), (int)val);
  850. return -ENODEV;
  851. }
  852. return 0;
  853. }
  854. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  855. {
  856. struct niu_link_config *lp = &np->link_config;
  857. int link_up;
  858. u64 val;
  859. u16 current_speed;
  860. unsigned long flags;
  861. u8 current_duplex;
  862. link_up = 0;
  863. current_speed = SPEED_INVALID;
  864. current_duplex = DUPLEX_INVALID;
  865. spin_lock_irqsave(&np->lock, flags);
  866. val = nr64_pcs(PCS_MII_STAT);
  867. if (val & PCS_MII_STAT_LINK_STATUS) {
  868. link_up = 1;
  869. current_speed = SPEED_1000;
  870. current_duplex = DUPLEX_FULL;
  871. }
  872. lp->active_speed = current_speed;
  873. lp->active_duplex = current_duplex;
  874. spin_unlock_irqrestore(&np->lock, flags);
  875. *link_up_p = link_up;
  876. return 0;
  877. }
  878. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  879. {
  880. unsigned long flags;
  881. struct niu_link_config *lp = &np->link_config;
  882. int link_up = 0;
  883. int link_ok = 1;
  884. u64 val, val2;
  885. u16 current_speed;
  886. u8 current_duplex;
  887. if (!(np->flags & NIU_FLAGS_10G))
  888. return link_status_1g_serdes(np, link_up_p);
  889. current_speed = SPEED_INVALID;
  890. current_duplex = DUPLEX_INVALID;
  891. spin_lock_irqsave(&np->lock, flags);
  892. val = nr64_xpcs(XPCS_STATUS(0));
  893. val2 = nr64_mac(XMAC_INTER2);
  894. if (val2 & 0x01000000)
  895. link_ok = 0;
  896. if ((val & 0x1000ULL) && link_ok) {
  897. link_up = 1;
  898. current_speed = SPEED_10000;
  899. current_duplex = DUPLEX_FULL;
  900. }
  901. lp->active_speed = current_speed;
  902. lp->active_duplex = current_duplex;
  903. spin_unlock_irqrestore(&np->lock, flags);
  904. *link_up_p = link_up;
  905. return 0;
  906. }
  907. static int link_status_mii(struct niu *np, int *link_up_p)
  908. {
  909. struct niu_link_config *lp = &np->link_config;
  910. int err;
  911. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  912. int supported, advertising, active_speed, active_duplex;
  913. err = mii_read(np, np->phy_addr, MII_BMCR);
  914. if (unlikely(err < 0))
  915. return err;
  916. bmcr = err;
  917. err = mii_read(np, np->phy_addr, MII_BMSR);
  918. if (unlikely(err < 0))
  919. return err;
  920. bmsr = err;
  921. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  922. if (unlikely(err < 0))
  923. return err;
  924. advert = err;
  925. err = mii_read(np, np->phy_addr, MII_LPA);
  926. if (unlikely(err < 0))
  927. return err;
  928. lpa = err;
  929. if (likely(bmsr & BMSR_ESTATEN)) {
  930. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  931. if (unlikely(err < 0))
  932. return err;
  933. estatus = err;
  934. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  935. if (unlikely(err < 0))
  936. return err;
  937. ctrl1000 = err;
  938. err = mii_read(np, np->phy_addr, MII_STAT1000);
  939. if (unlikely(err < 0))
  940. return err;
  941. stat1000 = err;
  942. } else
  943. estatus = ctrl1000 = stat1000 = 0;
  944. supported = 0;
  945. if (bmsr & BMSR_ANEGCAPABLE)
  946. supported |= SUPPORTED_Autoneg;
  947. if (bmsr & BMSR_10HALF)
  948. supported |= SUPPORTED_10baseT_Half;
  949. if (bmsr & BMSR_10FULL)
  950. supported |= SUPPORTED_10baseT_Full;
  951. if (bmsr & BMSR_100HALF)
  952. supported |= SUPPORTED_100baseT_Half;
  953. if (bmsr & BMSR_100FULL)
  954. supported |= SUPPORTED_100baseT_Full;
  955. if (estatus & ESTATUS_1000_THALF)
  956. supported |= SUPPORTED_1000baseT_Half;
  957. if (estatus & ESTATUS_1000_TFULL)
  958. supported |= SUPPORTED_1000baseT_Full;
  959. lp->supported = supported;
  960. advertising = mii_adv_to_ethtool_adv_t(advert);
  961. advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000);
  962. if (bmcr & BMCR_ANENABLE) {
  963. int neg, neg1000;
  964. lp->active_autoneg = 1;
  965. advertising |= ADVERTISED_Autoneg;
  966. neg = advert & lpa;
  967. neg1000 = (ctrl1000 << 2) & stat1000;
  968. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  969. active_speed = SPEED_1000;
  970. else if (neg & LPA_100)
  971. active_speed = SPEED_100;
  972. else if (neg & (LPA_10HALF | LPA_10FULL))
  973. active_speed = SPEED_10;
  974. else
  975. active_speed = SPEED_INVALID;
  976. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  977. active_duplex = DUPLEX_FULL;
  978. else if (active_speed != SPEED_INVALID)
  979. active_duplex = DUPLEX_HALF;
  980. else
  981. active_duplex = DUPLEX_INVALID;
  982. } else {
  983. lp->active_autoneg = 0;
  984. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  985. active_speed = SPEED_1000;
  986. else if (bmcr & BMCR_SPEED100)
  987. active_speed = SPEED_100;
  988. else
  989. active_speed = SPEED_10;
  990. if (bmcr & BMCR_FULLDPLX)
  991. active_duplex = DUPLEX_FULL;
  992. else
  993. active_duplex = DUPLEX_HALF;
  994. }
  995. lp->active_advertising = advertising;
  996. lp->active_speed = active_speed;
  997. lp->active_duplex = active_duplex;
  998. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  999. return 0;
  1000. }
  1001. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1002. {
  1003. struct niu_link_config *lp = &np->link_config;
  1004. u16 current_speed, bmsr;
  1005. unsigned long flags;
  1006. u8 current_duplex;
  1007. int err, link_up;
  1008. link_up = 0;
  1009. current_speed = SPEED_INVALID;
  1010. current_duplex = DUPLEX_INVALID;
  1011. spin_lock_irqsave(&np->lock, flags);
  1012. err = -EINVAL;
  1013. err = mii_read(np, np->phy_addr, MII_BMSR);
  1014. if (err < 0)
  1015. goto out;
  1016. bmsr = err;
  1017. if (bmsr & BMSR_LSTATUS) {
  1018. u16 adv, lpa;
  1019. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1020. if (err < 0)
  1021. goto out;
  1022. adv = err;
  1023. err = mii_read(np, np->phy_addr, MII_LPA);
  1024. if (err < 0)
  1025. goto out;
  1026. lpa = err;
  1027. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1028. if (err < 0)
  1029. goto out;
  1030. link_up = 1;
  1031. current_speed = SPEED_1000;
  1032. current_duplex = DUPLEX_FULL;
  1033. }
  1034. lp->active_speed = current_speed;
  1035. lp->active_duplex = current_duplex;
  1036. err = 0;
  1037. out:
  1038. spin_unlock_irqrestore(&np->lock, flags);
  1039. *link_up_p = link_up;
  1040. return err;
  1041. }
  1042. static int link_status_1g(struct niu *np, int *link_up_p)
  1043. {
  1044. struct niu_link_config *lp = &np->link_config;
  1045. unsigned long flags;
  1046. int err;
  1047. spin_lock_irqsave(&np->lock, flags);
  1048. err = link_status_mii(np, link_up_p);
  1049. lp->supported |= SUPPORTED_TP;
  1050. lp->active_advertising |= ADVERTISED_TP;
  1051. spin_unlock_irqrestore(&np->lock, flags);
  1052. return err;
  1053. }
  1054. static int bcm8704_reset(struct niu *np)
  1055. {
  1056. int err, limit;
  1057. err = mdio_read(np, np->phy_addr,
  1058. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1059. if (err < 0 || err == 0xffff)
  1060. return err;
  1061. err |= BMCR_RESET;
  1062. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1063. MII_BMCR, err);
  1064. if (err)
  1065. return err;
  1066. limit = 1000;
  1067. while (--limit >= 0) {
  1068. err = mdio_read(np, np->phy_addr,
  1069. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1070. if (err < 0)
  1071. return err;
  1072. if (!(err & BMCR_RESET))
  1073. break;
  1074. }
  1075. if (limit < 0) {
  1076. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1077. np->port, (err & 0xffff));
  1078. return -ENODEV;
  1079. }
  1080. return 0;
  1081. }
  1082. /* When written, certain PHY registers need to be read back twice
  1083. * in order for the bits to settle properly.
  1084. */
  1085. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1086. {
  1087. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1088. if (err < 0)
  1089. return err;
  1090. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1091. if (err < 0)
  1092. return err;
  1093. return 0;
  1094. }
  1095. static int bcm8706_init_user_dev3(struct niu *np)
  1096. {
  1097. int err;
  1098. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1099. BCM8704_USER_OPT_DIGITAL_CTRL);
  1100. if (err < 0)
  1101. return err;
  1102. err &= ~USER_ODIG_CTRL_GPIOS;
  1103. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1104. err |= USER_ODIG_CTRL_RESV2;
  1105. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1106. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1107. if (err)
  1108. return err;
  1109. mdelay(1000);
  1110. return 0;
  1111. }
  1112. static int bcm8704_init_user_dev3(struct niu *np)
  1113. {
  1114. int err;
  1115. err = mdio_write(np, np->phy_addr,
  1116. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1117. (USER_CONTROL_OPTXRST_LVL |
  1118. USER_CONTROL_OPBIASFLT_LVL |
  1119. USER_CONTROL_OBTMPFLT_LVL |
  1120. USER_CONTROL_OPPRFLT_LVL |
  1121. USER_CONTROL_OPTXFLT_LVL |
  1122. USER_CONTROL_OPRXLOS_LVL |
  1123. USER_CONTROL_OPRXFLT_LVL |
  1124. USER_CONTROL_OPTXON_LVL |
  1125. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1126. if (err)
  1127. return err;
  1128. err = mdio_write(np, np->phy_addr,
  1129. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1130. (USER_PMD_TX_CTL_XFP_CLKEN |
  1131. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1132. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1133. USER_PMD_TX_CTL_TSCK_LPWREN));
  1134. if (err)
  1135. return err;
  1136. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1137. if (err)
  1138. return err;
  1139. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1140. if (err)
  1141. return err;
  1142. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1143. BCM8704_USER_OPT_DIGITAL_CTRL);
  1144. if (err < 0)
  1145. return err;
  1146. err &= ~USER_ODIG_CTRL_GPIOS;
  1147. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1148. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1149. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1150. if (err)
  1151. return err;
  1152. mdelay(1000);
  1153. return 0;
  1154. }
  1155. static int mrvl88x2011_act_led(struct niu *np, int val)
  1156. {
  1157. int err;
  1158. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1159. MRVL88X2011_LED_8_TO_11_CTL);
  1160. if (err < 0)
  1161. return err;
  1162. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1163. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1164. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1165. MRVL88X2011_LED_8_TO_11_CTL, err);
  1166. }
  1167. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1168. {
  1169. int err;
  1170. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1171. MRVL88X2011_LED_BLINK_CTL);
  1172. if (err >= 0) {
  1173. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1174. err |= (rate << 4);
  1175. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1176. MRVL88X2011_LED_BLINK_CTL, err);
  1177. }
  1178. return err;
  1179. }
  1180. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1181. {
  1182. int err;
  1183. /* Set LED functions */
  1184. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1185. if (err)
  1186. return err;
  1187. /* led activity */
  1188. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1189. if (err)
  1190. return err;
  1191. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1192. MRVL88X2011_GENERAL_CTL);
  1193. if (err < 0)
  1194. return err;
  1195. err |= MRVL88X2011_ENA_XFPREFCLK;
  1196. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1197. MRVL88X2011_GENERAL_CTL, err);
  1198. if (err < 0)
  1199. return err;
  1200. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1201. MRVL88X2011_PMA_PMD_CTL_1);
  1202. if (err < 0)
  1203. return err;
  1204. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1205. err |= MRVL88X2011_LOOPBACK;
  1206. else
  1207. err &= ~MRVL88X2011_LOOPBACK;
  1208. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1209. MRVL88X2011_PMA_PMD_CTL_1, err);
  1210. if (err < 0)
  1211. return err;
  1212. /* Enable PMD */
  1213. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1214. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1215. }
  1216. static int xcvr_diag_bcm870x(struct niu *np)
  1217. {
  1218. u16 analog_stat0, tx_alarm_status;
  1219. int err = 0;
  1220. #if 1
  1221. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1222. MII_STAT1000);
  1223. if (err < 0)
  1224. return err;
  1225. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1226. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1227. if (err < 0)
  1228. return err;
  1229. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1230. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1231. MII_NWAYTEST);
  1232. if (err < 0)
  1233. return err;
  1234. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1235. #endif
  1236. /* XXX dig this out it might not be so useful XXX */
  1237. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1238. BCM8704_USER_ANALOG_STATUS0);
  1239. if (err < 0)
  1240. return err;
  1241. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1242. BCM8704_USER_ANALOG_STATUS0);
  1243. if (err < 0)
  1244. return err;
  1245. analog_stat0 = err;
  1246. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1247. BCM8704_USER_TX_ALARM_STATUS);
  1248. if (err < 0)
  1249. return err;
  1250. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1251. BCM8704_USER_TX_ALARM_STATUS);
  1252. if (err < 0)
  1253. return err;
  1254. tx_alarm_status = err;
  1255. if (analog_stat0 != 0x03fc) {
  1256. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1257. pr_info("Port %u cable not connected or bad cable\n",
  1258. np->port);
  1259. } else if (analog_stat0 == 0x639c) {
  1260. pr_info("Port %u optical module is bad or missing\n",
  1261. np->port);
  1262. }
  1263. }
  1264. return 0;
  1265. }
  1266. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1267. {
  1268. struct niu_link_config *lp = &np->link_config;
  1269. int err;
  1270. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1271. MII_BMCR);
  1272. if (err < 0)
  1273. return err;
  1274. err &= ~BMCR_LOOPBACK;
  1275. if (lp->loopback_mode == LOOPBACK_MAC)
  1276. err |= BMCR_LOOPBACK;
  1277. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1278. MII_BMCR, err);
  1279. if (err)
  1280. return err;
  1281. return 0;
  1282. }
  1283. static int xcvr_init_10g_bcm8706(struct niu *np)
  1284. {
  1285. int err = 0;
  1286. u64 val;
  1287. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1288. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1289. return err;
  1290. val = nr64_mac(XMAC_CONFIG);
  1291. val &= ~XMAC_CONFIG_LED_POLARITY;
  1292. val |= XMAC_CONFIG_FORCE_LED_ON;
  1293. nw64_mac(XMAC_CONFIG, val);
  1294. val = nr64(MIF_CONFIG);
  1295. val |= MIF_CONFIG_INDIRECT_MODE;
  1296. nw64(MIF_CONFIG, val);
  1297. err = bcm8704_reset(np);
  1298. if (err)
  1299. return err;
  1300. err = xcvr_10g_set_lb_bcm870x(np);
  1301. if (err)
  1302. return err;
  1303. err = bcm8706_init_user_dev3(np);
  1304. if (err)
  1305. return err;
  1306. err = xcvr_diag_bcm870x(np);
  1307. if (err)
  1308. return err;
  1309. return 0;
  1310. }
  1311. static int xcvr_init_10g_bcm8704(struct niu *np)
  1312. {
  1313. int err;
  1314. err = bcm8704_reset(np);
  1315. if (err)
  1316. return err;
  1317. err = bcm8704_init_user_dev3(np);
  1318. if (err)
  1319. return err;
  1320. err = xcvr_10g_set_lb_bcm870x(np);
  1321. if (err)
  1322. return err;
  1323. err = xcvr_diag_bcm870x(np);
  1324. if (err)
  1325. return err;
  1326. return 0;
  1327. }
  1328. static int xcvr_init_10g(struct niu *np)
  1329. {
  1330. int phy_id, err;
  1331. u64 val;
  1332. val = nr64_mac(XMAC_CONFIG);
  1333. val &= ~XMAC_CONFIG_LED_POLARITY;
  1334. val |= XMAC_CONFIG_FORCE_LED_ON;
  1335. nw64_mac(XMAC_CONFIG, val);
  1336. /* XXX shared resource, lock parent XXX */
  1337. val = nr64(MIF_CONFIG);
  1338. val |= MIF_CONFIG_INDIRECT_MODE;
  1339. nw64(MIF_CONFIG, val);
  1340. phy_id = phy_decode(np->parent->port_phy, np->port);
  1341. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1342. /* handle different phy types */
  1343. switch (phy_id & NIU_PHY_ID_MASK) {
  1344. case NIU_PHY_ID_MRVL88X2011:
  1345. err = xcvr_init_10g_mrvl88x2011(np);
  1346. break;
  1347. default: /* bcom 8704 */
  1348. err = xcvr_init_10g_bcm8704(np);
  1349. break;
  1350. }
  1351. return err;
  1352. }
  1353. static int mii_reset(struct niu *np)
  1354. {
  1355. int limit, err;
  1356. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1357. if (err)
  1358. return err;
  1359. limit = 1000;
  1360. while (--limit >= 0) {
  1361. udelay(500);
  1362. err = mii_read(np, np->phy_addr, MII_BMCR);
  1363. if (err < 0)
  1364. return err;
  1365. if (!(err & BMCR_RESET))
  1366. break;
  1367. }
  1368. if (limit < 0) {
  1369. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1370. np->port, err);
  1371. return -ENODEV;
  1372. }
  1373. return 0;
  1374. }
  1375. static int xcvr_init_1g_rgmii(struct niu *np)
  1376. {
  1377. int err;
  1378. u64 val;
  1379. u16 bmcr, bmsr, estat;
  1380. val = nr64(MIF_CONFIG);
  1381. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1382. nw64(MIF_CONFIG, val);
  1383. err = mii_reset(np);
  1384. if (err)
  1385. return err;
  1386. err = mii_read(np, np->phy_addr, MII_BMSR);
  1387. if (err < 0)
  1388. return err;
  1389. bmsr = err;
  1390. estat = 0;
  1391. if (bmsr & BMSR_ESTATEN) {
  1392. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1393. if (err < 0)
  1394. return err;
  1395. estat = err;
  1396. }
  1397. bmcr = 0;
  1398. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1399. if (err)
  1400. return err;
  1401. if (bmsr & BMSR_ESTATEN) {
  1402. u16 ctrl1000 = 0;
  1403. if (estat & ESTATUS_1000_TFULL)
  1404. ctrl1000 |= ADVERTISE_1000FULL;
  1405. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1406. if (err)
  1407. return err;
  1408. }
  1409. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1410. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1411. if (err)
  1412. return err;
  1413. err = mii_read(np, np->phy_addr, MII_BMCR);
  1414. if (err < 0)
  1415. return err;
  1416. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1417. err = mii_read(np, np->phy_addr, MII_BMSR);
  1418. if (err < 0)
  1419. return err;
  1420. return 0;
  1421. }
  1422. static int mii_init_common(struct niu *np)
  1423. {
  1424. struct niu_link_config *lp = &np->link_config;
  1425. u16 bmcr, bmsr, adv, estat;
  1426. int err;
  1427. err = mii_reset(np);
  1428. if (err)
  1429. return err;
  1430. err = mii_read(np, np->phy_addr, MII_BMSR);
  1431. if (err < 0)
  1432. return err;
  1433. bmsr = err;
  1434. estat = 0;
  1435. if (bmsr & BMSR_ESTATEN) {
  1436. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1437. if (err < 0)
  1438. return err;
  1439. estat = err;
  1440. }
  1441. bmcr = 0;
  1442. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1443. if (err)
  1444. return err;
  1445. if (lp->loopback_mode == LOOPBACK_MAC) {
  1446. bmcr |= BMCR_LOOPBACK;
  1447. if (lp->active_speed == SPEED_1000)
  1448. bmcr |= BMCR_SPEED1000;
  1449. if (lp->active_duplex == DUPLEX_FULL)
  1450. bmcr |= BMCR_FULLDPLX;
  1451. }
  1452. if (lp->loopback_mode == LOOPBACK_PHY) {
  1453. u16 aux;
  1454. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1455. BCM5464R_AUX_CTL_WRITE_1);
  1456. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1457. if (err)
  1458. return err;
  1459. }
  1460. if (lp->autoneg) {
  1461. u16 ctrl1000;
  1462. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1463. if ((bmsr & BMSR_10HALF) &&
  1464. (lp->advertising & ADVERTISED_10baseT_Half))
  1465. adv |= ADVERTISE_10HALF;
  1466. if ((bmsr & BMSR_10FULL) &&
  1467. (lp->advertising & ADVERTISED_10baseT_Full))
  1468. adv |= ADVERTISE_10FULL;
  1469. if ((bmsr & BMSR_100HALF) &&
  1470. (lp->advertising & ADVERTISED_100baseT_Half))
  1471. adv |= ADVERTISE_100HALF;
  1472. if ((bmsr & BMSR_100FULL) &&
  1473. (lp->advertising & ADVERTISED_100baseT_Full))
  1474. adv |= ADVERTISE_100FULL;
  1475. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1476. if (err)
  1477. return err;
  1478. if (likely(bmsr & BMSR_ESTATEN)) {
  1479. ctrl1000 = 0;
  1480. if ((estat & ESTATUS_1000_THALF) &&
  1481. (lp->advertising & ADVERTISED_1000baseT_Half))
  1482. ctrl1000 |= ADVERTISE_1000HALF;
  1483. if ((estat & ESTATUS_1000_TFULL) &&
  1484. (lp->advertising & ADVERTISED_1000baseT_Full))
  1485. ctrl1000 |= ADVERTISE_1000FULL;
  1486. err = mii_write(np, np->phy_addr,
  1487. MII_CTRL1000, ctrl1000);
  1488. if (err)
  1489. return err;
  1490. }
  1491. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1492. } else {
  1493. /* !lp->autoneg */
  1494. int fulldpx;
  1495. if (lp->duplex == DUPLEX_FULL) {
  1496. bmcr |= BMCR_FULLDPLX;
  1497. fulldpx = 1;
  1498. } else if (lp->duplex == DUPLEX_HALF)
  1499. fulldpx = 0;
  1500. else
  1501. return -EINVAL;
  1502. if (lp->speed == SPEED_1000) {
  1503. /* if X-full requested while not supported, or
  1504. X-half requested while not supported... */
  1505. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1506. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1507. return -EINVAL;
  1508. bmcr |= BMCR_SPEED1000;
  1509. } else if (lp->speed == SPEED_100) {
  1510. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1511. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1512. return -EINVAL;
  1513. bmcr |= BMCR_SPEED100;
  1514. } else if (lp->speed == SPEED_10) {
  1515. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1516. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1517. return -EINVAL;
  1518. } else
  1519. return -EINVAL;
  1520. }
  1521. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1522. if (err)
  1523. return err;
  1524. #if 0
  1525. err = mii_read(np, np->phy_addr, MII_BMCR);
  1526. if (err < 0)
  1527. return err;
  1528. bmcr = err;
  1529. err = mii_read(np, np->phy_addr, MII_BMSR);
  1530. if (err < 0)
  1531. return err;
  1532. bmsr = err;
  1533. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1534. np->port, bmcr, bmsr);
  1535. #endif
  1536. return 0;
  1537. }
  1538. static int xcvr_init_1g(struct niu *np)
  1539. {
  1540. u64 val;
  1541. /* XXX shared resource, lock parent XXX */
  1542. val = nr64(MIF_CONFIG);
  1543. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1544. nw64(MIF_CONFIG, val);
  1545. return mii_init_common(np);
  1546. }
  1547. static int niu_xcvr_init(struct niu *np)
  1548. {
  1549. const struct niu_phy_ops *ops = np->phy_ops;
  1550. int err;
  1551. err = 0;
  1552. if (ops->xcvr_init)
  1553. err = ops->xcvr_init(np);
  1554. return err;
  1555. }
  1556. static int niu_serdes_init(struct niu *np)
  1557. {
  1558. const struct niu_phy_ops *ops = np->phy_ops;
  1559. int err;
  1560. err = 0;
  1561. if (ops->serdes_init)
  1562. err = ops->serdes_init(np);
  1563. return err;
  1564. }
  1565. static void niu_init_xif(struct niu *);
  1566. static void niu_handle_led(struct niu *, int status);
  1567. static int niu_link_status_common(struct niu *np, int link_up)
  1568. {
  1569. struct niu_link_config *lp = &np->link_config;
  1570. struct net_device *dev = np->dev;
  1571. unsigned long flags;
  1572. if (!netif_carrier_ok(dev) && link_up) {
  1573. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1574. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1575. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1576. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1577. "10Mbit/sec",
  1578. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1579. spin_lock_irqsave(&np->lock, flags);
  1580. niu_init_xif(np);
  1581. niu_handle_led(np, 1);
  1582. spin_unlock_irqrestore(&np->lock, flags);
  1583. netif_carrier_on(dev);
  1584. } else if (netif_carrier_ok(dev) && !link_up) {
  1585. netif_warn(np, link, dev, "Link is down\n");
  1586. spin_lock_irqsave(&np->lock, flags);
  1587. niu_handle_led(np, 0);
  1588. spin_unlock_irqrestore(&np->lock, flags);
  1589. netif_carrier_off(dev);
  1590. }
  1591. return 0;
  1592. }
  1593. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1594. {
  1595. int err, link_up, pma_status, pcs_status;
  1596. link_up = 0;
  1597. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1598. MRVL88X2011_10G_PMD_STATUS_2);
  1599. if (err < 0)
  1600. goto out;
  1601. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1602. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1603. MRVL88X2011_PMA_PMD_STATUS_1);
  1604. if (err < 0)
  1605. goto out;
  1606. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1607. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1608. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1609. MRVL88X2011_PMA_PMD_STATUS_1);
  1610. if (err < 0)
  1611. goto out;
  1612. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1613. MRVL88X2011_PMA_PMD_STATUS_1);
  1614. if (err < 0)
  1615. goto out;
  1616. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1617. /* Check XGXS Register : 4.0018.[0-3,12] */
  1618. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1619. MRVL88X2011_10G_XGXS_LANE_STAT);
  1620. if (err < 0)
  1621. goto out;
  1622. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1623. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1624. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1625. 0x800))
  1626. link_up = (pma_status && pcs_status) ? 1 : 0;
  1627. np->link_config.active_speed = SPEED_10000;
  1628. np->link_config.active_duplex = DUPLEX_FULL;
  1629. err = 0;
  1630. out:
  1631. mrvl88x2011_act_led(np, (link_up ?
  1632. MRVL88X2011_LED_CTL_PCS_ACT :
  1633. MRVL88X2011_LED_CTL_OFF));
  1634. *link_up_p = link_up;
  1635. return err;
  1636. }
  1637. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1638. {
  1639. int err, link_up;
  1640. link_up = 0;
  1641. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1642. BCM8704_PMD_RCV_SIGDET);
  1643. if (err < 0 || err == 0xffff)
  1644. goto out;
  1645. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1646. err = 0;
  1647. goto out;
  1648. }
  1649. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1650. BCM8704_PCS_10G_R_STATUS);
  1651. if (err < 0)
  1652. goto out;
  1653. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1654. err = 0;
  1655. goto out;
  1656. }
  1657. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1658. BCM8704_PHYXS_XGXS_LANE_STAT);
  1659. if (err < 0)
  1660. goto out;
  1661. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1662. PHYXS_XGXS_LANE_STAT_MAGIC |
  1663. PHYXS_XGXS_LANE_STAT_PATTEST |
  1664. PHYXS_XGXS_LANE_STAT_LANE3 |
  1665. PHYXS_XGXS_LANE_STAT_LANE2 |
  1666. PHYXS_XGXS_LANE_STAT_LANE1 |
  1667. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1668. err = 0;
  1669. np->link_config.active_speed = SPEED_INVALID;
  1670. np->link_config.active_duplex = DUPLEX_INVALID;
  1671. goto out;
  1672. }
  1673. link_up = 1;
  1674. np->link_config.active_speed = SPEED_10000;
  1675. np->link_config.active_duplex = DUPLEX_FULL;
  1676. err = 0;
  1677. out:
  1678. *link_up_p = link_up;
  1679. return err;
  1680. }
  1681. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1682. {
  1683. int err, link_up;
  1684. link_up = 0;
  1685. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1686. BCM8704_PMD_RCV_SIGDET);
  1687. if (err < 0)
  1688. goto out;
  1689. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1690. err = 0;
  1691. goto out;
  1692. }
  1693. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1694. BCM8704_PCS_10G_R_STATUS);
  1695. if (err < 0)
  1696. goto out;
  1697. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1698. err = 0;
  1699. goto out;
  1700. }
  1701. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1702. BCM8704_PHYXS_XGXS_LANE_STAT);
  1703. if (err < 0)
  1704. goto out;
  1705. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1706. PHYXS_XGXS_LANE_STAT_MAGIC |
  1707. PHYXS_XGXS_LANE_STAT_LANE3 |
  1708. PHYXS_XGXS_LANE_STAT_LANE2 |
  1709. PHYXS_XGXS_LANE_STAT_LANE1 |
  1710. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1711. err = 0;
  1712. goto out;
  1713. }
  1714. link_up = 1;
  1715. np->link_config.active_speed = SPEED_10000;
  1716. np->link_config.active_duplex = DUPLEX_FULL;
  1717. err = 0;
  1718. out:
  1719. *link_up_p = link_up;
  1720. return err;
  1721. }
  1722. static int link_status_10g(struct niu *np, int *link_up_p)
  1723. {
  1724. unsigned long flags;
  1725. int err = -EINVAL;
  1726. spin_lock_irqsave(&np->lock, flags);
  1727. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1728. int phy_id;
  1729. phy_id = phy_decode(np->parent->port_phy, np->port);
  1730. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1731. /* handle different phy types */
  1732. switch (phy_id & NIU_PHY_ID_MASK) {
  1733. case NIU_PHY_ID_MRVL88X2011:
  1734. err = link_status_10g_mrvl(np, link_up_p);
  1735. break;
  1736. default: /* bcom 8704 */
  1737. err = link_status_10g_bcom(np, link_up_p);
  1738. break;
  1739. }
  1740. }
  1741. spin_unlock_irqrestore(&np->lock, flags);
  1742. return err;
  1743. }
  1744. static int niu_10g_phy_present(struct niu *np)
  1745. {
  1746. u64 sig, mask, val;
  1747. sig = nr64(ESR_INT_SIGNALS);
  1748. switch (np->port) {
  1749. case 0:
  1750. mask = ESR_INT_SIGNALS_P0_BITS;
  1751. val = (ESR_INT_SRDY0_P0 |
  1752. ESR_INT_DET0_P0 |
  1753. ESR_INT_XSRDY_P0 |
  1754. ESR_INT_XDP_P0_CH3 |
  1755. ESR_INT_XDP_P0_CH2 |
  1756. ESR_INT_XDP_P0_CH1 |
  1757. ESR_INT_XDP_P0_CH0);
  1758. break;
  1759. case 1:
  1760. mask = ESR_INT_SIGNALS_P1_BITS;
  1761. val = (ESR_INT_SRDY0_P1 |
  1762. ESR_INT_DET0_P1 |
  1763. ESR_INT_XSRDY_P1 |
  1764. ESR_INT_XDP_P1_CH3 |
  1765. ESR_INT_XDP_P1_CH2 |
  1766. ESR_INT_XDP_P1_CH1 |
  1767. ESR_INT_XDP_P1_CH0);
  1768. break;
  1769. default:
  1770. return 0;
  1771. }
  1772. if ((sig & mask) != val)
  1773. return 0;
  1774. return 1;
  1775. }
  1776. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1777. {
  1778. unsigned long flags;
  1779. int err = 0;
  1780. int phy_present;
  1781. int phy_present_prev;
  1782. spin_lock_irqsave(&np->lock, flags);
  1783. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1784. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1785. 1 : 0;
  1786. phy_present = niu_10g_phy_present(np);
  1787. if (phy_present != phy_present_prev) {
  1788. /* state change */
  1789. if (phy_present) {
  1790. /* A NEM was just plugged in */
  1791. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1792. if (np->phy_ops->xcvr_init)
  1793. err = np->phy_ops->xcvr_init(np);
  1794. if (err) {
  1795. err = mdio_read(np, np->phy_addr,
  1796. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1797. if (err == 0xffff) {
  1798. /* No mdio, back-to-back XAUI */
  1799. goto out;
  1800. }
  1801. /* debounce */
  1802. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1803. }
  1804. } else {
  1805. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1806. *link_up_p = 0;
  1807. netif_warn(np, link, np->dev,
  1808. "Hotplug PHY Removed\n");
  1809. }
  1810. }
  1811. out:
  1812. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1813. err = link_status_10g_bcm8706(np, link_up_p);
  1814. if (err == 0xffff) {
  1815. /* No mdio, back-to-back XAUI: it is C10NEM */
  1816. *link_up_p = 1;
  1817. np->link_config.active_speed = SPEED_10000;
  1818. np->link_config.active_duplex = DUPLEX_FULL;
  1819. }
  1820. }
  1821. }
  1822. spin_unlock_irqrestore(&np->lock, flags);
  1823. return 0;
  1824. }
  1825. static int niu_link_status(struct niu *np, int *link_up_p)
  1826. {
  1827. const struct niu_phy_ops *ops = np->phy_ops;
  1828. int err;
  1829. err = 0;
  1830. if (ops->link_status)
  1831. err = ops->link_status(np, link_up_p);
  1832. return err;
  1833. }
  1834. static void niu_timer(struct timer_list *t)
  1835. {
  1836. struct niu *np = from_timer(np, t, timer);
  1837. unsigned long off;
  1838. int err, link_up;
  1839. err = niu_link_status(np, &link_up);
  1840. if (!err)
  1841. niu_link_status_common(np, link_up);
  1842. if (netif_carrier_ok(np->dev))
  1843. off = 5 * HZ;
  1844. else
  1845. off = 1 * HZ;
  1846. np->timer.expires = jiffies + off;
  1847. add_timer(&np->timer);
  1848. }
  1849. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1850. .serdes_init = serdes_init_10g_serdes,
  1851. .link_status = link_status_10g_serdes,
  1852. };
  1853. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1854. .serdes_init = serdes_init_niu_10g_serdes,
  1855. .link_status = link_status_10g_serdes,
  1856. };
  1857. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1858. .serdes_init = serdes_init_niu_1g_serdes,
  1859. .link_status = link_status_1g_serdes,
  1860. };
  1861. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1862. .xcvr_init = xcvr_init_1g_rgmii,
  1863. .link_status = link_status_1g_rgmii,
  1864. };
  1865. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1866. .serdes_init = serdes_init_niu_10g_fiber,
  1867. .xcvr_init = xcvr_init_10g,
  1868. .link_status = link_status_10g,
  1869. };
  1870. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1871. .serdes_init = serdes_init_10g,
  1872. .xcvr_init = xcvr_init_10g,
  1873. .link_status = link_status_10g,
  1874. };
  1875. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1876. .serdes_init = serdes_init_10g,
  1877. .xcvr_init = xcvr_init_10g_bcm8706,
  1878. .link_status = link_status_10g_hotplug,
  1879. };
  1880. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1881. .serdes_init = serdes_init_niu_10g_fiber,
  1882. .xcvr_init = xcvr_init_10g_bcm8706,
  1883. .link_status = link_status_10g_hotplug,
  1884. };
  1885. static const struct niu_phy_ops phy_ops_10g_copper = {
  1886. .serdes_init = serdes_init_10g,
  1887. .link_status = link_status_10g, /* XXX */
  1888. };
  1889. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1890. .serdes_init = serdes_init_1g,
  1891. .xcvr_init = xcvr_init_1g,
  1892. .link_status = link_status_1g,
  1893. };
  1894. static const struct niu_phy_ops phy_ops_1g_copper = {
  1895. .xcvr_init = xcvr_init_1g,
  1896. .link_status = link_status_1g,
  1897. };
  1898. struct niu_phy_template {
  1899. const struct niu_phy_ops *ops;
  1900. u32 phy_addr_base;
  1901. };
  1902. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1903. .ops = &phy_ops_10g_fiber_niu,
  1904. .phy_addr_base = 16,
  1905. };
  1906. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1907. .ops = &phy_ops_10g_serdes_niu,
  1908. .phy_addr_base = 0,
  1909. };
  1910. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1911. .ops = &phy_ops_1g_serdes_niu,
  1912. .phy_addr_base = 0,
  1913. };
  1914. static const struct niu_phy_template phy_template_10g_fiber = {
  1915. .ops = &phy_ops_10g_fiber,
  1916. .phy_addr_base = 8,
  1917. };
  1918. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1919. .ops = &phy_ops_10g_fiber_hotplug,
  1920. .phy_addr_base = 8,
  1921. };
  1922. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1923. .ops = &phy_ops_niu_10g_hotplug,
  1924. .phy_addr_base = 8,
  1925. };
  1926. static const struct niu_phy_template phy_template_10g_copper = {
  1927. .ops = &phy_ops_10g_copper,
  1928. .phy_addr_base = 10,
  1929. };
  1930. static const struct niu_phy_template phy_template_1g_fiber = {
  1931. .ops = &phy_ops_1g_fiber,
  1932. .phy_addr_base = 0,
  1933. };
  1934. static const struct niu_phy_template phy_template_1g_copper = {
  1935. .ops = &phy_ops_1g_copper,
  1936. .phy_addr_base = 0,
  1937. };
  1938. static const struct niu_phy_template phy_template_1g_rgmii = {
  1939. .ops = &phy_ops_1g_rgmii,
  1940. .phy_addr_base = 0,
  1941. };
  1942. static const struct niu_phy_template phy_template_10g_serdes = {
  1943. .ops = &phy_ops_10g_serdes,
  1944. .phy_addr_base = 0,
  1945. };
  1946. static int niu_atca_port_num[4] = {
  1947. 0, 0, 11, 10
  1948. };
  1949. static int serdes_init_10g_serdes(struct niu *np)
  1950. {
  1951. struct niu_link_config *lp = &np->link_config;
  1952. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1953. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1954. switch (np->port) {
  1955. case 0:
  1956. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1957. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1958. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1959. break;
  1960. case 1:
  1961. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1962. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1963. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1964. break;
  1965. default:
  1966. return -EINVAL;
  1967. }
  1968. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1969. ENET_SERDES_CTRL_SDET_1 |
  1970. ENET_SERDES_CTRL_SDET_2 |
  1971. ENET_SERDES_CTRL_SDET_3 |
  1972. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1973. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1974. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1975. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1976. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1977. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1978. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1979. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1980. test_cfg_val = 0;
  1981. if (lp->loopback_mode == LOOPBACK_PHY) {
  1982. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1983. ENET_SERDES_TEST_MD_0_SHIFT) |
  1984. (ENET_TEST_MD_PAD_LOOPBACK <<
  1985. ENET_SERDES_TEST_MD_1_SHIFT) |
  1986. (ENET_TEST_MD_PAD_LOOPBACK <<
  1987. ENET_SERDES_TEST_MD_2_SHIFT) |
  1988. (ENET_TEST_MD_PAD_LOOPBACK <<
  1989. ENET_SERDES_TEST_MD_3_SHIFT));
  1990. }
  1991. esr_reset(np);
  1992. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1993. nw64(ctrl_reg, ctrl_val);
  1994. nw64(test_cfg_reg, test_cfg_val);
  1995. /* Initialize all 4 lanes of the SERDES. */
  1996. for (i = 0; i < 4; i++) {
  1997. u32 rxtx_ctrl, glue0;
  1998. int err;
  1999. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2000. if (err)
  2001. return err;
  2002. err = esr_read_glue0(np, i, &glue0);
  2003. if (err)
  2004. return err;
  2005. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2006. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2007. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2008. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2009. ESR_GLUE_CTRL0_THCNT |
  2010. ESR_GLUE_CTRL0_BLTIME);
  2011. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2012. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2013. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2014. (BLTIME_300_CYCLES <<
  2015. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2016. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2017. if (err)
  2018. return err;
  2019. err = esr_write_glue0(np, i, glue0);
  2020. if (err)
  2021. return err;
  2022. }
  2023. sig = nr64(ESR_INT_SIGNALS);
  2024. switch (np->port) {
  2025. case 0:
  2026. mask = ESR_INT_SIGNALS_P0_BITS;
  2027. val = (ESR_INT_SRDY0_P0 |
  2028. ESR_INT_DET0_P0 |
  2029. ESR_INT_XSRDY_P0 |
  2030. ESR_INT_XDP_P0_CH3 |
  2031. ESR_INT_XDP_P0_CH2 |
  2032. ESR_INT_XDP_P0_CH1 |
  2033. ESR_INT_XDP_P0_CH0);
  2034. break;
  2035. case 1:
  2036. mask = ESR_INT_SIGNALS_P1_BITS;
  2037. val = (ESR_INT_SRDY0_P1 |
  2038. ESR_INT_DET0_P1 |
  2039. ESR_INT_XSRDY_P1 |
  2040. ESR_INT_XDP_P1_CH3 |
  2041. ESR_INT_XDP_P1_CH2 |
  2042. ESR_INT_XDP_P1_CH1 |
  2043. ESR_INT_XDP_P1_CH0);
  2044. break;
  2045. default:
  2046. return -EINVAL;
  2047. }
  2048. if ((sig & mask) != val) {
  2049. int err;
  2050. err = serdes_init_1g_serdes(np);
  2051. if (!err) {
  2052. np->flags &= ~NIU_FLAGS_10G;
  2053. np->mac_xcvr = MAC_XCVR_PCS;
  2054. } else {
  2055. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2056. np->port);
  2057. return -ENODEV;
  2058. }
  2059. }
  2060. return 0;
  2061. }
  2062. static int niu_determine_phy_disposition(struct niu *np)
  2063. {
  2064. struct niu_parent *parent = np->parent;
  2065. u8 plat_type = parent->plat_type;
  2066. const struct niu_phy_template *tp;
  2067. u32 phy_addr_off = 0;
  2068. if (plat_type == PLAT_TYPE_NIU) {
  2069. switch (np->flags &
  2070. (NIU_FLAGS_10G |
  2071. NIU_FLAGS_FIBER |
  2072. NIU_FLAGS_XCVR_SERDES)) {
  2073. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2074. /* 10G Serdes */
  2075. tp = &phy_template_niu_10g_serdes;
  2076. break;
  2077. case NIU_FLAGS_XCVR_SERDES:
  2078. /* 1G Serdes */
  2079. tp = &phy_template_niu_1g_serdes;
  2080. break;
  2081. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2082. /* 10G Fiber */
  2083. default:
  2084. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2085. tp = &phy_template_niu_10g_hotplug;
  2086. if (np->port == 0)
  2087. phy_addr_off = 8;
  2088. if (np->port == 1)
  2089. phy_addr_off = 12;
  2090. } else {
  2091. tp = &phy_template_niu_10g_fiber;
  2092. phy_addr_off += np->port;
  2093. }
  2094. break;
  2095. }
  2096. } else {
  2097. switch (np->flags &
  2098. (NIU_FLAGS_10G |
  2099. NIU_FLAGS_FIBER |
  2100. NIU_FLAGS_XCVR_SERDES)) {
  2101. case 0:
  2102. /* 1G copper */
  2103. tp = &phy_template_1g_copper;
  2104. if (plat_type == PLAT_TYPE_VF_P0)
  2105. phy_addr_off = 10;
  2106. else if (plat_type == PLAT_TYPE_VF_P1)
  2107. phy_addr_off = 26;
  2108. phy_addr_off += (np->port ^ 0x3);
  2109. break;
  2110. case NIU_FLAGS_10G:
  2111. /* 10G copper */
  2112. tp = &phy_template_10g_copper;
  2113. break;
  2114. case NIU_FLAGS_FIBER:
  2115. /* 1G fiber */
  2116. tp = &phy_template_1g_fiber;
  2117. break;
  2118. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2119. /* 10G fiber */
  2120. tp = &phy_template_10g_fiber;
  2121. if (plat_type == PLAT_TYPE_VF_P0 ||
  2122. plat_type == PLAT_TYPE_VF_P1)
  2123. phy_addr_off = 8;
  2124. phy_addr_off += np->port;
  2125. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2126. tp = &phy_template_10g_fiber_hotplug;
  2127. if (np->port == 0)
  2128. phy_addr_off = 8;
  2129. if (np->port == 1)
  2130. phy_addr_off = 12;
  2131. }
  2132. break;
  2133. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2134. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2135. case NIU_FLAGS_XCVR_SERDES:
  2136. switch(np->port) {
  2137. case 0:
  2138. case 1:
  2139. tp = &phy_template_10g_serdes;
  2140. break;
  2141. case 2:
  2142. case 3:
  2143. tp = &phy_template_1g_rgmii;
  2144. break;
  2145. default:
  2146. return -EINVAL;
  2147. }
  2148. phy_addr_off = niu_atca_port_num[np->port];
  2149. break;
  2150. default:
  2151. return -EINVAL;
  2152. }
  2153. }
  2154. np->phy_ops = tp->ops;
  2155. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2156. return 0;
  2157. }
  2158. static int niu_init_link(struct niu *np)
  2159. {
  2160. struct niu_parent *parent = np->parent;
  2161. int err, ignore;
  2162. if (parent->plat_type == PLAT_TYPE_NIU) {
  2163. err = niu_xcvr_init(np);
  2164. if (err)
  2165. return err;
  2166. msleep(200);
  2167. }
  2168. err = niu_serdes_init(np);
  2169. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2170. return err;
  2171. msleep(200);
  2172. err = niu_xcvr_init(np);
  2173. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2174. niu_link_status(np, &ignore);
  2175. return 0;
  2176. }
  2177. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2178. {
  2179. u16 reg0 = addr[4] << 8 | addr[5];
  2180. u16 reg1 = addr[2] << 8 | addr[3];
  2181. u16 reg2 = addr[0] << 8 | addr[1];
  2182. if (np->flags & NIU_FLAGS_XMAC) {
  2183. nw64_mac(XMAC_ADDR0, reg0);
  2184. nw64_mac(XMAC_ADDR1, reg1);
  2185. nw64_mac(XMAC_ADDR2, reg2);
  2186. } else {
  2187. nw64_mac(BMAC_ADDR0, reg0);
  2188. nw64_mac(BMAC_ADDR1, reg1);
  2189. nw64_mac(BMAC_ADDR2, reg2);
  2190. }
  2191. }
  2192. static int niu_num_alt_addr(struct niu *np)
  2193. {
  2194. if (np->flags & NIU_FLAGS_XMAC)
  2195. return XMAC_NUM_ALT_ADDR;
  2196. else
  2197. return BMAC_NUM_ALT_ADDR;
  2198. }
  2199. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2200. {
  2201. u16 reg0 = addr[4] << 8 | addr[5];
  2202. u16 reg1 = addr[2] << 8 | addr[3];
  2203. u16 reg2 = addr[0] << 8 | addr[1];
  2204. if (index >= niu_num_alt_addr(np))
  2205. return -EINVAL;
  2206. if (np->flags & NIU_FLAGS_XMAC) {
  2207. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2208. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2209. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2210. } else {
  2211. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2212. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2213. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2214. }
  2215. return 0;
  2216. }
  2217. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2218. {
  2219. unsigned long reg;
  2220. u64 val, mask;
  2221. if (index >= niu_num_alt_addr(np))
  2222. return -EINVAL;
  2223. if (np->flags & NIU_FLAGS_XMAC) {
  2224. reg = XMAC_ADDR_CMPEN;
  2225. mask = 1 << index;
  2226. } else {
  2227. reg = BMAC_ADDR_CMPEN;
  2228. mask = 1 << (index + 1);
  2229. }
  2230. val = nr64_mac(reg);
  2231. if (on)
  2232. val |= mask;
  2233. else
  2234. val &= ~mask;
  2235. nw64_mac(reg, val);
  2236. return 0;
  2237. }
  2238. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2239. int num, int mac_pref)
  2240. {
  2241. u64 val = nr64_mac(reg);
  2242. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2243. val |= num;
  2244. if (mac_pref)
  2245. val |= HOST_INFO_MPR;
  2246. nw64_mac(reg, val);
  2247. }
  2248. static int __set_rdc_table_num(struct niu *np,
  2249. int xmac_index, int bmac_index,
  2250. int rdc_table_num, int mac_pref)
  2251. {
  2252. unsigned long reg;
  2253. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2254. return -EINVAL;
  2255. if (np->flags & NIU_FLAGS_XMAC)
  2256. reg = XMAC_HOST_INFO(xmac_index);
  2257. else
  2258. reg = BMAC_HOST_INFO(bmac_index);
  2259. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2260. return 0;
  2261. }
  2262. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2263. int mac_pref)
  2264. {
  2265. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2266. }
  2267. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2268. int mac_pref)
  2269. {
  2270. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2271. }
  2272. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2273. int table_num, int mac_pref)
  2274. {
  2275. if (idx >= niu_num_alt_addr(np))
  2276. return -EINVAL;
  2277. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2278. }
  2279. static u64 vlan_entry_set_parity(u64 reg_val)
  2280. {
  2281. u64 port01_mask;
  2282. u64 port23_mask;
  2283. port01_mask = 0x00ff;
  2284. port23_mask = 0xff00;
  2285. if (hweight64(reg_val & port01_mask) & 1)
  2286. reg_val |= ENET_VLAN_TBL_PARITY0;
  2287. else
  2288. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2289. if (hweight64(reg_val & port23_mask) & 1)
  2290. reg_val |= ENET_VLAN_TBL_PARITY1;
  2291. else
  2292. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2293. return reg_val;
  2294. }
  2295. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2296. int port, int vpr, int rdc_table)
  2297. {
  2298. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2299. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2300. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2301. ENET_VLAN_TBL_SHIFT(port));
  2302. if (vpr)
  2303. reg_val |= (ENET_VLAN_TBL_VPR <<
  2304. ENET_VLAN_TBL_SHIFT(port));
  2305. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2306. reg_val = vlan_entry_set_parity(reg_val);
  2307. nw64(ENET_VLAN_TBL(index), reg_val);
  2308. }
  2309. static void vlan_tbl_clear(struct niu *np)
  2310. {
  2311. int i;
  2312. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2313. nw64(ENET_VLAN_TBL(i), 0);
  2314. }
  2315. static int tcam_wait_bit(struct niu *np, u64 bit)
  2316. {
  2317. int limit = 1000;
  2318. while (--limit > 0) {
  2319. if (nr64(TCAM_CTL) & bit)
  2320. break;
  2321. udelay(1);
  2322. }
  2323. if (limit <= 0)
  2324. return -ENODEV;
  2325. return 0;
  2326. }
  2327. static int tcam_flush(struct niu *np, int index)
  2328. {
  2329. nw64(TCAM_KEY_0, 0x00);
  2330. nw64(TCAM_KEY_MASK_0, 0xff);
  2331. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2332. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2333. }
  2334. #if 0
  2335. static int tcam_read(struct niu *np, int index,
  2336. u64 *key, u64 *mask)
  2337. {
  2338. int err;
  2339. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2340. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2341. if (!err) {
  2342. key[0] = nr64(TCAM_KEY_0);
  2343. key[1] = nr64(TCAM_KEY_1);
  2344. key[2] = nr64(TCAM_KEY_2);
  2345. key[3] = nr64(TCAM_KEY_3);
  2346. mask[0] = nr64(TCAM_KEY_MASK_0);
  2347. mask[1] = nr64(TCAM_KEY_MASK_1);
  2348. mask[2] = nr64(TCAM_KEY_MASK_2);
  2349. mask[3] = nr64(TCAM_KEY_MASK_3);
  2350. }
  2351. return err;
  2352. }
  2353. #endif
  2354. static int tcam_write(struct niu *np, int index,
  2355. u64 *key, u64 *mask)
  2356. {
  2357. nw64(TCAM_KEY_0, key[0]);
  2358. nw64(TCAM_KEY_1, key[1]);
  2359. nw64(TCAM_KEY_2, key[2]);
  2360. nw64(TCAM_KEY_3, key[3]);
  2361. nw64(TCAM_KEY_MASK_0, mask[0]);
  2362. nw64(TCAM_KEY_MASK_1, mask[1]);
  2363. nw64(TCAM_KEY_MASK_2, mask[2]);
  2364. nw64(TCAM_KEY_MASK_3, mask[3]);
  2365. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2366. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2367. }
  2368. #if 0
  2369. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2370. {
  2371. int err;
  2372. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2373. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2374. if (!err)
  2375. *data = nr64(TCAM_KEY_1);
  2376. return err;
  2377. }
  2378. #endif
  2379. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2380. {
  2381. nw64(TCAM_KEY_1, assoc_data);
  2382. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2383. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2384. }
  2385. static void tcam_enable(struct niu *np, int on)
  2386. {
  2387. u64 val = nr64(FFLP_CFG_1);
  2388. if (on)
  2389. val &= ~FFLP_CFG_1_TCAM_DIS;
  2390. else
  2391. val |= FFLP_CFG_1_TCAM_DIS;
  2392. nw64(FFLP_CFG_1, val);
  2393. }
  2394. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2395. {
  2396. u64 val = nr64(FFLP_CFG_1);
  2397. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2398. FFLP_CFG_1_CAMLAT |
  2399. FFLP_CFG_1_CAMRATIO);
  2400. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2401. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2402. nw64(FFLP_CFG_1, val);
  2403. val = nr64(FFLP_CFG_1);
  2404. val |= FFLP_CFG_1_FFLPINITDONE;
  2405. nw64(FFLP_CFG_1, val);
  2406. }
  2407. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2408. int on)
  2409. {
  2410. unsigned long reg;
  2411. u64 val;
  2412. if (class < CLASS_CODE_ETHERTYPE1 ||
  2413. class > CLASS_CODE_ETHERTYPE2)
  2414. return -EINVAL;
  2415. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2416. val = nr64(reg);
  2417. if (on)
  2418. val |= L2_CLS_VLD;
  2419. else
  2420. val &= ~L2_CLS_VLD;
  2421. nw64(reg, val);
  2422. return 0;
  2423. }
  2424. #if 0
  2425. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2426. u64 ether_type)
  2427. {
  2428. unsigned long reg;
  2429. u64 val;
  2430. if (class < CLASS_CODE_ETHERTYPE1 ||
  2431. class > CLASS_CODE_ETHERTYPE2 ||
  2432. (ether_type & ~(u64)0xffff) != 0)
  2433. return -EINVAL;
  2434. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2435. val = nr64(reg);
  2436. val &= ~L2_CLS_ETYPE;
  2437. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2438. nw64(reg, val);
  2439. return 0;
  2440. }
  2441. #endif
  2442. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2443. int on)
  2444. {
  2445. unsigned long reg;
  2446. u64 val;
  2447. if (class < CLASS_CODE_USER_PROG1 ||
  2448. class > CLASS_CODE_USER_PROG4)
  2449. return -EINVAL;
  2450. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2451. val = nr64(reg);
  2452. if (on)
  2453. val |= L3_CLS_VALID;
  2454. else
  2455. val &= ~L3_CLS_VALID;
  2456. nw64(reg, val);
  2457. return 0;
  2458. }
  2459. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2460. int ipv6, u64 protocol_id,
  2461. u64 tos_mask, u64 tos_val)
  2462. {
  2463. unsigned long reg;
  2464. u64 val;
  2465. if (class < CLASS_CODE_USER_PROG1 ||
  2466. class > CLASS_CODE_USER_PROG4 ||
  2467. (protocol_id & ~(u64)0xff) != 0 ||
  2468. (tos_mask & ~(u64)0xff) != 0 ||
  2469. (tos_val & ~(u64)0xff) != 0)
  2470. return -EINVAL;
  2471. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2472. val = nr64(reg);
  2473. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2474. L3_CLS_TOSMASK | L3_CLS_TOS);
  2475. if (ipv6)
  2476. val |= L3_CLS_IPVER;
  2477. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2478. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2479. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2480. nw64(reg, val);
  2481. return 0;
  2482. }
  2483. static int tcam_early_init(struct niu *np)
  2484. {
  2485. unsigned long i;
  2486. int err;
  2487. tcam_enable(np, 0);
  2488. tcam_set_lat_and_ratio(np,
  2489. DEFAULT_TCAM_LATENCY,
  2490. DEFAULT_TCAM_ACCESS_RATIO);
  2491. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2492. err = tcam_user_eth_class_enable(np, i, 0);
  2493. if (err)
  2494. return err;
  2495. }
  2496. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2497. err = tcam_user_ip_class_enable(np, i, 0);
  2498. if (err)
  2499. return err;
  2500. }
  2501. return 0;
  2502. }
  2503. static int tcam_flush_all(struct niu *np)
  2504. {
  2505. unsigned long i;
  2506. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2507. int err = tcam_flush(np, i);
  2508. if (err)
  2509. return err;
  2510. }
  2511. return 0;
  2512. }
  2513. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2514. {
  2515. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2516. }
  2517. #if 0
  2518. static int hash_read(struct niu *np, unsigned long partition,
  2519. unsigned long index, unsigned long num_entries,
  2520. u64 *data)
  2521. {
  2522. u64 val = hash_addr_regval(index, num_entries);
  2523. unsigned long i;
  2524. if (partition >= FCRAM_NUM_PARTITIONS ||
  2525. index + num_entries > FCRAM_SIZE)
  2526. return -EINVAL;
  2527. nw64(HASH_TBL_ADDR(partition), val);
  2528. for (i = 0; i < num_entries; i++)
  2529. data[i] = nr64(HASH_TBL_DATA(partition));
  2530. return 0;
  2531. }
  2532. #endif
  2533. static int hash_write(struct niu *np, unsigned long partition,
  2534. unsigned long index, unsigned long num_entries,
  2535. u64 *data)
  2536. {
  2537. u64 val = hash_addr_regval(index, num_entries);
  2538. unsigned long i;
  2539. if (partition >= FCRAM_NUM_PARTITIONS ||
  2540. index + (num_entries * 8) > FCRAM_SIZE)
  2541. return -EINVAL;
  2542. nw64(HASH_TBL_ADDR(partition), val);
  2543. for (i = 0; i < num_entries; i++)
  2544. nw64(HASH_TBL_DATA(partition), data[i]);
  2545. return 0;
  2546. }
  2547. static void fflp_reset(struct niu *np)
  2548. {
  2549. u64 val;
  2550. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2551. udelay(10);
  2552. nw64(FFLP_CFG_1, 0);
  2553. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2554. nw64(FFLP_CFG_1, val);
  2555. }
  2556. static void fflp_set_timings(struct niu *np)
  2557. {
  2558. u64 val = nr64(FFLP_CFG_1);
  2559. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2560. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2561. nw64(FFLP_CFG_1, val);
  2562. val = nr64(FFLP_CFG_1);
  2563. val |= FFLP_CFG_1_FFLPINITDONE;
  2564. nw64(FFLP_CFG_1, val);
  2565. val = nr64(FCRAM_REF_TMR);
  2566. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2567. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2568. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2569. nw64(FCRAM_REF_TMR, val);
  2570. }
  2571. static int fflp_set_partition(struct niu *np, u64 partition,
  2572. u64 mask, u64 base, int enable)
  2573. {
  2574. unsigned long reg;
  2575. u64 val;
  2576. if (partition >= FCRAM_NUM_PARTITIONS ||
  2577. (mask & ~(u64)0x1f) != 0 ||
  2578. (base & ~(u64)0x1f) != 0)
  2579. return -EINVAL;
  2580. reg = FLW_PRT_SEL(partition);
  2581. val = nr64(reg);
  2582. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2583. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2584. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2585. if (enable)
  2586. val |= FLW_PRT_SEL_EXT;
  2587. nw64(reg, val);
  2588. return 0;
  2589. }
  2590. static int fflp_disable_all_partitions(struct niu *np)
  2591. {
  2592. unsigned long i;
  2593. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2594. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2595. if (err)
  2596. return err;
  2597. }
  2598. return 0;
  2599. }
  2600. static void fflp_llcsnap_enable(struct niu *np, int on)
  2601. {
  2602. u64 val = nr64(FFLP_CFG_1);
  2603. if (on)
  2604. val |= FFLP_CFG_1_LLCSNAP;
  2605. else
  2606. val &= ~FFLP_CFG_1_LLCSNAP;
  2607. nw64(FFLP_CFG_1, val);
  2608. }
  2609. static void fflp_errors_enable(struct niu *np, int on)
  2610. {
  2611. u64 val = nr64(FFLP_CFG_1);
  2612. if (on)
  2613. val &= ~FFLP_CFG_1_ERRORDIS;
  2614. else
  2615. val |= FFLP_CFG_1_ERRORDIS;
  2616. nw64(FFLP_CFG_1, val);
  2617. }
  2618. static int fflp_hash_clear(struct niu *np)
  2619. {
  2620. struct fcram_hash_ipv4 ent;
  2621. unsigned long i;
  2622. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2623. memset(&ent, 0, sizeof(ent));
  2624. ent.header = HASH_HEADER_EXT;
  2625. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2626. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2627. if (err)
  2628. return err;
  2629. }
  2630. return 0;
  2631. }
  2632. static int fflp_early_init(struct niu *np)
  2633. {
  2634. struct niu_parent *parent;
  2635. unsigned long flags;
  2636. int err;
  2637. niu_lock_parent(np, flags);
  2638. parent = np->parent;
  2639. err = 0;
  2640. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2641. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2642. fflp_reset(np);
  2643. fflp_set_timings(np);
  2644. err = fflp_disable_all_partitions(np);
  2645. if (err) {
  2646. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2647. "fflp_disable_all_partitions failed, err=%d\n",
  2648. err);
  2649. goto out;
  2650. }
  2651. }
  2652. err = tcam_early_init(np);
  2653. if (err) {
  2654. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2655. "tcam_early_init failed, err=%d\n", err);
  2656. goto out;
  2657. }
  2658. fflp_llcsnap_enable(np, 1);
  2659. fflp_errors_enable(np, 0);
  2660. nw64(H1POLY, 0);
  2661. nw64(H2POLY, 0);
  2662. err = tcam_flush_all(np);
  2663. if (err) {
  2664. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2665. "tcam_flush_all failed, err=%d\n", err);
  2666. goto out;
  2667. }
  2668. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2669. err = fflp_hash_clear(np);
  2670. if (err) {
  2671. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2672. "fflp_hash_clear failed, err=%d\n",
  2673. err);
  2674. goto out;
  2675. }
  2676. }
  2677. vlan_tbl_clear(np);
  2678. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2679. }
  2680. out:
  2681. niu_unlock_parent(np, flags);
  2682. return err;
  2683. }
  2684. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2685. {
  2686. if (class_code < CLASS_CODE_USER_PROG1 ||
  2687. class_code > CLASS_CODE_SCTP_IPV6)
  2688. return -EINVAL;
  2689. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2690. return 0;
  2691. }
  2692. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2693. {
  2694. if (class_code < CLASS_CODE_USER_PROG1 ||
  2695. class_code > CLASS_CODE_SCTP_IPV6)
  2696. return -EINVAL;
  2697. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2698. return 0;
  2699. }
  2700. /* Entries for the ports are interleaved in the TCAM */
  2701. static u16 tcam_get_index(struct niu *np, u16 idx)
  2702. {
  2703. /* One entry reserved for IP fragment rule */
  2704. if (idx >= (np->clas.tcam_sz - 1))
  2705. idx = 0;
  2706. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2707. }
  2708. static u16 tcam_get_size(struct niu *np)
  2709. {
  2710. /* One entry reserved for IP fragment rule */
  2711. return np->clas.tcam_sz - 1;
  2712. }
  2713. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2714. {
  2715. /* One entry reserved for IP fragment rule */
  2716. return np->clas.tcam_valid_entries - 1;
  2717. }
  2718. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2719. u32 offset, u32 size, u32 truesize)
  2720. {
  2721. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
  2722. skb->len += size;
  2723. skb->data_len += size;
  2724. skb->truesize += truesize;
  2725. }
  2726. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2727. {
  2728. a >>= PAGE_SHIFT;
  2729. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2730. return a & (MAX_RBR_RING_SIZE - 1);
  2731. }
  2732. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2733. struct page ***link)
  2734. {
  2735. unsigned int h = niu_hash_rxaddr(rp, addr);
  2736. struct page *p, **pp;
  2737. addr &= PAGE_MASK;
  2738. pp = &rp->rxhash[h];
  2739. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2740. if (p->index == addr) {
  2741. *link = pp;
  2742. goto found;
  2743. }
  2744. }
  2745. BUG();
  2746. found:
  2747. return p;
  2748. }
  2749. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2750. {
  2751. unsigned int h = niu_hash_rxaddr(rp, base);
  2752. page->index = base;
  2753. page->mapping = (struct address_space *) rp->rxhash[h];
  2754. rp->rxhash[h] = page;
  2755. }
  2756. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2757. gfp_t mask, int start_index)
  2758. {
  2759. struct page *page;
  2760. u64 addr;
  2761. int i;
  2762. page = alloc_page(mask);
  2763. if (!page)
  2764. return -ENOMEM;
  2765. addr = np->ops->map_page(np->device, page, 0,
  2766. PAGE_SIZE, DMA_FROM_DEVICE);
  2767. if (!addr) {
  2768. __free_page(page);
  2769. return -ENOMEM;
  2770. }
  2771. niu_hash_page(rp, page, addr);
  2772. if (rp->rbr_blocks_per_page > 1)
  2773. page_ref_add(page, rp->rbr_blocks_per_page - 1);
  2774. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2775. __le32 *rbr = &rp->rbr[start_index + i];
  2776. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2777. addr += rp->rbr_block_size;
  2778. }
  2779. return 0;
  2780. }
  2781. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2782. {
  2783. int index = rp->rbr_index;
  2784. rp->rbr_pending++;
  2785. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2786. int err = niu_rbr_add_page(np, rp, mask, index);
  2787. if (unlikely(err)) {
  2788. rp->rbr_pending--;
  2789. return;
  2790. }
  2791. rp->rbr_index += rp->rbr_blocks_per_page;
  2792. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2793. if (rp->rbr_index == rp->rbr_table_size)
  2794. rp->rbr_index = 0;
  2795. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2796. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2797. rp->rbr_pending = 0;
  2798. }
  2799. }
  2800. }
  2801. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2802. {
  2803. unsigned int index = rp->rcr_index;
  2804. int num_rcr = 0;
  2805. rp->rx_dropped++;
  2806. while (1) {
  2807. struct page *page, **link;
  2808. u64 addr, val;
  2809. u32 rcr_size;
  2810. num_rcr++;
  2811. val = le64_to_cpup(&rp->rcr[index]);
  2812. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2813. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2814. page = niu_find_rxpage(rp, addr, &link);
  2815. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2816. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2817. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2818. *link = (struct page *) page->mapping;
  2819. np->ops->unmap_page(np->device, page->index,
  2820. PAGE_SIZE, DMA_FROM_DEVICE);
  2821. page->index = 0;
  2822. page->mapping = NULL;
  2823. __free_page(page);
  2824. rp->rbr_refill_pending++;
  2825. }
  2826. index = NEXT_RCR(rp, index);
  2827. if (!(val & RCR_ENTRY_MULTI))
  2828. break;
  2829. }
  2830. rp->rcr_index = index;
  2831. return num_rcr;
  2832. }
  2833. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2834. struct rx_ring_info *rp)
  2835. {
  2836. unsigned int index = rp->rcr_index;
  2837. struct rx_pkt_hdr1 *rh;
  2838. struct sk_buff *skb;
  2839. int len, num_rcr;
  2840. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2841. if (unlikely(!skb))
  2842. return niu_rx_pkt_ignore(np, rp);
  2843. num_rcr = 0;
  2844. while (1) {
  2845. struct page *page, **link;
  2846. u32 rcr_size, append_size;
  2847. u64 addr, val, off;
  2848. num_rcr++;
  2849. val = le64_to_cpup(&rp->rcr[index]);
  2850. len = (val & RCR_ENTRY_L2_LEN) >>
  2851. RCR_ENTRY_L2_LEN_SHIFT;
  2852. append_size = len + ETH_HLEN + ETH_FCS_LEN;
  2853. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2854. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2855. page = niu_find_rxpage(rp, addr, &link);
  2856. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2857. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2858. off = addr & ~PAGE_MASK;
  2859. if (num_rcr == 1) {
  2860. int ptype;
  2861. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2862. if ((ptype == RCR_PKT_TYPE_TCP ||
  2863. ptype == RCR_PKT_TYPE_UDP) &&
  2864. !(val & (RCR_ENTRY_NOPORT |
  2865. RCR_ENTRY_ERROR)))
  2866. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2867. else
  2868. skb_checksum_none_assert(skb);
  2869. } else if (!(val & RCR_ENTRY_MULTI))
  2870. append_size = append_size - skb->len;
  2871. niu_rx_skb_append(skb, page, off, append_size, rcr_size);
  2872. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2873. *link = (struct page *) page->mapping;
  2874. np->ops->unmap_page(np->device, page->index,
  2875. PAGE_SIZE, DMA_FROM_DEVICE);
  2876. page->index = 0;
  2877. page->mapping = NULL;
  2878. rp->rbr_refill_pending++;
  2879. } else
  2880. get_page(page);
  2881. index = NEXT_RCR(rp, index);
  2882. if (!(val & RCR_ENTRY_MULTI))
  2883. break;
  2884. }
  2885. rp->rcr_index = index;
  2886. len += sizeof(*rh);
  2887. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2888. __pskb_pull_tail(skb, len);
  2889. rh = (struct rx_pkt_hdr1 *) skb->data;
  2890. if (np->dev->features & NETIF_F_RXHASH)
  2891. skb_set_hash(skb,
  2892. ((u32)rh->hashval2_0 << 24 |
  2893. (u32)rh->hashval2_1 << 16 |
  2894. (u32)rh->hashval1_1 << 8 |
  2895. (u32)rh->hashval1_2 << 0),
  2896. PKT_HASH_TYPE_L3);
  2897. skb_pull(skb, sizeof(*rh));
  2898. rp->rx_packets++;
  2899. rp->rx_bytes += skb->len;
  2900. skb->protocol = eth_type_trans(skb, np->dev);
  2901. skb_record_rx_queue(skb, rp->rx_channel);
  2902. napi_gro_receive(napi, skb);
  2903. return num_rcr;
  2904. }
  2905. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2906. {
  2907. int blocks_per_page = rp->rbr_blocks_per_page;
  2908. int err, index = rp->rbr_index;
  2909. err = 0;
  2910. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2911. err = niu_rbr_add_page(np, rp, mask, index);
  2912. if (unlikely(err))
  2913. break;
  2914. index += blocks_per_page;
  2915. }
  2916. rp->rbr_index = index;
  2917. return err;
  2918. }
  2919. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2920. {
  2921. int i;
  2922. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2923. struct page *page;
  2924. page = rp->rxhash[i];
  2925. while (page) {
  2926. struct page *next = (struct page *) page->mapping;
  2927. u64 base = page->index;
  2928. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2929. DMA_FROM_DEVICE);
  2930. page->index = 0;
  2931. page->mapping = NULL;
  2932. __free_page(page);
  2933. page = next;
  2934. }
  2935. }
  2936. for (i = 0; i < rp->rbr_table_size; i++)
  2937. rp->rbr[i] = cpu_to_le32(0);
  2938. rp->rbr_index = 0;
  2939. }
  2940. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2941. {
  2942. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2943. struct sk_buff *skb = tb->skb;
  2944. struct tx_pkt_hdr *tp;
  2945. u64 tx_flags;
  2946. int i, len;
  2947. tp = (struct tx_pkt_hdr *) skb->data;
  2948. tx_flags = le64_to_cpup(&tp->flags);
  2949. rp->tx_packets++;
  2950. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2951. ((tx_flags & TXHDR_PAD) / 2));
  2952. len = skb_headlen(skb);
  2953. np->ops->unmap_single(np->device, tb->mapping,
  2954. len, DMA_TO_DEVICE);
  2955. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2956. rp->mark_pending--;
  2957. tb->skb = NULL;
  2958. do {
  2959. idx = NEXT_TX(rp, idx);
  2960. len -= MAX_TX_DESC_LEN;
  2961. } while (len > 0);
  2962. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2963. tb = &rp->tx_buffs[idx];
  2964. BUG_ON(tb->skb != NULL);
  2965. np->ops->unmap_page(np->device, tb->mapping,
  2966. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2967. DMA_TO_DEVICE);
  2968. idx = NEXT_TX(rp, idx);
  2969. }
  2970. dev_kfree_skb(skb);
  2971. return idx;
  2972. }
  2973. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2974. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2975. {
  2976. struct netdev_queue *txq;
  2977. u16 pkt_cnt, tmp;
  2978. int cons, index;
  2979. u64 cs;
  2980. index = (rp - np->tx_rings);
  2981. txq = netdev_get_tx_queue(np->dev, index);
  2982. cs = rp->tx_cs;
  2983. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2984. goto out;
  2985. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2986. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2987. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2988. rp->last_pkt_cnt = tmp;
  2989. cons = rp->cons;
  2990. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  2991. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  2992. while (pkt_cnt--)
  2993. cons = release_tx_packet(np, rp, cons);
  2994. rp->cons = cons;
  2995. smp_mb();
  2996. out:
  2997. if (unlikely(netif_tx_queue_stopped(txq) &&
  2998. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  2999. __netif_tx_lock(txq, smp_processor_id());
  3000. if (netif_tx_queue_stopped(txq) &&
  3001. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3002. netif_tx_wake_queue(txq);
  3003. __netif_tx_unlock(txq);
  3004. }
  3005. }
  3006. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3007. struct rx_ring_info *rp,
  3008. const int limit)
  3009. {
  3010. /* This elaborate scheme is needed for reading the RX discard
  3011. * counters, as they are only 16-bit and can overflow quickly,
  3012. * and because the overflow indication bit is not usable as
  3013. * the counter value does not wrap, but remains at max value
  3014. * 0xFFFF.
  3015. *
  3016. * In theory and in practice counters can be lost in between
  3017. * reading nr64() and clearing the counter nw64(). For this
  3018. * reason, the number of counter clearings nw64() is
  3019. * limited/reduced though the limit parameter.
  3020. */
  3021. int rx_channel = rp->rx_channel;
  3022. u32 misc, wred;
  3023. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3024. * following discard events: IPP (Input Port Process),
  3025. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3026. * Block Ring) prefetch buffer is empty.
  3027. */
  3028. misc = nr64(RXMISC(rx_channel));
  3029. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3030. nw64(RXMISC(rx_channel), 0);
  3031. rp->rx_errors += misc & RXMISC_COUNT;
  3032. if (unlikely(misc & RXMISC_OFLOW))
  3033. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3034. rx_channel);
  3035. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3036. "rx-%d: MISC drop=%u over=%u\n",
  3037. rx_channel, misc, misc-limit);
  3038. }
  3039. /* WRED (Weighted Random Early Discard) by hardware */
  3040. wred = nr64(RED_DIS_CNT(rx_channel));
  3041. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3042. nw64(RED_DIS_CNT(rx_channel), 0);
  3043. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3044. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3045. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3046. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3047. "rx-%d: WRED drop=%u over=%u\n",
  3048. rx_channel, wred, wred-limit);
  3049. }
  3050. }
  3051. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3052. struct rx_ring_info *rp, int budget)
  3053. {
  3054. int qlen, rcr_done = 0, work_done = 0;
  3055. struct rxdma_mailbox *mbox = rp->mbox;
  3056. u64 stat;
  3057. #if 1
  3058. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3059. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3060. #else
  3061. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3062. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3063. #endif
  3064. mbox->rx_dma_ctl_stat = 0;
  3065. mbox->rcrstat_a = 0;
  3066. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3067. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3068. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3069. rcr_done = work_done = 0;
  3070. qlen = min(qlen, budget);
  3071. while (work_done < qlen) {
  3072. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3073. work_done++;
  3074. }
  3075. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3076. unsigned int i;
  3077. for (i = 0; i < rp->rbr_refill_pending; i++)
  3078. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3079. rp->rbr_refill_pending = 0;
  3080. }
  3081. stat = (RX_DMA_CTL_STAT_MEX |
  3082. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3083. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3084. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3085. /* Only sync discards stats when qlen indicate potential for drops */
  3086. if (qlen > 10)
  3087. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3088. return work_done;
  3089. }
  3090. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3091. {
  3092. u64 v0 = lp->v0;
  3093. u32 tx_vec = (v0 >> 32);
  3094. u32 rx_vec = (v0 & 0xffffffff);
  3095. int i, work_done = 0;
  3096. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3097. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3098. for (i = 0; i < np->num_tx_rings; i++) {
  3099. struct tx_ring_info *rp = &np->tx_rings[i];
  3100. if (tx_vec & (1 << rp->tx_channel))
  3101. niu_tx_work(np, rp);
  3102. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3103. }
  3104. for (i = 0; i < np->num_rx_rings; i++) {
  3105. struct rx_ring_info *rp = &np->rx_rings[i];
  3106. if (rx_vec & (1 << rp->rx_channel)) {
  3107. int this_work_done;
  3108. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3109. budget);
  3110. budget -= this_work_done;
  3111. work_done += this_work_done;
  3112. }
  3113. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3114. }
  3115. return work_done;
  3116. }
  3117. static int niu_poll(struct napi_struct *napi, int budget)
  3118. {
  3119. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3120. struct niu *np = lp->np;
  3121. int work_done;
  3122. work_done = niu_poll_core(np, lp, budget);
  3123. if (work_done < budget) {
  3124. napi_complete_done(napi, work_done);
  3125. niu_ldg_rearm(np, lp, 1);
  3126. }
  3127. return work_done;
  3128. }
  3129. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3130. u64 stat)
  3131. {
  3132. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3133. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3134. pr_cont("RBR_TMOUT ");
  3135. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3136. pr_cont("RSP_CNT ");
  3137. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3138. pr_cont("BYTE_EN_BUS ");
  3139. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3140. pr_cont("RSP_DAT ");
  3141. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3142. pr_cont("RCR_ACK ");
  3143. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3144. pr_cont("RCR_SHA_PAR ");
  3145. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3146. pr_cont("RBR_PRE_PAR ");
  3147. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3148. pr_cont("CONFIG ");
  3149. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3150. pr_cont("RCRINCON ");
  3151. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3152. pr_cont("RCRFULL ");
  3153. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3154. pr_cont("RBRFULL ");
  3155. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3156. pr_cont("RBRLOGPAGE ");
  3157. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3158. pr_cont("CFIGLOGPAGE ");
  3159. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3160. pr_cont("DC_FIDO ");
  3161. pr_cont(")\n");
  3162. }
  3163. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3164. {
  3165. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3166. int err = 0;
  3167. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3168. RX_DMA_CTL_STAT_PORT_FATAL))
  3169. err = -EINVAL;
  3170. if (err) {
  3171. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3172. rp->rx_channel,
  3173. (unsigned long long) stat);
  3174. niu_log_rxchan_errors(np, rp, stat);
  3175. }
  3176. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3177. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3178. return err;
  3179. }
  3180. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3181. u64 cs)
  3182. {
  3183. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3184. if (cs & TX_CS_MBOX_ERR)
  3185. pr_cont("MBOX ");
  3186. if (cs & TX_CS_PKT_SIZE_ERR)
  3187. pr_cont("PKT_SIZE ");
  3188. if (cs & TX_CS_TX_RING_OFLOW)
  3189. pr_cont("TX_RING_OFLOW ");
  3190. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3191. pr_cont("PREF_BUF_PAR ");
  3192. if (cs & TX_CS_NACK_PREF)
  3193. pr_cont("NACK_PREF ");
  3194. if (cs & TX_CS_NACK_PKT_RD)
  3195. pr_cont("NACK_PKT_RD ");
  3196. if (cs & TX_CS_CONF_PART_ERR)
  3197. pr_cont("CONF_PART ");
  3198. if (cs & TX_CS_PKT_PRT_ERR)
  3199. pr_cont("PKT_PTR ");
  3200. pr_cont(")\n");
  3201. }
  3202. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3203. {
  3204. u64 cs, logh, logl;
  3205. cs = nr64(TX_CS(rp->tx_channel));
  3206. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3207. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3208. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3209. rp->tx_channel,
  3210. (unsigned long long)cs,
  3211. (unsigned long long)logh,
  3212. (unsigned long long)logl);
  3213. niu_log_txchan_errors(np, rp, cs);
  3214. return -ENODEV;
  3215. }
  3216. static int niu_mif_interrupt(struct niu *np)
  3217. {
  3218. u64 mif_status = nr64(MIF_STATUS);
  3219. int phy_mdint = 0;
  3220. if (np->flags & NIU_FLAGS_XMAC) {
  3221. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3222. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3223. phy_mdint = 1;
  3224. }
  3225. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3226. (unsigned long long)mif_status, phy_mdint);
  3227. return -ENODEV;
  3228. }
  3229. static void niu_xmac_interrupt(struct niu *np)
  3230. {
  3231. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3232. u64 val;
  3233. val = nr64_mac(XTXMAC_STATUS);
  3234. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3235. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3236. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3237. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3238. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3239. mp->tx_fifo_errors++;
  3240. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3241. mp->tx_overflow_errors++;
  3242. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3243. mp->tx_max_pkt_size_errors++;
  3244. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3245. mp->tx_underflow_errors++;
  3246. val = nr64_mac(XRXMAC_STATUS);
  3247. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3248. mp->rx_local_faults++;
  3249. if (val & XRXMAC_STATUS_RFLT_DET)
  3250. mp->rx_remote_faults++;
  3251. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3252. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3253. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3254. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3255. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3256. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3257. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3258. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3259. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3260. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3261. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3262. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3263. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3264. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3265. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3266. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3267. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3268. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3269. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3270. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3271. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3272. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3273. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3274. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3275. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3276. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3277. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3278. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3279. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3280. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3281. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3282. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3283. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3284. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3285. if (val & XRXMAC_STATUS_RXUFLOW)
  3286. mp->rx_underflows++;
  3287. if (val & XRXMAC_STATUS_RXOFLOW)
  3288. mp->rx_overflows++;
  3289. val = nr64_mac(XMAC_FC_STAT);
  3290. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3291. mp->pause_off_state++;
  3292. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3293. mp->pause_on_state++;
  3294. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3295. mp->pause_received++;
  3296. }
  3297. static void niu_bmac_interrupt(struct niu *np)
  3298. {
  3299. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3300. u64 val;
  3301. val = nr64_mac(BTXMAC_STATUS);
  3302. if (val & BTXMAC_STATUS_UNDERRUN)
  3303. mp->tx_underflow_errors++;
  3304. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3305. mp->tx_max_pkt_size_errors++;
  3306. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3307. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3308. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3309. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3310. val = nr64_mac(BRXMAC_STATUS);
  3311. if (val & BRXMAC_STATUS_OVERFLOW)
  3312. mp->rx_overflows++;
  3313. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3314. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3315. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3316. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3317. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3318. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3319. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3320. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3321. val = nr64_mac(BMAC_CTRL_STATUS);
  3322. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3323. mp->pause_off_state++;
  3324. if (val & BMAC_CTRL_STATUS_PAUSE)
  3325. mp->pause_on_state++;
  3326. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3327. mp->pause_received++;
  3328. }
  3329. static int niu_mac_interrupt(struct niu *np)
  3330. {
  3331. if (np->flags & NIU_FLAGS_XMAC)
  3332. niu_xmac_interrupt(np);
  3333. else
  3334. niu_bmac_interrupt(np);
  3335. return 0;
  3336. }
  3337. static void niu_log_device_error(struct niu *np, u64 stat)
  3338. {
  3339. netdev_err(np->dev, "Core device errors ( ");
  3340. if (stat & SYS_ERR_MASK_META2)
  3341. pr_cont("META2 ");
  3342. if (stat & SYS_ERR_MASK_META1)
  3343. pr_cont("META1 ");
  3344. if (stat & SYS_ERR_MASK_PEU)
  3345. pr_cont("PEU ");
  3346. if (stat & SYS_ERR_MASK_TXC)
  3347. pr_cont("TXC ");
  3348. if (stat & SYS_ERR_MASK_RDMC)
  3349. pr_cont("RDMC ");
  3350. if (stat & SYS_ERR_MASK_TDMC)
  3351. pr_cont("TDMC ");
  3352. if (stat & SYS_ERR_MASK_ZCP)
  3353. pr_cont("ZCP ");
  3354. if (stat & SYS_ERR_MASK_FFLP)
  3355. pr_cont("FFLP ");
  3356. if (stat & SYS_ERR_MASK_IPP)
  3357. pr_cont("IPP ");
  3358. if (stat & SYS_ERR_MASK_MAC)
  3359. pr_cont("MAC ");
  3360. if (stat & SYS_ERR_MASK_SMX)
  3361. pr_cont("SMX ");
  3362. pr_cont(")\n");
  3363. }
  3364. static int niu_device_error(struct niu *np)
  3365. {
  3366. u64 stat = nr64(SYS_ERR_STAT);
  3367. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3368. (unsigned long long)stat);
  3369. niu_log_device_error(np, stat);
  3370. return -ENODEV;
  3371. }
  3372. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3373. u64 v0, u64 v1, u64 v2)
  3374. {
  3375. int i, err = 0;
  3376. lp->v0 = v0;
  3377. lp->v1 = v1;
  3378. lp->v2 = v2;
  3379. if (v1 & 0x00000000ffffffffULL) {
  3380. u32 rx_vec = (v1 & 0xffffffff);
  3381. for (i = 0; i < np->num_rx_rings; i++) {
  3382. struct rx_ring_info *rp = &np->rx_rings[i];
  3383. if (rx_vec & (1 << rp->rx_channel)) {
  3384. int r = niu_rx_error(np, rp);
  3385. if (r) {
  3386. err = r;
  3387. } else {
  3388. if (!v0)
  3389. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3390. RX_DMA_CTL_STAT_MEX);
  3391. }
  3392. }
  3393. }
  3394. }
  3395. if (v1 & 0x7fffffff00000000ULL) {
  3396. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3397. for (i = 0; i < np->num_tx_rings; i++) {
  3398. struct tx_ring_info *rp = &np->tx_rings[i];
  3399. if (tx_vec & (1 << rp->tx_channel)) {
  3400. int r = niu_tx_error(np, rp);
  3401. if (r)
  3402. err = r;
  3403. }
  3404. }
  3405. }
  3406. if ((v0 | v1) & 0x8000000000000000ULL) {
  3407. int r = niu_mif_interrupt(np);
  3408. if (r)
  3409. err = r;
  3410. }
  3411. if (v2) {
  3412. if (v2 & 0x01ef) {
  3413. int r = niu_mac_interrupt(np);
  3414. if (r)
  3415. err = r;
  3416. }
  3417. if (v2 & 0x0210) {
  3418. int r = niu_device_error(np);
  3419. if (r)
  3420. err = r;
  3421. }
  3422. }
  3423. if (err)
  3424. niu_enable_interrupts(np, 0);
  3425. return err;
  3426. }
  3427. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3428. int ldn)
  3429. {
  3430. struct rxdma_mailbox *mbox = rp->mbox;
  3431. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3432. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3433. RX_DMA_CTL_STAT_RCRTO);
  3434. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3435. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3436. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3437. }
  3438. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3439. int ldn)
  3440. {
  3441. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3442. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3443. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3444. }
  3445. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3446. {
  3447. struct niu_parent *parent = np->parent;
  3448. u32 rx_vec, tx_vec;
  3449. int i;
  3450. tx_vec = (v0 >> 32);
  3451. rx_vec = (v0 & 0xffffffff);
  3452. for (i = 0; i < np->num_rx_rings; i++) {
  3453. struct rx_ring_info *rp = &np->rx_rings[i];
  3454. int ldn = LDN_RXDMA(rp->rx_channel);
  3455. if (parent->ldg_map[ldn] != ldg)
  3456. continue;
  3457. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3458. if (rx_vec & (1 << rp->rx_channel))
  3459. niu_rxchan_intr(np, rp, ldn);
  3460. }
  3461. for (i = 0; i < np->num_tx_rings; i++) {
  3462. struct tx_ring_info *rp = &np->tx_rings[i];
  3463. int ldn = LDN_TXDMA(rp->tx_channel);
  3464. if (parent->ldg_map[ldn] != ldg)
  3465. continue;
  3466. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3467. if (tx_vec & (1 << rp->tx_channel))
  3468. niu_txchan_intr(np, rp, ldn);
  3469. }
  3470. }
  3471. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3472. u64 v0, u64 v1, u64 v2)
  3473. {
  3474. if (likely(napi_schedule_prep(&lp->napi))) {
  3475. lp->v0 = v0;
  3476. lp->v1 = v1;
  3477. lp->v2 = v2;
  3478. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3479. __napi_schedule(&lp->napi);
  3480. }
  3481. }
  3482. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3483. {
  3484. struct niu_ldg *lp = dev_id;
  3485. struct niu *np = lp->np;
  3486. int ldg = lp->ldg_num;
  3487. unsigned long flags;
  3488. u64 v0, v1, v2;
  3489. if (netif_msg_intr(np))
  3490. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3491. __func__, lp, ldg);
  3492. spin_lock_irqsave(&np->lock, flags);
  3493. v0 = nr64(LDSV0(ldg));
  3494. v1 = nr64(LDSV1(ldg));
  3495. v2 = nr64(LDSV2(ldg));
  3496. if (netif_msg_intr(np))
  3497. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3498. (unsigned long long) v0,
  3499. (unsigned long long) v1,
  3500. (unsigned long long) v2);
  3501. if (unlikely(!v0 && !v1 && !v2)) {
  3502. spin_unlock_irqrestore(&np->lock, flags);
  3503. return IRQ_NONE;
  3504. }
  3505. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3506. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3507. if (err)
  3508. goto out;
  3509. }
  3510. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3511. niu_schedule_napi(np, lp, v0, v1, v2);
  3512. else
  3513. niu_ldg_rearm(np, lp, 1);
  3514. out:
  3515. spin_unlock_irqrestore(&np->lock, flags);
  3516. return IRQ_HANDLED;
  3517. }
  3518. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3519. {
  3520. if (rp->mbox) {
  3521. np->ops->free_coherent(np->device,
  3522. sizeof(struct rxdma_mailbox),
  3523. rp->mbox, rp->mbox_dma);
  3524. rp->mbox = NULL;
  3525. }
  3526. if (rp->rcr) {
  3527. np->ops->free_coherent(np->device,
  3528. MAX_RCR_RING_SIZE * sizeof(__le64),
  3529. rp->rcr, rp->rcr_dma);
  3530. rp->rcr = NULL;
  3531. rp->rcr_table_size = 0;
  3532. rp->rcr_index = 0;
  3533. }
  3534. if (rp->rbr) {
  3535. niu_rbr_free(np, rp);
  3536. np->ops->free_coherent(np->device,
  3537. MAX_RBR_RING_SIZE * sizeof(__le32),
  3538. rp->rbr, rp->rbr_dma);
  3539. rp->rbr = NULL;
  3540. rp->rbr_table_size = 0;
  3541. rp->rbr_index = 0;
  3542. }
  3543. kfree(rp->rxhash);
  3544. rp->rxhash = NULL;
  3545. }
  3546. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3547. {
  3548. if (rp->mbox) {
  3549. np->ops->free_coherent(np->device,
  3550. sizeof(struct txdma_mailbox),
  3551. rp->mbox, rp->mbox_dma);
  3552. rp->mbox = NULL;
  3553. }
  3554. if (rp->descr) {
  3555. int i;
  3556. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3557. if (rp->tx_buffs[i].skb)
  3558. (void) release_tx_packet(np, rp, i);
  3559. }
  3560. np->ops->free_coherent(np->device,
  3561. MAX_TX_RING_SIZE * sizeof(__le64),
  3562. rp->descr, rp->descr_dma);
  3563. rp->descr = NULL;
  3564. rp->pending = 0;
  3565. rp->prod = 0;
  3566. rp->cons = 0;
  3567. rp->wrap_bit = 0;
  3568. }
  3569. }
  3570. static void niu_free_channels(struct niu *np)
  3571. {
  3572. int i;
  3573. if (np->rx_rings) {
  3574. for (i = 0; i < np->num_rx_rings; i++) {
  3575. struct rx_ring_info *rp = &np->rx_rings[i];
  3576. niu_free_rx_ring_info(np, rp);
  3577. }
  3578. kfree(np->rx_rings);
  3579. np->rx_rings = NULL;
  3580. np->num_rx_rings = 0;
  3581. }
  3582. if (np->tx_rings) {
  3583. for (i = 0; i < np->num_tx_rings; i++) {
  3584. struct tx_ring_info *rp = &np->tx_rings[i];
  3585. niu_free_tx_ring_info(np, rp);
  3586. }
  3587. kfree(np->tx_rings);
  3588. np->tx_rings = NULL;
  3589. np->num_tx_rings = 0;
  3590. }
  3591. }
  3592. static int niu_alloc_rx_ring_info(struct niu *np,
  3593. struct rx_ring_info *rp)
  3594. {
  3595. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3596. rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *),
  3597. GFP_KERNEL);
  3598. if (!rp->rxhash)
  3599. return -ENOMEM;
  3600. rp->mbox = np->ops->alloc_coherent(np->device,
  3601. sizeof(struct rxdma_mailbox),
  3602. &rp->mbox_dma, GFP_KERNEL);
  3603. if (!rp->mbox)
  3604. return -ENOMEM;
  3605. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3606. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3607. rp->mbox);
  3608. return -EINVAL;
  3609. }
  3610. rp->rcr = np->ops->alloc_coherent(np->device,
  3611. MAX_RCR_RING_SIZE * sizeof(__le64),
  3612. &rp->rcr_dma, GFP_KERNEL);
  3613. if (!rp->rcr)
  3614. return -ENOMEM;
  3615. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3616. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3617. rp->rcr);
  3618. return -EINVAL;
  3619. }
  3620. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3621. rp->rcr_index = 0;
  3622. rp->rbr = np->ops->alloc_coherent(np->device,
  3623. MAX_RBR_RING_SIZE * sizeof(__le32),
  3624. &rp->rbr_dma, GFP_KERNEL);
  3625. if (!rp->rbr)
  3626. return -ENOMEM;
  3627. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3628. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3629. rp->rbr);
  3630. return -EINVAL;
  3631. }
  3632. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3633. rp->rbr_index = 0;
  3634. rp->rbr_pending = 0;
  3635. return 0;
  3636. }
  3637. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3638. {
  3639. int mtu = np->dev->mtu;
  3640. /* These values are recommended by the HW designers for fair
  3641. * utilization of DRR amongst the rings.
  3642. */
  3643. rp->max_burst = mtu + 32;
  3644. if (rp->max_burst > 4096)
  3645. rp->max_burst = 4096;
  3646. }
  3647. static int niu_alloc_tx_ring_info(struct niu *np,
  3648. struct tx_ring_info *rp)
  3649. {
  3650. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3651. rp->mbox = np->ops->alloc_coherent(np->device,
  3652. sizeof(struct txdma_mailbox),
  3653. &rp->mbox_dma, GFP_KERNEL);
  3654. if (!rp->mbox)
  3655. return -ENOMEM;
  3656. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3657. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3658. rp->mbox);
  3659. return -EINVAL;
  3660. }
  3661. rp->descr = np->ops->alloc_coherent(np->device,
  3662. MAX_TX_RING_SIZE * sizeof(__le64),
  3663. &rp->descr_dma, GFP_KERNEL);
  3664. if (!rp->descr)
  3665. return -ENOMEM;
  3666. if ((unsigned long)rp->descr & (64UL - 1)) {
  3667. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3668. rp->descr);
  3669. return -EINVAL;
  3670. }
  3671. rp->pending = MAX_TX_RING_SIZE;
  3672. rp->prod = 0;
  3673. rp->cons = 0;
  3674. rp->wrap_bit = 0;
  3675. /* XXX make these configurable... XXX */
  3676. rp->mark_freq = rp->pending / 4;
  3677. niu_set_max_burst(np, rp);
  3678. return 0;
  3679. }
  3680. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3681. {
  3682. u16 bss;
  3683. bss = min(PAGE_SHIFT, 15);
  3684. rp->rbr_block_size = 1 << bss;
  3685. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3686. rp->rbr_sizes[0] = 256;
  3687. rp->rbr_sizes[1] = 1024;
  3688. if (np->dev->mtu > ETH_DATA_LEN) {
  3689. switch (PAGE_SIZE) {
  3690. case 4 * 1024:
  3691. rp->rbr_sizes[2] = 4096;
  3692. break;
  3693. default:
  3694. rp->rbr_sizes[2] = 8192;
  3695. break;
  3696. }
  3697. } else {
  3698. rp->rbr_sizes[2] = 2048;
  3699. }
  3700. rp->rbr_sizes[3] = rp->rbr_block_size;
  3701. }
  3702. static int niu_alloc_channels(struct niu *np)
  3703. {
  3704. struct niu_parent *parent = np->parent;
  3705. int first_rx_channel, first_tx_channel;
  3706. int num_rx_rings, num_tx_rings;
  3707. struct rx_ring_info *rx_rings;
  3708. struct tx_ring_info *tx_rings;
  3709. int i, port, err;
  3710. port = np->port;
  3711. first_rx_channel = first_tx_channel = 0;
  3712. for (i = 0; i < port; i++) {
  3713. first_rx_channel += parent->rxchan_per_port[i];
  3714. first_tx_channel += parent->txchan_per_port[i];
  3715. }
  3716. num_rx_rings = parent->rxchan_per_port[port];
  3717. num_tx_rings = parent->txchan_per_port[port];
  3718. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3719. GFP_KERNEL);
  3720. err = -ENOMEM;
  3721. if (!rx_rings)
  3722. goto out_err;
  3723. np->num_rx_rings = num_rx_rings;
  3724. smp_wmb();
  3725. np->rx_rings = rx_rings;
  3726. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3727. for (i = 0; i < np->num_rx_rings; i++) {
  3728. struct rx_ring_info *rp = &np->rx_rings[i];
  3729. rp->np = np;
  3730. rp->rx_channel = first_rx_channel + i;
  3731. err = niu_alloc_rx_ring_info(np, rp);
  3732. if (err)
  3733. goto out_err;
  3734. niu_size_rbr(np, rp);
  3735. /* XXX better defaults, configurable, etc... XXX */
  3736. rp->nonsyn_window = 64;
  3737. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3738. rp->syn_window = 64;
  3739. rp->syn_threshold = rp->rcr_table_size - 64;
  3740. rp->rcr_pkt_threshold = 16;
  3741. rp->rcr_timeout = 8;
  3742. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3743. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3744. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3745. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3746. if (err)
  3747. return err;
  3748. }
  3749. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3750. GFP_KERNEL);
  3751. err = -ENOMEM;
  3752. if (!tx_rings)
  3753. goto out_err;
  3754. np->num_tx_rings = num_tx_rings;
  3755. smp_wmb();
  3756. np->tx_rings = tx_rings;
  3757. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3758. for (i = 0; i < np->num_tx_rings; i++) {
  3759. struct tx_ring_info *rp = &np->tx_rings[i];
  3760. rp->np = np;
  3761. rp->tx_channel = first_tx_channel + i;
  3762. err = niu_alloc_tx_ring_info(np, rp);
  3763. if (err)
  3764. goto out_err;
  3765. }
  3766. return 0;
  3767. out_err:
  3768. niu_free_channels(np);
  3769. return err;
  3770. }
  3771. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3772. {
  3773. int limit = 1000;
  3774. while (--limit > 0) {
  3775. u64 val = nr64(TX_CS(channel));
  3776. if (val & TX_CS_SNG_STATE)
  3777. return 0;
  3778. }
  3779. return -ENODEV;
  3780. }
  3781. static int niu_tx_channel_stop(struct niu *np, int channel)
  3782. {
  3783. u64 val = nr64(TX_CS(channel));
  3784. val |= TX_CS_STOP_N_GO;
  3785. nw64(TX_CS(channel), val);
  3786. return niu_tx_cs_sng_poll(np, channel);
  3787. }
  3788. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3789. {
  3790. int limit = 1000;
  3791. while (--limit > 0) {
  3792. u64 val = nr64(TX_CS(channel));
  3793. if (!(val & TX_CS_RST))
  3794. return 0;
  3795. }
  3796. return -ENODEV;
  3797. }
  3798. static int niu_tx_channel_reset(struct niu *np, int channel)
  3799. {
  3800. u64 val = nr64(TX_CS(channel));
  3801. int err;
  3802. val |= TX_CS_RST;
  3803. nw64(TX_CS(channel), val);
  3804. err = niu_tx_cs_reset_poll(np, channel);
  3805. if (!err)
  3806. nw64(TX_RING_KICK(channel), 0);
  3807. return err;
  3808. }
  3809. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3810. {
  3811. u64 val;
  3812. nw64(TX_LOG_MASK1(channel), 0);
  3813. nw64(TX_LOG_VAL1(channel), 0);
  3814. nw64(TX_LOG_MASK2(channel), 0);
  3815. nw64(TX_LOG_VAL2(channel), 0);
  3816. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3817. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3818. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3819. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3820. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3821. nw64(TX_LOG_PAGE_VLD(channel), val);
  3822. /* XXX TXDMA 32bit mode? XXX */
  3823. return 0;
  3824. }
  3825. static void niu_txc_enable_port(struct niu *np, int on)
  3826. {
  3827. unsigned long flags;
  3828. u64 val, mask;
  3829. niu_lock_parent(np, flags);
  3830. val = nr64(TXC_CONTROL);
  3831. mask = (u64)1 << np->port;
  3832. if (on) {
  3833. val |= TXC_CONTROL_ENABLE | mask;
  3834. } else {
  3835. val &= ~mask;
  3836. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3837. val &= ~TXC_CONTROL_ENABLE;
  3838. }
  3839. nw64(TXC_CONTROL, val);
  3840. niu_unlock_parent(np, flags);
  3841. }
  3842. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3843. {
  3844. unsigned long flags;
  3845. u64 val;
  3846. niu_lock_parent(np, flags);
  3847. val = nr64(TXC_INT_MASK);
  3848. val &= ~TXC_INT_MASK_VAL(np->port);
  3849. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3850. niu_unlock_parent(np, flags);
  3851. }
  3852. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3853. {
  3854. u64 val = 0;
  3855. if (on) {
  3856. int i;
  3857. for (i = 0; i < np->num_tx_rings; i++)
  3858. val |= (1 << np->tx_rings[i].tx_channel);
  3859. }
  3860. nw64(TXC_PORT_DMA(np->port), val);
  3861. }
  3862. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3863. {
  3864. int err, channel = rp->tx_channel;
  3865. u64 val, ring_len;
  3866. err = niu_tx_channel_stop(np, channel);
  3867. if (err)
  3868. return err;
  3869. err = niu_tx_channel_reset(np, channel);
  3870. if (err)
  3871. return err;
  3872. err = niu_tx_channel_lpage_init(np, channel);
  3873. if (err)
  3874. return err;
  3875. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3876. nw64(TX_ENT_MSK(channel), 0);
  3877. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3878. TX_RNG_CFIG_STADDR)) {
  3879. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3880. channel, (unsigned long long)rp->descr_dma);
  3881. return -EINVAL;
  3882. }
  3883. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3884. * blocks. rp->pending is the number of TX descriptors in
  3885. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3886. * to get the proper value the chip wants.
  3887. */
  3888. ring_len = (rp->pending / 8);
  3889. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3890. rp->descr_dma);
  3891. nw64(TX_RNG_CFIG(channel), val);
  3892. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3893. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3894. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3895. channel, (unsigned long long)rp->mbox_dma);
  3896. return -EINVAL;
  3897. }
  3898. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3899. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3900. nw64(TX_CS(channel), 0);
  3901. rp->last_pkt_cnt = 0;
  3902. return 0;
  3903. }
  3904. static void niu_init_rdc_groups(struct niu *np)
  3905. {
  3906. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3907. int i, first_table_num = tp->first_table_num;
  3908. for (i = 0; i < tp->num_tables; i++) {
  3909. struct rdc_table *tbl = &tp->tables[i];
  3910. int this_table = first_table_num + i;
  3911. int slot;
  3912. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3913. nw64(RDC_TBL(this_table, slot),
  3914. tbl->rxdma_channel[slot]);
  3915. }
  3916. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3917. }
  3918. static void niu_init_drr_weight(struct niu *np)
  3919. {
  3920. int type = phy_decode(np->parent->port_phy, np->port);
  3921. u64 val;
  3922. switch (type) {
  3923. case PORT_TYPE_10G:
  3924. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3925. break;
  3926. case PORT_TYPE_1G:
  3927. default:
  3928. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3929. break;
  3930. }
  3931. nw64(PT_DRR_WT(np->port), val);
  3932. }
  3933. static int niu_init_hostinfo(struct niu *np)
  3934. {
  3935. struct niu_parent *parent = np->parent;
  3936. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3937. int i, err, num_alt = niu_num_alt_addr(np);
  3938. int first_rdc_table = tp->first_table_num;
  3939. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3940. if (err)
  3941. return err;
  3942. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3943. if (err)
  3944. return err;
  3945. for (i = 0; i < num_alt; i++) {
  3946. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3947. if (err)
  3948. return err;
  3949. }
  3950. return 0;
  3951. }
  3952. static int niu_rx_channel_reset(struct niu *np, int channel)
  3953. {
  3954. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3955. RXDMA_CFIG1_RST, 1000, 10,
  3956. "RXDMA_CFIG1");
  3957. }
  3958. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3959. {
  3960. u64 val;
  3961. nw64(RX_LOG_MASK1(channel), 0);
  3962. nw64(RX_LOG_VAL1(channel), 0);
  3963. nw64(RX_LOG_MASK2(channel), 0);
  3964. nw64(RX_LOG_VAL2(channel), 0);
  3965. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3966. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3967. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3968. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3969. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3970. nw64(RX_LOG_PAGE_VLD(channel), val);
  3971. return 0;
  3972. }
  3973. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3974. {
  3975. u64 val;
  3976. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3977. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3978. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3979. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3980. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3981. }
  3982. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3983. {
  3984. u64 val = 0;
  3985. *ret = 0;
  3986. switch (rp->rbr_block_size) {
  3987. case 4 * 1024:
  3988. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3989. break;
  3990. case 8 * 1024:
  3991. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3992. break;
  3993. case 16 * 1024:
  3994. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3995. break;
  3996. case 32 * 1024:
  3997. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3998. break;
  3999. default:
  4000. return -EINVAL;
  4001. }
  4002. val |= RBR_CFIG_B_VLD2;
  4003. switch (rp->rbr_sizes[2]) {
  4004. case 2 * 1024:
  4005. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4006. break;
  4007. case 4 * 1024:
  4008. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4009. break;
  4010. case 8 * 1024:
  4011. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4012. break;
  4013. case 16 * 1024:
  4014. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4015. break;
  4016. default:
  4017. return -EINVAL;
  4018. }
  4019. val |= RBR_CFIG_B_VLD1;
  4020. switch (rp->rbr_sizes[1]) {
  4021. case 1 * 1024:
  4022. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4023. break;
  4024. case 2 * 1024:
  4025. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4026. break;
  4027. case 4 * 1024:
  4028. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4029. break;
  4030. case 8 * 1024:
  4031. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4032. break;
  4033. default:
  4034. return -EINVAL;
  4035. }
  4036. val |= RBR_CFIG_B_VLD0;
  4037. switch (rp->rbr_sizes[0]) {
  4038. case 256:
  4039. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4040. break;
  4041. case 512:
  4042. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4043. break;
  4044. case 1 * 1024:
  4045. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4046. break;
  4047. case 2 * 1024:
  4048. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4049. break;
  4050. default:
  4051. return -EINVAL;
  4052. }
  4053. *ret = val;
  4054. return 0;
  4055. }
  4056. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4057. {
  4058. u64 val = nr64(RXDMA_CFIG1(channel));
  4059. int limit;
  4060. if (on)
  4061. val |= RXDMA_CFIG1_EN;
  4062. else
  4063. val &= ~RXDMA_CFIG1_EN;
  4064. nw64(RXDMA_CFIG1(channel), val);
  4065. limit = 1000;
  4066. while (--limit > 0) {
  4067. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4068. break;
  4069. udelay(10);
  4070. }
  4071. if (limit <= 0)
  4072. return -ENODEV;
  4073. return 0;
  4074. }
  4075. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4076. {
  4077. int err, channel = rp->rx_channel;
  4078. u64 val;
  4079. err = niu_rx_channel_reset(np, channel);
  4080. if (err)
  4081. return err;
  4082. err = niu_rx_channel_lpage_init(np, channel);
  4083. if (err)
  4084. return err;
  4085. niu_rx_channel_wred_init(np, rp);
  4086. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4087. nw64(RX_DMA_CTL_STAT(channel),
  4088. (RX_DMA_CTL_STAT_MEX |
  4089. RX_DMA_CTL_STAT_RCRTHRES |
  4090. RX_DMA_CTL_STAT_RCRTO |
  4091. RX_DMA_CTL_STAT_RBR_EMPTY));
  4092. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4093. nw64(RXDMA_CFIG2(channel),
  4094. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4095. RXDMA_CFIG2_FULL_HDR));
  4096. nw64(RBR_CFIG_A(channel),
  4097. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4098. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4099. err = niu_compute_rbr_cfig_b(rp, &val);
  4100. if (err)
  4101. return err;
  4102. nw64(RBR_CFIG_B(channel), val);
  4103. nw64(RCRCFIG_A(channel),
  4104. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4105. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4106. nw64(RCRCFIG_B(channel),
  4107. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4108. RCRCFIG_B_ENTOUT |
  4109. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4110. err = niu_enable_rx_channel(np, channel, 1);
  4111. if (err)
  4112. return err;
  4113. nw64(RBR_KICK(channel), rp->rbr_index);
  4114. val = nr64(RX_DMA_CTL_STAT(channel));
  4115. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4116. nw64(RX_DMA_CTL_STAT(channel), val);
  4117. return 0;
  4118. }
  4119. static int niu_init_rx_channels(struct niu *np)
  4120. {
  4121. unsigned long flags;
  4122. u64 seed = jiffies_64;
  4123. int err, i;
  4124. niu_lock_parent(np, flags);
  4125. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4126. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4127. niu_unlock_parent(np, flags);
  4128. /* XXX RXDMA 32bit mode? XXX */
  4129. niu_init_rdc_groups(np);
  4130. niu_init_drr_weight(np);
  4131. err = niu_init_hostinfo(np);
  4132. if (err)
  4133. return err;
  4134. for (i = 0; i < np->num_rx_rings; i++) {
  4135. struct rx_ring_info *rp = &np->rx_rings[i];
  4136. err = niu_init_one_rx_channel(np, rp);
  4137. if (err)
  4138. return err;
  4139. }
  4140. return 0;
  4141. }
  4142. static int niu_set_ip_frag_rule(struct niu *np)
  4143. {
  4144. struct niu_parent *parent = np->parent;
  4145. struct niu_classifier *cp = &np->clas;
  4146. struct niu_tcam_entry *tp;
  4147. int index, err;
  4148. index = cp->tcam_top;
  4149. tp = &parent->tcam[index];
  4150. /* Note that the noport bit is the same in both ipv4 and
  4151. * ipv6 format TCAM entries.
  4152. */
  4153. memset(tp, 0, sizeof(*tp));
  4154. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4155. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4156. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4157. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4158. err = tcam_write(np, index, tp->key, tp->key_mask);
  4159. if (err)
  4160. return err;
  4161. err = tcam_assoc_write(np, index, tp->assoc_data);
  4162. if (err)
  4163. return err;
  4164. tp->valid = 1;
  4165. cp->tcam_valid_entries++;
  4166. return 0;
  4167. }
  4168. static int niu_init_classifier_hw(struct niu *np)
  4169. {
  4170. struct niu_parent *parent = np->parent;
  4171. struct niu_classifier *cp = &np->clas;
  4172. int i, err;
  4173. nw64(H1POLY, cp->h1_init);
  4174. nw64(H2POLY, cp->h2_init);
  4175. err = niu_init_hostinfo(np);
  4176. if (err)
  4177. return err;
  4178. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4179. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4180. vlan_tbl_write(np, i, np->port,
  4181. vp->vlan_pref, vp->rdc_num);
  4182. }
  4183. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4184. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4185. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4186. ap->rdc_num, ap->mac_pref);
  4187. if (err)
  4188. return err;
  4189. }
  4190. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4191. int index = i - CLASS_CODE_USER_PROG1;
  4192. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4193. if (err)
  4194. return err;
  4195. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4196. if (err)
  4197. return err;
  4198. }
  4199. err = niu_set_ip_frag_rule(np);
  4200. if (err)
  4201. return err;
  4202. tcam_enable(np, 1);
  4203. return 0;
  4204. }
  4205. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4206. {
  4207. nw64(ZCP_RAM_DATA0, data[0]);
  4208. nw64(ZCP_RAM_DATA1, data[1]);
  4209. nw64(ZCP_RAM_DATA2, data[2]);
  4210. nw64(ZCP_RAM_DATA3, data[3]);
  4211. nw64(ZCP_RAM_DATA4, data[4]);
  4212. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4213. nw64(ZCP_RAM_ACC,
  4214. (ZCP_RAM_ACC_WRITE |
  4215. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4216. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4217. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4218. 1000, 100);
  4219. }
  4220. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4221. {
  4222. int err;
  4223. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4224. 1000, 100);
  4225. if (err) {
  4226. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4227. (unsigned long long)nr64(ZCP_RAM_ACC));
  4228. return err;
  4229. }
  4230. nw64(ZCP_RAM_ACC,
  4231. (ZCP_RAM_ACC_READ |
  4232. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4233. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4234. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4235. 1000, 100);
  4236. if (err) {
  4237. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4238. (unsigned long long)nr64(ZCP_RAM_ACC));
  4239. return err;
  4240. }
  4241. data[0] = nr64(ZCP_RAM_DATA0);
  4242. data[1] = nr64(ZCP_RAM_DATA1);
  4243. data[2] = nr64(ZCP_RAM_DATA2);
  4244. data[3] = nr64(ZCP_RAM_DATA3);
  4245. data[4] = nr64(ZCP_RAM_DATA4);
  4246. return 0;
  4247. }
  4248. static void niu_zcp_cfifo_reset(struct niu *np)
  4249. {
  4250. u64 val = nr64(RESET_CFIFO);
  4251. val |= RESET_CFIFO_RST(np->port);
  4252. nw64(RESET_CFIFO, val);
  4253. udelay(10);
  4254. val &= ~RESET_CFIFO_RST(np->port);
  4255. nw64(RESET_CFIFO, val);
  4256. }
  4257. static int niu_init_zcp(struct niu *np)
  4258. {
  4259. u64 data[5], rbuf[5];
  4260. int i, max, err;
  4261. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4262. if (np->port == 0 || np->port == 1)
  4263. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4264. else
  4265. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4266. } else
  4267. max = NIU_CFIFO_ENTRIES;
  4268. data[0] = 0;
  4269. data[1] = 0;
  4270. data[2] = 0;
  4271. data[3] = 0;
  4272. data[4] = 0;
  4273. for (i = 0; i < max; i++) {
  4274. err = niu_zcp_write(np, i, data);
  4275. if (err)
  4276. return err;
  4277. err = niu_zcp_read(np, i, rbuf);
  4278. if (err)
  4279. return err;
  4280. }
  4281. niu_zcp_cfifo_reset(np);
  4282. nw64(CFIFO_ECC(np->port), 0);
  4283. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4284. (void) nr64(ZCP_INT_STAT);
  4285. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4286. return 0;
  4287. }
  4288. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4289. {
  4290. u64 val = nr64_ipp(IPP_CFIG);
  4291. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4292. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4293. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4294. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4295. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4296. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4297. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4298. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4299. }
  4300. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4301. {
  4302. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4303. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4304. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4305. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4306. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4307. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4308. }
  4309. static int niu_ipp_reset(struct niu *np)
  4310. {
  4311. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4312. 1000, 100, "IPP_CFIG");
  4313. }
  4314. static int niu_init_ipp(struct niu *np)
  4315. {
  4316. u64 data[5], rbuf[5], val;
  4317. int i, max, err;
  4318. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4319. if (np->port == 0 || np->port == 1)
  4320. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4321. else
  4322. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4323. } else
  4324. max = NIU_DFIFO_ENTRIES;
  4325. data[0] = 0;
  4326. data[1] = 0;
  4327. data[2] = 0;
  4328. data[3] = 0;
  4329. data[4] = 0;
  4330. for (i = 0; i < max; i++) {
  4331. niu_ipp_write(np, i, data);
  4332. niu_ipp_read(np, i, rbuf);
  4333. }
  4334. (void) nr64_ipp(IPP_INT_STAT);
  4335. (void) nr64_ipp(IPP_INT_STAT);
  4336. err = niu_ipp_reset(np);
  4337. if (err)
  4338. return err;
  4339. (void) nr64_ipp(IPP_PKT_DIS);
  4340. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4341. (void) nr64_ipp(IPP_ECC);
  4342. (void) nr64_ipp(IPP_INT_STAT);
  4343. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4344. val = nr64_ipp(IPP_CFIG);
  4345. val &= ~IPP_CFIG_IP_MAX_PKT;
  4346. val |= (IPP_CFIG_IPP_ENABLE |
  4347. IPP_CFIG_DFIFO_ECC_EN |
  4348. IPP_CFIG_DROP_BAD_CRC |
  4349. IPP_CFIG_CKSUM_EN |
  4350. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4351. nw64_ipp(IPP_CFIG, val);
  4352. return 0;
  4353. }
  4354. static void niu_handle_led(struct niu *np, int status)
  4355. {
  4356. u64 val;
  4357. val = nr64_mac(XMAC_CONFIG);
  4358. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4359. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4360. if (status) {
  4361. val |= XMAC_CONFIG_LED_POLARITY;
  4362. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4363. } else {
  4364. val |= XMAC_CONFIG_FORCE_LED_ON;
  4365. val &= ~XMAC_CONFIG_LED_POLARITY;
  4366. }
  4367. }
  4368. nw64_mac(XMAC_CONFIG, val);
  4369. }
  4370. static void niu_init_xif_xmac(struct niu *np)
  4371. {
  4372. struct niu_link_config *lp = &np->link_config;
  4373. u64 val;
  4374. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4375. val = nr64(MIF_CONFIG);
  4376. val |= MIF_CONFIG_ATCA_GE;
  4377. nw64(MIF_CONFIG, val);
  4378. }
  4379. val = nr64_mac(XMAC_CONFIG);
  4380. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4381. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4382. if (lp->loopback_mode == LOOPBACK_MAC) {
  4383. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4384. val |= XMAC_CONFIG_LOOPBACK;
  4385. } else {
  4386. val &= ~XMAC_CONFIG_LOOPBACK;
  4387. }
  4388. if (np->flags & NIU_FLAGS_10G) {
  4389. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4390. } else {
  4391. val |= XMAC_CONFIG_LFS_DISABLE;
  4392. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4393. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4394. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4395. else
  4396. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4397. }
  4398. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4399. if (lp->active_speed == SPEED_100)
  4400. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4401. else
  4402. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4403. nw64_mac(XMAC_CONFIG, val);
  4404. val = nr64_mac(XMAC_CONFIG);
  4405. val &= ~XMAC_CONFIG_MODE_MASK;
  4406. if (np->flags & NIU_FLAGS_10G) {
  4407. val |= XMAC_CONFIG_MODE_XGMII;
  4408. } else {
  4409. if (lp->active_speed == SPEED_1000)
  4410. val |= XMAC_CONFIG_MODE_GMII;
  4411. else
  4412. val |= XMAC_CONFIG_MODE_MII;
  4413. }
  4414. nw64_mac(XMAC_CONFIG, val);
  4415. }
  4416. static void niu_init_xif_bmac(struct niu *np)
  4417. {
  4418. struct niu_link_config *lp = &np->link_config;
  4419. u64 val;
  4420. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4421. if (lp->loopback_mode == LOOPBACK_MAC)
  4422. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4423. else
  4424. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4425. if (lp->active_speed == SPEED_1000)
  4426. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4427. else
  4428. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4429. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4430. BMAC_XIF_CONFIG_LED_POLARITY);
  4431. if (!(np->flags & NIU_FLAGS_10G) &&
  4432. !(np->flags & NIU_FLAGS_FIBER) &&
  4433. lp->active_speed == SPEED_100)
  4434. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4435. else
  4436. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4437. nw64_mac(BMAC_XIF_CONFIG, val);
  4438. }
  4439. static void niu_init_xif(struct niu *np)
  4440. {
  4441. if (np->flags & NIU_FLAGS_XMAC)
  4442. niu_init_xif_xmac(np);
  4443. else
  4444. niu_init_xif_bmac(np);
  4445. }
  4446. static void niu_pcs_mii_reset(struct niu *np)
  4447. {
  4448. int limit = 1000;
  4449. u64 val = nr64_pcs(PCS_MII_CTL);
  4450. val |= PCS_MII_CTL_RST;
  4451. nw64_pcs(PCS_MII_CTL, val);
  4452. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4453. udelay(100);
  4454. val = nr64_pcs(PCS_MII_CTL);
  4455. }
  4456. }
  4457. static void niu_xpcs_reset(struct niu *np)
  4458. {
  4459. int limit = 1000;
  4460. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4461. val |= XPCS_CONTROL1_RESET;
  4462. nw64_xpcs(XPCS_CONTROL1, val);
  4463. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4464. udelay(100);
  4465. val = nr64_xpcs(XPCS_CONTROL1);
  4466. }
  4467. }
  4468. static int niu_init_pcs(struct niu *np)
  4469. {
  4470. struct niu_link_config *lp = &np->link_config;
  4471. u64 val;
  4472. switch (np->flags & (NIU_FLAGS_10G |
  4473. NIU_FLAGS_FIBER |
  4474. NIU_FLAGS_XCVR_SERDES)) {
  4475. case NIU_FLAGS_FIBER:
  4476. /* 1G fiber */
  4477. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4478. nw64_pcs(PCS_DPATH_MODE, 0);
  4479. niu_pcs_mii_reset(np);
  4480. break;
  4481. case NIU_FLAGS_10G:
  4482. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4483. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4484. /* 10G SERDES */
  4485. if (!(np->flags & NIU_FLAGS_XMAC))
  4486. return -EINVAL;
  4487. /* 10G copper or fiber */
  4488. val = nr64_mac(XMAC_CONFIG);
  4489. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4490. nw64_mac(XMAC_CONFIG, val);
  4491. niu_xpcs_reset(np);
  4492. val = nr64_xpcs(XPCS_CONTROL1);
  4493. if (lp->loopback_mode == LOOPBACK_PHY)
  4494. val |= XPCS_CONTROL1_LOOPBACK;
  4495. else
  4496. val &= ~XPCS_CONTROL1_LOOPBACK;
  4497. nw64_xpcs(XPCS_CONTROL1, val);
  4498. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4499. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4500. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4501. break;
  4502. case NIU_FLAGS_XCVR_SERDES:
  4503. /* 1G SERDES */
  4504. niu_pcs_mii_reset(np);
  4505. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4506. nw64_pcs(PCS_DPATH_MODE, 0);
  4507. break;
  4508. case 0:
  4509. /* 1G copper */
  4510. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4511. /* 1G RGMII FIBER */
  4512. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4513. niu_pcs_mii_reset(np);
  4514. break;
  4515. default:
  4516. return -EINVAL;
  4517. }
  4518. return 0;
  4519. }
  4520. static int niu_reset_tx_xmac(struct niu *np)
  4521. {
  4522. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4523. (XTXMAC_SW_RST_REG_RS |
  4524. XTXMAC_SW_RST_SOFT_RST),
  4525. 1000, 100, "XTXMAC_SW_RST");
  4526. }
  4527. static int niu_reset_tx_bmac(struct niu *np)
  4528. {
  4529. int limit;
  4530. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4531. limit = 1000;
  4532. while (--limit >= 0) {
  4533. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4534. break;
  4535. udelay(100);
  4536. }
  4537. if (limit < 0) {
  4538. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4539. np->port,
  4540. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4541. return -ENODEV;
  4542. }
  4543. return 0;
  4544. }
  4545. static int niu_reset_tx_mac(struct niu *np)
  4546. {
  4547. if (np->flags & NIU_FLAGS_XMAC)
  4548. return niu_reset_tx_xmac(np);
  4549. else
  4550. return niu_reset_tx_bmac(np);
  4551. }
  4552. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4553. {
  4554. u64 val;
  4555. val = nr64_mac(XMAC_MIN);
  4556. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4557. XMAC_MIN_RX_MIN_PKT_SIZE);
  4558. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4559. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4560. nw64_mac(XMAC_MIN, val);
  4561. nw64_mac(XMAC_MAX, max);
  4562. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4563. val = nr64_mac(XMAC_IPG);
  4564. if (np->flags & NIU_FLAGS_10G) {
  4565. val &= ~XMAC_IPG_IPG_XGMII;
  4566. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4567. } else {
  4568. val &= ~XMAC_IPG_IPG_MII_GMII;
  4569. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4570. }
  4571. nw64_mac(XMAC_IPG, val);
  4572. val = nr64_mac(XMAC_CONFIG);
  4573. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4574. XMAC_CONFIG_STRETCH_MODE |
  4575. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4576. XMAC_CONFIG_TX_ENABLE);
  4577. nw64_mac(XMAC_CONFIG, val);
  4578. nw64_mac(TXMAC_FRM_CNT, 0);
  4579. nw64_mac(TXMAC_BYTE_CNT, 0);
  4580. }
  4581. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4582. {
  4583. u64 val;
  4584. nw64_mac(BMAC_MIN_FRAME, min);
  4585. nw64_mac(BMAC_MAX_FRAME, max);
  4586. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4587. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4588. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4589. val = nr64_mac(BTXMAC_CONFIG);
  4590. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4591. BTXMAC_CONFIG_ENABLE);
  4592. nw64_mac(BTXMAC_CONFIG, val);
  4593. }
  4594. static void niu_init_tx_mac(struct niu *np)
  4595. {
  4596. u64 min, max;
  4597. min = 64;
  4598. if (np->dev->mtu > ETH_DATA_LEN)
  4599. max = 9216;
  4600. else
  4601. max = 1522;
  4602. /* The XMAC_MIN register only accepts values for TX min which
  4603. * have the low 3 bits cleared.
  4604. */
  4605. BUG_ON(min & 0x7);
  4606. if (np->flags & NIU_FLAGS_XMAC)
  4607. niu_init_tx_xmac(np, min, max);
  4608. else
  4609. niu_init_tx_bmac(np, min, max);
  4610. }
  4611. static int niu_reset_rx_xmac(struct niu *np)
  4612. {
  4613. int limit;
  4614. nw64_mac(XRXMAC_SW_RST,
  4615. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4616. limit = 1000;
  4617. while (--limit >= 0) {
  4618. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4619. XRXMAC_SW_RST_SOFT_RST)))
  4620. break;
  4621. udelay(100);
  4622. }
  4623. if (limit < 0) {
  4624. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4625. np->port,
  4626. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4627. return -ENODEV;
  4628. }
  4629. return 0;
  4630. }
  4631. static int niu_reset_rx_bmac(struct niu *np)
  4632. {
  4633. int limit;
  4634. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4635. limit = 1000;
  4636. while (--limit >= 0) {
  4637. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4638. break;
  4639. udelay(100);
  4640. }
  4641. if (limit < 0) {
  4642. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4643. np->port,
  4644. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4645. return -ENODEV;
  4646. }
  4647. return 0;
  4648. }
  4649. static int niu_reset_rx_mac(struct niu *np)
  4650. {
  4651. if (np->flags & NIU_FLAGS_XMAC)
  4652. return niu_reset_rx_xmac(np);
  4653. else
  4654. return niu_reset_rx_bmac(np);
  4655. }
  4656. static void niu_init_rx_xmac(struct niu *np)
  4657. {
  4658. struct niu_parent *parent = np->parent;
  4659. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4660. int first_rdc_table = tp->first_table_num;
  4661. unsigned long i;
  4662. u64 val;
  4663. nw64_mac(XMAC_ADD_FILT0, 0);
  4664. nw64_mac(XMAC_ADD_FILT1, 0);
  4665. nw64_mac(XMAC_ADD_FILT2, 0);
  4666. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4667. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4668. for (i = 0; i < MAC_NUM_HASH; i++)
  4669. nw64_mac(XMAC_HASH_TBL(i), 0);
  4670. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4671. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4672. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4673. val = nr64_mac(XMAC_CONFIG);
  4674. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4675. XMAC_CONFIG_PROMISCUOUS |
  4676. XMAC_CONFIG_PROMISC_GROUP |
  4677. XMAC_CONFIG_ERR_CHK_DIS |
  4678. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4679. XMAC_CONFIG_RESERVED_MULTICAST |
  4680. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4681. XMAC_CONFIG_ADDR_FILTER_EN |
  4682. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4683. XMAC_CONFIG_STRIP_CRC |
  4684. XMAC_CONFIG_PASS_FLOW_CTRL |
  4685. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4686. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4687. nw64_mac(XMAC_CONFIG, val);
  4688. nw64_mac(RXMAC_BT_CNT, 0);
  4689. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4690. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4691. nw64_mac(RXMAC_FRAG_CNT, 0);
  4692. nw64_mac(RXMAC_HIST_CNT1, 0);
  4693. nw64_mac(RXMAC_HIST_CNT2, 0);
  4694. nw64_mac(RXMAC_HIST_CNT3, 0);
  4695. nw64_mac(RXMAC_HIST_CNT4, 0);
  4696. nw64_mac(RXMAC_HIST_CNT5, 0);
  4697. nw64_mac(RXMAC_HIST_CNT6, 0);
  4698. nw64_mac(RXMAC_HIST_CNT7, 0);
  4699. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4700. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4701. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4702. nw64_mac(LINK_FAULT_CNT, 0);
  4703. }
  4704. static void niu_init_rx_bmac(struct niu *np)
  4705. {
  4706. struct niu_parent *parent = np->parent;
  4707. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4708. int first_rdc_table = tp->first_table_num;
  4709. unsigned long i;
  4710. u64 val;
  4711. nw64_mac(BMAC_ADD_FILT0, 0);
  4712. nw64_mac(BMAC_ADD_FILT1, 0);
  4713. nw64_mac(BMAC_ADD_FILT2, 0);
  4714. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4715. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4716. for (i = 0; i < MAC_NUM_HASH; i++)
  4717. nw64_mac(BMAC_HASH_TBL(i), 0);
  4718. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4719. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4720. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4721. val = nr64_mac(BRXMAC_CONFIG);
  4722. val &= ~(BRXMAC_CONFIG_ENABLE |
  4723. BRXMAC_CONFIG_STRIP_PAD |
  4724. BRXMAC_CONFIG_STRIP_FCS |
  4725. BRXMAC_CONFIG_PROMISC |
  4726. BRXMAC_CONFIG_PROMISC_GRP |
  4727. BRXMAC_CONFIG_ADDR_FILT_EN |
  4728. BRXMAC_CONFIG_DISCARD_DIS);
  4729. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4730. nw64_mac(BRXMAC_CONFIG, val);
  4731. val = nr64_mac(BMAC_ADDR_CMPEN);
  4732. val |= BMAC_ADDR_CMPEN_EN0;
  4733. nw64_mac(BMAC_ADDR_CMPEN, val);
  4734. }
  4735. static void niu_init_rx_mac(struct niu *np)
  4736. {
  4737. niu_set_primary_mac(np, np->dev->dev_addr);
  4738. if (np->flags & NIU_FLAGS_XMAC)
  4739. niu_init_rx_xmac(np);
  4740. else
  4741. niu_init_rx_bmac(np);
  4742. }
  4743. static void niu_enable_tx_xmac(struct niu *np, int on)
  4744. {
  4745. u64 val = nr64_mac(XMAC_CONFIG);
  4746. if (on)
  4747. val |= XMAC_CONFIG_TX_ENABLE;
  4748. else
  4749. val &= ~XMAC_CONFIG_TX_ENABLE;
  4750. nw64_mac(XMAC_CONFIG, val);
  4751. }
  4752. static void niu_enable_tx_bmac(struct niu *np, int on)
  4753. {
  4754. u64 val = nr64_mac(BTXMAC_CONFIG);
  4755. if (on)
  4756. val |= BTXMAC_CONFIG_ENABLE;
  4757. else
  4758. val &= ~BTXMAC_CONFIG_ENABLE;
  4759. nw64_mac(BTXMAC_CONFIG, val);
  4760. }
  4761. static void niu_enable_tx_mac(struct niu *np, int on)
  4762. {
  4763. if (np->flags & NIU_FLAGS_XMAC)
  4764. niu_enable_tx_xmac(np, on);
  4765. else
  4766. niu_enable_tx_bmac(np, on);
  4767. }
  4768. static void niu_enable_rx_xmac(struct niu *np, int on)
  4769. {
  4770. u64 val = nr64_mac(XMAC_CONFIG);
  4771. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4772. XMAC_CONFIG_PROMISCUOUS);
  4773. if (np->flags & NIU_FLAGS_MCAST)
  4774. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4775. if (np->flags & NIU_FLAGS_PROMISC)
  4776. val |= XMAC_CONFIG_PROMISCUOUS;
  4777. if (on)
  4778. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4779. else
  4780. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4781. nw64_mac(XMAC_CONFIG, val);
  4782. }
  4783. static void niu_enable_rx_bmac(struct niu *np, int on)
  4784. {
  4785. u64 val = nr64_mac(BRXMAC_CONFIG);
  4786. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4787. BRXMAC_CONFIG_PROMISC);
  4788. if (np->flags & NIU_FLAGS_MCAST)
  4789. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4790. if (np->flags & NIU_FLAGS_PROMISC)
  4791. val |= BRXMAC_CONFIG_PROMISC;
  4792. if (on)
  4793. val |= BRXMAC_CONFIG_ENABLE;
  4794. else
  4795. val &= ~BRXMAC_CONFIG_ENABLE;
  4796. nw64_mac(BRXMAC_CONFIG, val);
  4797. }
  4798. static void niu_enable_rx_mac(struct niu *np, int on)
  4799. {
  4800. if (np->flags & NIU_FLAGS_XMAC)
  4801. niu_enable_rx_xmac(np, on);
  4802. else
  4803. niu_enable_rx_bmac(np, on);
  4804. }
  4805. static int niu_init_mac(struct niu *np)
  4806. {
  4807. int err;
  4808. niu_init_xif(np);
  4809. err = niu_init_pcs(np);
  4810. if (err)
  4811. return err;
  4812. err = niu_reset_tx_mac(np);
  4813. if (err)
  4814. return err;
  4815. niu_init_tx_mac(np);
  4816. err = niu_reset_rx_mac(np);
  4817. if (err)
  4818. return err;
  4819. niu_init_rx_mac(np);
  4820. /* This looks hookey but the RX MAC reset we just did will
  4821. * undo some of the state we setup in niu_init_tx_mac() so we
  4822. * have to call it again. In particular, the RX MAC reset will
  4823. * set the XMAC_MAX register back to it's default value.
  4824. */
  4825. niu_init_tx_mac(np);
  4826. niu_enable_tx_mac(np, 1);
  4827. niu_enable_rx_mac(np, 1);
  4828. return 0;
  4829. }
  4830. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4831. {
  4832. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4833. }
  4834. static void niu_stop_tx_channels(struct niu *np)
  4835. {
  4836. int i;
  4837. for (i = 0; i < np->num_tx_rings; i++) {
  4838. struct tx_ring_info *rp = &np->tx_rings[i];
  4839. niu_stop_one_tx_channel(np, rp);
  4840. }
  4841. }
  4842. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4843. {
  4844. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4845. }
  4846. static void niu_reset_tx_channels(struct niu *np)
  4847. {
  4848. int i;
  4849. for (i = 0; i < np->num_tx_rings; i++) {
  4850. struct tx_ring_info *rp = &np->tx_rings[i];
  4851. niu_reset_one_tx_channel(np, rp);
  4852. }
  4853. }
  4854. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4855. {
  4856. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4857. }
  4858. static void niu_stop_rx_channels(struct niu *np)
  4859. {
  4860. int i;
  4861. for (i = 0; i < np->num_rx_rings; i++) {
  4862. struct rx_ring_info *rp = &np->rx_rings[i];
  4863. niu_stop_one_rx_channel(np, rp);
  4864. }
  4865. }
  4866. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4867. {
  4868. int channel = rp->rx_channel;
  4869. (void) niu_rx_channel_reset(np, channel);
  4870. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4871. nw64(RX_DMA_CTL_STAT(channel), 0);
  4872. (void) niu_enable_rx_channel(np, channel, 0);
  4873. }
  4874. static void niu_reset_rx_channels(struct niu *np)
  4875. {
  4876. int i;
  4877. for (i = 0; i < np->num_rx_rings; i++) {
  4878. struct rx_ring_info *rp = &np->rx_rings[i];
  4879. niu_reset_one_rx_channel(np, rp);
  4880. }
  4881. }
  4882. static void niu_disable_ipp(struct niu *np)
  4883. {
  4884. u64 rd, wr, val;
  4885. int limit;
  4886. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4887. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4888. limit = 100;
  4889. while (--limit >= 0 && (rd != wr)) {
  4890. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4891. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4892. }
  4893. if (limit < 0 &&
  4894. (rd != 0 && wr != 1)) {
  4895. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4896. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4897. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4898. }
  4899. val = nr64_ipp(IPP_CFIG);
  4900. val &= ~(IPP_CFIG_IPP_ENABLE |
  4901. IPP_CFIG_DFIFO_ECC_EN |
  4902. IPP_CFIG_DROP_BAD_CRC |
  4903. IPP_CFIG_CKSUM_EN);
  4904. nw64_ipp(IPP_CFIG, val);
  4905. (void) niu_ipp_reset(np);
  4906. }
  4907. static int niu_init_hw(struct niu *np)
  4908. {
  4909. int i, err;
  4910. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4911. niu_txc_enable_port(np, 1);
  4912. niu_txc_port_dma_enable(np, 1);
  4913. niu_txc_set_imask(np, 0);
  4914. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4915. for (i = 0; i < np->num_tx_rings; i++) {
  4916. struct tx_ring_info *rp = &np->tx_rings[i];
  4917. err = niu_init_one_tx_channel(np, rp);
  4918. if (err)
  4919. return err;
  4920. }
  4921. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4922. err = niu_init_rx_channels(np);
  4923. if (err)
  4924. goto out_uninit_tx_channels;
  4925. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4926. err = niu_init_classifier_hw(np);
  4927. if (err)
  4928. goto out_uninit_rx_channels;
  4929. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4930. err = niu_init_zcp(np);
  4931. if (err)
  4932. goto out_uninit_rx_channels;
  4933. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4934. err = niu_init_ipp(np);
  4935. if (err)
  4936. goto out_uninit_rx_channels;
  4937. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4938. err = niu_init_mac(np);
  4939. if (err)
  4940. goto out_uninit_ipp;
  4941. return 0;
  4942. out_uninit_ipp:
  4943. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4944. niu_disable_ipp(np);
  4945. out_uninit_rx_channels:
  4946. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4947. niu_stop_rx_channels(np);
  4948. niu_reset_rx_channels(np);
  4949. out_uninit_tx_channels:
  4950. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4951. niu_stop_tx_channels(np);
  4952. niu_reset_tx_channels(np);
  4953. return err;
  4954. }
  4955. static void niu_stop_hw(struct niu *np)
  4956. {
  4957. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4958. niu_enable_interrupts(np, 0);
  4959. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4960. niu_enable_rx_mac(np, 0);
  4961. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4962. niu_disable_ipp(np);
  4963. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4964. niu_stop_tx_channels(np);
  4965. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4966. niu_stop_rx_channels(np);
  4967. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4968. niu_reset_tx_channels(np);
  4969. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4970. niu_reset_rx_channels(np);
  4971. }
  4972. static void niu_set_irq_name(struct niu *np)
  4973. {
  4974. int port = np->port;
  4975. int i, j = 1;
  4976. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4977. if (port == 0) {
  4978. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4979. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4980. j = 3;
  4981. }
  4982. for (i = 0; i < np->num_ldg - j; i++) {
  4983. if (i < np->num_rx_rings)
  4984. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4985. np->dev->name, i);
  4986. else if (i < np->num_tx_rings + np->num_rx_rings)
  4987. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4988. i - np->num_rx_rings);
  4989. }
  4990. }
  4991. static int niu_request_irq(struct niu *np)
  4992. {
  4993. int i, j, err;
  4994. niu_set_irq_name(np);
  4995. err = 0;
  4996. for (i = 0; i < np->num_ldg; i++) {
  4997. struct niu_ldg *lp = &np->ldg[i];
  4998. err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
  4999. np->irq_name[i], lp);
  5000. if (err)
  5001. goto out_free_irqs;
  5002. }
  5003. return 0;
  5004. out_free_irqs:
  5005. for (j = 0; j < i; j++) {
  5006. struct niu_ldg *lp = &np->ldg[j];
  5007. free_irq(lp->irq, lp);
  5008. }
  5009. return err;
  5010. }
  5011. static void niu_free_irq(struct niu *np)
  5012. {
  5013. int i;
  5014. for (i = 0; i < np->num_ldg; i++) {
  5015. struct niu_ldg *lp = &np->ldg[i];
  5016. free_irq(lp->irq, lp);
  5017. }
  5018. }
  5019. static void niu_enable_napi(struct niu *np)
  5020. {
  5021. int i;
  5022. for (i = 0; i < np->num_ldg; i++)
  5023. napi_enable(&np->ldg[i].napi);
  5024. }
  5025. static void niu_disable_napi(struct niu *np)
  5026. {
  5027. int i;
  5028. for (i = 0; i < np->num_ldg; i++)
  5029. napi_disable(&np->ldg[i].napi);
  5030. }
  5031. static int niu_open(struct net_device *dev)
  5032. {
  5033. struct niu *np = netdev_priv(dev);
  5034. int err;
  5035. netif_carrier_off(dev);
  5036. err = niu_alloc_channels(np);
  5037. if (err)
  5038. goto out_err;
  5039. err = niu_enable_interrupts(np, 0);
  5040. if (err)
  5041. goto out_free_channels;
  5042. err = niu_request_irq(np);
  5043. if (err)
  5044. goto out_free_channels;
  5045. niu_enable_napi(np);
  5046. spin_lock_irq(&np->lock);
  5047. err = niu_init_hw(np);
  5048. if (!err) {
  5049. timer_setup(&np->timer, niu_timer, 0);
  5050. np->timer.expires = jiffies + HZ;
  5051. err = niu_enable_interrupts(np, 1);
  5052. if (err)
  5053. niu_stop_hw(np);
  5054. }
  5055. spin_unlock_irq(&np->lock);
  5056. if (err) {
  5057. niu_disable_napi(np);
  5058. goto out_free_irq;
  5059. }
  5060. netif_tx_start_all_queues(dev);
  5061. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5062. netif_carrier_on(dev);
  5063. add_timer(&np->timer);
  5064. return 0;
  5065. out_free_irq:
  5066. niu_free_irq(np);
  5067. out_free_channels:
  5068. niu_free_channels(np);
  5069. out_err:
  5070. return err;
  5071. }
  5072. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5073. {
  5074. cancel_work_sync(&np->reset_task);
  5075. niu_disable_napi(np);
  5076. netif_tx_stop_all_queues(dev);
  5077. del_timer_sync(&np->timer);
  5078. spin_lock_irq(&np->lock);
  5079. niu_stop_hw(np);
  5080. spin_unlock_irq(&np->lock);
  5081. }
  5082. static int niu_close(struct net_device *dev)
  5083. {
  5084. struct niu *np = netdev_priv(dev);
  5085. niu_full_shutdown(np, dev);
  5086. niu_free_irq(np);
  5087. niu_free_channels(np);
  5088. niu_handle_led(np, 0);
  5089. return 0;
  5090. }
  5091. static void niu_sync_xmac_stats(struct niu *np)
  5092. {
  5093. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5094. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5095. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5096. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5097. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5098. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5099. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5100. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5101. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5102. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5103. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5104. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5105. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5106. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5107. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5108. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5109. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5110. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5111. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5112. }
  5113. static void niu_sync_bmac_stats(struct niu *np)
  5114. {
  5115. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5116. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5117. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5118. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5119. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5120. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5121. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5122. }
  5123. static void niu_sync_mac_stats(struct niu *np)
  5124. {
  5125. if (np->flags & NIU_FLAGS_XMAC)
  5126. niu_sync_xmac_stats(np);
  5127. else
  5128. niu_sync_bmac_stats(np);
  5129. }
  5130. static void niu_get_rx_stats(struct niu *np,
  5131. struct rtnl_link_stats64 *stats)
  5132. {
  5133. u64 pkts, dropped, errors, bytes;
  5134. struct rx_ring_info *rx_rings;
  5135. int i;
  5136. pkts = dropped = errors = bytes = 0;
  5137. rx_rings = READ_ONCE(np->rx_rings);
  5138. if (!rx_rings)
  5139. goto no_rings;
  5140. for (i = 0; i < np->num_rx_rings; i++) {
  5141. struct rx_ring_info *rp = &rx_rings[i];
  5142. niu_sync_rx_discard_stats(np, rp, 0);
  5143. pkts += rp->rx_packets;
  5144. bytes += rp->rx_bytes;
  5145. dropped += rp->rx_dropped;
  5146. errors += rp->rx_errors;
  5147. }
  5148. no_rings:
  5149. stats->rx_packets = pkts;
  5150. stats->rx_bytes = bytes;
  5151. stats->rx_dropped = dropped;
  5152. stats->rx_errors = errors;
  5153. }
  5154. static void niu_get_tx_stats(struct niu *np,
  5155. struct rtnl_link_stats64 *stats)
  5156. {
  5157. u64 pkts, errors, bytes;
  5158. struct tx_ring_info *tx_rings;
  5159. int i;
  5160. pkts = errors = bytes = 0;
  5161. tx_rings = READ_ONCE(np->tx_rings);
  5162. if (!tx_rings)
  5163. goto no_rings;
  5164. for (i = 0; i < np->num_tx_rings; i++) {
  5165. struct tx_ring_info *rp = &tx_rings[i];
  5166. pkts += rp->tx_packets;
  5167. bytes += rp->tx_bytes;
  5168. errors += rp->tx_errors;
  5169. }
  5170. no_rings:
  5171. stats->tx_packets = pkts;
  5172. stats->tx_bytes = bytes;
  5173. stats->tx_errors = errors;
  5174. }
  5175. static void niu_get_stats(struct net_device *dev,
  5176. struct rtnl_link_stats64 *stats)
  5177. {
  5178. struct niu *np = netdev_priv(dev);
  5179. if (netif_running(dev)) {
  5180. niu_get_rx_stats(np, stats);
  5181. niu_get_tx_stats(np, stats);
  5182. }
  5183. }
  5184. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5185. {
  5186. int i;
  5187. for (i = 0; i < 16; i++)
  5188. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5189. }
  5190. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5191. {
  5192. int i;
  5193. for (i = 0; i < 16; i++)
  5194. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5195. }
  5196. static void niu_load_hash(struct niu *np, u16 *hash)
  5197. {
  5198. if (np->flags & NIU_FLAGS_XMAC)
  5199. niu_load_hash_xmac(np, hash);
  5200. else
  5201. niu_load_hash_bmac(np, hash);
  5202. }
  5203. static void niu_set_rx_mode(struct net_device *dev)
  5204. {
  5205. struct niu *np = netdev_priv(dev);
  5206. int i, alt_cnt, err;
  5207. struct netdev_hw_addr *ha;
  5208. unsigned long flags;
  5209. u16 hash[16] = { 0, };
  5210. spin_lock_irqsave(&np->lock, flags);
  5211. niu_enable_rx_mac(np, 0);
  5212. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5213. if (dev->flags & IFF_PROMISC)
  5214. np->flags |= NIU_FLAGS_PROMISC;
  5215. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5216. np->flags |= NIU_FLAGS_MCAST;
  5217. alt_cnt = netdev_uc_count(dev);
  5218. if (alt_cnt > niu_num_alt_addr(np)) {
  5219. alt_cnt = 0;
  5220. np->flags |= NIU_FLAGS_PROMISC;
  5221. }
  5222. if (alt_cnt) {
  5223. int index = 0;
  5224. netdev_for_each_uc_addr(ha, dev) {
  5225. err = niu_set_alt_mac(np, index, ha->addr);
  5226. if (err)
  5227. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5228. err, index);
  5229. err = niu_enable_alt_mac(np, index, 1);
  5230. if (err)
  5231. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5232. err, index);
  5233. index++;
  5234. }
  5235. } else {
  5236. int alt_start;
  5237. if (np->flags & NIU_FLAGS_XMAC)
  5238. alt_start = 0;
  5239. else
  5240. alt_start = 1;
  5241. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5242. err = niu_enable_alt_mac(np, i, 0);
  5243. if (err)
  5244. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5245. err, i);
  5246. }
  5247. }
  5248. if (dev->flags & IFF_ALLMULTI) {
  5249. for (i = 0; i < 16; i++)
  5250. hash[i] = 0xffff;
  5251. } else if (!netdev_mc_empty(dev)) {
  5252. netdev_for_each_mc_addr(ha, dev) {
  5253. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5254. crc >>= 24;
  5255. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5256. }
  5257. }
  5258. if (np->flags & NIU_FLAGS_MCAST)
  5259. niu_load_hash(np, hash);
  5260. niu_enable_rx_mac(np, 1);
  5261. spin_unlock_irqrestore(&np->lock, flags);
  5262. }
  5263. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5264. {
  5265. struct niu *np = netdev_priv(dev);
  5266. struct sockaddr *addr = p;
  5267. unsigned long flags;
  5268. if (!is_valid_ether_addr(addr->sa_data))
  5269. return -EADDRNOTAVAIL;
  5270. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5271. if (!netif_running(dev))
  5272. return 0;
  5273. spin_lock_irqsave(&np->lock, flags);
  5274. niu_enable_rx_mac(np, 0);
  5275. niu_set_primary_mac(np, dev->dev_addr);
  5276. niu_enable_rx_mac(np, 1);
  5277. spin_unlock_irqrestore(&np->lock, flags);
  5278. return 0;
  5279. }
  5280. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5281. {
  5282. return -EOPNOTSUPP;
  5283. }
  5284. static void niu_netif_stop(struct niu *np)
  5285. {
  5286. netif_trans_update(np->dev); /* prevent tx timeout */
  5287. niu_disable_napi(np);
  5288. netif_tx_disable(np->dev);
  5289. }
  5290. static void niu_netif_start(struct niu *np)
  5291. {
  5292. /* NOTE: unconditional netif_wake_queue is only appropriate
  5293. * so long as all callers are assured to have free tx slots
  5294. * (such as after niu_init_hw).
  5295. */
  5296. netif_tx_wake_all_queues(np->dev);
  5297. niu_enable_napi(np);
  5298. niu_enable_interrupts(np, 1);
  5299. }
  5300. static void niu_reset_buffers(struct niu *np)
  5301. {
  5302. int i, j, k, err;
  5303. if (np->rx_rings) {
  5304. for (i = 0; i < np->num_rx_rings; i++) {
  5305. struct rx_ring_info *rp = &np->rx_rings[i];
  5306. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5307. struct page *page;
  5308. page = rp->rxhash[j];
  5309. while (page) {
  5310. struct page *next =
  5311. (struct page *) page->mapping;
  5312. u64 base = page->index;
  5313. base = base >> RBR_DESCR_ADDR_SHIFT;
  5314. rp->rbr[k++] = cpu_to_le32(base);
  5315. page = next;
  5316. }
  5317. }
  5318. for (; k < MAX_RBR_RING_SIZE; k++) {
  5319. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5320. if (unlikely(err))
  5321. break;
  5322. }
  5323. rp->rbr_index = rp->rbr_table_size - 1;
  5324. rp->rcr_index = 0;
  5325. rp->rbr_pending = 0;
  5326. rp->rbr_refill_pending = 0;
  5327. }
  5328. }
  5329. if (np->tx_rings) {
  5330. for (i = 0; i < np->num_tx_rings; i++) {
  5331. struct tx_ring_info *rp = &np->tx_rings[i];
  5332. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5333. if (rp->tx_buffs[j].skb)
  5334. (void) release_tx_packet(np, rp, j);
  5335. }
  5336. rp->pending = MAX_TX_RING_SIZE;
  5337. rp->prod = 0;
  5338. rp->cons = 0;
  5339. rp->wrap_bit = 0;
  5340. }
  5341. }
  5342. }
  5343. static void niu_reset_task(struct work_struct *work)
  5344. {
  5345. struct niu *np = container_of(work, struct niu, reset_task);
  5346. unsigned long flags;
  5347. int err;
  5348. spin_lock_irqsave(&np->lock, flags);
  5349. if (!netif_running(np->dev)) {
  5350. spin_unlock_irqrestore(&np->lock, flags);
  5351. return;
  5352. }
  5353. spin_unlock_irqrestore(&np->lock, flags);
  5354. del_timer_sync(&np->timer);
  5355. niu_netif_stop(np);
  5356. spin_lock_irqsave(&np->lock, flags);
  5357. niu_stop_hw(np);
  5358. spin_unlock_irqrestore(&np->lock, flags);
  5359. niu_reset_buffers(np);
  5360. spin_lock_irqsave(&np->lock, flags);
  5361. err = niu_init_hw(np);
  5362. if (!err) {
  5363. np->timer.expires = jiffies + HZ;
  5364. add_timer(&np->timer);
  5365. niu_netif_start(np);
  5366. }
  5367. spin_unlock_irqrestore(&np->lock, flags);
  5368. }
  5369. static void niu_tx_timeout(struct net_device *dev)
  5370. {
  5371. struct niu *np = netdev_priv(dev);
  5372. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5373. dev->name);
  5374. schedule_work(&np->reset_task);
  5375. }
  5376. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5377. u64 mapping, u64 len, u64 mark,
  5378. u64 n_frags)
  5379. {
  5380. __le64 *desc = &rp->descr[index];
  5381. *desc = cpu_to_le64(mark |
  5382. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5383. (len << TX_DESC_TR_LEN_SHIFT) |
  5384. (mapping & TX_DESC_SAD));
  5385. }
  5386. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5387. u64 pad_bytes, u64 len)
  5388. {
  5389. u16 eth_proto, eth_proto_inner;
  5390. u64 csum_bits, l3off, ihl, ret;
  5391. u8 ip_proto;
  5392. int ipv6;
  5393. eth_proto = be16_to_cpu(ehdr->h_proto);
  5394. eth_proto_inner = eth_proto;
  5395. if (eth_proto == ETH_P_8021Q) {
  5396. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5397. __be16 val = vp->h_vlan_encapsulated_proto;
  5398. eth_proto_inner = be16_to_cpu(val);
  5399. }
  5400. ipv6 = ihl = 0;
  5401. switch (skb->protocol) {
  5402. case cpu_to_be16(ETH_P_IP):
  5403. ip_proto = ip_hdr(skb)->protocol;
  5404. ihl = ip_hdr(skb)->ihl;
  5405. break;
  5406. case cpu_to_be16(ETH_P_IPV6):
  5407. ip_proto = ipv6_hdr(skb)->nexthdr;
  5408. ihl = (40 >> 2);
  5409. ipv6 = 1;
  5410. break;
  5411. default:
  5412. ip_proto = ihl = 0;
  5413. break;
  5414. }
  5415. csum_bits = TXHDR_CSUM_NONE;
  5416. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5417. u64 start, stuff;
  5418. csum_bits = (ip_proto == IPPROTO_TCP ?
  5419. TXHDR_CSUM_TCP :
  5420. (ip_proto == IPPROTO_UDP ?
  5421. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5422. start = skb_checksum_start_offset(skb) -
  5423. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5424. stuff = start + skb->csum_offset;
  5425. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5426. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5427. }
  5428. l3off = skb_network_offset(skb) -
  5429. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5430. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5431. (len << TXHDR_LEN_SHIFT) |
  5432. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5433. (ihl << TXHDR_IHL_SHIFT) |
  5434. ((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) |
  5435. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5436. (ipv6 ? TXHDR_IP_VER : 0) |
  5437. csum_bits);
  5438. return ret;
  5439. }
  5440. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5441. struct net_device *dev)
  5442. {
  5443. struct niu *np = netdev_priv(dev);
  5444. unsigned long align, headroom;
  5445. struct netdev_queue *txq;
  5446. struct tx_ring_info *rp;
  5447. struct tx_pkt_hdr *tp;
  5448. unsigned int len, nfg;
  5449. struct ethhdr *ehdr;
  5450. int prod, i, tlen;
  5451. u64 mapping, mrk;
  5452. i = skb_get_queue_mapping(skb);
  5453. rp = &np->tx_rings[i];
  5454. txq = netdev_get_tx_queue(dev, i);
  5455. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5456. netif_tx_stop_queue(txq);
  5457. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5458. rp->tx_errors++;
  5459. return NETDEV_TX_BUSY;
  5460. }
  5461. if (eth_skb_pad(skb))
  5462. goto out;
  5463. len = sizeof(struct tx_pkt_hdr) + 15;
  5464. if (skb_headroom(skb) < len) {
  5465. struct sk_buff *skb_new;
  5466. skb_new = skb_realloc_headroom(skb, len);
  5467. if (!skb_new)
  5468. goto out_drop;
  5469. kfree_skb(skb);
  5470. skb = skb_new;
  5471. } else
  5472. skb_orphan(skb);
  5473. align = ((unsigned long) skb->data & (16 - 1));
  5474. headroom = align + sizeof(struct tx_pkt_hdr);
  5475. ehdr = (struct ethhdr *) skb->data;
  5476. tp = skb_push(skb, headroom);
  5477. len = skb->len - sizeof(struct tx_pkt_hdr);
  5478. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5479. tp->resv = 0;
  5480. len = skb_headlen(skb);
  5481. mapping = np->ops->map_single(np->device, skb->data,
  5482. len, DMA_TO_DEVICE);
  5483. prod = rp->prod;
  5484. rp->tx_buffs[prod].skb = skb;
  5485. rp->tx_buffs[prod].mapping = mapping;
  5486. mrk = TX_DESC_SOP;
  5487. if (++rp->mark_counter == rp->mark_freq) {
  5488. rp->mark_counter = 0;
  5489. mrk |= TX_DESC_MARK;
  5490. rp->mark_pending++;
  5491. }
  5492. tlen = len;
  5493. nfg = skb_shinfo(skb)->nr_frags;
  5494. while (tlen > 0) {
  5495. tlen -= MAX_TX_DESC_LEN;
  5496. nfg++;
  5497. }
  5498. while (len > 0) {
  5499. unsigned int this_len = len;
  5500. if (this_len > MAX_TX_DESC_LEN)
  5501. this_len = MAX_TX_DESC_LEN;
  5502. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5503. mrk = nfg = 0;
  5504. prod = NEXT_TX(rp, prod);
  5505. mapping += this_len;
  5506. len -= this_len;
  5507. }
  5508. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5509. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5510. len = skb_frag_size(frag);
  5511. mapping = np->ops->map_page(np->device, skb_frag_page(frag),
  5512. frag->page_offset, len,
  5513. DMA_TO_DEVICE);
  5514. rp->tx_buffs[prod].skb = NULL;
  5515. rp->tx_buffs[prod].mapping = mapping;
  5516. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5517. prod = NEXT_TX(rp, prod);
  5518. }
  5519. if (prod < rp->prod)
  5520. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5521. rp->prod = prod;
  5522. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5523. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5524. netif_tx_stop_queue(txq);
  5525. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5526. netif_tx_wake_queue(txq);
  5527. }
  5528. out:
  5529. return NETDEV_TX_OK;
  5530. out_drop:
  5531. rp->tx_errors++;
  5532. kfree_skb(skb);
  5533. goto out;
  5534. }
  5535. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5536. {
  5537. struct niu *np = netdev_priv(dev);
  5538. int err, orig_jumbo, new_jumbo;
  5539. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5540. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5541. dev->mtu = new_mtu;
  5542. if (!netif_running(dev) ||
  5543. (orig_jumbo == new_jumbo))
  5544. return 0;
  5545. niu_full_shutdown(np, dev);
  5546. niu_free_channels(np);
  5547. niu_enable_napi(np);
  5548. err = niu_alloc_channels(np);
  5549. if (err)
  5550. return err;
  5551. spin_lock_irq(&np->lock);
  5552. err = niu_init_hw(np);
  5553. if (!err) {
  5554. timer_setup(&np->timer, niu_timer, 0);
  5555. np->timer.expires = jiffies + HZ;
  5556. err = niu_enable_interrupts(np, 1);
  5557. if (err)
  5558. niu_stop_hw(np);
  5559. }
  5560. spin_unlock_irq(&np->lock);
  5561. if (!err) {
  5562. netif_tx_start_all_queues(dev);
  5563. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5564. netif_carrier_on(dev);
  5565. add_timer(&np->timer);
  5566. }
  5567. return err;
  5568. }
  5569. static void niu_get_drvinfo(struct net_device *dev,
  5570. struct ethtool_drvinfo *info)
  5571. {
  5572. struct niu *np = netdev_priv(dev);
  5573. struct niu_vpd *vpd = &np->vpd;
  5574. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5575. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5576. snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
  5577. vpd->fcode_major, vpd->fcode_minor);
  5578. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5579. strlcpy(info->bus_info, pci_name(np->pdev),
  5580. sizeof(info->bus_info));
  5581. }
  5582. static int niu_get_link_ksettings(struct net_device *dev,
  5583. struct ethtool_link_ksettings *cmd)
  5584. {
  5585. struct niu *np = netdev_priv(dev);
  5586. struct niu_link_config *lp;
  5587. lp = &np->link_config;
  5588. memset(cmd, 0, sizeof(*cmd));
  5589. cmd->base.phy_address = np->phy_addr;
  5590. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  5591. lp->supported);
  5592. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  5593. lp->active_advertising);
  5594. cmd->base.autoneg = lp->active_autoneg;
  5595. cmd->base.speed = lp->active_speed;
  5596. cmd->base.duplex = lp->active_duplex;
  5597. cmd->base.port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5598. return 0;
  5599. }
  5600. static int niu_set_link_ksettings(struct net_device *dev,
  5601. const struct ethtool_link_ksettings *cmd)
  5602. {
  5603. struct niu *np = netdev_priv(dev);
  5604. struct niu_link_config *lp = &np->link_config;
  5605. ethtool_convert_link_mode_to_legacy_u32(&lp->advertising,
  5606. cmd->link_modes.advertising);
  5607. lp->speed = cmd->base.speed;
  5608. lp->duplex = cmd->base.duplex;
  5609. lp->autoneg = cmd->base.autoneg;
  5610. return niu_init_link(np);
  5611. }
  5612. static u32 niu_get_msglevel(struct net_device *dev)
  5613. {
  5614. struct niu *np = netdev_priv(dev);
  5615. return np->msg_enable;
  5616. }
  5617. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5618. {
  5619. struct niu *np = netdev_priv(dev);
  5620. np->msg_enable = value;
  5621. }
  5622. static int niu_nway_reset(struct net_device *dev)
  5623. {
  5624. struct niu *np = netdev_priv(dev);
  5625. if (np->link_config.autoneg)
  5626. return niu_init_link(np);
  5627. return 0;
  5628. }
  5629. static int niu_get_eeprom_len(struct net_device *dev)
  5630. {
  5631. struct niu *np = netdev_priv(dev);
  5632. return np->eeprom_len;
  5633. }
  5634. static int niu_get_eeprom(struct net_device *dev,
  5635. struct ethtool_eeprom *eeprom, u8 *data)
  5636. {
  5637. struct niu *np = netdev_priv(dev);
  5638. u32 offset, len, val;
  5639. offset = eeprom->offset;
  5640. len = eeprom->len;
  5641. if (offset + len < offset)
  5642. return -EINVAL;
  5643. if (offset >= np->eeprom_len)
  5644. return -EINVAL;
  5645. if (offset + len > np->eeprom_len)
  5646. len = eeprom->len = np->eeprom_len - offset;
  5647. if (offset & 3) {
  5648. u32 b_offset, b_count;
  5649. b_offset = offset & 3;
  5650. b_count = 4 - b_offset;
  5651. if (b_count > len)
  5652. b_count = len;
  5653. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5654. memcpy(data, ((char *)&val) + b_offset, b_count);
  5655. data += b_count;
  5656. len -= b_count;
  5657. offset += b_count;
  5658. }
  5659. while (len >= 4) {
  5660. val = nr64(ESPC_NCR(offset / 4));
  5661. memcpy(data, &val, 4);
  5662. data += 4;
  5663. len -= 4;
  5664. offset += 4;
  5665. }
  5666. if (len) {
  5667. val = nr64(ESPC_NCR(offset / 4));
  5668. memcpy(data, &val, len);
  5669. }
  5670. return 0;
  5671. }
  5672. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5673. {
  5674. switch (flow_type) {
  5675. case TCP_V4_FLOW:
  5676. case TCP_V6_FLOW:
  5677. *pid = IPPROTO_TCP;
  5678. break;
  5679. case UDP_V4_FLOW:
  5680. case UDP_V6_FLOW:
  5681. *pid = IPPROTO_UDP;
  5682. break;
  5683. case SCTP_V4_FLOW:
  5684. case SCTP_V6_FLOW:
  5685. *pid = IPPROTO_SCTP;
  5686. break;
  5687. case AH_V4_FLOW:
  5688. case AH_V6_FLOW:
  5689. *pid = IPPROTO_AH;
  5690. break;
  5691. case ESP_V4_FLOW:
  5692. case ESP_V6_FLOW:
  5693. *pid = IPPROTO_ESP;
  5694. break;
  5695. default:
  5696. *pid = 0;
  5697. break;
  5698. }
  5699. }
  5700. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5701. {
  5702. switch (class) {
  5703. case CLASS_CODE_TCP_IPV4:
  5704. *flow_type = TCP_V4_FLOW;
  5705. break;
  5706. case CLASS_CODE_UDP_IPV4:
  5707. *flow_type = UDP_V4_FLOW;
  5708. break;
  5709. case CLASS_CODE_AH_ESP_IPV4:
  5710. *flow_type = AH_V4_FLOW;
  5711. break;
  5712. case CLASS_CODE_SCTP_IPV4:
  5713. *flow_type = SCTP_V4_FLOW;
  5714. break;
  5715. case CLASS_CODE_TCP_IPV6:
  5716. *flow_type = TCP_V6_FLOW;
  5717. break;
  5718. case CLASS_CODE_UDP_IPV6:
  5719. *flow_type = UDP_V6_FLOW;
  5720. break;
  5721. case CLASS_CODE_AH_ESP_IPV6:
  5722. *flow_type = AH_V6_FLOW;
  5723. break;
  5724. case CLASS_CODE_SCTP_IPV6:
  5725. *flow_type = SCTP_V6_FLOW;
  5726. break;
  5727. case CLASS_CODE_USER_PROG1:
  5728. case CLASS_CODE_USER_PROG2:
  5729. case CLASS_CODE_USER_PROG3:
  5730. case CLASS_CODE_USER_PROG4:
  5731. *flow_type = IP_USER_FLOW;
  5732. break;
  5733. default:
  5734. return -EINVAL;
  5735. }
  5736. return 0;
  5737. }
  5738. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5739. {
  5740. switch (flow_type) {
  5741. case TCP_V4_FLOW:
  5742. *class = CLASS_CODE_TCP_IPV4;
  5743. break;
  5744. case UDP_V4_FLOW:
  5745. *class = CLASS_CODE_UDP_IPV4;
  5746. break;
  5747. case AH_ESP_V4_FLOW:
  5748. case AH_V4_FLOW:
  5749. case ESP_V4_FLOW:
  5750. *class = CLASS_CODE_AH_ESP_IPV4;
  5751. break;
  5752. case SCTP_V4_FLOW:
  5753. *class = CLASS_CODE_SCTP_IPV4;
  5754. break;
  5755. case TCP_V6_FLOW:
  5756. *class = CLASS_CODE_TCP_IPV6;
  5757. break;
  5758. case UDP_V6_FLOW:
  5759. *class = CLASS_CODE_UDP_IPV6;
  5760. break;
  5761. case AH_ESP_V6_FLOW:
  5762. case AH_V6_FLOW:
  5763. case ESP_V6_FLOW:
  5764. *class = CLASS_CODE_AH_ESP_IPV6;
  5765. break;
  5766. case SCTP_V6_FLOW:
  5767. *class = CLASS_CODE_SCTP_IPV6;
  5768. break;
  5769. default:
  5770. return 0;
  5771. }
  5772. return 1;
  5773. }
  5774. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5775. {
  5776. u64 ethflow = 0;
  5777. if (flow_key & FLOW_KEY_L2DA)
  5778. ethflow |= RXH_L2DA;
  5779. if (flow_key & FLOW_KEY_VLAN)
  5780. ethflow |= RXH_VLAN;
  5781. if (flow_key & FLOW_KEY_IPSA)
  5782. ethflow |= RXH_IP_SRC;
  5783. if (flow_key & FLOW_KEY_IPDA)
  5784. ethflow |= RXH_IP_DST;
  5785. if (flow_key & FLOW_KEY_PROTO)
  5786. ethflow |= RXH_L3_PROTO;
  5787. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5788. ethflow |= RXH_L4_B_0_1;
  5789. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5790. ethflow |= RXH_L4_B_2_3;
  5791. return ethflow;
  5792. }
  5793. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5794. {
  5795. u64 key = 0;
  5796. if (ethflow & RXH_L2DA)
  5797. key |= FLOW_KEY_L2DA;
  5798. if (ethflow & RXH_VLAN)
  5799. key |= FLOW_KEY_VLAN;
  5800. if (ethflow & RXH_IP_SRC)
  5801. key |= FLOW_KEY_IPSA;
  5802. if (ethflow & RXH_IP_DST)
  5803. key |= FLOW_KEY_IPDA;
  5804. if (ethflow & RXH_L3_PROTO)
  5805. key |= FLOW_KEY_PROTO;
  5806. if (ethflow & RXH_L4_B_0_1)
  5807. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5808. if (ethflow & RXH_L4_B_2_3)
  5809. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5810. *flow_key = key;
  5811. return 1;
  5812. }
  5813. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5814. {
  5815. u64 class;
  5816. nfc->data = 0;
  5817. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5818. return -EINVAL;
  5819. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5820. TCAM_KEY_DISC)
  5821. nfc->data = RXH_DISCARD;
  5822. else
  5823. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5824. CLASS_CODE_USER_PROG1]);
  5825. return 0;
  5826. }
  5827. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5828. struct ethtool_rx_flow_spec *fsp)
  5829. {
  5830. u32 tmp;
  5831. u16 prt;
  5832. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5833. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5834. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5835. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5836. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5837. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5838. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5839. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5840. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5841. TCAM_V4KEY2_TOS_SHIFT;
  5842. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5843. TCAM_V4KEY2_TOS_SHIFT;
  5844. switch (fsp->flow_type) {
  5845. case TCP_V4_FLOW:
  5846. case UDP_V4_FLOW:
  5847. case SCTP_V4_FLOW:
  5848. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5849. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5850. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5851. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5852. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5853. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5854. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5855. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5856. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5857. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5858. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5859. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5860. break;
  5861. case AH_V4_FLOW:
  5862. case ESP_V4_FLOW:
  5863. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5864. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5865. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5866. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5867. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5868. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5869. break;
  5870. case IP_USER_FLOW:
  5871. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5872. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5873. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5874. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5875. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5876. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5877. fsp->h_u.usr_ip4_spec.proto =
  5878. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5879. TCAM_V4KEY2_PROTO_SHIFT;
  5880. fsp->m_u.usr_ip4_spec.proto =
  5881. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5882. TCAM_V4KEY2_PROTO_SHIFT;
  5883. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5884. break;
  5885. default:
  5886. break;
  5887. }
  5888. }
  5889. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5890. struct ethtool_rxnfc *nfc)
  5891. {
  5892. struct niu_parent *parent = np->parent;
  5893. struct niu_tcam_entry *tp;
  5894. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5895. u16 idx;
  5896. u64 class;
  5897. int ret = 0;
  5898. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5899. tp = &parent->tcam[idx];
  5900. if (!tp->valid) {
  5901. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5902. parent->index, (u16)nfc->fs.location, idx);
  5903. return -EINVAL;
  5904. }
  5905. /* fill the flow spec entry */
  5906. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5907. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5908. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5909. if (ret < 0) {
  5910. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5911. parent->index);
  5912. goto out;
  5913. }
  5914. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5915. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5916. TCAM_V4KEY2_PROTO_SHIFT;
  5917. if (proto == IPPROTO_ESP) {
  5918. if (fsp->flow_type == AH_V4_FLOW)
  5919. fsp->flow_type = ESP_V4_FLOW;
  5920. else
  5921. fsp->flow_type = ESP_V6_FLOW;
  5922. }
  5923. }
  5924. switch (fsp->flow_type) {
  5925. case TCP_V4_FLOW:
  5926. case UDP_V4_FLOW:
  5927. case SCTP_V4_FLOW:
  5928. case AH_V4_FLOW:
  5929. case ESP_V4_FLOW:
  5930. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5931. break;
  5932. case TCP_V6_FLOW:
  5933. case UDP_V6_FLOW:
  5934. case SCTP_V6_FLOW:
  5935. case AH_V6_FLOW:
  5936. case ESP_V6_FLOW:
  5937. /* Not yet implemented */
  5938. ret = -EINVAL;
  5939. break;
  5940. case IP_USER_FLOW:
  5941. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5942. break;
  5943. default:
  5944. ret = -EINVAL;
  5945. break;
  5946. }
  5947. if (ret < 0)
  5948. goto out;
  5949. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5950. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5951. else
  5952. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5953. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5954. /* put the tcam size here */
  5955. nfc->data = tcam_get_size(np);
  5956. out:
  5957. return ret;
  5958. }
  5959. static int niu_get_ethtool_tcam_all(struct niu *np,
  5960. struct ethtool_rxnfc *nfc,
  5961. u32 *rule_locs)
  5962. {
  5963. struct niu_parent *parent = np->parent;
  5964. struct niu_tcam_entry *tp;
  5965. int i, idx, cnt;
  5966. unsigned long flags;
  5967. int ret = 0;
  5968. /* put the tcam size here */
  5969. nfc->data = tcam_get_size(np);
  5970. niu_lock_parent(np, flags);
  5971. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5972. idx = tcam_get_index(np, i);
  5973. tp = &parent->tcam[idx];
  5974. if (!tp->valid)
  5975. continue;
  5976. if (cnt == nfc->rule_cnt) {
  5977. ret = -EMSGSIZE;
  5978. break;
  5979. }
  5980. rule_locs[cnt] = i;
  5981. cnt++;
  5982. }
  5983. niu_unlock_parent(np, flags);
  5984. nfc->rule_cnt = cnt;
  5985. return ret;
  5986. }
  5987. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  5988. u32 *rule_locs)
  5989. {
  5990. struct niu *np = netdev_priv(dev);
  5991. int ret = 0;
  5992. switch (cmd->cmd) {
  5993. case ETHTOOL_GRXFH:
  5994. ret = niu_get_hash_opts(np, cmd);
  5995. break;
  5996. case ETHTOOL_GRXRINGS:
  5997. cmd->data = np->num_rx_rings;
  5998. break;
  5999. case ETHTOOL_GRXCLSRLCNT:
  6000. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6001. break;
  6002. case ETHTOOL_GRXCLSRULE:
  6003. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6004. break;
  6005. case ETHTOOL_GRXCLSRLALL:
  6006. ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
  6007. break;
  6008. default:
  6009. ret = -EINVAL;
  6010. break;
  6011. }
  6012. return ret;
  6013. }
  6014. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6015. {
  6016. u64 class;
  6017. u64 flow_key = 0;
  6018. unsigned long flags;
  6019. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6020. return -EINVAL;
  6021. if (class < CLASS_CODE_USER_PROG1 ||
  6022. class > CLASS_CODE_SCTP_IPV6)
  6023. return -EINVAL;
  6024. if (nfc->data & RXH_DISCARD) {
  6025. niu_lock_parent(np, flags);
  6026. flow_key = np->parent->tcam_key[class -
  6027. CLASS_CODE_USER_PROG1];
  6028. flow_key |= TCAM_KEY_DISC;
  6029. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6030. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6031. niu_unlock_parent(np, flags);
  6032. return 0;
  6033. } else {
  6034. /* Discard was set before, but is not set now */
  6035. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6036. TCAM_KEY_DISC) {
  6037. niu_lock_parent(np, flags);
  6038. flow_key = np->parent->tcam_key[class -
  6039. CLASS_CODE_USER_PROG1];
  6040. flow_key &= ~TCAM_KEY_DISC;
  6041. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6042. flow_key);
  6043. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6044. flow_key;
  6045. niu_unlock_parent(np, flags);
  6046. }
  6047. }
  6048. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6049. return -EINVAL;
  6050. niu_lock_parent(np, flags);
  6051. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6052. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6053. niu_unlock_parent(np, flags);
  6054. return 0;
  6055. }
  6056. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6057. struct niu_tcam_entry *tp,
  6058. int l2_rdc_tab, u64 class)
  6059. {
  6060. u8 pid = 0;
  6061. u32 sip, dip, sipm, dipm, spi, spim;
  6062. u16 sport, dport, spm, dpm;
  6063. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6064. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6065. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6066. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6067. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6068. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6069. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6070. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6071. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6072. tp->key[3] |= dip;
  6073. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6074. tp->key_mask[3] |= dipm;
  6075. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6076. TCAM_V4KEY2_TOS_SHIFT);
  6077. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6078. TCAM_V4KEY2_TOS_SHIFT);
  6079. switch (fsp->flow_type) {
  6080. case TCP_V4_FLOW:
  6081. case UDP_V4_FLOW:
  6082. case SCTP_V4_FLOW:
  6083. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6084. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6085. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6086. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6087. tp->key[2] |= (((u64)sport << 16) | dport);
  6088. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6089. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6090. break;
  6091. case AH_V4_FLOW:
  6092. case ESP_V4_FLOW:
  6093. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6094. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6095. tp->key[2] |= spi;
  6096. tp->key_mask[2] |= spim;
  6097. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6098. break;
  6099. case IP_USER_FLOW:
  6100. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6101. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6102. tp->key[2] |= spi;
  6103. tp->key_mask[2] |= spim;
  6104. pid = fsp->h_u.usr_ip4_spec.proto;
  6105. break;
  6106. default:
  6107. break;
  6108. }
  6109. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6110. if (pid) {
  6111. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6112. }
  6113. }
  6114. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6115. struct ethtool_rxnfc *nfc)
  6116. {
  6117. struct niu_parent *parent = np->parent;
  6118. struct niu_tcam_entry *tp;
  6119. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6120. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6121. int l2_rdc_table = rdc_table->first_table_num;
  6122. u16 idx;
  6123. u64 class;
  6124. unsigned long flags;
  6125. int err, ret;
  6126. ret = 0;
  6127. idx = nfc->fs.location;
  6128. if (idx >= tcam_get_size(np))
  6129. return -EINVAL;
  6130. if (fsp->flow_type == IP_USER_FLOW) {
  6131. int i;
  6132. int add_usr_cls = 0;
  6133. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6134. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6135. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6136. return -EINVAL;
  6137. niu_lock_parent(np, flags);
  6138. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6139. if (parent->l3_cls[i]) {
  6140. if (uspec->proto == parent->l3_cls_pid[i]) {
  6141. class = parent->l3_cls[i];
  6142. parent->l3_cls_refcnt[i]++;
  6143. add_usr_cls = 1;
  6144. break;
  6145. }
  6146. } else {
  6147. /* Program new user IP class */
  6148. switch (i) {
  6149. case 0:
  6150. class = CLASS_CODE_USER_PROG1;
  6151. break;
  6152. case 1:
  6153. class = CLASS_CODE_USER_PROG2;
  6154. break;
  6155. case 2:
  6156. class = CLASS_CODE_USER_PROG3;
  6157. break;
  6158. case 3:
  6159. class = CLASS_CODE_USER_PROG4;
  6160. break;
  6161. default:
  6162. break;
  6163. }
  6164. ret = tcam_user_ip_class_set(np, class, 0,
  6165. uspec->proto,
  6166. uspec->tos,
  6167. umask->tos);
  6168. if (ret)
  6169. goto out;
  6170. ret = tcam_user_ip_class_enable(np, class, 1);
  6171. if (ret)
  6172. goto out;
  6173. parent->l3_cls[i] = class;
  6174. parent->l3_cls_pid[i] = uspec->proto;
  6175. parent->l3_cls_refcnt[i]++;
  6176. add_usr_cls = 1;
  6177. break;
  6178. }
  6179. }
  6180. if (!add_usr_cls) {
  6181. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6182. parent->index, __func__, uspec->proto);
  6183. ret = -EINVAL;
  6184. goto out;
  6185. }
  6186. niu_unlock_parent(np, flags);
  6187. } else {
  6188. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6189. return -EINVAL;
  6190. }
  6191. }
  6192. niu_lock_parent(np, flags);
  6193. idx = tcam_get_index(np, idx);
  6194. tp = &parent->tcam[idx];
  6195. memset(tp, 0, sizeof(*tp));
  6196. /* fill in the tcam key and mask */
  6197. switch (fsp->flow_type) {
  6198. case TCP_V4_FLOW:
  6199. case UDP_V4_FLOW:
  6200. case SCTP_V4_FLOW:
  6201. case AH_V4_FLOW:
  6202. case ESP_V4_FLOW:
  6203. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6204. break;
  6205. case TCP_V6_FLOW:
  6206. case UDP_V6_FLOW:
  6207. case SCTP_V6_FLOW:
  6208. case AH_V6_FLOW:
  6209. case ESP_V6_FLOW:
  6210. /* Not yet implemented */
  6211. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6212. parent->index, __func__, fsp->flow_type);
  6213. ret = -EINVAL;
  6214. goto out;
  6215. case IP_USER_FLOW:
  6216. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6217. break;
  6218. default:
  6219. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6220. parent->index, __func__, fsp->flow_type);
  6221. ret = -EINVAL;
  6222. goto out;
  6223. }
  6224. /* fill in the assoc data */
  6225. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6226. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6227. } else {
  6228. if (fsp->ring_cookie >= np->num_rx_rings) {
  6229. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6230. parent->index, __func__,
  6231. (long long)fsp->ring_cookie);
  6232. ret = -EINVAL;
  6233. goto out;
  6234. }
  6235. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6236. (fsp->ring_cookie <<
  6237. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6238. }
  6239. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6240. if (err) {
  6241. ret = -EINVAL;
  6242. goto out;
  6243. }
  6244. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6245. if (err) {
  6246. ret = -EINVAL;
  6247. goto out;
  6248. }
  6249. /* validate the entry */
  6250. tp->valid = 1;
  6251. np->clas.tcam_valid_entries++;
  6252. out:
  6253. niu_unlock_parent(np, flags);
  6254. return ret;
  6255. }
  6256. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6257. {
  6258. struct niu_parent *parent = np->parent;
  6259. struct niu_tcam_entry *tp;
  6260. u16 idx;
  6261. unsigned long flags;
  6262. u64 class;
  6263. int ret = 0;
  6264. if (loc >= tcam_get_size(np))
  6265. return -EINVAL;
  6266. niu_lock_parent(np, flags);
  6267. idx = tcam_get_index(np, loc);
  6268. tp = &parent->tcam[idx];
  6269. /* if the entry is of a user defined class, then update*/
  6270. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6271. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6272. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6273. int i;
  6274. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6275. if (parent->l3_cls[i] == class) {
  6276. parent->l3_cls_refcnt[i]--;
  6277. if (!parent->l3_cls_refcnt[i]) {
  6278. /* disable class */
  6279. ret = tcam_user_ip_class_enable(np,
  6280. class,
  6281. 0);
  6282. if (ret)
  6283. goto out;
  6284. parent->l3_cls[i] = 0;
  6285. parent->l3_cls_pid[i] = 0;
  6286. }
  6287. break;
  6288. }
  6289. }
  6290. if (i == NIU_L3_PROG_CLS) {
  6291. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6292. parent->index, __func__,
  6293. (unsigned long long)class);
  6294. ret = -EINVAL;
  6295. goto out;
  6296. }
  6297. }
  6298. ret = tcam_flush(np, idx);
  6299. if (ret)
  6300. goto out;
  6301. /* invalidate the entry */
  6302. tp->valid = 0;
  6303. np->clas.tcam_valid_entries--;
  6304. out:
  6305. niu_unlock_parent(np, flags);
  6306. return ret;
  6307. }
  6308. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6309. {
  6310. struct niu *np = netdev_priv(dev);
  6311. int ret = 0;
  6312. switch (cmd->cmd) {
  6313. case ETHTOOL_SRXFH:
  6314. ret = niu_set_hash_opts(np, cmd);
  6315. break;
  6316. case ETHTOOL_SRXCLSRLINS:
  6317. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6318. break;
  6319. case ETHTOOL_SRXCLSRLDEL:
  6320. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6321. break;
  6322. default:
  6323. ret = -EINVAL;
  6324. break;
  6325. }
  6326. return ret;
  6327. }
  6328. static const struct {
  6329. const char string[ETH_GSTRING_LEN];
  6330. } niu_xmac_stat_keys[] = {
  6331. { "tx_frames" },
  6332. { "tx_bytes" },
  6333. { "tx_fifo_errors" },
  6334. { "tx_overflow_errors" },
  6335. { "tx_max_pkt_size_errors" },
  6336. { "tx_underflow_errors" },
  6337. { "rx_local_faults" },
  6338. { "rx_remote_faults" },
  6339. { "rx_link_faults" },
  6340. { "rx_align_errors" },
  6341. { "rx_frags" },
  6342. { "rx_mcasts" },
  6343. { "rx_bcasts" },
  6344. { "rx_hist_cnt1" },
  6345. { "rx_hist_cnt2" },
  6346. { "rx_hist_cnt3" },
  6347. { "rx_hist_cnt4" },
  6348. { "rx_hist_cnt5" },
  6349. { "rx_hist_cnt6" },
  6350. { "rx_hist_cnt7" },
  6351. { "rx_octets" },
  6352. { "rx_code_violations" },
  6353. { "rx_len_errors" },
  6354. { "rx_crc_errors" },
  6355. { "rx_underflows" },
  6356. { "rx_overflows" },
  6357. { "pause_off_state" },
  6358. { "pause_on_state" },
  6359. { "pause_received" },
  6360. };
  6361. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6362. static const struct {
  6363. const char string[ETH_GSTRING_LEN];
  6364. } niu_bmac_stat_keys[] = {
  6365. { "tx_underflow_errors" },
  6366. { "tx_max_pkt_size_errors" },
  6367. { "tx_bytes" },
  6368. { "tx_frames" },
  6369. { "rx_overflows" },
  6370. { "rx_frames" },
  6371. { "rx_align_errors" },
  6372. { "rx_crc_errors" },
  6373. { "rx_len_errors" },
  6374. { "pause_off_state" },
  6375. { "pause_on_state" },
  6376. { "pause_received" },
  6377. };
  6378. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6379. static const struct {
  6380. const char string[ETH_GSTRING_LEN];
  6381. } niu_rxchan_stat_keys[] = {
  6382. { "rx_channel" },
  6383. { "rx_packets" },
  6384. { "rx_bytes" },
  6385. { "rx_dropped" },
  6386. { "rx_errors" },
  6387. };
  6388. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6389. static const struct {
  6390. const char string[ETH_GSTRING_LEN];
  6391. } niu_txchan_stat_keys[] = {
  6392. { "tx_channel" },
  6393. { "tx_packets" },
  6394. { "tx_bytes" },
  6395. { "tx_errors" },
  6396. };
  6397. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6398. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6399. {
  6400. struct niu *np = netdev_priv(dev);
  6401. int i;
  6402. if (stringset != ETH_SS_STATS)
  6403. return;
  6404. if (np->flags & NIU_FLAGS_XMAC) {
  6405. memcpy(data, niu_xmac_stat_keys,
  6406. sizeof(niu_xmac_stat_keys));
  6407. data += sizeof(niu_xmac_stat_keys);
  6408. } else {
  6409. memcpy(data, niu_bmac_stat_keys,
  6410. sizeof(niu_bmac_stat_keys));
  6411. data += sizeof(niu_bmac_stat_keys);
  6412. }
  6413. for (i = 0; i < np->num_rx_rings; i++) {
  6414. memcpy(data, niu_rxchan_stat_keys,
  6415. sizeof(niu_rxchan_stat_keys));
  6416. data += sizeof(niu_rxchan_stat_keys);
  6417. }
  6418. for (i = 0; i < np->num_tx_rings; i++) {
  6419. memcpy(data, niu_txchan_stat_keys,
  6420. sizeof(niu_txchan_stat_keys));
  6421. data += sizeof(niu_txchan_stat_keys);
  6422. }
  6423. }
  6424. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6425. {
  6426. struct niu *np = netdev_priv(dev);
  6427. if (stringset != ETH_SS_STATS)
  6428. return -EINVAL;
  6429. return (np->flags & NIU_FLAGS_XMAC ?
  6430. NUM_XMAC_STAT_KEYS :
  6431. NUM_BMAC_STAT_KEYS) +
  6432. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6433. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6434. }
  6435. static void niu_get_ethtool_stats(struct net_device *dev,
  6436. struct ethtool_stats *stats, u64 *data)
  6437. {
  6438. struct niu *np = netdev_priv(dev);
  6439. int i;
  6440. niu_sync_mac_stats(np);
  6441. if (np->flags & NIU_FLAGS_XMAC) {
  6442. memcpy(data, &np->mac_stats.xmac,
  6443. sizeof(struct niu_xmac_stats));
  6444. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6445. } else {
  6446. memcpy(data, &np->mac_stats.bmac,
  6447. sizeof(struct niu_bmac_stats));
  6448. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6449. }
  6450. for (i = 0; i < np->num_rx_rings; i++) {
  6451. struct rx_ring_info *rp = &np->rx_rings[i];
  6452. niu_sync_rx_discard_stats(np, rp, 0);
  6453. data[0] = rp->rx_channel;
  6454. data[1] = rp->rx_packets;
  6455. data[2] = rp->rx_bytes;
  6456. data[3] = rp->rx_dropped;
  6457. data[4] = rp->rx_errors;
  6458. data += 5;
  6459. }
  6460. for (i = 0; i < np->num_tx_rings; i++) {
  6461. struct tx_ring_info *rp = &np->tx_rings[i];
  6462. data[0] = rp->tx_channel;
  6463. data[1] = rp->tx_packets;
  6464. data[2] = rp->tx_bytes;
  6465. data[3] = rp->tx_errors;
  6466. data += 4;
  6467. }
  6468. }
  6469. static u64 niu_led_state_save(struct niu *np)
  6470. {
  6471. if (np->flags & NIU_FLAGS_XMAC)
  6472. return nr64_mac(XMAC_CONFIG);
  6473. else
  6474. return nr64_mac(BMAC_XIF_CONFIG);
  6475. }
  6476. static void niu_led_state_restore(struct niu *np, u64 val)
  6477. {
  6478. if (np->flags & NIU_FLAGS_XMAC)
  6479. nw64_mac(XMAC_CONFIG, val);
  6480. else
  6481. nw64_mac(BMAC_XIF_CONFIG, val);
  6482. }
  6483. static void niu_force_led(struct niu *np, int on)
  6484. {
  6485. u64 val, reg, bit;
  6486. if (np->flags & NIU_FLAGS_XMAC) {
  6487. reg = XMAC_CONFIG;
  6488. bit = XMAC_CONFIG_FORCE_LED_ON;
  6489. } else {
  6490. reg = BMAC_XIF_CONFIG;
  6491. bit = BMAC_XIF_CONFIG_LINK_LED;
  6492. }
  6493. val = nr64_mac(reg);
  6494. if (on)
  6495. val |= bit;
  6496. else
  6497. val &= ~bit;
  6498. nw64_mac(reg, val);
  6499. }
  6500. static int niu_set_phys_id(struct net_device *dev,
  6501. enum ethtool_phys_id_state state)
  6502. {
  6503. struct niu *np = netdev_priv(dev);
  6504. if (!netif_running(dev))
  6505. return -EAGAIN;
  6506. switch (state) {
  6507. case ETHTOOL_ID_ACTIVE:
  6508. np->orig_led_state = niu_led_state_save(np);
  6509. return 1; /* cycle on/off once per second */
  6510. case ETHTOOL_ID_ON:
  6511. niu_force_led(np, 1);
  6512. break;
  6513. case ETHTOOL_ID_OFF:
  6514. niu_force_led(np, 0);
  6515. break;
  6516. case ETHTOOL_ID_INACTIVE:
  6517. niu_led_state_restore(np, np->orig_led_state);
  6518. }
  6519. return 0;
  6520. }
  6521. static const struct ethtool_ops niu_ethtool_ops = {
  6522. .get_drvinfo = niu_get_drvinfo,
  6523. .get_link = ethtool_op_get_link,
  6524. .get_msglevel = niu_get_msglevel,
  6525. .set_msglevel = niu_set_msglevel,
  6526. .nway_reset = niu_nway_reset,
  6527. .get_eeprom_len = niu_get_eeprom_len,
  6528. .get_eeprom = niu_get_eeprom,
  6529. .get_strings = niu_get_strings,
  6530. .get_sset_count = niu_get_sset_count,
  6531. .get_ethtool_stats = niu_get_ethtool_stats,
  6532. .set_phys_id = niu_set_phys_id,
  6533. .get_rxnfc = niu_get_nfc,
  6534. .set_rxnfc = niu_set_nfc,
  6535. .get_link_ksettings = niu_get_link_ksettings,
  6536. .set_link_ksettings = niu_set_link_ksettings,
  6537. };
  6538. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6539. int ldg, int ldn)
  6540. {
  6541. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6542. return -EINVAL;
  6543. if (ldn < 0 || ldn > LDN_MAX)
  6544. return -EINVAL;
  6545. parent->ldg_map[ldn] = ldg;
  6546. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6547. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6548. * the firmware, and we're not supposed to change them.
  6549. * Validate the mapping, because if it's wrong we probably
  6550. * won't get any interrupts and that's painful to debug.
  6551. */
  6552. if (nr64(LDG_NUM(ldn)) != ldg) {
  6553. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6554. np->port, ldn, ldg,
  6555. (unsigned long long) nr64(LDG_NUM(ldn)));
  6556. return -EINVAL;
  6557. }
  6558. } else
  6559. nw64(LDG_NUM(ldn), ldg);
  6560. return 0;
  6561. }
  6562. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6563. {
  6564. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6565. return -EINVAL;
  6566. nw64(LDG_TIMER_RES, res);
  6567. return 0;
  6568. }
  6569. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6570. {
  6571. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6572. (func < 0 || func > 3) ||
  6573. (vector < 0 || vector > 0x1f))
  6574. return -EINVAL;
  6575. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6576. return 0;
  6577. }
  6578. static int niu_pci_eeprom_read(struct niu *np, u32 addr)
  6579. {
  6580. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6581. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6582. int limit;
  6583. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6584. return -EINVAL;
  6585. frame = frame_base;
  6586. nw64(ESPC_PIO_STAT, frame);
  6587. limit = 64;
  6588. do {
  6589. udelay(5);
  6590. frame = nr64(ESPC_PIO_STAT);
  6591. if (frame & ESPC_PIO_STAT_READ_END)
  6592. break;
  6593. } while (limit--);
  6594. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6595. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6596. (unsigned long long) frame);
  6597. return -ENODEV;
  6598. }
  6599. frame = frame_base;
  6600. nw64(ESPC_PIO_STAT, frame);
  6601. limit = 64;
  6602. do {
  6603. udelay(5);
  6604. frame = nr64(ESPC_PIO_STAT);
  6605. if (frame & ESPC_PIO_STAT_READ_END)
  6606. break;
  6607. } while (limit--);
  6608. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6609. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6610. (unsigned long long) frame);
  6611. return -ENODEV;
  6612. }
  6613. frame = nr64(ESPC_PIO_STAT);
  6614. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6615. }
  6616. static int niu_pci_eeprom_read16(struct niu *np, u32 off)
  6617. {
  6618. int err = niu_pci_eeprom_read(np, off);
  6619. u16 val;
  6620. if (err < 0)
  6621. return err;
  6622. val = (err << 8);
  6623. err = niu_pci_eeprom_read(np, off + 1);
  6624. if (err < 0)
  6625. return err;
  6626. val |= (err & 0xff);
  6627. return val;
  6628. }
  6629. static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6630. {
  6631. int err = niu_pci_eeprom_read(np, off);
  6632. u16 val;
  6633. if (err < 0)
  6634. return err;
  6635. val = (err & 0xff);
  6636. err = niu_pci_eeprom_read(np, off + 1);
  6637. if (err < 0)
  6638. return err;
  6639. val |= (err & 0xff) << 8;
  6640. return val;
  6641. }
  6642. static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf,
  6643. int namebuf_len)
  6644. {
  6645. int i;
  6646. for (i = 0; i < namebuf_len; i++) {
  6647. int err = niu_pci_eeprom_read(np, off + i);
  6648. if (err < 0)
  6649. return err;
  6650. *namebuf++ = err;
  6651. if (!err)
  6652. break;
  6653. }
  6654. if (i >= namebuf_len)
  6655. return -EINVAL;
  6656. return i + 1;
  6657. }
  6658. static void niu_vpd_parse_version(struct niu *np)
  6659. {
  6660. struct niu_vpd *vpd = &np->vpd;
  6661. int len = strlen(vpd->version) + 1;
  6662. const char *s = vpd->version;
  6663. int i;
  6664. for (i = 0; i < len - 5; i++) {
  6665. if (!strncmp(s + i, "FCode ", 6))
  6666. break;
  6667. }
  6668. if (i >= len - 5)
  6669. return;
  6670. s += i + 5;
  6671. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6672. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6673. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6674. vpd->fcode_major, vpd->fcode_minor);
  6675. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6676. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6677. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6678. np->flags |= NIU_FLAGS_VPD_VALID;
  6679. }
  6680. /* ESPC_PIO_EN_ENABLE must be set */
  6681. static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end)
  6682. {
  6683. unsigned int found_mask = 0;
  6684. #define FOUND_MASK_MODEL 0x00000001
  6685. #define FOUND_MASK_BMODEL 0x00000002
  6686. #define FOUND_MASK_VERS 0x00000004
  6687. #define FOUND_MASK_MAC 0x00000008
  6688. #define FOUND_MASK_NMAC 0x00000010
  6689. #define FOUND_MASK_PHY 0x00000020
  6690. #define FOUND_MASK_ALL 0x0000003f
  6691. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6692. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6693. while (start < end) {
  6694. int len, err, prop_len;
  6695. char namebuf[64];
  6696. u8 *prop_buf;
  6697. int max_len;
  6698. if (found_mask == FOUND_MASK_ALL) {
  6699. niu_vpd_parse_version(np);
  6700. return 1;
  6701. }
  6702. err = niu_pci_eeprom_read(np, start + 2);
  6703. if (err < 0)
  6704. return err;
  6705. len = err;
  6706. start += 3;
  6707. prop_len = niu_pci_eeprom_read(np, start + 4);
  6708. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6709. if (err < 0)
  6710. return err;
  6711. prop_buf = NULL;
  6712. max_len = 0;
  6713. if (!strcmp(namebuf, "model")) {
  6714. prop_buf = np->vpd.model;
  6715. max_len = NIU_VPD_MODEL_MAX;
  6716. found_mask |= FOUND_MASK_MODEL;
  6717. } else if (!strcmp(namebuf, "board-model")) {
  6718. prop_buf = np->vpd.board_model;
  6719. max_len = NIU_VPD_BD_MODEL_MAX;
  6720. found_mask |= FOUND_MASK_BMODEL;
  6721. } else if (!strcmp(namebuf, "version")) {
  6722. prop_buf = np->vpd.version;
  6723. max_len = NIU_VPD_VERSION_MAX;
  6724. found_mask |= FOUND_MASK_VERS;
  6725. } else if (!strcmp(namebuf, "local-mac-address")) {
  6726. prop_buf = np->vpd.local_mac;
  6727. max_len = ETH_ALEN;
  6728. found_mask |= FOUND_MASK_MAC;
  6729. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6730. prop_buf = &np->vpd.mac_num;
  6731. max_len = 1;
  6732. found_mask |= FOUND_MASK_NMAC;
  6733. } else if (!strcmp(namebuf, "phy-type")) {
  6734. prop_buf = np->vpd.phy_type;
  6735. max_len = NIU_VPD_PHY_TYPE_MAX;
  6736. found_mask |= FOUND_MASK_PHY;
  6737. }
  6738. if (max_len && prop_len > max_len) {
  6739. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6740. return -EINVAL;
  6741. }
  6742. if (prop_buf) {
  6743. u32 off = start + 5 + err;
  6744. int i;
  6745. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6746. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6747. namebuf, prop_len);
  6748. for (i = 0; i < prop_len; i++)
  6749. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6750. }
  6751. start += len;
  6752. }
  6753. return 0;
  6754. }
  6755. /* ESPC_PIO_EN_ENABLE must be set */
  6756. static void niu_pci_vpd_fetch(struct niu *np, u32 start)
  6757. {
  6758. u32 offset;
  6759. int err;
  6760. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6761. if (err < 0)
  6762. return;
  6763. offset = err + 3;
  6764. while (start + offset < ESPC_EEPROM_SIZE) {
  6765. u32 here = start + offset;
  6766. u32 end;
  6767. err = niu_pci_eeprom_read(np, here);
  6768. if (err != 0x90)
  6769. return;
  6770. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6771. if (err < 0)
  6772. return;
  6773. here = start + offset + 3;
  6774. end = start + offset + err;
  6775. offset += err;
  6776. err = niu_pci_vpd_scan_props(np, here, end);
  6777. if (err < 0 || err == 1)
  6778. return;
  6779. }
  6780. }
  6781. /* ESPC_PIO_EN_ENABLE must be set */
  6782. static u32 niu_pci_vpd_offset(struct niu *np)
  6783. {
  6784. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6785. int err;
  6786. while (start < end) {
  6787. ret = start;
  6788. /* ROM header signature? */
  6789. err = niu_pci_eeprom_read16(np, start + 0);
  6790. if (err != 0x55aa)
  6791. return 0;
  6792. /* Apply offset to PCI data structure. */
  6793. err = niu_pci_eeprom_read16(np, start + 23);
  6794. if (err < 0)
  6795. return 0;
  6796. start += err;
  6797. /* Check for "PCIR" signature. */
  6798. err = niu_pci_eeprom_read16(np, start + 0);
  6799. if (err != 0x5043)
  6800. return 0;
  6801. err = niu_pci_eeprom_read16(np, start + 2);
  6802. if (err != 0x4952)
  6803. return 0;
  6804. /* Check for OBP image type. */
  6805. err = niu_pci_eeprom_read(np, start + 20);
  6806. if (err < 0)
  6807. return 0;
  6808. if (err != 0x01) {
  6809. err = niu_pci_eeprom_read(np, ret + 2);
  6810. if (err < 0)
  6811. return 0;
  6812. start = ret + (err * 512);
  6813. continue;
  6814. }
  6815. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6816. if (err < 0)
  6817. return err;
  6818. ret += err;
  6819. err = niu_pci_eeprom_read(np, ret + 0);
  6820. if (err != 0x82)
  6821. return 0;
  6822. return ret;
  6823. }
  6824. return 0;
  6825. }
  6826. static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop)
  6827. {
  6828. if (!strcmp(phy_prop, "mif")) {
  6829. /* 1G copper, MII */
  6830. np->flags &= ~(NIU_FLAGS_FIBER |
  6831. NIU_FLAGS_10G);
  6832. np->mac_xcvr = MAC_XCVR_MII;
  6833. } else if (!strcmp(phy_prop, "xgf")) {
  6834. /* 10G fiber, XPCS */
  6835. np->flags |= (NIU_FLAGS_10G |
  6836. NIU_FLAGS_FIBER);
  6837. np->mac_xcvr = MAC_XCVR_XPCS;
  6838. } else if (!strcmp(phy_prop, "pcs")) {
  6839. /* 1G fiber, PCS */
  6840. np->flags &= ~NIU_FLAGS_10G;
  6841. np->flags |= NIU_FLAGS_FIBER;
  6842. np->mac_xcvr = MAC_XCVR_PCS;
  6843. } else if (!strcmp(phy_prop, "xgc")) {
  6844. /* 10G copper, XPCS */
  6845. np->flags |= NIU_FLAGS_10G;
  6846. np->flags &= ~NIU_FLAGS_FIBER;
  6847. np->mac_xcvr = MAC_XCVR_XPCS;
  6848. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6849. /* 10G Serdes or 1G Serdes, default to 10G */
  6850. np->flags |= NIU_FLAGS_10G;
  6851. np->flags &= ~NIU_FLAGS_FIBER;
  6852. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6853. np->mac_xcvr = MAC_XCVR_XPCS;
  6854. } else {
  6855. return -EINVAL;
  6856. }
  6857. return 0;
  6858. }
  6859. static int niu_pci_vpd_get_nports(struct niu *np)
  6860. {
  6861. int ports = 0;
  6862. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6863. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6864. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6865. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6866. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6867. ports = 4;
  6868. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6869. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6870. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6871. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6872. ports = 2;
  6873. }
  6874. return ports;
  6875. }
  6876. static void niu_pci_vpd_validate(struct niu *np)
  6877. {
  6878. struct net_device *dev = np->dev;
  6879. struct niu_vpd *vpd = &np->vpd;
  6880. u8 val8;
  6881. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6882. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6883. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6884. return;
  6885. }
  6886. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6887. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6888. np->flags |= NIU_FLAGS_10G;
  6889. np->flags &= ~NIU_FLAGS_FIBER;
  6890. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6891. np->mac_xcvr = MAC_XCVR_PCS;
  6892. if (np->port > 1) {
  6893. np->flags |= NIU_FLAGS_FIBER;
  6894. np->flags &= ~NIU_FLAGS_10G;
  6895. }
  6896. if (np->flags & NIU_FLAGS_10G)
  6897. np->mac_xcvr = MAC_XCVR_XPCS;
  6898. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6899. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6900. NIU_FLAGS_HOTPLUG_PHY);
  6901. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6902. dev_err(np->device, "Illegal phy string [%s]\n",
  6903. np->vpd.phy_type);
  6904. dev_err(np->device, "Falling back to SPROM\n");
  6905. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6906. return;
  6907. }
  6908. memcpy(dev->dev_addr, vpd->local_mac, ETH_ALEN);
  6909. val8 = dev->dev_addr[5];
  6910. dev->dev_addr[5] += np->port;
  6911. if (dev->dev_addr[5] < val8)
  6912. dev->dev_addr[4]++;
  6913. }
  6914. static int niu_pci_probe_sprom(struct niu *np)
  6915. {
  6916. struct net_device *dev = np->dev;
  6917. int len, i;
  6918. u64 val, sum;
  6919. u8 val8;
  6920. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6921. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6922. len = val / 4;
  6923. np->eeprom_len = len;
  6924. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6925. "SPROM: Image size %llu\n", (unsigned long long)val);
  6926. sum = 0;
  6927. for (i = 0; i < len; i++) {
  6928. val = nr64(ESPC_NCR(i));
  6929. sum += (val >> 0) & 0xff;
  6930. sum += (val >> 8) & 0xff;
  6931. sum += (val >> 16) & 0xff;
  6932. sum += (val >> 24) & 0xff;
  6933. }
  6934. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6935. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6936. if ((sum & 0xff) != 0xab) {
  6937. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6938. return -EINVAL;
  6939. }
  6940. val = nr64(ESPC_PHY_TYPE);
  6941. switch (np->port) {
  6942. case 0:
  6943. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6944. ESPC_PHY_TYPE_PORT0_SHIFT;
  6945. break;
  6946. case 1:
  6947. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6948. ESPC_PHY_TYPE_PORT1_SHIFT;
  6949. break;
  6950. case 2:
  6951. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6952. ESPC_PHY_TYPE_PORT2_SHIFT;
  6953. break;
  6954. case 3:
  6955. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6956. ESPC_PHY_TYPE_PORT3_SHIFT;
  6957. break;
  6958. default:
  6959. dev_err(np->device, "Bogus port number %u\n",
  6960. np->port);
  6961. return -EINVAL;
  6962. }
  6963. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6964. "SPROM: PHY type %x\n", val8);
  6965. switch (val8) {
  6966. case ESPC_PHY_TYPE_1G_COPPER:
  6967. /* 1G copper, MII */
  6968. np->flags &= ~(NIU_FLAGS_FIBER |
  6969. NIU_FLAGS_10G);
  6970. np->mac_xcvr = MAC_XCVR_MII;
  6971. break;
  6972. case ESPC_PHY_TYPE_1G_FIBER:
  6973. /* 1G fiber, PCS */
  6974. np->flags &= ~NIU_FLAGS_10G;
  6975. np->flags |= NIU_FLAGS_FIBER;
  6976. np->mac_xcvr = MAC_XCVR_PCS;
  6977. break;
  6978. case ESPC_PHY_TYPE_10G_COPPER:
  6979. /* 10G copper, XPCS */
  6980. np->flags |= NIU_FLAGS_10G;
  6981. np->flags &= ~NIU_FLAGS_FIBER;
  6982. np->mac_xcvr = MAC_XCVR_XPCS;
  6983. break;
  6984. case ESPC_PHY_TYPE_10G_FIBER:
  6985. /* 10G fiber, XPCS */
  6986. np->flags |= (NIU_FLAGS_10G |
  6987. NIU_FLAGS_FIBER);
  6988. np->mac_xcvr = MAC_XCVR_XPCS;
  6989. break;
  6990. default:
  6991. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  6992. return -EINVAL;
  6993. }
  6994. val = nr64(ESPC_MAC_ADDR0);
  6995. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6996. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  6997. dev->dev_addr[0] = (val >> 0) & 0xff;
  6998. dev->dev_addr[1] = (val >> 8) & 0xff;
  6999. dev->dev_addr[2] = (val >> 16) & 0xff;
  7000. dev->dev_addr[3] = (val >> 24) & 0xff;
  7001. val = nr64(ESPC_MAC_ADDR1);
  7002. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7003. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7004. dev->dev_addr[4] = (val >> 0) & 0xff;
  7005. dev->dev_addr[5] = (val >> 8) & 0xff;
  7006. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7007. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7008. dev->dev_addr);
  7009. return -EINVAL;
  7010. }
  7011. val8 = dev->dev_addr[5];
  7012. dev->dev_addr[5] += np->port;
  7013. if (dev->dev_addr[5] < val8)
  7014. dev->dev_addr[4]++;
  7015. val = nr64(ESPC_MOD_STR_LEN);
  7016. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7017. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7018. if (val >= 8 * 4)
  7019. return -EINVAL;
  7020. for (i = 0; i < val; i += 4) {
  7021. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7022. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7023. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7024. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7025. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7026. }
  7027. np->vpd.model[val] = '\0';
  7028. val = nr64(ESPC_BD_MOD_STR_LEN);
  7029. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7030. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7031. if (val >= 4 * 4)
  7032. return -EINVAL;
  7033. for (i = 0; i < val; i += 4) {
  7034. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7035. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7036. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7037. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7038. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7039. }
  7040. np->vpd.board_model[val] = '\0';
  7041. np->vpd.mac_num =
  7042. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7043. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7044. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7045. return 0;
  7046. }
  7047. static int niu_get_and_validate_port(struct niu *np)
  7048. {
  7049. struct niu_parent *parent = np->parent;
  7050. if (np->port <= 1)
  7051. np->flags |= NIU_FLAGS_XMAC;
  7052. if (!parent->num_ports) {
  7053. if (parent->plat_type == PLAT_TYPE_NIU) {
  7054. parent->num_ports = 2;
  7055. } else {
  7056. parent->num_ports = niu_pci_vpd_get_nports(np);
  7057. if (!parent->num_ports) {
  7058. /* Fall back to SPROM as last resort.
  7059. * This will fail on most cards.
  7060. */
  7061. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7062. ESPC_NUM_PORTS_MACS_VAL;
  7063. /* All of the current probing methods fail on
  7064. * Maramba on-board parts.
  7065. */
  7066. if (!parent->num_ports)
  7067. parent->num_ports = 4;
  7068. }
  7069. }
  7070. }
  7071. if (np->port >= parent->num_ports)
  7072. return -ENODEV;
  7073. return 0;
  7074. }
  7075. static int phy_record(struct niu_parent *parent, struct phy_probe_info *p,
  7076. int dev_id_1, int dev_id_2, u8 phy_port, int type)
  7077. {
  7078. u32 id = (dev_id_1 << 16) | dev_id_2;
  7079. u8 idx;
  7080. if (dev_id_1 < 0 || dev_id_2 < 0)
  7081. return 0;
  7082. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7083. /* Because of the NIU_PHY_ID_MASK being applied, the 8704
  7084. * test covers the 8706 as well.
  7085. */
  7086. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7087. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  7088. return 0;
  7089. } else {
  7090. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7091. return 0;
  7092. }
  7093. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7094. parent->index, id,
  7095. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7096. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7097. phy_port);
  7098. if (p->cur[type] >= NIU_MAX_PORTS) {
  7099. pr_err("Too many PHY ports\n");
  7100. return -EINVAL;
  7101. }
  7102. idx = p->cur[type];
  7103. p->phy_id[type][idx] = id;
  7104. p->phy_port[type][idx] = phy_port;
  7105. p->cur[type] = idx + 1;
  7106. return 0;
  7107. }
  7108. static int port_has_10g(struct phy_probe_info *p, int port)
  7109. {
  7110. int i;
  7111. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7112. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7113. return 1;
  7114. }
  7115. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7116. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7117. return 1;
  7118. }
  7119. return 0;
  7120. }
  7121. static int count_10g_ports(struct phy_probe_info *p, int *lowest)
  7122. {
  7123. int port, cnt;
  7124. cnt = 0;
  7125. *lowest = 32;
  7126. for (port = 8; port < 32; port++) {
  7127. if (port_has_10g(p, port)) {
  7128. if (!cnt)
  7129. *lowest = port;
  7130. cnt++;
  7131. }
  7132. }
  7133. return cnt;
  7134. }
  7135. static int count_1g_ports(struct phy_probe_info *p, int *lowest)
  7136. {
  7137. *lowest = 32;
  7138. if (p->cur[PHY_TYPE_MII])
  7139. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7140. return p->cur[PHY_TYPE_MII];
  7141. }
  7142. static void niu_n2_divide_channels(struct niu_parent *parent)
  7143. {
  7144. int num_ports = parent->num_ports;
  7145. int i;
  7146. for (i = 0; i < num_ports; i++) {
  7147. parent->rxchan_per_port[i] = (16 / num_ports);
  7148. parent->txchan_per_port[i] = (16 / num_ports);
  7149. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7150. parent->index, i,
  7151. parent->rxchan_per_port[i],
  7152. parent->txchan_per_port[i]);
  7153. }
  7154. }
  7155. static void niu_divide_channels(struct niu_parent *parent,
  7156. int num_10g, int num_1g)
  7157. {
  7158. int num_ports = parent->num_ports;
  7159. int rx_chans_per_10g, rx_chans_per_1g;
  7160. int tx_chans_per_10g, tx_chans_per_1g;
  7161. int i, tot_rx, tot_tx;
  7162. if (!num_10g || !num_1g) {
  7163. rx_chans_per_10g = rx_chans_per_1g =
  7164. (NIU_NUM_RXCHAN / num_ports);
  7165. tx_chans_per_10g = tx_chans_per_1g =
  7166. (NIU_NUM_TXCHAN / num_ports);
  7167. } else {
  7168. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7169. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7170. (rx_chans_per_1g * num_1g)) /
  7171. num_10g;
  7172. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7173. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7174. (tx_chans_per_1g * num_1g)) /
  7175. num_10g;
  7176. }
  7177. tot_rx = tot_tx = 0;
  7178. for (i = 0; i < num_ports; i++) {
  7179. int type = phy_decode(parent->port_phy, i);
  7180. if (type == PORT_TYPE_10G) {
  7181. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7182. parent->txchan_per_port[i] = tx_chans_per_10g;
  7183. } else {
  7184. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7185. parent->txchan_per_port[i] = tx_chans_per_1g;
  7186. }
  7187. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7188. parent->index, i,
  7189. parent->rxchan_per_port[i],
  7190. parent->txchan_per_port[i]);
  7191. tot_rx += parent->rxchan_per_port[i];
  7192. tot_tx += parent->txchan_per_port[i];
  7193. }
  7194. if (tot_rx > NIU_NUM_RXCHAN) {
  7195. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7196. parent->index, tot_rx);
  7197. for (i = 0; i < num_ports; i++)
  7198. parent->rxchan_per_port[i] = 1;
  7199. }
  7200. if (tot_tx > NIU_NUM_TXCHAN) {
  7201. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7202. parent->index, tot_tx);
  7203. for (i = 0; i < num_ports; i++)
  7204. parent->txchan_per_port[i] = 1;
  7205. }
  7206. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7207. pr_warn("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7208. parent->index, tot_rx, tot_tx);
  7209. }
  7210. }
  7211. static void niu_divide_rdc_groups(struct niu_parent *parent,
  7212. int num_10g, int num_1g)
  7213. {
  7214. int i, num_ports = parent->num_ports;
  7215. int rdc_group, rdc_groups_per_port;
  7216. int rdc_channel_base;
  7217. rdc_group = 0;
  7218. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7219. rdc_channel_base = 0;
  7220. for (i = 0; i < num_ports; i++) {
  7221. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7222. int grp, num_channels = parent->rxchan_per_port[i];
  7223. int this_channel_offset;
  7224. tp->first_table_num = rdc_group;
  7225. tp->num_tables = rdc_groups_per_port;
  7226. this_channel_offset = 0;
  7227. for (grp = 0; grp < tp->num_tables; grp++) {
  7228. struct rdc_table *rt = &tp->tables[grp];
  7229. int slot;
  7230. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7231. parent->index, i, tp->first_table_num + grp);
  7232. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7233. rt->rxdma_channel[slot] =
  7234. rdc_channel_base + this_channel_offset;
  7235. pr_cont("%d ", rt->rxdma_channel[slot]);
  7236. if (++this_channel_offset == num_channels)
  7237. this_channel_offset = 0;
  7238. }
  7239. pr_cont("]\n");
  7240. }
  7241. parent->rdc_default[i] = rdc_channel_base;
  7242. rdc_channel_base += num_channels;
  7243. rdc_group += rdc_groups_per_port;
  7244. }
  7245. }
  7246. static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent,
  7247. struct phy_probe_info *info)
  7248. {
  7249. unsigned long flags;
  7250. int port, err;
  7251. memset(info, 0, sizeof(*info));
  7252. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7253. niu_lock_parent(np, flags);
  7254. err = 0;
  7255. for (port = 8; port < 32; port++) {
  7256. int dev_id_1, dev_id_2;
  7257. dev_id_1 = mdio_read(np, port,
  7258. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7259. dev_id_2 = mdio_read(np, port,
  7260. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7261. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7262. PHY_TYPE_PMA_PMD);
  7263. if (err)
  7264. break;
  7265. dev_id_1 = mdio_read(np, port,
  7266. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7267. dev_id_2 = mdio_read(np, port,
  7268. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7269. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7270. PHY_TYPE_PCS);
  7271. if (err)
  7272. break;
  7273. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7274. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7275. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7276. PHY_TYPE_MII);
  7277. if (err)
  7278. break;
  7279. }
  7280. niu_unlock_parent(np, flags);
  7281. return err;
  7282. }
  7283. static int walk_phys(struct niu *np, struct niu_parent *parent)
  7284. {
  7285. struct phy_probe_info *info = &parent->phy_probe_info;
  7286. int lowest_10g, lowest_1g;
  7287. int num_10g, num_1g;
  7288. u32 val;
  7289. int err;
  7290. num_10g = num_1g = 0;
  7291. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7292. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7293. num_10g = 0;
  7294. num_1g = 2;
  7295. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7296. parent->num_ports = 4;
  7297. val = (phy_encode(PORT_TYPE_1G, 0) |
  7298. phy_encode(PORT_TYPE_1G, 1) |
  7299. phy_encode(PORT_TYPE_1G, 2) |
  7300. phy_encode(PORT_TYPE_1G, 3));
  7301. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7302. num_10g = 2;
  7303. num_1g = 0;
  7304. parent->num_ports = 2;
  7305. val = (phy_encode(PORT_TYPE_10G, 0) |
  7306. phy_encode(PORT_TYPE_10G, 1));
  7307. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7308. (parent->plat_type == PLAT_TYPE_NIU)) {
  7309. /* this is the Monza case */
  7310. if (np->flags & NIU_FLAGS_10G) {
  7311. val = (phy_encode(PORT_TYPE_10G, 0) |
  7312. phy_encode(PORT_TYPE_10G, 1));
  7313. } else {
  7314. val = (phy_encode(PORT_TYPE_1G, 0) |
  7315. phy_encode(PORT_TYPE_1G, 1));
  7316. }
  7317. } else {
  7318. err = fill_phy_probe_info(np, parent, info);
  7319. if (err)
  7320. return err;
  7321. num_10g = count_10g_ports(info, &lowest_10g);
  7322. num_1g = count_1g_ports(info, &lowest_1g);
  7323. switch ((num_10g << 4) | num_1g) {
  7324. case 0x24:
  7325. if (lowest_1g == 10)
  7326. parent->plat_type = PLAT_TYPE_VF_P0;
  7327. else if (lowest_1g == 26)
  7328. parent->plat_type = PLAT_TYPE_VF_P1;
  7329. else
  7330. goto unknown_vg_1g_port;
  7331. /* fallthru */
  7332. case 0x22:
  7333. val = (phy_encode(PORT_TYPE_10G, 0) |
  7334. phy_encode(PORT_TYPE_10G, 1) |
  7335. phy_encode(PORT_TYPE_1G, 2) |
  7336. phy_encode(PORT_TYPE_1G, 3));
  7337. break;
  7338. case 0x20:
  7339. val = (phy_encode(PORT_TYPE_10G, 0) |
  7340. phy_encode(PORT_TYPE_10G, 1));
  7341. break;
  7342. case 0x10:
  7343. val = phy_encode(PORT_TYPE_10G, np->port);
  7344. break;
  7345. case 0x14:
  7346. if (lowest_1g == 10)
  7347. parent->plat_type = PLAT_TYPE_VF_P0;
  7348. else if (lowest_1g == 26)
  7349. parent->plat_type = PLAT_TYPE_VF_P1;
  7350. else
  7351. goto unknown_vg_1g_port;
  7352. /* fallthru */
  7353. case 0x13:
  7354. if ((lowest_10g & 0x7) == 0)
  7355. val = (phy_encode(PORT_TYPE_10G, 0) |
  7356. phy_encode(PORT_TYPE_1G, 1) |
  7357. phy_encode(PORT_TYPE_1G, 2) |
  7358. phy_encode(PORT_TYPE_1G, 3));
  7359. else
  7360. val = (phy_encode(PORT_TYPE_1G, 0) |
  7361. phy_encode(PORT_TYPE_10G, 1) |
  7362. phy_encode(PORT_TYPE_1G, 2) |
  7363. phy_encode(PORT_TYPE_1G, 3));
  7364. break;
  7365. case 0x04:
  7366. if (lowest_1g == 10)
  7367. parent->plat_type = PLAT_TYPE_VF_P0;
  7368. else if (lowest_1g == 26)
  7369. parent->plat_type = PLAT_TYPE_VF_P1;
  7370. else
  7371. goto unknown_vg_1g_port;
  7372. val = (phy_encode(PORT_TYPE_1G, 0) |
  7373. phy_encode(PORT_TYPE_1G, 1) |
  7374. phy_encode(PORT_TYPE_1G, 2) |
  7375. phy_encode(PORT_TYPE_1G, 3));
  7376. break;
  7377. default:
  7378. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7379. num_10g, num_1g);
  7380. return -EINVAL;
  7381. }
  7382. }
  7383. parent->port_phy = val;
  7384. if (parent->plat_type == PLAT_TYPE_NIU)
  7385. niu_n2_divide_channels(parent);
  7386. else
  7387. niu_divide_channels(parent, num_10g, num_1g);
  7388. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7389. return 0;
  7390. unknown_vg_1g_port:
  7391. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7392. return -EINVAL;
  7393. }
  7394. static int niu_probe_ports(struct niu *np)
  7395. {
  7396. struct niu_parent *parent = np->parent;
  7397. int err, i;
  7398. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7399. err = walk_phys(np, parent);
  7400. if (err)
  7401. return err;
  7402. niu_set_ldg_timer_res(np, 2);
  7403. for (i = 0; i <= LDN_MAX; i++)
  7404. niu_ldn_irq_enable(np, i, 0);
  7405. }
  7406. if (parent->port_phy == PORT_PHY_INVALID)
  7407. return -EINVAL;
  7408. return 0;
  7409. }
  7410. static int niu_classifier_swstate_init(struct niu *np)
  7411. {
  7412. struct niu_classifier *cp = &np->clas;
  7413. cp->tcam_top = (u16) np->port;
  7414. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7415. cp->h1_init = 0xffffffff;
  7416. cp->h2_init = 0xffff;
  7417. return fflp_early_init(np);
  7418. }
  7419. static void niu_link_config_init(struct niu *np)
  7420. {
  7421. struct niu_link_config *lp = &np->link_config;
  7422. lp->advertising = (ADVERTISED_10baseT_Half |
  7423. ADVERTISED_10baseT_Full |
  7424. ADVERTISED_100baseT_Half |
  7425. ADVERTISED_100baseT_Full |
  7426. ADVERTISED_1000baseT_Half |
  7427. ADVERTISED_1000baseT_Full |
  7428. ADVERTISED_10000baseT_Full |
  7429. ADVERTISED_Autoneg);
  7430. lp->speed = lp->active_speed = SPEED_INVALID;
  7431. lp->duplex = DUPLEX_FULL;
  7432. lp->active_duplex = DUPLEX_INVALID;
  7433. lp->autoneg = 1;
  7434. #if 0
  7435. lp->loopback_mode = LOOPBACK_MAC;
  7436. lp->active_speed = SPEED_10000;
  7437. lp->active_duplex = DUPLEX_FULL;
  7438. #else
  7439. lp->loopback_mode = LOOPBACK_DISABLED;
  7440. #endif
  7441. }
  7442. static int niu_init_mac_ipp_pcs_base(struct niu *np)
  7443. {
  7444. switch (np->port) {
  7445. case 0:
  7446. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7447. np->ipp_off = 0x00000;
  7448. np->pcs_off = 0x04000;
  7449. np->xpcs_off = 0x02000;
  7450. break;
  7451. case 1:
  7452. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7453. np->ipp_off = 0x08000;
  7454. np->pcs_off = 0x0a000;
  7455. np->xpcs_off = 0x08000;
  7456. break;
  7457. case 2:
  7458. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7459. np->ipp_off = 0x04000;
  7460. np->pcs_off = 0x0e000;
  7461. np->xpcs_off = ~0UL;
  7462. break;
  7463. case 3:
  7464. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7465. np->ipp_off = 0x0c000;
  7466. np->pcs_off = 0x12000;
  7467. np->xpcs_off = ~0UL;
  7468. break;
  7469. default:
  7470. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7471. return -EINVAL;
  7472. }
  7473. return 0;
  7474. }
  7475. static void niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7476. {
  7477. struct msix_entry msi_vec[NIU_NUM_LDG];
  7478. struct niu_parent *parent = np->parent;
  7479. struct pci_dev *pdev = np->pdev;
  7480. int i, num_irqs;
  7481. u8 first_ldg;
  7482. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7483. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7484. ldg_num_map[i] = first_ldg + i;
  7485. num_irqs = (parent->rxchan_per_port[np->port] +
  7486. parent->txchan_per_port[np->port] +
  7487. (np->port == 0 ? 3 : 1));
  7488. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7489. for (i = 0; i < num_irqs; i++) {
  7490. msi_vec[i].vector = 0;
  7491. msi_vec[i].entry = i;
  7492. }
  7493. num_irqs = pci_enable_msix_range(pdev, msi_vec, 1, num_irqs);
  7494. if (num_irqs < 0) {
  7495. np->flags &= ~NIU_FLAGS_MSIX;
  7496. return;
  7497. }
  7498. np->flags |= NIU_FLAGS_MSIX;
  7499. for (i = 0; i < num_irqs; i++)
  7500. np->ldg[i].irq = msi_vec[i].vector;
  7501. np->num_ldg = num_irqs;
  7502. }
  7503. static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7504. {
  7505. #ifdef CONFIG_SPARC64
  7506. struct platform_device *op = np->op;
  7507. const u32 *int_prop;
  7508. int i;
  7509. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7510. if (!int_prop)
  7511. return -ENODEV;
  7512. for (i = 0; i < op->archdata.num_irqs; i++) {
  7513. ldg_num_map[i] = int_prop[i];
  7514. np->ldg[i].irq = op->archdata.irqs[i];
  7515. }
  7516. np->num_ldg = op->archdata.num_irqs;
  7517. return 0;
  7518. #else
  7519. return -EINVAL;
  7520. #endif
  7521. }
  7522. static int niu_ldg_init(struct niu *np)
  7523. {
  7524. struct niu_parent *parent = np->parent;
  7525. u8 ldg_num_map[NIU_NUM_LDG];
  7526. int first_chan, num_chan;
  7527. int i, err, ldg_rotor;
  7528. u8 port;
  7529. np->num_ldg = 1;
  7530. np->ldg[0].irq = np->dev->irq;
  7531. if (parent->plat_type == PLAT_TYPE_NIU) {
  7532. err = niu_n2_irq_init(np, ldg_num_map);
  7533. if (err)
  7534. return err;
  7535. } else
  7536. niu_try_msix(np, ldg_num_map);
  7537. port = np->port;
  7538. for (i = 0; i < np->num_ldg; i++) {
  7539. struct niu_ldg *lp = &np->ldg[i];
  7540. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7541. lp->np = np;
  7542. lp->ldg_num = ldg_num_map[i];
  7543. lp->timer = 2; /* XXX */
  7544. /* On N2 NIU the firmware has setup the SID mappings so they go
  7545. * to the correct values that will route the LDG to the proper
  7546. * interrupt in the NCU interrupt table.
  7547. */
  7548. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7549. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7550. if (err)
  7551. return err;
  7552. }
  7553. }
  7554. /* We adopt the LDG assignment ordering used by the N2 NIU
  7555. * 'interrupt' properties because that simplifies a lot of
  7556. * things. This ordering is:
  7557. *
  7558. * MAC
  7559. * MIF (if port zero)
  7560. * SYSERR (if port zero)
  7561. * RX channels
  7562. * TX channels
  7563. */
  7564. ldg_rotor = 0;
  7565. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7566. LDN_MAC(port));
  7567. if (err)
  7568. return err;
  7569. ldg_rotor++;
  7570. if (ldg_rotor == np->num_ldg)
  7571. ldg_rotor = 0;
  7572. if (port == 0) {
  7573. err = niu_ldg_assign_ldn(np, parent,
  7574. ldg_num_map[ldg_rotor],
  7575. LDN_MIF);
  7576. if (err)
  7577. return err;
  7578. ldg_rotor++;
  7579. if (ldg_rotor == np->num_ldg)
  7580. ldg_rotor = 0;
  7581. err = niu_ldg_assign_ldn(np, parent,
  7582. ldg_num_map[ldg_rotor],
  7583. LDN_DEVICE_ERROR);
  7584. if (err)
  7585. return err;
  7586. ldg_rotor++;
  7587. if (ldg_rotor == np->num_ldg)
  7588. ldg_rotor = 0;
  7589. }
  7590. first_chan = 0;
  7591. for (i = 0; i < port; i++)
  7592. first_chan += parent->rxchan_per_port[i];
  7593. num_chan = parent->rxchan_per_port[port];
  7594. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7595. err = niu_ldg_assign_ldn(np, parent,
  7596. ldg_num_map[ldg_rotor],
  7597. LDN_RXDMA(i));
  7598. if (err)
  7599. return err;
  7600. ldg_rotor++;
  7601. if (ldg_rotor == np->num_ldg)
  7602. ldg_rotor = 0;
  7603. }
  7604. first_chan = 0;
  7605. for (i = 0; i < port; i++)
  7606. first_chan += parent->txchan_per_port[i];
  7607. num_chan = parent->txchan_per_port[port];
  7608. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7609. err = niu_ldg_assign_ldn(np, parent,
  7610. ldg_num_map[ldg_rotor],
  7611. LDN_TXDMA(i));
  7612. if (err)
  7613. return err;
  7614. ldg_rotor++;
  7615. if (ldg_rotor == np->num_ldg)
  7616. ldg_rotor = 0;
  7617. }
  7618. return 0;
  7619. }
  7620. static void niu_ldg_free(struct niu *np)
  7621. {
  7622. if (np->flags & NIU_FLAGS_MSIX)
  7623. pci_disable_msix(np->pdev);
  7624. }
  7625. static int niu_get_of_props(struct niu *np)
  7626. {
  7627. #ifdef CONFIG_SPARC64
  7628. struct net_device *dev = np->dev;
  7629. struct device_node *dp;
  7630. const char *phy_type;
  7631. const u8 *mac_addr;
  7632. const char *model;
  7633. int prop_len;
  7634. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7635. dp = np->op->dev.of_node;
  7636. else
  7637. dp = pci_device_to_OF_node(np->pdev);
  7638. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7639. if (!phy_type) {
  7640. netdev_err(dev, "%pOF: OF node lacks phy-type property\n", dp);
  7641. return -EINVAL;
  7642. }
  7643. if (!strcmp(phy_type, "none"))
  7644. return -ENODEV;
  7645. strcpy(np->vpd.phy_type, phy_type);
  7646. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7647. netdev_err(dev, "%pOF: Illegal phy string [%s]\n",
  7648. dp, np->vpd.phy_type);
  7649. return -EINVAL;
  7650. }
  7651. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7652. if (!mac_addr) {
  7653. netdev_err(dev, "%pOF: OF node lacks local-mac-address property\n",
  7654. dp);
  7655. return -EINVAL;
  7656. }
  7657. if (prop_len != dev->addr_len) {
  7658. netdev_err(dev, "%pOF: OF MAC address prop len (%d) is wrong\n",
  7659. dp, prop_len);
  7660. }
  7661. memcpy(dev->dev_addr, mac_addr, dev->addr_len);
  7662. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7663. netdev_err(dev, "%pOF: OF MAC address is invalid\n", dp);
  7664. netdev_err(dev, "%pOF: [ %pM ]\n", dp, dev->dev_addr);
  7665. return -EINVAL;
  7666. }
  7667. model = of_get_property(dp, "model", &prop_len);
  7668. if (model)
  7669. strcpy(np->vpd.model, model);
  7670. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7671. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7672. NIU_FLAGS_HOTPLUG_PHY);
  7673. }
  7674. return 0;
  7675. #else
  7676. return -EINVAL;
  7677. #endif
  7678. }
  7679. static int niu_get_invariants(struct niu *np)
  7680. {
  7681. int err, have_props;
  7682. u32 offset;
  7683. err = niu_get_of_props(np);
  7684. if (err == -ENODEV)
  7685. return err;
  7686. have_props = !err;
  7687. err = niu_init_mac_ipp_pcs_base(np);
  7688. if (err)
  7689. return err;
  7690. if (have_props) {
  7691. err = niu_get_and_validate_port(np);
  7692. if (err)
  7693. return err;
  7694. } else {
  7695. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7696. return -EINVAL;
  7697. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7698. offset = niu_pci_vpd_offset(np);
  7699. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7700. "%s() VPD offset [%08x]\n", __func__, offset);
  7701. if (offset)
  7702. niu_pci_vpd_fetch(np, offset);
  7703. nw64(ESPC_PIO_EN, 0);
  7704. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7705. niu_pci_vpd_validate(np);
  7706. err = niu_get_and_validate_port(np);
  7707. if (err)
  7708. return err;
  7709. }
  7710. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7711. err = niu_get_and_validate_port(np);
  7712. if (err)
  7713. return err;
  7714. err = niu_pci_probe_sprom(np);
  7715. if (err)
  7716. return err;
  7717. }
  7718. }
  7719. err = niu_probe_ports(np);
  7720. if (err)
  7721. return err;
  7722. niu_ldg_init(np);
  7723. niu_classifier_swstate_init(np);
  7724. niu_link_config_init(np);
  7725. err = niu_determine_phy_disposition(np);
  7726. if (!err)
  7727. err = niu_init_link(np);
  7728. return err;
  7729. }
  7730. static LIST_HEAD(niu_parent_list);
  7731. static DEFINE_MUTEX(niu_parent_lock);
  7732. static int niu_parent_index;
  7733. static ssize_t show_port_phy(struct device *dev,
  7734. struct device_attribute *attr, char *buf)
  7735. {
  7736. struct platform_device *plat_dev = to_platform_device(dev);
  7737. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7738. u32 port_phy = p->port_phy;
  7739. char *orig_buf = buf;
  7740. int i;
  7741. if (port_phy == PORT_PHY_UNKNOWN ||
  7742. port_phy == PORT_PHY_INVALID)
  7743. return 0;
  7744. for (i = 0; i < p->num_ports; i++) {
  7745. const char *type_str;
  7746. int type;
  7747. type = phy_decode(port_phy, i);
  7748. if (type == PORT_TYPE_10G)
  7749. type_str = "10G";
  7750. else
  7751. type_str = "1G";
  7752. buf += sprintf(buf,
  7753. (i == 0) ? "%s" : " %s",
  7754. type_str);
  7755. }
  7756. buf += sprintf(buf, "\n");
  7757. return buf - orig_buf;
  7758. }
  7759. static ssize_t show_plat_type(struct device *dev,
  7760. struct device_attribute *attr, char *buf)
  7761. {
  7762. struct platform_device *plat_dev = to_platform_device(dev);
  7763. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7764. const char *type_str;
  7765. switch (p->plat_type) {
  7766. case PLAT_TYPE_ATLAS:
  7767. type_str = "atlas";
  7768. break;
  7769. case PLAT_TYPE_NIU:
  7770. type_str = "niu";
  7771. break;
  7772. case PLAT_TYPE_VF_P0:
  7773. type_str = "vf_p0";
  7774. break;
  7775. case PLAT_TYPE_VF_P1:
  7776. type_str = "vf_p1";
  7777. break;
  7778. default:
  7779. type_str = "unknown";
  7780. break;
  7781. }
  7782. return sprintf(buf, "%s\n", type_str);
  7783. }
  7784. static ssize_t __show_chan_per_port(struct device *dev,
  7785. struct device_attribute *attr, char *buf,
  7786. int rx)
  7787. {
  7788. struct platform_device *plat_dev = to_platform_device(dev);
  7789. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7790. char *orig_buf = buf;
  7791. u8 *arr;
  7792. int i;
  7793. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7794. for (i = 0; i < p->num_ports; i++) {
  7795. buf += sprintf(buf,
  7796. (i == 0) ? "%d" : " %d",
  7797. arr[i]);
  7798. }
  7799. buf += sprintf(buf, "\n");
  7800. return buf - orig_buf;
  7801. }
  7802. static ssize_t show_rxchan_per_port(struct device *dev,
  7803. struct device_attribute *attr, char *buf)
  7804. {
  7805. return __show_chan_per_port(dev, attr, buf, 1);
  7806. }
  7807. static ssize_t show_txchan_per_port(struct device *dev,
  7808. struct device_attribute *attr, char *buf)
  7809. {
  7810. return __show_chan_per_port(dev, attr, buf, 1);
  7811. }
  7812. static ssize_t show_num_ports(struct device *dev,
  7813. struct device_attribute *attr, char *buf)
  7814. {
  7815. struct platform_device *plat_dev = to_platform_device(dev);
  7816. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7817. return sprintf(buf, "%d\n", p->num_ports);
  7818. }
  7819. static struct device_attribute niu_parent_attributes[] = {
  7820. __ATTR(port_phy, 0444, show_port_phy, NULL),
  7821. __ATTR(plat_type, 0444, show_plat_type, NULL),
  7822. __ATTR(rxchan_per_port, 0444, show_rxchan_per_port, NULL),
  7823. __ATTR(txchan_per_port, 0444, show_txchan_per_port, NULL),
  7824. __ATTR(num_ports, 0444, show_num_ports, NULL),
  7825. {}
  7826. };
  7827. static struct niu_parent *niu_new_parent(struct niu *np,
  7828. union niu_parent_id *id, u8 ptype)
  7829. {
  7830. struct platform_device *plat_dev;
  7831. struct niu_parent *p;
  7832. int i;
  7833. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7834. NULL, 0);
  7835. if (IS_ERR(plat_dev))
  7836. return NULL;
  7837. for (i = 0; niu_parent_attributes[i].attr.name; i++) {
  7838. int err = device_create_file(&plat_dev->dev,
  7839. &niu_parent_attributes[i]);
  7840. if (err)
  7841. goto fail_unregister;
  7842. }
  7843. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7844. if (!p)
  7845. goto fail_unregister;
  7846. p->index = niu_parent_index++;
  7847. plat_dev->dev.platform_data = p;
  7848. p->plat_dev = plat_dev;
  7849. memcpy(&p->id, id, sizeof(*id));
  7850. p->plat_type = ptype;
  7851. INIT_LIST_HEAD(&p->list);
  7852. atomic_set(&p->refcnt, 0);
  7853. list_add(&p->list, &niu_parent_list);
  7854. spin_lock_init(&p->lock);
  7855. p->rxdma_clock_divider = 7500;
  7856. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7857. if (p->plat_type == PLAT_TYPE_NIU)
  7858. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7859. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7860. int index = i - CLASS_CODE_USER_PROG1;
  7861. p->tcam_key[index] = TCAM_KEY_TSEL;
  7862. p->flow_key[index] = (FLOW_KEY_IPSA |
  7863. FLOW_KEY_IPDA |
  7864. FLOW_KEY_PROTO |
  7865. (FLOW_KEY_L4_BYTE12 <<
  7866. FLOW_KEY_L4_0_SHIFT) |
  7867. (FLOW_KEY_L4_BYTE12 <<
  7868. FLOW_KEY_L4_1_SHIFT));
  7869. }
  7870. for (i = 0; i < LDN_MAX + 1; i++)
  7871. p->ldg_map[i] = LDG_INVALID;
  7872. return p;
  7873. fail_unregister:
  7874. platform_device_unregister(plat_dev);
  7875. return NULL;
  7876. }
  7877. static struct niu_parent *niu_get_parent(struct niu *np,
  7878. union niu_parent_id *id, u8 ptype)
  7879. {
  7880. struct niu_parent *p, *tmp;
  7881. int port = np->port;
  7882. mutex_lock(&niu_parent_lock);
  7883. p = NULL;
  7884. list_for_each_entry(tmp, &niu_parent_list, list) {
  7885. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7886. p = tmp;
  7887. break;
  7888. }
  7889. }
  7890. if (!p)
  7891. p = niu_new_parent(np, id, ptype);
  7892. if (p) {
  7893. char port_name[8];
  7894. int err;
  7895. sprintf(port_name, "port%d", port);
  7896. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7897. &np->device->kobj,
  7898. port_name);
  7899. if (!err) {
  7900. p->ports[port] = np;
  7901. atomic_inc(&p->refcnt);
  7902. }
  7903. }
  7904. mutex_unlock(&niu_parent_lock);
  7905. return p;
  7906. }
  7907. static void niu_put_parent(struct niu *np)
  7908. {
  7909. struct niu_parent *p = np->parent;
  7910. u8 port = np->port;
  7911. char port_name[8];
  7912. BUG_ON(!p || p->ports[port] != np);
  7913. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7914. "%s() port[%u]\n", __func__, port);
  7915. sprintf(port_name, "port%d", port);
  7916. mutex_lock(&niu_parent_lock);
  7917. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7918. p->ports[port] = NULL;
  7919. np->parent = NULL;
  7920. if (atomic_dec_and_test(&p->refcnt)) {
  7921. list_del(&p->list);
  7922. platform_device_unregister(p->plat_dev);
  7923. }
  7924. mutex_unlock(&niu_parent_lock);
  7925. }
  7926. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7927. u64 *handle, gfp_t flag)
  7928. {
  7929. dma_addr_t dh;
  7930. void *ret;
  7931. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7932. if (ret)
  7933. *handle = dh;
  7934. return ret;
  7935. }
  7936. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7937. void *cpu_addr, u64 handle)
  7938. {
  7939. dma_free_coherent(dev, size, cpu_addr, handle);
  7940. }
  7941. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7942. unsigned long offset, size_t size,
  7943. enum dma_data_direction direction)
  7944. {
  7945. return dma_map_page(dev, page, offset, size, direction);
  7946. }
  7947. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7948. size_t size, enum dma_data_direction direction)
  7949. {
  7950. dma_unmap_page(dev, dma_address, size, direction);
  7951. }
  7952. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7953. size_t size,
  7954. enum dma_data_direction direction)
  7955. {
  7956. return dma_map_single(dev, cpu_addr, size, direction);
  7957. }
  7958. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7959. size_t size,
  7960. enum dma_data_direction direction)
  7961. {
  7962. dma_unmap_single(dev, dma_address, size, direction);
  7963. }
  7964. static const struct niu_ops niu_pci_ops = {
  7965. .alloc_coherent = niu_pci_alloc_coherent,
  7966. .free_coherent = niu_pci_free_coherent,
  7967. .map_page = niu_pci_map_page,
  7968. .unmap_page = niu_pci_unmap_page,
  7969. .map_single = niu_pci_map_single,
  7970. .unmap_single = niu_pci_unmap_single,
  7971. };
  7972. static void niu_driver_version(void)
  7973. {
  7974. static int niu_version_printed;
  7975. if (niu_version_printed++ == 0)
  7976. pr_info("%s", version);
  7977. }
  7978. static struct net_device *niu_alloc_and_init(struct device *gen_dev,
  7979. struct pci_dev *pdev,
  7980. struct platform_device *op,
  7981. const struct niu_ops *ops, u8 port)
  7982. {
  7983. struct net_device *dev;
  7984. struct niu *np;
  7985. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  7986. if (!dev)
  7987. return NULL;
  7988. SET_NETDEV_DEV(dev, gen_dev);
  7989. np = netdev_priv(dev);
  7990. np->dev = dev;
  7991. np->pdev = pdev;
  7992. np->op = op;
  7993. np->device = gen_dev;
  7994. np->ops = ops;
  7995. np->msg_enable = niu_debug;
  7996. spin_lock_init(&np->lock);
  7997. INIT_WORK(&np->reset_task, niu_reset_task);
  7998. np->port = port;
  7999. return dev;
  8000. }
  8001. static const struct net_device_ops niu_netdev_ops = {
  8002. .ndo_open = niu_open,
  8003. .ndo_stop = niu_close,
  8004. .ndo_start_xmit = niu_start_xmit,
  8005. .ndo_get_stats64 = niu_get_stats,
  8006. .ndo_set_rx_mode = niu_set_rx_mode,
  8007. .ndo_validate_addr = eth_validate_addr,
  8008. .ndo_set_mac_address = niu_set_mac_addr,
  8009. .ndo_do_ioctl = niu_ioctl,
  8010. .ndo_tx_timeout = niu_tx_timeout,
  8011. .ndo_change_mtu = niu_change_mtu,
  8012. };
  8013. static void niu_assign_netdev_ops(struct net_device *dev)
  8014. {
  8015. dev->netdev_ops = &niu_netdev_ops;
  8016. dev->ethtool_ops = &niu_ethtool_ops;
  8017. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8018. }
  8019. static void niu_device_announce(struct niu *np)
  8020. {
  8021. struct net_device *dev = np->dev;
  8022. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8023. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8024. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8025. dev->name,
  8026. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8027. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8028. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8029. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8030. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8031. np->vpd.phy_type);
  8032. } else {
  8033. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8034. dev->name,
  8035. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8036. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8037. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8038. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8039. "COPPER")),
  8040. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8041. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8042. np->vpd.phy_type);
  8043. }
  8044. }
  8045. static void niu_set_basic_features(struct net_device *dev)
  8046. {
  8047. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
  8048. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  8049. }
  8050. static int niu_pci_init_one(struct pci_dev *pdev,
  8051. const struct pci_device_id *ent)
  8052. {
  8053. union niu_parent_id parent_id;
  8054. struct net_device *dev;
  8055. struct niu *np;
  8056. int err;
  8057. u64 dma_mask;
  8058. niu_driver_version();
  8059. err = pci_enable_device(pdev);
  8060. if (err) {
  8061. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8062. return err;
  8063. }
  8064. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8065. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8066. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8067. err = -ENODEV;
  8068. goto err_out_disable_pdev;
  8069. }
  8070. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8071. if (err) {
  8072. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8073. goto err_out_disable_pdev;
  8074. }
  8075. if (!pci_is_pcie(pdev)) {
  8076. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8077. err = -ENODEV;
  8078. goto err_out_free_res;
  8079. }
  8080. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8081. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8082. if (!dev) {
  8083. err = -ENOMEM;
  8084. goto err_out_free_res;
  8085. }
  8086. np = netdev_priv(dev);
  8087. memset(&parent_id, 0, sizeof(parent_id));
  8088. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8089. parent_id.pci.bus = pdev->bus->number;
  8090. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8091. np->parent = niu_get_parent(np, &parent_id,
  8092. PLAT_TYPE_ATLAS);
  8093. if (!np->parent) {
  8094. err = -ENOMEM;
  8095. goto err_out_free_dev;
  8096. }
  8097. pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
  8098. PCI_EXP_DEVCTL_NOSNOOP_EN,
  8099. PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE |
  8100. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE |
  8101. PCI_EXP_DEVCTL_RELAX_EN);
  8102. dma_mask = DMA_BIT_MASK(44);
  8103. err = pci_set_dma_mask(pdev, dma_mask);
  8104. if (!err) {
  8105. dev->features |= NETIF_F_HIGHDMA;
  8106. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8107. if (err) {
  8108. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8109. goto err_out_release_parent;
  8110. }
  8111. }
  8112. if (err) {
  8113. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8114. if (err) {
  8115. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8116. goto err_out_release_parent;
  8117. }
  8118. }
  8119. niu_set_basic_features(dev);
  8120. dev->priv_flags |= IFF_UNICAST_FLT;
  8121. np->regs = pci_ioremap_bar(pdev, 0);
  8122. if (!np->regs) {
  8123. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8124. err = -ENOMEM;
  8125. goto err_out_release_parent;
  8126. }
  8127. pci_set_master(pdev);
  8128. pci_save_state(pdev);
  8129. dev->irq = pdev->irq;
  8130. /* MTU range: 68 - 9216 */
  8131. dev->min_mtu = ETH_MIN_MTU;
  8132. dev->max_mtu = NIU_MAX_MTU;
  8133. niu_assign_netdev_ops(dev);
  8134. err = niu_get_invariants(np);
  8135. if (err) {
  8136. if (err != -ENODEV)
  8137. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8138. goto err_out_iounmap;
  8139. }
  8140. err = register_netdev(dev);
  8141. if (err) {
  8142. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8143. goto err_out_iounmap;
  8144. }
  8145. pci_set_drvdata(pdev, dev);
  8146. niu_device_announce(np);
  8147. return 0;
  8148. err_out_iounmap:
  8149. if (np->regs) {
  8150. iounmap(np->regs);
  8151. np->regs = NULL;
  8152. }
  8153. err_out_release_parent:
  8154. niu_put_parent(np);
  8155. err_out_free_dev:
  8156. free_netdev(dev);
  8157. err_out_free_res:
  8158. pci_release_regions(pdev);
  8159. err_out_disable_pdev:
  8160. pci_disable_device(pdev);
  8161. return err;
  8162. }
  8163. static void niu_pci_remove_one(struct pci_dev *pdev)
  8164. {
  8165. struct net_device *dev = pci_get_drvdata(pdev);
  8166. if (dev) {
  8167. struct niu *np = netdev_priv(dev);
  8168. unregister_netdev(dev);
  8169. if (np->regs) {
  8170. iounmap(np->regs);
  8171. np->regs = NULL;
  8172. }
  8173. niu_ldg_free(np);
  8174. niu_put_parent(np);
  8175. free_netdev(dev);
  8176. pci_release_regions(pdev);
  8177. pci_disable_device(pdev);
  8178. }
  8179. }
  8180. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8181. {
  8182. struct net_device *dev = pci_get_drvdata(pdev);
  8183. struct niu *np = netdev_priv(dev);
  8184. unsigned long flags;
  8185. if (!netif_running(dev))
  8186. return 0;
  8187. flush_work(&np->reset_task);
  8188. niu_netif_stop(np);
  8189. del_timer_sync(&np->timer);
  8190. spin_lock_irqsave(&np->lock, flags);
  8191. niu_enable_interrupts(np, 0);
  8192. spin_unlock_irqrestore(&np->lock, flags);
  8193. netif_device_detach(dev);
  8194. spin_lock_irqsave(&np->lock, flags);
  8195. niu_stop_hw(np);
  8196. spin_unlock_irqrestore(&np->lock, flags);
  8197. pci_save_state(pdev);
  8198. return 0;
  8199. }
  8200. static int niu_resume(struct pci_dev *pdev)
  8201. {
  8202. struct net_device *dev = pci_get_drvdata(pdev);
  8203. struct niu *np = netdev_priv(dev);
  8204. unsigned long flags;
  8205. int err;
  8206. if (!netif_running(dev))
  8207. return 0;
  8208. pci_restore_state(pdev);
  8209. netif_device_attach(dev);
  8210. spin_lock_irqsave(&np->lock, flags);
  8211. err = niu_init_hw(np);
  8212. if (!err) {
  8213. np->timer.expires = jiffies + HZ;
  8214. add_timer(&np->timer);
  8215. niu_netif_start(np);
  8216. }
  8217. spin_unlock_irqrestore(&np->lock, flags);
  8218. return err;
  8219. }
  8220. static struct pci_driver niu_pci_driver = {
  8221. .name = DRV_MODULE_NAME,
  8222. .id_table = niu_pci_tbl,
  8223. .probe = niu_pci_init_one,
  8224. .remove = niu_pci_remove_one,
  8225. .suspend = niu_suspend,
  8226. .resume = niu_resume,
  8227. };
  8228. #ifdef CONFIG_SPARC64
  8229. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8230. u64 *dma_addr, gfp_t flag)
  8231. {
  8232. unsigned long order = get_order(size);
  8233. unsigned long page = __get_free_pages(flag, order);
  8234. if (page == 0UL)
  8235. return NULL;
  8236. memset((char *)page, 0, PAGE_SIZE << order);
  8237. *dma_addr = __pa(page);
  8238. return (void *) page;
  8239. }
  8240. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8241. void *cpu_addr, u64 handle)
  8242. {
  8243. unsigned long order = get_order(size);
  8244. free_pages((unsigned long) cpu_addr, order);
  8245. }
  8246. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8247. unsigned long offset, size_t size,
  8248. enum dma_data_direction direction)
  8249. {
  8250. return page_to_phys(page) + offset;
  8251. }
  8252. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8253. size_t size, enum dma_data_direction direction)
  8254. {
  8255. /* Nothing to do. */
  8256. }
  8257. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8258. size_t size,
  8259. enum dma_data_direction direction)
  8260. {
  8261. return __pa(cpu_addr);
  8262. }
  8263. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8264. size_t size,
  8265. enum dma_data_direction direction)
  8266. {
  8267. /* Nothing to do. */
  8268. }
  8269. static const struct niu_ops niu_phys_ops = {
  8270. .alloc_coherent = niu_phys_alloc_coherent,
  8271. .free_coherent = niu_phys_free_coherent,
  8272. .map_page = niu_phys_map_page,
  8273. .unmap_page = niu_phys_unmap_page,
  8274. .map_single = niu_phys_map_single,
  8275. .unmap_single = niu_phys_unmap_single,
  8276. };
  8277. static int niu_of_probe(struct platform_device *op)
  8278. {
  8279. union niu_parent_id parent_id;
  8280. struct net_device *dev;
  8281. struct niu *np;
  8282. const u32 *reg;
  8283. int err;
  8284. niu_driver_version();
  8285. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8286. if (!reg) {
  8287. dev_err(&op->dev, "%pOF: No 'reg' property, aborting\n",
  8288. op->dev.of_node);
  8289. return -ENODEV;
  8290. }
  8291. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8292. &niu_phys_ops, reg[0] & 0x1);
  8293. if (!dev) {
  8294. err = -ENOMEM;
  8295. goto err_out;
  8296. }
  8297. np = netdev_priv(dev);
  8298. memset(&parent_id, 0, sizeof(parent_id));
  8299. parent_id.of = of_get_parent(op->dev.of_node);
  8300. np->parent = niu_get_parent(np, &parent_id,
  8301. PLAT_TYPE_NIU);
  8302. if (!np->parent) {
  8303. err = -ENOMEM;
  8304. goto err_out_free_dev;
  8305. }
  8306. niu_set_basic_features(dev);
  8307. np->regs = of_ioremap(&op->resource[1], 0,
  8308. resource_size(&op->resource[1]),
  8309. "niu regs");
  8310. if (!np->regs) {
  8311. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8312. err = -ENOMEM;
  8313. goto err_out_release_parent;
  8314. }
  8315. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8316. resource_size(&op->resource[2]),
  8317. "niu vregs-1");
  8318. if (!np->vir_regs_1) {
  8319. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8320. err = -ENOMEM;
  8321. goto err_out_iounmap;
  8322. }
  8323. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8324. resource_size(&op->resource[3]),
  8325. "niu vregs-2");
  8326. if (!np->vir_regs_2) {
  8327. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8328. err = -ENOMEM;
  8329. goto err_out_iounmap;
  8330. }
  8331. niu_assign_netdev_ops(dev);
  8332. err = niu_get_invariants(np);
  8333. if (err) {
  8334. if (err != -ENODEV)
  8335. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8336. goto err_out_iounmap;
  8337. }
  8338. err = register_netdev(dev);
  8339. if (err) {
  8340. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8341. goto err_out_iounmap;
  8342. }
  8343. platform_set_drvdata(op, dev);
  8344. niu_device_announce(np);
  8345. return 0;
  8346. err_out_iounmap:
  8347. if (np->vir_regs_1) {
  8348. of_iounmap(&op->resource[2], np->vir_regs_1,
  8349. resource_size(&op->resource[2]));
  8350. np->vir_regs_1 = NULL;
  8351. }
  8352. if (np->vir_regs_2) {
  8353. of_iounmap(&op->resource[3], np->vir_regs_2,
  8354. resource_size(&op->resource[3]));
  8355. np->vir_regs_2 = NULL;
  8356. }
  8357. if (np->regs) {
  8358. of_iounmap(&op->resource[1], np->regs,
  8359. resource_size(&op->resource[1]));
  8360. np->regs = NULL;
  8361. }
  8362. err_out_release_parent:
  8363. niu_put_parent(np);
  8364. err_out_free_dev:
  8365. free_netdev(dev);
  8366. err_out:
  8367. return err;
  8368. }
  8369. static int niu_of_remove(struct platform_device *op)
  8370. {
  8371. struct net_device *dev = platform_get_drvdata(op);
  8372. if (dev) {
  8373. struct niu *np = netdev_priv(dev);
  8374. unregister_netdev(dev);
  8375. if (np->vir_regs_1) {
  8376. of_iounmap(&op->resource[2], np->vir_regs_1,
  8377. resource_size(&op->resource[2]));
  8378. np->vir_regs_1 = NULL;
  8379. }
  8380. if (np->vir_regs_2) {
  8381. of_iounmap(&op->resource[3], np->vir_regs_2,
  8382. resource_size(&op->resource[3]));
  8383. np->vir_regs_2 = NULL;
  8384. }
  8385. if (np->regs) {
  8386. of_iounmap(&op->resource[1], np->regs,
  8387. resource_size(&op->resource[1]));
  8388. np->regs = NULL;
  8389. }
  8390. niu_ldg_free(np);
  8391. niu_put_parent(np);
  8392. free_netdev(dev);
  8393. }
  8394. return 0;
  8395. }
  8396. static const struct of_device_id niu_match[] = {
  8397. {
  8398. .name = "network",
  8399. .compatible = "SUNW,niusl",
  8400. },
  8401. {},
  8402. };
  8403. MODULE_DEVICE_TABLE(of, niu_match);
  8404. static struct platform_driver niu_of_driver = {
  8405. .driver = {
  8406. .name = "niu",
  8407. .of_match_table = niu_match,
  8408. },
  8409. .probe = niu_of_probe,
  8410. .remove = niu_of_remove,
  8411. };
  8412. #endif /* CONFIG_SPARC64 */
  8413. static int __init niu_init(void)
  8414. {
  8415. int err = 0;
  8416. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8417. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8418. #ifdef CONFIG_SPARC64
  8419. err = platform_driver_register(&niu_of_driver);
  8420. #endif
  8421. if (!err) {
  8422. err = pci_register_driver(&niu_pci_driver);
  8423. #ifdef CONFIG_SPARC64
  8424. if (err)
  8425. platform_driver_unregister(&niu_of_driver);
  8426. #endif
  8427. }
  8428. return err;
  8429. }
  8430. static void __exit niu_exit(void)
  8431. {
  8432. pci_unregister_driver(&niu_pci_driver);
  8433. #ifdef CONFIG_SPARC64
  8434. platform_driver_unregister(&niu_of_driver);
  8435. #endif
  8436. }
  8437. module_init(niu_init);
  8438. module_exit(niu_exit);