qlge_main.c 135 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/bitops.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/if_vlan.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <linux/prefetch.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = -1; /* defaults above */
  62. module_param(debug, int, 0664);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int qlge_irq_type = MSIX_IRQ;
  68. module_param(qlge_irq_type, int, 0664);
  69. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static int qlge_mpi_coredump;
  71. module_param(qlge_mpi_coredump, int, 0);
  72. MODULE_PARM_DESC(qlge_mpi_coredump,
  73. "Option to enable MPI firmware dump. "
  74. "Default is OFF - Do Not allocate memory. ");
  75. static int qlge_force_coredump;
  76. module_param(qlge_force_coredump, int, 0);
  77. MODULE_PARM_DESC(qlge_force_coredump,
  78. "Option to allow force of firmware core dump. "
  79. "Default is OFF - Do not allow.");
  80. static const struct pci_device_id qlge_pci_tbl[] = {
  81. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  83. /* required last entry */
  84. {0,}
  85. };
  86. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  87. static int ql_wol(struct ql_adapter *);
  88. static void qlge_set_multicast_list(struct net_device *);
  89. static int ql_adapter_down(struct ql_adapter *);
  90. static int ql_adapter_up(struct ql_adapter *);
  91. /* This hardware semaphore causes exclusive access to
  92. * resources shared between the NIC driver, MPI firmware,
  93. * FCOE firmware and the FC driver.
  94. */
  95. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  96. {
  97. u32 sem_bits = 0;
  98. switch (sem_mask) {
  99. case SEM_XGMAC0_MASK:
  100. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  101. break;
  102. case SEM_XGMAC1_MASK:
  103. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  104. break;
  105. case SEM_ICB_MASK:
  106. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  107. break;
  108. case SEM_MAC_ADDR_MASK:
  109. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  110. break;
  111. case SEM_FLASH_MASK:
  112. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  113. break;
  114. case SEM_PROBE_MASK:
  115. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  116. break;
  117. case SEM_RT_IDX_MASK:
  118. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  119. break;
  120. case SEM_PROC_REG_MASK:
  121. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  122. break;
  123. default:
  124. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  125. return -EINVAL;
  126. }
  127. ql_write32(qdev, SEM, sem_bits | sem_mask);
  128. return !(ql_read32(qdev, SEM) & sem_bits);
  129. }
  130. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  131. {
  132. unsigned int wait_count = 30;
  133. do {
  134. if (!ql_sem_trylock(qdev, sem_mask))
  135. return 0;
  136. udelay(100);
  137. } while (--wait_count);
  138. return -ETIMEDOUT;
  139. }
  140. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  141. {
  142. ql_write32(qdev, SEM, sem_mask);
  143. ql_read32(qdev, SEM); /* flush */
  144. }
  145. /* This function waits for a specific bit to come ready
  146. * in a given register. It is used mostly by the initialize
  147. * process, but is also used in kernel thread API such as
  148. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  149. */
  150. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  151. {
  152. u32 temp;
  153. int count = UDELAY_COUNT;
  154. while (count) {
  155. temp = ql_read32(qdev, reg);
  156. /* check for errors */
  157. if (temp & err_bit) {
  158. netif_alert(qdev, probe, qdev->ndev,
  159. "register 0x%.08x access error, value = 0x%.08x!.\n",
  160. reg, temp);
  161. return -EIO;
  162. } else if (temp & bit)
  163. return 0;
  164. udelay(UDELAY_DELAY);
  165. count--;
  166. }
  167. netif_alert(qdev, probe, qdev->ndev,
  168. "Timed out waiting for reg %x to come ready.\n", reg);
  169. return -ETIMEDOUT;
  170. }
  171. /* The CFG register is used to download TX and RX control blocks
  172. * to the chip. This function waits for an operation to complete.
  173. */
  174. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  175. {
  176. int count = UDELAY_COUNT;
  177. u32 temp;
  178. while (count) {
  179. temp = ql_read32(qdev, CFG);
  180. if (temp & CFG_LE)
  181. return -EIO;
  182. if (!(temp & bit))
  183. return 0;
  184. udelay(UDELAY_DELAY);
  185. count--;
  186. }
  187. return -ETIMEDOUT;
  188. }
  189. /* Used to issue init control blocks to hw. Maps control block,
  190. * sets address, triggers download, waits for completion.
  191. */
  192. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  193. u16 q_id)
  194. {
  195. u64 map;
  196. int status = 0;
  197. int direction;
  198. u32 mask;
  199. u32 value;
  200. direction =
  201. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  202. PCI_DMA_FROMDEVICE;
  203. map = pci_map_single(qdev->pdev, ptr, size, direction);
  204. if (pci_dma_mapping_error(qdev->pdev, map)) {
  205. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  206. return -ENOMEM;
  207. }
  208. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  209. if (status)
  210. return status;
  211. status = ql_wait_cfg(qdev, bit);
  212. if (status) {
  213. netif_err(qdev, ifup, qdev->ndev,
  214. "Timed out waiting for CFG to come ready.\n");
  215. goto exit;
  216. }
  217. ql_write32(qdev, ICB_L, (u32) map);
  218. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  219. mask = CFG_Q_MASK | (bit << 16);
  220. value = bit | (q_id << CFG_Q_SHIFT);
  221. ql_write32(qdev, CFG, (mask | value));
  222. /*
  223. * Wait for the bit to clear after signaling hw.
  224. */
  225. status = ql_wait_cfg(qdev, bit);
  226. exit:
  227. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  228. pci_unmap_single(qdev->pdev, map, size, direction);
  229. return status;
  230. }
  231. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  232. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  233. u32 *value)
  234. {
  235. u32 offset = 0;
  236. int status;
  237. switch (type) {
  238. case MAC_ADDR_TYPE_MULTI_MAC:
  239. case MAC_ADDR_TYPE_CAM_MAC:
  240. {
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev,
  265. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  270. status =
  271. ql_wait_reg_rdy(qdev,
  272. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  273. if (status)
  274. goto exit;
  275. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  276. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  277. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  278. status =
  279. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  280. MAC_ADDR_MR, 0);
  281. if (status)
  282. goto exit;
  283. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  284. }
  285. break;
  286. }
  287. case MAC_ADDR_TYPE_VLAN:
  288. case MAC_ADDR_TYPE_MULTI_FLTR:
  289. default:
  290. netif_crit(qdev, ifup, qdev->ndev,
  291. "Address type %d not yet supported.\n", type);
  292. status = -EPERM;
  293. }
  294. exit:
  295. return status;
  296. }
  297. /* Set up a MAC, multicast or VLAN address for the
  298. * inbound frame matching.
  299. */
  300. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  301. u16 index)
  302. {
  303. u32 offset = 0;
  304. int status = 0;
  305. switch (type) {
  306. case MAC_ADDR_TYPE_MULTI_MAC:
  307. {
  308. u32 upper = (addr[0] << 8) | addr[1];
  309. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  310. (addr[4] << 8) | (addr[5]);
  311. status =
  312. ql_wait_reg_rdy(qdev,
  313. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  314. if (status)
  315. goto exit;
  316. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  317. (index << MAC_ADDR_IDX_SHIFT) |
  318. type | MAC_ADDR_E);
  319. ql_write32(qdev, MAC_ADDR_DATA, lower);
  320. status =
  321. ql_wait_reg_rdy(qdev,
  322. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  323. if (status)
  324. goto exit;
  325. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  326. (index << MAC_ADDR_IDX_SHIFT) |
  327. type | MAC_ADDR_E);
  328. ql_write32(qdev, MAC_ADDR_DATA, upper);
  329. status =
  330. ql_wait_reg_rdy(qdev,
  331. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  332. if (status)
  333. goto exit;
  334. break;
  335. }
  336. case MAC_ADDR_TYPE_CAM_MAC:
  337. {
  338. u32 cam_output;
  339. u32 upper = (addr[0] << 8) | addr[1];
  340. u32 lower =
  341. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  342. (addr[5]);
  343. status =
  344. ql_wait_reg_rdy(qdev,
  345. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  346. if (status)
  347. goto exit;
  348. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  349. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  350. type); /* type */
  351. ql_write32(qdev, MAC_ADDR_DATA, lower);
  352. status =
  353. ql_wait_reg_rdy(qdev,
  354. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  355. if (status)
  356. goto exit;
  357. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  358. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  359. type); /* type */
  360. ql_write32(qdev, MAC_ADDR_DATA, upper);
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type); /* type */
  369. /* This field should also include the queue id
  370. and possibly the function id. Right now we hardcode
  371. the route field to NIC core.
  372. */
  373. cam_output = (CAM_OUT_ROUTE_NIC |
  374. (qdev->
  375. func << CAM_OUT_FUNC_SHIFT) |
  376. (0 << CAM_OUT_CQ_ID_SHIFT));
  377. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
  378. cam_output |= CAM_OUT_RV;
  379. /* route to NIC core */
  380. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  381. break;
  382. }
  383. case MAC_ADDR_TYPE_VLAN:
  384. {
  385. u32 enable_bit = *((u32 *) &addr[0]);
  386. /* For VLAN, the addr actually holds a bit that
  387. * either enables or disables the vlan id we are
  388. * addressing. It's either MAC_ADDR_E on or off.
  389. * That's bit-27 we're talking about.
  390. */
  391. status =
  392. ql_wait_reg_rdy(qdev,
  393. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  394. if (status)
  395. goto exit;
  396. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  397. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  398. type | /* type */
  399. enable_bit); /* enable/disable */
  400. break;
  401. }
  402. case MAC_ADDR_TYPE_MULTI_FLTR:
  403. default:
  404. netif_crit(qdev, ifup, qdev->ndev,
  405. "Address type %d not yet supported.\n", type);
  406. status = -EPERM;
  407. }
  408. exit:
  409. return status;
  410. }
  411. /* Set or clear MAC address in hardware. We sometimes
  412. * have to clear it to prevent wrong frame routing
  413. * especially in a bonding environment.
  414. */
  415. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  416. {
  417. int status;
  418. char zero_mac_addr[ETH_ALEN];
  419. char *addr;
  420. if (set) {
  421. addr = &qdev->current_mac_addr[0];
  422. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  423. "Set Mac addr %pM\n", addr);
  424. } else {
  425. eth_zero_addr(zero_mac_addr);
  426. addr = &zero_mac_addr[0];
  427. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  428. "Clearing MAC address\n");
  429. }
  430. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  431. if (status)
  432. return status;
  433. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  434. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  435. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  436. if (status)
  437. netif_err(qdev, ifup, qdev->ndev,
  438. "Failed to init mac address.\n");
  439. return status;
  440. }
  441. void ql_link_on(struct ql_adapter *qdev)
  442. {
  443. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  444. netif_carrier_on(qdev->ndev);
  445. ql_set_mac_addr(qdev, 1);
  446. }
  447. void ql_link_off(struct ql_adapter *qdev)
  448. {
  449. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  450. netif_carrier_off(qdev->ndev);
  451. ql_set_mac_addr(qdev, 0);
  452. }
  453. /* Get a specific frame routing value from the CAM.
  454. * Used for debug and reg dump.
  455. */
  456. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  457. {
  458. int status = 0;
  459. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  460. if (status)
  461. goto exit;
  462. ql_write32(qdev, RT_IDX,
  463. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  464. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  465. if (status)
  466. goto exit;
  467. *value = ql_read32(qdev, RT_DATA);
  468. exit:
  469. return status;
  470. }
  471. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  472. * to route different frame types to various inbound queues. We send broadcast/
  473. * multicast/error frames to the default queue for slow handling,
  474. * and CAM hit/RSS frames to the fast handling queues.
  475. */
  476. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  477. int enable)
  478. {
  479. int status = -EINVAL; /* Return error if no mask match. */
  480. u32 value = 0;
  481. switch (mask) {
  482. case RT_IDX_CAM_HIT:
  483. {
  484. value = RT_IDX_DST_CAM_Q | /* dest */
  485. RT_IDX_TYPE_NICQ | /* type */
  486. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  487. break;
  488. }
  489. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  490. {
  491. value = RT_IDX_DST_DFLT_Q | /* dest */
  492. RT_IDX_TYPE_NICQ | /* type */
  493. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  494. break;
  495. }
  496. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  497. {
  498. value = RT_IDX_DST_DFLT_Q | /* dest */
  499. RT_IDX_TYPE_NICQ | /* type */
  500. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  501. break;
  502. }
  503. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  504. {
  505. value = RT_IDX_DST_DFLT_Q | /* dest */
  506. RT_IDX_TYPE_NICQ | /* type */
  507. (RT_IDX_IP_CSUM_ERR_SLOT <<
  508. RT_IDX_IDX_SHIFT); /* index */
  509. break;
  510. }
  511. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  512. {
  513. value = RT_IDX_DST_DFLT_Q | /* dest */
  514. RT_IDX_TYPE_NICQ | /* type */
  515. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  516. RT_IDX_IDX_SHIFT); /* index */
  517. break;
  518. }
  519. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  520. {
  521. value = RT_IDX_DST_DFLT_Q | /* dest */
  522. RT_IDX_TYPE_NICQ | /* type */
  523. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  524. break;
  525. }
  526. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  527. {
  528. value = RT_IDX_DST_DFLT_Q | /* dest */
  529. RT_IDX_TYPE_NICQ | /* type */
  530. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  531. break;
  532. }
  533. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  534. {
  535. value = RT_IDX_DST_DFLT_Q | /* dest */
  536. RT_IDX_TYPE_NICQ | /* type */
  537. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  538. break;
  539. }
  540. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  541. {
  542. value = RT_IDX_DST_RSS | /* dest */
  543. RT_IDX_TYPE_NICQ | /* type */
  544. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  545. break;
  546. }
  547. case 0: /* Clear the E-bit on an entry. */
  548. {
  549. value = RT_IDX_DST_DFLT_Q | /* dest */
  550. RT_IDX_TYPE_NICQ | /* type */
  551. (index << RT_IDX_IDX_SHIFT);/* index */
  552. break;
  553. }
  554. default:
  555. netif_err(qdev, ifup, qdev->ndev,
  556. "Mask type %d not yet supported.\n", mask);
  557. status = -EPERM;
  558. goto exit;
  559. }
  560. if (value) {
  561. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  562. if (status)
  563. goto exit;
  564. value |= (enable ? RT_IDX_E : 0);
  565. ql_write32(qdev, RT_IDX, value);
  566. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  567. }
  568. exit:
  569. return status;
  570. }
  571. static void ql_enable_interrupts(struct ql_adapter *qdev)
  572. {
  573. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  574. }
  575. static void ql_disable_interrupts(struct ql_adapter *qdev)
  576. {
  577. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  578. }
  579. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  580. * Otherwise, we may have multiple outstanding workers and don't want to
  581. * enable until the last one finishes. In this case, the irq_cnt gets
  582. * incremented every time we queue a worker and decremented every time
  583. * a worker finishes. Once it hits zero we enable the interrupt.
  584. */
  585. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  586. {
  587. u32 var = 0;
  588. unsigned long hw_flags = 0;
  589. struct intr_context *ctx = qdev->intr_context + intr;
  590. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  591. /* Always enable if we're MSIX multi interrupts and
  592. * it's not the default (zeroeth) interrupt.
  593. */
  594. ql_write32(qdev, INTR_EN,
  595. ctx->intr_en_mask);
  596. var = ql_read32(qdev, STS);
  597. return var;
  598. }
  599. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  600. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  601. ql_write32(qdev, INTR_EN,
  602. ctx->intr_en_mask);
  603. var = ql_read32(qdev, STS);
  604. }
  605. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  606. return var;
  607. }
  608. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  609. {
  610. u32 var = 0;
  611. struct intr_context *ctx;
  612. /* HW disables for us if we're MSIX multi interrupts and
  613. * it's not the default (zeroeth) interrupt.
  614. */
  615. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  616. return 0;
  617. ctx = qdev->intr_context + intr;
  618. spin_lock(&qdev->hw_lock);
  619. if (!atomic_read(&ctx->irq_cnt)) {
  620. ql_write32(qdev, INTR_EN,
  621. ctx->intr_dis_mask);
  622. var = ql_read32(qdev, STS);
  623. }
  624. atomic_inc(&ctx->irq_cnt);
  625. spin_unlock(&qdev->hw_lock);
  626. return var;
  627. }
  628. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  629. {
  630. int i;
  631. for (i = 0; i < qdev->intr_count; i++) {
  632. /* The enable call does a atomic_dec_and_test
  633. * and enables only if the result is zero.
  634. * So we precharge it here.
  635. */
  636. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  637. i == 0))
  638. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  639. ql_enable_completion_interrupt(qdev, i);
  640. }
  641. }
  642. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  643. {
  644. int status, i;
  645. u16 csum = 0;
  646. __le16 *flash = (__le16 *)&qdev->flash;
  647. status = strncmp((char *)&qdev->flash, str, 4);
  648. if (status) {
  649. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  650. return status;
  651. }
  652. for (i = 0; i < size; i++)
  653. csum += le16_to_cpu(*flash++);
  654. if (csum)
  655. netif_err(qdev, ifup, qdev->ndev,
  656. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  657. return csum;
  658. }
  659. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  660. {
  661. int status = 0;
  662. /* wait for reg to come ready */
  663. status = ql_wait_reg_rdy(qdev,
  664. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  665. if (status)
  666. goto exit;
  667. /* set up for reg read */
  668. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  669. /* wait for reg to come ready */
  670. status = ql_wait_reg_rdy(qdev,
  671. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  672. if (status)
  673. goto exit;
  674. /* This data is stored on flash as an array of
  675. * __le32. Since ql_read32() returns cpu endian
  676. * we need to swap it back.
  677. */
  678. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  679. exit:
  680. return status;
  681. }
  682. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  683. {
  684. u32 i, size;
  685. int status;
  686. __le32 *p = (__le32 *)&qdev->flash;
  687. u32 offset;
  688. u8 mac_addr[6];
  689. /* Get flash offset for function and adjust
  690. * for dword access.
  691. */
  692. if (!qdev->port)
  693. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  694. else
  695. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  696. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  697. return -ETIMEDOUT;
  698. size = sizeof(struct flash_params_8000) / sizeof(u32);
  699. for (i = 0; i < size; i++, p++) {
  700. status = ql_read_flash_word(qdev, i+offset, p);
  701. if (status) {
  702. netif_err(qdev, ifup, qdev->ndev,
  703. "Error reading flash.\n");
  704. goto exit;
  705. }
  706. }
  707. status = ql_validate_flash(qdev,
  708. sizeof(struct flash_params_8000) / sizeof(u16),
  709. "8000");
  710. if (status) {
  711. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  712. status = -EINVAL;
  713. goto exit;
  714. }
  715. /* Extract either manufacturer or BOFM modified
  716. * MAC address.
  717. */
  718. if (qdev->flash.flash_params_8000.data_type1 == 2)
  719. memcpy(mac_addr,
  720. qdev->flash.flash_params_8000.mac_addr1,
  721. qdev->ndev->addr_len);
  722. else
  723. memcpy(mac_addr,
  724. qdev->flash.flash_params_8000.mac_addr,
  725. qdev->ndev->addr_len);
  726. if (!is_valid_ether_addr(mac_addr)) {
  727. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  728. status = -EINVAL;
  729. goto exit;
  730. }
  731. memcpy(qdev->ndev->dev_addr,
  732. mac_addr,
  733. qdev->ndev->addr_len);
  734. exit:
  735. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  736. return status;
  737. }
  738. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  739. {
  740. int i;
  741. int status;
  742. __le32 *p = (__le32 *)&qdev->flash;
  743. u32 offset = 0;
  744. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  745. /* Second function's parameters follow the first
  746. * function's.
  747. */
  748. if (qdev->port)
  749. offset = size;
  750. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  751. return -ETIMEDOUT;
  752. for (i = 0; i < size; i++, p++) {
  753. status = ql_read_flash_word(qdev, i+offset, p);
  754. if (status) {
  755. netif_err(qdev, ifup, qdev->ndev,
  756. "Error reading flash.\n");
  757. goto exit;
  758. }
  759. }
  760. status = ql_validate_flash(qdev,
  761. sizeof(struct flash_params_8012) / sizeof(u16),
  762. "8012");
  763. if (status) {
  764. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  765. status = -EINVAL;
  766. goto exit;
  767. }
  768. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  769. status = -EINVAL;
  770. goto exit;
  771. }
  772. memcpy(qdev->ndev->dev_addr,
  773. qdev->flash.flash_params_8012.mac_addr,
  774. qdev->ndev->addr_len);
  775. exit:
  776. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  777. return status;
  778. }
  779. /* xgmac register are located behind the xgmac_addr and xgmac_data
  780. * register pair. Each read/write requires us to wait for the ready
  781. * bit before reading/writing the data.
  782. */
  783. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  784. {
  785. int status;
  786. /* wait for reg to come ready */
  787. status = ql_wait_reg_rdy(qdev,
  788. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  789. if (status)
  790. return status;
  791. /* write the data to the data reg */
  792. ql_write32(qdev, XGMAC_DATA, data);
  793. /* trigger the write */
  794. ql_write32(qdev, XGMAC_ADDR, reg);
  795. return status;
  796. }
  797. /* xgmac register are located behind the xgmac_addr and xgmac_data
  798. * register pair. Each read/write requires us to wait for the ready
  799. * bit before reading/writing the data.
  800. */
  801. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  802. {
  803. int status = 0;
  804. /* wait for reg to come ready */
  805. status = ql_wait_reg_rdy(qdev,
  806. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  807. if (status)
  808. goto exit;
  809. /* set up for reg read */
  810. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  811. /* wait for reg to come ready */
  812. status = ql_wait_reg_rdy(qdev,
  813. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  814. if (status)
  815. goto exit;
  816. /* get the data */
  817. *data = ql_read32(qdev, XGMAC_DATA);
  818. exit:
  819. return status;
  820. }
  821. /* This is used for reading the 64-bit statistics regs. */
  822. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  823. {
  824. int status = 0;
  825. u32 hi = 0;
  826. u32 lo = 0;
  827. status = ql_read_xgmac_reg(qdev, reg, &lo);
  828. if (status)
  829. goto exit;
  830. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  831. if (status)
  832. goto exit;
  833. *data = (u64) lo | ((u64) hi << 32);
  834. exit:
  835. return status;
  836. }
  837. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  838. {
  839. int status;
  840. /*
  841. * Get MPI firmware version for driver banner
  842. * and ethool info.
  843. */
  844. status = ql_mb_about_fw(qdev);
  845. if (status)
  846. goto exit;
  847. status = ql_mb_get_fw_state(qdev);
  848. if (status)
  849. goto exit;
  850. /* Wake up a worker to get/set the TX/RX frame sizes. */
  851. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  852. exit:
  853. return status;
  854. }
  855. /* Take the MAC Core out of reset.
  856. * Enable statistics counting.
  857. * Take the transmitter/receiver out of reset.
  858. * This functionality may be done in the MPI firmware at a
  859. * later date.
  860. */
  861. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  862. {
  863. int status = 0;
  864. u32 data;
  865. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  866. /* Another function has the semaphore, so
  867. * wait for the port init bit to come ready.
  868. */
  869. netif_info(qdev, link, qdev->ndev,
  870. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  871. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  872. if (status) {
  873. netif_crit(qdev, link, qdev->ndev,
  874. "Port initialize timed out.\n");
  875. }
  876. return status;
  877. }
  878. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  879. /* Set the core reset. */
  880. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  881. if (status)
  882. goto end;
  883. data |= GLOBAL_CFG_RESET;
  884. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  885. if (status)
  886. goto end;
  887. /* Clear the core reset and turn on jumbo for receiver. */
  888. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  889. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  890. data |= GLOBAL_CFG_TX_STAT_EN;
  891. data |= GLOBAL_CFG_RX_STAT_EN;
  892. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  893. if (status)
  894. goto end;
  895. /* Enable transmitter, and clear it's reset. */
  896. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  897. if (status)
  898. goto end;
  899. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  900. data |= TX_CFG_EN; /* Enable the transmitter. */
  901. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  902. if (status)
  903. goto end;
  904. /* Enable receiver and clear it's reset. */
  905. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  906. if (status)
  907. goto end;
  908. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  909. data |= RX_CFG_EN; /* Enable the receiver. */
  910. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  911. if (status)
  912. goto end;
  913. /* Turn on jumbo. */
  914. status =
  915. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  916. if (status)
  917. goto end;
  918. status =
  919. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  920. if (status)
  921. goto end;
  922. /* Signal to the world that the port is enabled. */
  923. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  924. end:
  925. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  926. return status;
  927. }
  928. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  929. {
  930. return PAGE_SIZE << qdev->lbq_buf_order;
  931. }
  932. /* Get the next large buffer. */
  933. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  934. {
  935. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  936. rx_ring->lbq_curr_idx++;
  937. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  938. rx_ring->lbq_curr_idx = 0;
  939. rx_ring->lbq_free_cnt++;
  940. return lbq_desc;
  941. }
  942. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  943. struct rx_ring *rx_ring)
  944. {
  945. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  946. pci_dma_sync_single_for_cpu(qdev->pdev,
  947. dma_unmap_addr(lbq_desc, mapaddr),
  948. rx_ring->lbq_buf_size,
  949. PCI_DMA_FROMDEVICE);
  950. /* If it's the last chunk of our master page then
  951. * we unmap it.
  952. */
  953. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  954. == ql_lbq_block_size(qdev))
  955. pci_unmap_page(qdev->pdev,
  956. lbq_desc->p.pg_chunk.map,
  957. ql_lbq_block_size(qdev),
  958. PCI_DMA_FROMDEVICE);
  959. return lbq_desc;
  960. }
  961. /* Get the next small buffer. */
  962. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  963. {
  964. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  965. rx_ring->sbq_curr_idx++;
  966. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  967. rx_ring->sbq_curr_idx = 0;
  968. rx_ring->sbq_free_cnt++;
  969. return sbq_desc;
  970. }
  971. /* Update an rx ring index. */
  972. static void ql_update_cq(struct rx_ring *rx_ring)
  973. {
  974. rx_ring->cnsmr_idx++;
  975. rx_ring->curr_entry++;
  976. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  977. rx_ring->cnsmr_idx = 0;
  978. rx_ring->curr_entry = rx_ring->cq_base;
  979. }
  980. }
  981. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  982. {
  983. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  984. }
  985. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  986. struct bq_desc *lbq_desc)
  987. {
  988. if (!rx_ring->pg_chunk.page) {
  989. u64 map;
  990. rx_ring->pg_chunk.page = alloc_pages(__GFP_COMP | GFP_ATOMIC,
  991. qdev->lbq_buf_order);
  992. if (unlikely(!rx_ring->pg_chunk.page)) {
  993. netif_err(qdev, drv, qdev->ndev,
  994. "page allocation failed.\n");
  995. return -ENOMEM;
  996. }
  997. rx_ring->pg_chunk.offset = 0;
  998. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  999. 0, ql_lbq_block_size(qdev),
  1000. PCI_DMA_FROMDEVICE);
  1001. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1002. __free_pages(rx_ring->pg_chunk.page,
  1003. qdev->lbq_buf_order);
  1004. rx_ring->pg_chunk.page = NULL;
  1005. netif_err(qdev, drv, qdev->ndev,
  1006. "PCI mapping failed.\n");
  1007. return -ENOMEM;
  1008. }
  1009. rx_ring->pg_chunk.map = map;
  1010. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1011. }
  1012. /* Copy the current master pg_chunk info
  1013. * to the current descriptor.
  1014. */
  1015. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1016. /* Adjust the master page chunk for next
  1017. * buffer get.
  1018. */
  1019. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1020. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1021. rx_ring->pg_chunk.page = NULL;
  1022. lbq_desc->p.pg_chunk.last_flag = 1;
  1023. } else {
  1024. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1025. get_page(rx_ring->pg_chunk.page);
  1026. lbq_desc->p.pg_chunk.last_flag = 0;
  1027. }
  1028. return 0;
  1029. }
  1030. /* Process (refill) a large buffer queue. */
  1031. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1032. {
  1033. u32 clean_idx = rx_ring->lbq_clean_idx;
  1034. u32 start_idx = clean_idx;
  1035. struct bq_desc *lbq_desc;
  1036. u64 map;
  1037. int i;
  1038. while (rx_ring->lbq_free_cnt > 32) {
  1039. for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
  1040. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1041. "lbq: try cleaning clean_idx = %d.\n",
  1042. clean_idx);
  1043. lbq_desc = &rx_ring->lbq[clean_idx];
  1044. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1045. rx_ring->lbq_clean_idx = clean_idx;
  1046. netif_err(qdev, ifup, qdev->ndev,
  1047. "Could not get a page chunk, i=%d, clean_idx =%d .\n",
  1048. i, clean_idx);
  1049. return;
  1050. }
  1051. map = lbq_desc->p.pg_chunk.map +
  1052. lbq_desc->p.pg_chunk.offset;
  1053. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1054. dma_unmap_len_set(lbq_desc, maplen,
  1055. rx_ring->lbq_buf_size);
  1056. *lbq_desc->addr = cpu_to_le64(map);
  1057. pci_dma_sync_single_for_device(qdev->pdev, map,
  1058. rx_ring->lbq_buf_size,
  1059. PCI_DMA_FROMDEVICE);
  1060. clean_idx++;
  1061. if (clean_idx == rx_ring->lbq_len)
  1062. clean_idx = 0;
  1063. }
  1064. rx_ring->lbq_clean_idx = clean_idx;
  1065. rx_ring->lbq_prod_idx += 16;
  1066. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1067. rx_ring->lbq_prod_idx = 0;
  1068. rx_ring->lbq_free_cnt -= 16;
  1069. }
  1070. if (start_idx != clean_idx) {
  1071. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1072. "lbq: updating prod idx = %d.\n",
  1073. rx_ring->lbq_prod_idx);
  1074. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1075. rx_ring->lbq_prod_idx_db_reg);
  1076. }
  1077. }
  1078. /* Process (refill) a small buffer queue. */
  1079. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1080. {
  1081. u32 clean_idx = rx_ring->sbq_clean_idx;
  1082. u32 start_idx = clean_idx;
  1083. struct bq_desc *sbq_desc;
  1084. u64 map;
  1085. int i;
  1086. while (rx_ring->sbq_free_cnt > 16) {
  1087. for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
  1088. sbq_desc = &rx_ring->sbq[clean_idx];
  1089. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1090. "sbq: try cleaning clean_idx = %d.\n",
  1091. clean_idx);
  1092. if (sbq_desc->p.skb == NULL) {
  1093. netif_printk(qdev, rx_status, KERN_DEBUG,
  1094. qdev->ndev,
  1095. "sbq: getting new skb for index %d.\n",
  1096. sbq_desc->index);
  1097. sbq_desc->p.skb =
  1098. netdev_alloc_skb(qdev->ndev,
  1099. SMALL_BUFFER_SIZE);
  1100. if (sbq_desc->p.skb == NULL) {
  1101. rx_ring->sbq_clean_idx = clean_idx;
  1102. return;
  1103. }
  1104. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1105. map = pci_map_single(qdev->pdev,
  1106. sbq_desc->p.skb->data,
  1107. rx_ring->sbq_buf_size,
  1108. PCI_DMA_FROMDEVICE);
  1109. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1110. netif_err(qdev, ifup, qdev->ndev,
  1111. "PCI mapping failed.\n");
  1112. rx_ring->sbq_clean_idx = clean_idx;
  1113. dev_kfree_skb_any(sbq_desc->p.skb);
  1114. sbq_desc->p.skb = NULL;
  1115. return;
  1116. }
  1117. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1118. dma_unmap_len_set(sbq_desc, maplen,
  1119. rx_ring->sbq_buf_size);
  1120. *sbq_desc->addr = cpu_to_le64(map);
  1121. }
  1122. clean_idx++;
  1123. if (clean_idx == rx_ring->sbq_len)
  1124. clean_idx = 0;
  1125. }
  1126. rx_ring->sbq_clean_idx = clean_idx;
  1127. rx_ring->sbq_prod_idx += 16;
  1128. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1129. rx_ring->sbq_prod_idx = 0;
  1130. rx_ring->sbq_free_cnt -= 16;
  1131. }
  1132. if (start_idx != clean_idx) {
  1133. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1134. "sbq: updating prod idx = %d.\n",
  1135. rx_ring->sbq_prod_idx);
  1136. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1137. rx_ring->sbq_prod_idx_db_reg);
  1138. }
  1139. }
  1140. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1141. struct rx_ring *rx_ring)
  1142. {
  1143. ql_update_sbq(qdev, rx_ring);
  1144. ql_update_lbq(qdev, rx_ring);
  1145. }
  1146. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1147. * fails at some stage, or from the interrupt when a tx completes.
  1148. */
  1149. static void ql_unmap_send(struct ql_adapter *qdev,
  1150. struct tx_ring_desc *tx_ring_desc, int mapped)
  1151. {
  1152. int i;
  1153. for (i = 0; i < mapped; i++) {
  1154. if (i == 0 || (i == 7 && mapped > 7)) {
  1155. /*
  1156. * Unmap the skb->data area, or the
  1157. * external sglist (AKA the Outbound
  1158. * Address List (OAL)).
  1159. * If its the zeroeth element, then it's
  1160. * the skb->data area. If it's the 7th
  1161. * element and there is more than 6 frags,
  1162. * then its an OAL.
  1163. */
  1164. if (i == 7) {
  1165. netif_printk(qdev, tx_done, KERN_DEBUG,
  1166. qdev->ndev,
  1167. "unmapping OAL area.\n");
  1168. }
  1169. pci_unmap_single(qdev->pdev,
  1170. dma_unmap_addr(&tx_ring_desc->map[i],
  1171. mapaddr),
  1172. dma_unmap_len(&tx_ring_desc->map[i],
  1173. maplen),
  1174. PCI_DMA_TODEVICE);
  1175. } else {
  1176. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1177. "unmapping frag %d.\n", i);
  1178. pci_unmap_page(qdev->pdev,
  1179. dma_unmap_addr(&tx_ring_desc->map[i],
  1180. mapaddr),
  1181. dma_unmap_len(&tx_ring_desc->map[i],
  1182. maplen), PCI_DMA_TODEVICE);
  1183. }
  1184. }
  1185. }
  1186. /* Map the buffers for this transmit. This will return
  1187. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1188. */
  1189. static int ql_map_send(struct ql_adapter *qdev,
  1190. struct ob_mac_iocb_req *mac_iocb_ptr,
  1191. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1192. {
  1193. int len = skb_headlen(skb);
  1194. dma_addr_t map;
  1195. int frag_idx, err, map_idx = 0;
  1196. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1197. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1198. if (frag_cnt) {
  1199. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1200. "frag_cnt = %d.\n", frag_cnt);
  1201. }
  1202. /*
  1203. * Map the skb buffer first.
  1204. */
  1205. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1206. err = pci_dma_mapping_error(qdev->pdev, map);
  1207. if (err) {
  1208. netif_err(qdev, tx_queued, qdev->ndev,
  1209. "PCI mapping failed with error: %d\n", err);
  1210. return NETDEV_TX_BUSY;
  1211. }
  1212. tbd->len = cpu_to_le32(len);
  1213. tbd->addr = cpu_to_le64(map);
  1214. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1215. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1216. map_idx++;
  1217. /*
  1218. * This loop fills the remainder of the 8 address descriptors
  1219. * in the IOCB. If there are more than 7 fragments, then the
  1220. * eighth address desc will point to an external list (OAL).
  1221. * When this happens, the remainder of the frags will be stored
  1222. * in this list.
  1223. */
  1224. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1225. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1226. tbd++;
  1227. if (frag_idx == 6 && frag_cnt > 7) {
  1228. /* Let's tack on an sglist.
  1229. * Our control block will now
  1230. * look like this:
  1231. * iocb->seg[0] = skb->data
  1232. * iocb->seg[1] = frag[0]
  1233. * iocb->seg[2] = frag[1]
  1234. * iocb->seg[3] = frag[2]
  1235. * iocb->seg[4] = frag[3]
  1236. * iocb->seg[5] = frag[4]
  1237. * iocb->seg[6] = frag[5]
  1238. * iocb->seg[7] = ptr to OAL (external sglist)
  1239. * oal->seg[0] = frag[6]
  1240. * oal->seg[1] = frag[7]
  1241. * oal->seg[2] = frag[8]
  1242. * oal->seg[3] = frag[9]
  1243. * oal->seg[4] = frag[10]
  1244. * etc...
  1245. */
  1246. /* Tack on the OAL in the eighth segment of IOCB. */
  1247. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1248. sizeof(struct oal),
  1249. PCI_DMA_TODEVICE);
  1250. err = pci_dma_mapping_error(qdev->pdev, map);
  1251. if (err) {
  1252. netif_err(qdev, tx_queued, qdev->ndev,
  1253. "PCI mapping outbound address list with error: %d\n",
  1254. err);
  1255. goto map_error;
  1256. }
  1257. tbd->addr = cpu_to_le64(map);
  1258. /*
  1259. * The length is the number of fragments
  1260. * that remain to be mapped times the length
  1261. * of our sglist (OAL).
  1262. */
  1263. tbd->len =
  1264. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1265. (frag_cnt - frag_idx)) | TX_DESC_C);
  1266. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1267. map);
  1268. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1269. sizeof(struct oal));
  1270. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1271. map_idx++;
  1272. }
  1273. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  1274. DMA_TO_DEVICE);
  1275. err = dma_mapping_error(&qdev->pdev->dev, map);
  1276. if (err) {
  1277. netif_err(qdev, tx_queued, qdev->ndev,
  1278. "PCI mapping frags failed with error: %d.\n",
  1279. err);
  1280. goto map_error;
  1281. }
  1282. tbd->addr = cpu_to_le64(map);
  1283. tbd->len = cpu_to_le32(skb_frag_size(frag));
  1284. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1285. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1286. skb_frag_size(frag));
  1287. }
  1288. /* Save the number of segments we've mapped. */
  1289. tx_ring_desc->map_cnt = map_idx;
  1290. /* Terminate the last segment. */
  1291. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1292. return NETDEV_TX_OK;
  1293. map_error:
  1294. /*
  1295. * If the first frag mapping failed, then i will be zero.
  1296. * This causes the unmap of the skb->data area. Otherwise
  1297. * we pass in the number of frags that mapped successfully
  1298. * so they can be umapped.
  1299. */
  1300. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1301. return NETDEV_TX_BUSY;
  1302. }
  1303. /* Categorizing receive firmware frame errors */
  1304. static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
  1305. struct rx_ring *rx_ring)
  1306. {
  1307. struct nic_stats *stats = &qdev->nic_stats;
  1308. stats->rx_err_count++;
  1309. rx_ring->rx_errors++;
  1310. switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
  1311. case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
  1312. stats->rx_code_err++;
  1313. break;
  1314. case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
  1315. stats->rx_oversize_err++;
  1316. break;
  1317. case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
  1318. stats->rx_undersize_err++;
  1319. break;
  1320. case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
  1321. stats->rx_preamble_err++;
  1322. break;
  1323. case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
  1324. stats->rx_frame_len_err++;
  1325. break;
  1326. case IB_MAC_IOCB_RSP_ERR_CRC:
  1327. stats->rx_crc_err++;
  1328. default:
  1329. break;
  1330. }
  1331. }
  1332. /**
  1333. * ql_update_mac_hdr_len - helper routine to update the mac header length
  1334. * based on vlan tags if present
  1335. */
  1336. static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
  1337. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1338. void *page, size_t *len)
  1339. {
  1340. u16 *tags;
  1341. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
  1342. return;
  1343. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
  1344. tags = (u16 *)page;
  1345. /* Look for stacked vlan tags in ethertype field */
  1346. if (tags[6] == ETH_P_8021Q &&
  1347. tags[8] == ETH_P_8021Q)
  1348. *len += 2 * VLAN_HLEN;
  1349. else
  1350. *len += VLAN_HLEN;
  1351. }
  1352. }
  1353. /* Process an inbound completion from an rx ring. */
  1354. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1355. struct rx_ring *rx_ring,
  1356. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1357. u32 length,
  1358. u16 vlan_id)
  1359. {
  1360. struct sk_buff *skb;
  1361. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1362. struct napi_struct *napi = &rx_ring->napi;
  1363. /* Frame error, so drop the packet. */
  1364. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1365. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1366. put_page(lbq_desc->p.pg_chunk.page);
  1367. return;
  1368. }
  1369. napi->dev = qdev->ndev;
  1370. skb = napi_get_frags(napi);
  1371. if (!skb) {
  1372. netif_err(qdev, drv, qdev->ndev,
  1373. "Couldn't get an skb, exiting.\n");
  1374. rx_ring->rx_dropped++;
  1375. put_page(lbq_desc->p.pg_chunk.page);
  1376. return;
  1377. }
  1378. prefetch(lbq_desc->p.pg_chunk.va);
  1379. __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1380. lbq_desc->p.pg_chunk.page,
  1381. lbq_desc->p.pg_chunk.offset,
  1382. length);
  1383. skb->len += length;
  1384. skb->data_len += length;
  1385. skb->truesize += length;
  1386. skb_shinfo(skb)->nr_frags++;
  1387. rx_ring->rx_packets++;
  1388. rx_ring->rx_bytes += length;
  1389. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1390. skb_record_rx_queue(skb, rx_ring->cq_id);
  1391. if (vlan_id != 0xffff)
  1392. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1393. napi_gro_frags(napi);
  1394. }
  1395. /* Process an inbound completion from an rx ring. */
  1396. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1397. struct rx_ring *rx_ring,
  1398. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1399. u32 length,
  1400. u16 vlan_id)
  1401. {
  1402. struct net_device *ndev = qdev->ndev;
  1403. struct sk_buff *skb = NULL;
  1404. void *addr;
  1405. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1406. struct napi_struct *napi = &rx_ring->napi;
  1407. size_t hlen = ETH_HLEN;
  1408. skb = netdev_alloc_skb(ndev, length);
  1409. if (!skb) {
  1410. rx_ring->rx_dropped++;
  1411. put_page(lbq_desc->p.pg_chunk.page);
  1412. return;
  1413. }
  1414. addr = lbq_desc->p.pg_chunk.va;
  1415. prefetch(addr);
  1416. /* Frame error, so drop the packet. */
  1417. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1418. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1419. goto err_out;
  1420. }
  1421. /* Update the MAC header length*/
  1422. ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
  1423. /* The max framesize filter on this chip is set higher than
  1424. * MTU since FCoE uses 2k frames.
  1425. */
  1426. if (skb->len > ndev->mtu + hlen) {
  1427. netif_err(qdev, drv, qdev->ndev,
  1428. "Segment too small, dropping.\n");
  1429. rx_ring->rx_dropped++;
  1430. goto err_out;
  1431. }
  1432. skb_put_data(skb, addr, hlen);
  1433. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1434. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1435. length);
  1436. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1437. lbq_desc->p.pg_chunk.offset + hlen,
  1438. length - hlen);
  1439. skb->len += length - hlen;
  1440. skb->data_len += length - hlen;
  1441. skb->truesize += length - hlen;
  1442. rx_ring->rx_packets++;
  1443. rx_ring->rx_bytes += skb->len;
  1444. skb->protocol = eth_type_trans(skb, ndev);
  1445. skb_checksum_none_assert(skb);
  1446. if ((ndev->features & NETIF_F_RXCSUM) &&
  1447. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1448. /* TCP frame. */
  1449. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1450. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1451. "TCP checksum done!\n");
  1452. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1453. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1454. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1455. /* Unfragmented ipv4 UDP frame. */
  1456. struct iphdr *iph =
  1457. (struct iphdr *)((u8 *)addr + hlen);
  1458. if (!(iph->frag_off &
  1459. htons(IP_MF|IP_OFFSET))) {
  1460. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1461. netif_printk(qdev, rx_status, KERN_DEBUG,
  1462. qdev->ndev,
  1463. "UDP checksum done!\n");
  1464. }
  1465. }
  1466. }
  1467. skb_record_rx_queue(skb, rx_ring->cq_id);
  1468. if (vlan_id != 0xffff)
  1469. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1470. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1471. napi_gro_receive(napi, skb);
  1472. else
  1473. netif_receive_skb(skb);
  1474. return;
  1475. err_out:
  1476. dev_kfree_skb_any(skb);
  1477. put_page(lbq_desc->p.pg_chunk.page);
  1478. }
  1479. /* Process an inbound completion from an rx ring. */
  1480. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1481. struct rx_ring *rx_ring,
  1482. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1483. u32 length,
  1484. u16 vlan_id)
  1485. {
  1486. struct net_device *ndev = qdev->ndev;
  1487. struct sk_buff *skb = NULL;
  1488. struct sk_buff *new_skb = NULL;
  1489. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1490. skb = sbq_desc->p.skb;
  1491. /* Allocate new_skb and copy */
  1492. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1493. if (new_skb == NULL) {
  1494. rx_ring->rx_dropped++;
  1495. return;
  1496. }
  1497. skb_reserve(new_skb, NET_IP_ALIGN);
  1498. pci_dma_sync_single_for_cpu(qdev->pdev,
  1499. dma_unmap_addr(sbq_desc, mapaddr),
  1500. dma_unmap_len(sbq_desc, maplen),
  1501. PCI_DMA_FROMDEVICE);
  1502. skb_put_data(new_skb, skb->data, length);
  1503. pci_dma_sync_single_for_device(qdev->pdev,
  1504. dma_unmap_addr(sbq_desc, mapaddr),
  1505. dma_unmap_len(sbq_desc, maplen),
  1506. PCI_DMA_FROMDEVICE);
  1507. skb = new_skb;
  1508. /* Frame error, so drop the packet. */
  1509. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1510. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1511. dev_kfree_skb_any(skb);
  1512. return;
  1513. }
  1514. /* loopback self test for ethtool */
  1515. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1516. ql_check_lb_frame(qdev, skb);
  1517. dev_kfree_skb_any(skb);
  1518. return;
  1519. }
  1520. /* The max framesize filter on this chip is set higher than
  1521. * MTU since FCoE uses 2k frames.
  1522. */
  1523. if (skb->len > ndev->mtu + ETH_HLEN) {
  1524. dev_kfree_skb_any(skb);
  1525. rx_ring->rx_dropped++;
  1526. return;
  1527. }
  1528. prefetch(skb->data);
  1529. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1530. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1531. "%s Multicast.\n",
  1532. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1533. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1534. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1535. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1536. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1537. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1538. }
  1539. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1540. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1541. "Promiscuous Packet.\n");
  1542. rx_ring->rx_packets++;
  1543. rx_ring->rx_bytes += skb->len;
  1544. skb->protocol = eth_type_trans(skb, ndev);
  1545. skb_checksum_none_assert(skb);
  1546. /* If rx checksum is on, and there are no
  1547. * csum or frame errors.
  1548. */
  1549. if ((ndev->features & NETIF_F_RXCSUM) &&
  1550. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1551. /* TCP frame. */
  1552. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1553. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1554. "TCP checksum done!\n");
  1555. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1556. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1557. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1558. /* Unfragmented ipv4 UDP frame. */
  1559. struct iphdr *iph = (struct iphdr *) skb->data;
  1560. if (!(iph->frag_off &
  1561. htons(IP_MF|IP_OFFSET))) {
  1562. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1563. netif_printk(qdev, rx_status, KERN_DEBUG,
  1564. qdev->ndev,
  1565. "UDP checksum done!\n");
  1566. }
  1567. }
  1568. }
  1569. skb_record_rx_queue(skb, rx_ring->cq_id);
  1570. if (vlan_id != 0xffff)
  1571. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1572. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1573. napi_gro_receive(&rx_ring->napi, skb);
  1574. else
  1575. netif_receive_skb(skb);
  1576. }
  1577. static void ql_realign_skb(struct sk_buff *skb, int len)
  1578. {
  1579. void *temp_addr = skb->data;
  1580. /* Undo the skb_reserve(skb,32) we did before
  1581. * giving to hardware, and realign data on
  1582. * a 2-byte boundary.
  1583. */
  1584. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1585. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1586. memmove(skb->data, temp_addr, len);
  1587. }
  1588. /*
  1589. * This function builds an skb for the given inbound
  1590. * completion. It will be rewritten for readability in the near
  1591. * future, but for not it works well.
  1592. */
  1593. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1594. struct rx_ring *rx_ring,
  1595. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1596. {
  1597. struct bq_desc *lbq_desc;
  1598. struct bq_desc *sbq_desc;
  1599. struct sk_buff *skb = NULL;
  1600. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1601. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1602. size_t hlen = ETH_HLEN;
  1603. /*
  1604. * Handle the header buffer if present.
  1605. */
  1606. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1607. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1608. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1609. "Header of %d bytes in small buffer.\n", hdr_len);
  1610. /*
  1611. * Headers fit nicely into a small buffer.
  1612. */
  1613. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1614. pci_unmap_single(qdev->pdev,
  1615. dma_unmap_addr(sbq_desc, mapaddr),
  1616. dma_unmap_len(sbq_desc, maplen),
  1617. PCI_DMA_FROMDEVICE);
  1618. skb = sbq_desc->p.skb;
  1619. ql_realign_skb(skb, hdr_len);
  1620. skb_put(skb, hdr_len);
  1621. sbq_desc->p.skb = NULL;
  1622. }
  1623. /*
  1624. * Handle the data buffer(s).
  1625. */
  1626. if (unlikely(!length)) { /* Is there data too? */
  1627. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1628. "No Data buffer in this packet.\n");
  1629. return skb;
  1630. }
  1631. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1632. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1633. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1634. "Headers in small, data of %d bytes in small, combine them.\n",
  1635. length);
  1636. /*
  1637. * Data is less than small buffer size so it's
  1638. * stuffed in a small buffer.
  1639. * For this case we append the data
  1640. * from the "data" small buffer to the "header" small
  1641. * buffer.
  1642. */
  1643. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1644. pci_dma_sync_single_for_cpu(qdev->pdev,
  1645. dma_unmap_addr
  1646. (sbq_desc, mapaddr),
  1647. dma_unmap_len
  1648. (sbq_desc, maplen),
  1649. PCI_DMA_FROMDEVICE);
  1650. skb_put_data(skb, sbq_desc->p.skb->data, length);
  1651. pci_dma_sync_single_for_device(qdev->pdev,
  1652. dma_unmap_addr
  1653. (sbq_desc,
  1654. mapaddr),
  1655. dma_unmap_len
  1656. (sbq_desc,
  1657. maplen),
  1658. PCI_DMA_FROMDEVICE);
  1659. } else {
  1660. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1661. "%d bytes in a single small buffer.\n",
  1662. length);
  1663. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1664. skb = sbq_desc->p.skb;
  1665. ql_realign_skb(skb, length);
  1666. skb_put(skb, length);
  1667. pci_unmap_single(qdev->pdev,
  1668. dma_unmap_addr(sbq_desc,
  1669. mapaddr),
  1670. dma_unmap_len(sbq_desc,
  1671. maplen),
  1672. PCI_DMA_FROMDEVICE);
  1673. sbq_desc->p.skb = NULL;
  1674. }
  1675. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1676. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1677. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1678. "Header in small, %d bytes in large. Chain large to small!\n",
  1679. length);
  1680. /*
  1681. * The data is in a single large buffer. We
  1682. * chain it to the header buffer's skb and let
  1683. * it rip.
  1684. */
  1685. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1686. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1687. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1688. lbq_desc->p.pg_chunk.offset, length);
  1689. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1690. lbq_desc->p.pg_chunk.offset,
  1691. length);
  1692. skb->len += length;
  1693. skb->data_len += length;
  1694. skb->truesize += length;
  1695. } else {
  1696. /*
  1697. * The headers and data are in a single large buffer. We
  1698. * copy it to a new skb and let it go. This can happen with
  1699. * jumbo mtu on a non-TCP/UDP frame.
  1700. */
  1701. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1702. skb = netdev_alloc_skb(qdev->ndev, length);
  1703. if (skb == NULL) {
  1704. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1705. "No skb available, drop the packet.\n");
  1706. return NULL;
  1707. }
  1708. pci_unmap_page(qdev->pdev,
  1709. dma_unmap_addr(lbq_desc,
  1710. mapaddr),
  1711. dma_unmap_len(lbq_desc, maplen),
  1712. PCI_DMA_FROMDEVICE);
  1713. skb_reserve(skb, NET_IP_ALIGN);
  1714. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1715. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1716. length);
  1717. skb_fill_page_desc(skb, 0,
  1718. lbq_desc->p.pg_chunk.page,
  1719. lbq_desc->p.pg_chunk.offset,
  1720. length);
  1721. skb->len += length;
  1722. skb->data_len += length;
  1723. skb->truesize += length;
  1724. ql_update_mac_hdr_len(qdev, ib_mac_rsp,
  1725. lbq_desc->p.pg_chunk.va,
  1726. &hlen);
  1727. __pskb_pull_tail(skb, hlen);
  1728. }
  1729. } else {
  1730. /*
  1731. * The data is in a chain of large buffers
  1732. * pointed to by a small buffer. We loop
  1733. * thru and chain them to the our small header
  1734. * buffer's skb.
  1735. * frags: There are 18 max frags and our small
  1736. * buffer will hold 32 of them. The thing is,
  1737. * we'll use 3 max for our 9000 byte jumbo
  1738. * frames. If the MTU goes up we could
  1739. * eventually be in trouble.
  1740. */
  1741. int size, i = 0;
  1742. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1743. pci_unmap_single(qdev->pdev,
  1744. dma_unmap_addr(sbq_desc, mapaddr),
  1745. dma_unmap_len(sbq_desc, maplen),
  1746. PCI_DMA_FROMDEVICE);
  1747. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1748. /*
  1749. * This is an non TCP/UDP IP frame, so
  1750. * the headers aren't split into a small
  1751. * buffer. We have to use the small buffer
  1752. * that contains our sg list as our skb to
  1753. * send upstairs. Copy the sg list here to
  1754. * a local buffer and use it to find the
  1755. * pages to chain.
  1756. */
  1757. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1758. "%d bytes of headers & data in chain of large.\n",
  1759. length);
  1760. skb = sbq_desc->p.skb;
  1761. sbq_desc->p.skb = NULL;
  1762. skb_reserve(skb, NET_IP_ALIGN);
  1763. }
  1764. do {
  1765. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1766. size = (length < rx_ring->lbq_buf_size) ? length :
  1767. rx_ring->lbq_buf_size;
  1768. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1769. "Adding page %d to skb for %d bytes.\n",
  1770. i, size);
  1771. skb_fill_page_desc(skb, i,
  1772. lbq_desc->p.pg_chunk.page,
  1773. lbq_desc->p.pg_chunk.offset,
  1774. size);
  1775. skb->len += size;
  1776. skb->data_len += size;
  1777. skb->truesize += size;
  1778. length -= size;
  1779. i++;
  1780. } while (length > 0);
  1781. ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
  1782. &hlen);
  1783. __pskb_pull_tail(skb, hlen);
  1784. }
  1785. return skb;
  1786. }
  1787. /* Process an inbound completion from an rx ring. */
  1788. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1789. struct rx_ring *rx_ring,
  1790. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1791. u16 vlan_id)
  1792. {
  1793. struct net_device *ndev = qdev->ndev;
  1794. struct sk_buff *skb = NULL;
  1795. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1796. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1797. if (unlikely(!skb)) {
  1798. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1799. "No skb available, drop packet.\n");
  1800. rx_ring->rx_dropped++;
  1801. return;
  1802. }
  1803. /* Frame error, so drop the packet. */
  1804. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1805. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1806. dev_kfree_skb_any(skb);
  1807. return;
  1808. }
  1809. /* The max framesize filter on this chip is set higher than
  1810. * MTU since FCoE uses 2k frames.
  1811. */
  1812. if (skb->len > ndev->mtu + ETH_HLEN) {
  1813. dev_kfree_skb_any(skb);
  1814. rx_ring->rx_dropped++;
  1815. return;
  1816. }
  1817. /* loopback self test for ethtool */
  1818. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1819. ql_check_lb_frame(qdev, skb);
  1820. dev_kfree_skb_any(skb);
  1821. return;
  1822. }
  1823. prefetch(skb->data);
  1824. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1825. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1826. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1827. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1828. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1829. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1830. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1831. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1832. rx_ring->rx_multicast++;
  1833. }
  1834. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1835. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1836. "Promiscuous Packet.\n");
  1837. }
  1838. skb->protocol = eth_type_trans(skb, ndev);
  1839. skb_checksum_none_assert(skb);
  1840. /* If rx checksum is on, and there are no
  1841. * csum or frame errors.
  1842. */
  1843. if ((ndev->features & NETIF_F_RXCSUM) &&
  1844. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1845. /* TCP frame. */
  1846. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1847. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1848. "TCP checksum done!\n");
  1849. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1850. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1851. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1852. /* Unfragmented ipv4 UDP frame. */
  1853. struct iphdr *iph = (struct iphdr *) skb->data;
  1854. if (!(iph->frag_off &
  1855. htons(IP_MF|IP_OFFSET))) {
  1856. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1857. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1858. "TCP checksum done!\n");
  1859. }
  1860. }
  1861. }
  1862. rx_ring->rx_packets++;
  1863. rx_ring->rx_bytes += skb->len;
  1864. skb_record_rx_queue(skb, rx_ring->cq_id);
  1865. if (vlan_id != 0xffff)
  1866. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1867. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1868. napi_gro_receive(&rx_ring->napi, skb);
  1869. else
  1870. netif_receive_skb(skb);
  1871. }
  1872. /* Process an inbound completion from an rx ring. */
  1873. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1874. struct rx_ring *rx_ring,
  1875. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1876. {
  1877. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1878. u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1879. (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
  1880. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1881. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1882. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1883. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1884. /* The data and headers are split into
  1885. * separate buffers.
  1886. */
  1887. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1888. vlan_id);
  1889. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1890. /* The data fit in a single small buffer.
  1891. * Allocate a new skb, copy the data and
  1892. * return the buffer to the free pool.
  1893. */
  1894. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1895. length, vlan_id);
  1896. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1897. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1898. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1899. /* TCP packet in a page chunk that's been checksummed.
  1900. * Tack it on to our GRO skb and let it go.
  1901. */
  1902. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1903. length, vlan_id);
  1904. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1905. /* Non-TCP packet in a page chunk. Allocate an
  1906. * skb, tack it on frags, and send it up.
  1907. */
  1908. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1909. length, vlan_id);
  1910. } else {
  1911. /* Non-TCP/UDP large frames that span multiple buffers
  1912. * can be processed corrrectly by the split frame logic.
  1913. */
  1914. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1915. vlan_id);
  1916. }
  1917. return (unsigned long)length;
  1918. }
  1919. /* Process an outbound completion from an rx ring. */
  1920. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1921. struct ob_mac_iocb_rsp *mac_rsp)
  1922. {
  1923. struct tx_ring *tx_ring;
  1924. struct tx_ring_desc *tx_ring_desc;
  1925. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1926. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1927. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1928. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1929. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1930. tx_ring->tx_packets++;
  1931. dev_kfree_skb(tx_ring_desc->skb);
  1932. tx_ring_desc->skb = NULL;
  1933. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1934. OB_MAC_IOCB_RSP_S |
  1935. OB_MAC_IOCB_RSP_L |
  1936. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1937. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1938. netif_warn(qdev, tx_done, qdev->ndev,
  1939. "Total descriptor length did not match transfer length.\n");
  1940. }
  1941. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1942. netif_warn(qdev, tx_done, qdev->ndev,
  1943. "Frame too short to be valid, not sent.\n");
  1944. }
  1945. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1946. netif_warn(qdev, tx_done, qdev->ndev,
  1947. "Frame too long, but sent anyway.\n");
  1948. }
  1949. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1950. netif_warn(qdev, tx_done, qdev->ndev,
  1951. "PCI backplane error. Frame not sent.\n");
  1952. }
  1953. }
  1954. atomic_inc(&tx_ring->tx_count);
  1955. }
  1956. /* Fire up a handler to reset the MPI processor. */
  1957. void ql_queue_fw_error(struct ql_adapter *qdev)
  1958. {
  1959. ql_link_off(qdev);
  1960. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1961. }
  1962. void ql_queue_asic_error(struct ql_adapter *qdev)
  1963. {
  1964. ql_link_off(qdev);
  1965. ql_disable_interrupts(qdev);
  1966. /* Clear adapter up bit to signal the recovery
  1967. * process that it shouldn't kill the reset worker
  1968. * thread
  1969. */
  1970. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1971. /* Set asic recovery bit to indicate reset process that we are
  1972. * in fatal error recovery process rather than normal close
  1973. */
  1974. set_bit(QL_ASIC_RECOVERY, &qdev->flags);
  1975. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1976. }
  1977. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1978. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1979. {
  1980. switch (ib_ae_rsp->event) {
  1981. case MGMT_ERR_EVENT:
  1982. netif_err(qdev, rx_err, qdev->ndev,
  1983. "Management Processor Fatal Error.\n");
  1984. ql_queue_fw_error(qdev);
  1985. return;
  1986. case CAM_LOOKUP_ERR_EVENT:
  1987. netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
  1988. netdev_err(qdev->ndev, "This event shouldn't occur.\n");
  1989. ql_queue_asic_error(qdev);
  1990. return;
  1991. case SOFT_ECC_ERROR_EVENT:
  1992. netdev_err(qdev->ndev, "Soft ECC error detected.\n");
  1993. ql_queue_asic_error(qdev);
  1994. break;
  1995. case PCI_ERR_ANON_BUF_RD:
  1996. netdev_err(qdev->ndev, "PCI error occurred when reading "
  1997. "anonymous buffers from rx_ring %d.\n",
  1998. ib_ae_rsp->q_id);
  1999. ql_queue_asic_error(qdev);
  2000. break;
  2001. default:
  2002. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  2003. ib_ae_rsp->event);
  2004. ql_queue_asic_error(qdev);
  2005. break;
  2006. }
  2007. }
  2008. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  2009. {
  2010. struct ql_adapter *qdev = rx_ring->qdev;
  2011. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2012. struct ob_mac_iocb_rsp *net_rsp = NULL;
  2013. int count = 0;
  2014. struct tx_ring *tx_ring;
  2015. /* While there are entries in the completion queue. */
  2016. while (prod != rx_ring->cnsmr_idx) {
  2017. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2018. "cq_id = %d, prod = %d, cnsmr = %d\n",
  2019. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2020. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  2021. rmb();
  2022. switch (net_rsp->opcode) {
  2023. case OPCODE_OB_MAC_TSO_IOCB:
  2024. case OPCODE_OB_MAC_IOCB:
  2025. ql_process_mac_tx_intr(qdev, net_rsp);
  2026. break;
  2027. default:
  2028. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2029. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2030. net_rsp->opcode);
  2031. }
  2032. count++;
  2033. ql_update_cq(rx_ring);
  2034. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2035. }
  2036. if (!net_rsp)
  2037. return 0;
  2038. ql_write_cq_idx(rx_ring);
  2039. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2040. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  2041. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2042. /*
  2043. * The queue got stopped because the tx_ring was full.
  2044. * Wake it up, because it's now at least 25% empty.
  2045. */
  2046. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2047. }
  2048. return count;
  2049. }
  2050. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2051. {
  2052. struct ql_adapter *qdev = rx_ring->qdev;
  2053. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2054. struct ql_net_rsp_iocb *net_rsp;
  2055. int count = 0;
  2056. /* While there are entries in the completion queue. */
  2057. while (prod != rx_ring->cnsmr_idx) {
  2058. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2059. "cq_id = %d, prod = %d, cnsmr = %d\n",
  2060. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2061. net_rsp = rx_ring->curr_entry;
  2062. rmb();
  2063. switch (net_rsp->opcode) {
  2064. case OPCODE_IB_MAC_IOCB:
  2065. ql_process_mac_rx_intr(qdev, rx_ring,
  2066. (struct ib_mac_iocb_rsp *)
  2067. net_rsp);
  2068. break;
  2069. case OPCODE_IB_AE_IOCB:
  2070. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2071. net_rsp);
  2072. break;
  2073. default:
  2074. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2075. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2076. net_rsp->opcode);
  2077. break;
  2078. }
  2079. count++;
  2080. ql_update_cq(rx_ring);
  2081. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2082. if (count == budget)
  2083. break;
  2084. }
  2085. ql_update_buffer_queues(qdev, rx_ring);
  2086. ql_write_cq_idx(rx_ring);
  2087. return count;
  2088. }
  2089. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2090. {
  2091. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2092. struct ql_adapter *qdev = rx_ring->qdev;
  2093. struct rx_ring *trx_ring;
  2094. int i, work_done = 0;
  2095. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2096. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2097. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2098. /* Service the TX rings first. They start
  2099. * right after the RSS rings. */
  2100. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2101. trx_ring = &qdev->rx_ring[i];
  2102. /* If this TX completion ring belongs to this vector and
  2103. * it's not empty then service it.
  2104. */
  2105. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2106. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2107. trx_ring->cnsmr_idx)) {
  2108. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2109. "%s: Servicing TX completion ring %d.\n",
  2110. __func__, trx_ring->cq_id);
  2111. ql_clean_outbound_rx_ring(trx_ring);
  2112. }
  2113. }
  2114. /*
  2115. * Now service the RSS ring if it's active.
  2116. */
  2117. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2118. rx_ring->cnsmr_idx) {
  2119. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2120. "%s: Servicing RX completion ring %d.\n",
  2121. __func__, rx_ring->cq_id);
  2122. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2123. }
  2124. if (work_done < budget) {
  2125. napi_complete_done(napi, work_done);
  2126. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2127. }
  2128. return work_done;
  2129. }
  2130. static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
  2131. {
  2132. struct ql_adapter *qdev = netdev_priv(ndev);
  2133. if (features & NETIF_F_HW_VLAN_CTAG_RX) {
  2134. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2135. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2136. } else {
  2137. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2138. }
  2139. }
  2140. /**
  2141. * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
  2142. * based on the features to enable/disable hardware vlan accel
  2143. */
  2144. static int qlge_update_hw_vlan_features(struct net_device *ndev,
  2145. netdev_features_t features)
  2146. {
  2147. struct ql_adapter *qdev = netdev_priv(ndev);
  2148. int status = 0;
  2149. bool need_restart = netif_running(ndev);
  2150. if (need_restart) {
  2151. status = ql_adapter_down(qdev);
  2152. if (status) {
  2153. netif_err(qdev, link, qdev->ndev,
  2154. "Failed to bring down the adapter\n");
  2155. return status;
  2156. }
  2157. }
  2158. /* update the features with resent change */
  2159. ndev->features = features;
  2160. if (need_restart) {
  2161. status = ql_adapter_up(qdev);
  2162. if (status) {
  2163. netif_err(qdev, link, qdev->ndev,
  2164. "Failed to bring up the adapter\n");
  2165. return status;
  2166. }
  2167. }
  2168. return status;
  2169. }
  2170. static netdev_features_t qlge_fix_features(struct net_device *ndev,
  2171. netdev_features_t features)
  2172. {
  2173. int err;
  2174. /* Update the behavior of vlan accel in the adapter */
  2175. err = qlge_update_hw_vlan_features(ndev, features);
  2176. if (err)
  2177. return err;
  2178. return features;
  2179. }
  2180. static int qlge_set_features(struct net_device *ndev,
  2181. netdev_features_t features)
  2182. {
  2183. netdev_features_t changed = ndev->features ^ features;
  2184. if (changed & NETIF_F_HW_VLAN_CTAG_RX)
  2185. qlge_vlan_mode(ndev, features);
  2186. return 0;
  2187. }
  2188. static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
  2189. {
  2190. u32 enable_bit = MAC_ADDR_E;
  2191. int err;
  2192. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2193. MAC_ADDR_TYPE_VLAN, vid);
  2194. if (err)
  2195. netif_err(qdev, ifup, qdev->ndev,
  2196. "Failed to init vlan address.\n");
  2197. return err;
  2198. }
  2199. static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
  2200. {
  2201. struct ql_adapter *qdev = netdev_priv(ndev);
  2202. int status;
  2203. int err;
  2204. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2205. if (status)
  2206. return status;
  2207. err = __qlge_vlan_rx_add_vid(qdev, vid);
  2208. set_bit(vid, qdev->active_vlans);
  2209. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2210. return err;
  2211. }
  2212. static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
  2213. {
  2214. u32 enable_bit = 0;
  2215. int err;
  2216. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2217. MAC_ADDR_TYPE_VLAN, vid);
  2218. if (err)
  2219. netif_err(qdev, ifup, qdev->ndev,
  2220. "Failed to clear vlan address.\n");
  2221. return err;
  2222. }
  2223. static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
  2224. {
  2225. struct ql_adapter *qdev = netdev_priv(ndev);
  2226. int status;
  2227. int err;
  2228. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2229. if (status)
  2230. return status;
  2231. err = __qlge_vlan_rx_kill_vid(qdev, vid);
  2232. clear_bit(vid, qdev->active_vlans);
  2233. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2234. return err;
  2235. }
  2236. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2237. {
  2238. int status;
  2239. u16 vid;
  2240. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2241. if (status)
  2242. return;
  2243. for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
  2244. __qlge_vlan_rx_add_vid(qdev, vid);
  2245. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2246. }
  2247. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2248. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2249. {
  2250. struct rx_ring *rx_ring = dev_id;
  2251. napi_schedule(&rx_ring->napi);
  2252. return IRQ_HANDLED;
  2253. }
  2254. /* This handles a fatal error, MPI activity, and the default
  2255. * rx_ring in an MSI-X multiple vector environment.
  2256. * In MSI/Legacy environment it also process the rest of
  2257. * the rx_rings.
  2258. */
  2259. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2260. {
  2261. struct rx_ring *rx_ring = dev_id;
  2262. struct ql_adapter *qdev = rx_ring->qdev;
  2263. struct intr_context *intr_context = &qdev->intr_context[0];
  2264. u32 var;
  2265. int work_done = 0;
  2266. spin_lock(&qdev->hw_lock);
  2267. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2268. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2269. "Shared Interrupt, Not ours!\n");
  2270. spin_unlock(&qdev->hw_lock);
  2271. return IRQ_NONE;
  2272. }
  2273. spin_unlock(&qdev->hw_lock);
  2274. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2275. /*
  2276. * Check for fatal error.
  2277. */
  2278. if (var & STS_FE) {
  2279. ql_queue_asic_error(qdev);
  2280. netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
  2281. var = ql_read32(qdev, ERR_STS);
  2282. netdev_err(qdev->ndev, "Resetting chip. "
  2283. "Error Status Register = 0x%x\n", var);
  2284. return IRQ_HANDLED;
  2285. }
  2286. /*
  2287. * Check MPI processor activity.
  2288. */
  2289. if ((var & STS_PI) &&
  2290. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2291. /*
  2292. * We've got an async event or mailbox completion.
  2293. * Handle it and clear the source of the interrupt.
  2294. */
  2295. netif_err(qdev, intr, qdev->ndev,
  2296. "Got MPI processor interrupt.\n");
  2297. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2298. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2299. queue_delayed_work_on(smp_processor_id(),
  2300. qdev->workqueue, &qdev->mpi_work, 0);
  2301. work_done++;
  2302. }
  2303. /*
  2304. * Get the bit-mask that shows the active queues for this
  2305. * pass. Compare it to the queues that this irq services
  2306. * and call napi if there's a match.
  2307. */
  2308. var = ql_read32(qdev, ISR1);
  2309. if (var & intr_context->irq_mask) {
  2310. netif_info(qdev, intr, qdev->ndev,
  2311. "Waking handler for rx_ring[0].\n");
  2312. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2313. napi_schedule(&rx_ring->napi);
  2314. work_done++;
  2315. }
  2316. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2317. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2318. }
  2319. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2320. {
  2321. if (skb_is_gso(skb)) {
  2322. int err;
  2323. __be16 l3_proto = vlan_get_protocol(skb);
  2324. err = skb_cow_head(skb, 0);
  2325. if (err < 0)
  2326. return err;
  2327. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2328. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2329. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2330. mac_iocb_ptr->total_hdrs_len =
  2331. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2332. mac_iocb_ptr->net_trans_offset =
  2333. cpu_to_le16(skb_network_offset(skb) |
  2334. skb_transport_offset(skb)
  2335. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2336. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2337. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2338. if (likely(l3_proto == htons(ETH_P_IP))) {
  2339. struct iphdr *iph = ip_hdr(skb);
  2340. iph->check = 0;
  2341. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2342. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2343. iph->daddr, 0,
  2344. IPPROTO_TCP,
  2345. 0);
  2346. } else if (l3_proto == htons(ETH_P_IPV6)) {
  2347. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2348. tcp_hdr(skb)->check =
  2349. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2350. &ipv6_hdr(skb)->daddr,
  2351. 0, IPPROTO_TCP, 0);
  2352. }
  2353. return 1;
  2354. }
  2355. return 0;
  2356. }
  2357. static void ql_hw_csum_setup(struct sk_buff *skb,
  2358. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2359. {
  2360. int len;
  2361. struct iphdr *iph = ip_hdr(skb);
  2362. __sum16 *check;
  2363. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2364. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2365. mac_iocb_ptr->net_trans_offset =
  2366. cpu_to_le16(skb_network_offset(skb) |
  2367. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2368. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2369. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2370. if (likely(iph->protocol == IPPROTO_TCP)) {
  2371. check = &(tcp_hdr(skb)->check);
  2372. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2373. mac_iocb_ptr->total_hdrs_len =
  2374. cpu_to_le16(skb_transport_offset(skb) +
  2375. (tcp_hdr(skb)->doff << 2));
  2376. } else {
  2377. check = &(udp_hdr(skb)->check);
  2378. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2379. mac_iocb_ptr->total_hdrs_len =
  2380. cpu_to_le16(skb_transport_offset(skb) +
  2381. sizeof(struct udphdr));
  2382. }
  2383. *check = ~csum_tcpudp_magic(iph->saddr,
  2384. iph->daddr, len, iph->protocol, 0);
  2385. }
  2386. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2387. {
  2388. struct tx_ring_desc *tx_ring_desc;
  2389. struct ob_mac_iocb_req *mac_iocb_ptr;
  2390. struct ql_adapter *qdev = netdev_priv(ndev);
  2391. int tso;
  2392. struct tx_ring *tx_ring;
  2393. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2394. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2395. if (skb_padto(skb, ETH_ZLEN))
  2396. return NETDEV_TX_OK;
  2397. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2398. netif_info(qdev, tx_queued, qdev->ndev,
  2399. "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
  2400. __func__, tx_ring_idx);
  2401. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2402. tx_ring->tx_errors++;
  2403. return NETDEV_TX_BUSY;
  2404. }
  2405. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2406. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2407. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2408. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2409. mac_iocb_ptr->tid = tx_ring_desc->index;
  2410. /* We use the upper 32-bits to store the tx queue for this IO.
  2411. * When we get the completion we can use it to establish the context.
  2412. */
  2413. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2414. tx_ring_desc->skb = skb;
  2415. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2416. if (skb_vlan_tag_present(skb)) {
  2417. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2418. "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
  2419. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2420. mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
  2421. }
  2422. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2423. if (tso < 0) {
  2424. dev_kfree_skb_any(skb);
  2425. return NETDEV_TX_OK;
  2426. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2427. ql_hw_csum_setup(skb,
  2428. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2429. }
  2430. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2431. NETDEV_TX_OK) {
  2432. netif_err(qdev, tx_queued, qdev->ndev,
  2433. "Could not map the segments.\n");
  2434. tx_ring->tx_errors++;
  2435. return NETDEV_TX_BUSY;
  2436. }
  2437. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2438. tx_ring->prod_idx++;
  2439. if (tx_ring->prod_idx == tx_ring->wq_len)
  2440. tx_ring->prod_idx = 0;
  2441. wmb();
  2442. ql_write_db_reg_relaxed(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2443. mmiowb();
  2444. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2445. "tx queued, slot %d, len %d\n",
  2446. tx_ring->prod_idx, skb->len);
  2447. atomic_dec(&tx_ring->tx_count);
  2448. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2449. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2450. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2451. /*
  2452. * The queue got stopped because the tx_ring was full.
  2453. * Wake it up, because it's now at least 25% empty.
  2454. */
  2455. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2456. }
  2457. return NETDEV_TX_OK;
  2458. }
  2459. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2460. {
  2461. if (qdev->rx_ring_shadow_reg_area) {
  2462. pci_free_consistent(qdev->pdev,
  2463. PAGE_SIZE,
  2464. qdev->rx_ring_shadow_reg_area,
  2465. qdev->rx_ring_shadow_reg_dma);
  2466. qdev->rx_ring_shadow_reg_area = NULL;
  2467. }
  2468. if (qdev->tx_ring_shadow_reg_area) {
  2469. pci_free_consistent(qdev->pdev,
  2470. PAGE_SIZE,
  2471. qdev->tx_ring_shadow_reg_area,
  2472. qdev->tx_ring_shadow_reg_dma);
  2473. qdev->tx_ring_shadow_reg_area = NULL;
  2474. }
  2475. }
  2476. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2477. {
  2478. qdev->rx_ring_shadow_reg_area =
  2479. pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
  2480. &qdev->rx_ring_shadow_reg_dma);
  2481. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2482. netif_err(qdev, ifup, qdev->ndev,
  2483. "Allocation of RX shadow space failed.\n");
  2484. return -ENOMEM;
  2485. }
  2486. qdev->tx_ring_shadow_reg_area =
  2487. pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
  2488. &qdev->tx_ring_shadow_reg_dma);
  2489. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2490. netif_err(qdev, ifup, qdev->ndev,
  2491. "Allocation of TX shadow space failed.\n");
  2492. goto err_wqp_sh_area;
  2493. }
  2494. return 0;
  2495. err_wqp_sh_area:
  2496. pci_free_consistent(qdev->pdev,
  2497. PAGE_SIZE,
  2498. qdev->rx_ring_shadow_reg_area,
  2499. qdev->rx_ring_shadow_reg_dma);
  2500. return -ENOMEM;
  2501. }
  2502. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2503. {
  2504. struct tx_ring_desc *tx_ring_desc;
  2505. int i;
  2506. struct ob_mac_iocb_req *mac_iocb_ptr;
  2507. mac_iocb_ptr = tx_ring->wq_base;
  2508. tx_ring_desc = tx_ring->q;
  2509. for (i = 0; i < tx_ring->wq_len; i++) {
  2510. tx_ring_desc->index = i;
  2511. tx_ring_desc->skb = NULL;
  2512. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2513. mac_iocb_ptr++;
  2514. tx_ring_desc++;
  2515. }
  2516. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2517. }
  2518. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2519. struct tx_ring *tx_ring)
  2520. {
  2521. if (tx_ring->wq_base) {
  2522. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2523. tx_ring->wq_base, tx_ring->wq_base_dma);
  2524. tx_ring->wq_base = NULL;
  2525. }
  2526. kfree(tx_ring->q);
  2527. tx_ring->q = NULL;
  2528. }
  2529. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2530. struct tx_ring *tx_ring)
  2531. {
  2532. tx_ring->wq_base =
  2533. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2534. &tx_ring->wq_base_dma);
  2535. if ((tx_ring->wq_base == NULL) ||
  2536. tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
  2537. goto pci_alloc_err;
  2538. tx_ring->q =
  2539. kmalloc_array(tx_ring->wq_len, sizeof(struct tx_ring_desc),
  2540. GFP_KERNEL);
  2541. if (tx_ring->q == NULL)
  2542. goto err;
  2543. return 0;
  2544. err:
  2545. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2546. tx_ring->wq_base, tx_ring->wq_base_dma);
  2547. tx_ring->wq_base = NULL;
  2548. pci_alloc_err:
  2549. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2550. return -ENOMEM;
  2551. }
  2552. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2553. {
  2554. struct bq_desc *lbq_desc;
  2555. uint32_t curr_idx, clean_idx;
  2556. curr_idx = rx_ring->lbq_curr_idx;
  2557. clean_idx = rx_ring->lbq_clean_idx;
  2558. while (curr_idx != clean_idx) {
  2559. lbq_desc = &rx_ring->lbq[curr_idx];
  2560. if (lbq_desc->p.pg_chunk.last_flag) {
  2561. pci_unmap_page(qdev->pdev,
  2562. lbq_desc->p.pg_chunk.map,
  2563. ql_lbq_block_size(qdev),
  2564. PCI_DMA_FROMDEVICE);
  2565. lbq_desc->p.pg_chunk.last_flag = 0;
  2566. }
  2567. put_page(lbq_desc->p.pg_chunk.page);
  2568. lbq_desc->p.pg_chunk.page = NULL;
  2569. if (++curr_idx == rx_ring->lbq_len)
  2570. curr_idx = 0;
  2571. }
  2572. if (rx_ring->pg_chunk.page) {
  2573. pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
  2574. ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
  2575. put_page(rx_ring->pg_chunk.page);
  2576. rx_ring->pg_chunk.page = NULL;
  2577. }
  2578. }
  2579. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2580. {
  2581. int i;
  2582. struct bq_desc *sbq_desc;
  2583. for (i = 0; i < rx_ring->sbq_len; i++) {
  2584. sbq_desc = &rx_ring->sbq[i];
  2585. if (sbq_desc == NULL) {
  2586. netif_err(qdev, ifup, qdev->ndev,
  2587. "sbq_desc %d is NULL.\n", i);
  2588. return;
  2589. }
  2590. if (sbq_desc->p.skb) {
  2591. pci_unmap_single(qdev->pdev,
  2592. dma_unmap_addr(sbq_desc, mapaddr),
  2593. dma_unmap_len(sbq_desc, maplen),
  2594. PCI_DMA_FROMDEVICE);
  2595. dev_kfree_skb(sbq_desc->p.skb);
  2596. sbq_desc->p.skb = NULL;
  2597. }
  2598. }
  2599. }
  2600. /* Free all large and small rx buffers associated
  2601. * with the completion queues for this device.
  2602. */
  2603. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2604. {
  2605. int i;
  2606. struct rx_ring *rx_ring;
  2607. for (i = 0; i < qdev->rx_ring_count; i++) {
  2608. rx_ring = &qdev->rx_ring[i];
  2609. if (rx_ring->lbq)
  2610. ql_free_lbq_buffers(qdev, rx_ring);
  2611. if (rx_ring->sbq)
  2612. ql_free_sbq_buffers(qdev, rx_ring);
  2613. }
  2614. }
  2615. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2616. {
  2617. struct rx_ring *rx_ring;
  2618. int i;
  2619. for (i = 0; i < qdev->rx_ring_count; i++) {
  2620. rx_ring = &qdev->rx_ring[i];
  2621. if (rx_ring->type != TX_Q)
  2622. ql_update_buffer_queues(qdev, rx_ring);
  2623. }
  2624. }
  2625. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2626. struct rx_ring *rx_ring)
  2627. {
  2628. int i;
  2629. struct bq_desc *lbq_desc;
  2630. __le64 *bq = rx_ring->lbq_base;
  2631. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2632. for (i = 0; i < rx_ring->lbq_len; i++) {
  2633. lbq_desc = &rx_ring->lbq[i];
  2634. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2635. lbq_desc->index = i;
  2636. lbq_desc->addr = bq;
  2637. bq++;
  2638. }
  2639. }
  2640. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2641. struct rx_ring *rx_ring)
  2642. {
  2643. int i;
  2644. struct bq_desc *sbq_desc;
  2645. __le64 *bq = rx_ring->sbq_base;
  2646. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2647. for (i = 0; i < rx_ring->sbq_len; i++) {
  2648. sbq_desc = &rx_ring->sbq[i];
  2649. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2650. sbq_desc->index = i;
  2651. sbq_desc->addr = bq;
  2652. bq++;
  2653. }
  2654. }
  2655. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2656. struct rx_ring *rx_ring)
  2657. {
  2658. /* Free the small buffer queue. */
  2659. if (rx_ring->sbq_base) {
  2660. pci_free_consistent(qdev->pdev,
  2661. rx_ring->sbq_size,
  2662. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2663. rx_ring->sbq_base = NULL;
  2664. }
  2665. /* Free the small buffer queue control blocks. */
  2666. kfree(rx_ring->sbq);
  2667. rx_ring->sbq = NULL;
  2668. /* Free the large buffer queue. */
  2669. if (rx_ring->lbq_base) {
  2670. pci_free_consistent(qdev->pdev,
  2671. rx_ring->lbq_size,
  2672. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2673. rx_ring->lbq_base = NULL;
  2674. }
  2675. /* Free the large buffer queue control blocks. */
  2676. kfree(rx_ring->lbq);
  2677. rx_ring->lbq = NULL;
  2678. /* Free the rx queue. */
  2679. if (rx_ring->cq_base) {
  2680. pci_free_consistent(qdev->pdev,
  2681. rx_ring->cq_size,
  2682. rx_ring->cq_base, rx_ring->cq_base_dma);
  2683. rx_ring->cq_base = NULL;
  2684. }
  2685. }
  2686. /* Allocate queues and buffers for this completions queue based
  2687. * on the values in the parameter structure. */
  2688. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2689. struct rx_ring *rx_ring)
  2690. {
  2691. /*
  2692. * Allocate the completion queue for this rx_ring.
  2693. */
  2694. rx_ring->cq_base =
  2695. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2696. &rx_ring->cq_base_dma);
  2697. if (rx_ring->cq_base == NULL) {
  2698. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2699. return -ENOMEM;
  2700. }
  2701. if (rx_ring->sbq_len) {
  2702. /*
  2703. * Allocate small buffer queue.
  2704. */
  2705. rx_ring->sbq_base =
  2706. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2707. &rx_ring->sbq_base_dma);
  2708. if (rx_ring->sbq_base == NULL) {
  2709. netif_err(qdev, ifup, qdev->ndev,
  2710. "Small buffer queue allocation failed.\n");
  2711. goto err_mem;
  2712. }
  2713. /*
  2714. * Allocate small buffer queue control blocks.
  2715. */
  2716. rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
  2717. sizeof(struct bq_desc),
  2718. GFP_KERNEL);
  2719. if (rx_ring->sbq == NULL)
  2720. goto err_mem;
  2721. ql_init_sbq_ring(qdev, rx_ring);
  2722. }
  2723. if (rx_ring->lbq_len) {
  2724. /*
  2725. * Allocate large buffer queue.
  2726. */
  2727. rx_ring->lbq_base =
  2728. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2729. &rx_ring->lbq_base_dma);
  2730. if (rx_ring->lbq_base == NULL) {
  2731. netif_err(qdev, ifup, qdev->ndev,
  2732. "Large buffer queue allocation failed.\n");
  2733. goto err_mem;
  2734. }
  2735. /*
  2736. * Allocate large buffer queue control blocks.
  2737. */
  2738. rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
  2739. sizeof(struct bq_desc),
  2740. GFP_KERNEL);
  2741. if (rx_ring->lbq == NULL)
  2742. goto err_mem;
  2743. ql_init_lbq_ring(qdev, rx_ring);
  2744. }
  2745. return 0;
  2746. err_mem:
  2747. ql_free_rx_resources(qdev, rx_ring);
  2748. return -ENOMEM;
  2749. }
  2750. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2751. {
  2752. struct tx_ring *tx_ring;
  2753. struct tx_ring_desc *tx_ring_desc;
  2754. int i, j;
  2755. /*
  2756. * Loop through all queues and free
  2757. * any resources.
  2758. */
  2759. for (j = 0; j < qdev->tx_ring_count; j++) {
  2760. tx_ring = &qdev->tx_ring[j];
  2761. for (i = 0; i < tx_ring->wq_len; i++) {
  2762. tx_ring_desc = &tx_ring->q[i];
  2763. if (tx_ring_desc && tx_ring_desc->skb) {
  2764. netif_err(qdev, ifdown, qdev->ndev,
  2765. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2766. tx_ring_desc->skb, j,
  2767. tx_ring_desc->index);
  2768. ql_unmap_send(qdev, tx_ring_desc,
  2769. tx_ring_desc->map_cnt);
  2770. dev_kfree_skb(tx_ring_desc->skb);
  2771. tx_ring_desc->skb = NULL;
  2772. }
  2773. }
  2774. }
  2775. }
  2776. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2777. {
  2778. int i;
  2779. for (i = 0; i < qdev->tx_ring_count; i++)
  2780. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2781. for (i = 0; i < qdev->rx_ring_count; i++)
  2782. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2783. ql_free_shadow_space(qdev);
  2784. }
  2785. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2786. {
  2787. int i;
  2788. /* Allocate space for our shadow registers and such. */
  2789. if (ql_alloc_shadow_space(qdev))
  2790. return -ENOMEM;
  2791. for (i = 0; i < qdev->rx_ring_count; i++) {
  2792. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2793. netif_err(qdev, ifup, qdev->ndev,
  2794. "RX resource allocation failed.\n");
  2795. goto err_mem;
  2796. }
  2797. }
  2798. /* Allocate tx queue resources */
  2799. for (i = 0; i < qdev->tx_ring_count; i++) {
  2800. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2801. netif_err(qdev, ifup, qdev->ndev,
  2802. "TX resource allocation failed.\n");
  2803. goto err_mem;
  2804. }
  2805. }
  2806. return 0;
  2807. err_mem:
  2808. ql_free_mem_resources(qdev);
  2809. return -ENOMEM;
  2810. }
  2811. /* Set up the rx ring control block and pass it to the chip.
  2812. * The control block is defined as
  2813. * "Completion Queue Initialization Control Block", or cqicb.
  2814. */
  2815. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2816. {
  2817. struct cqicb *cqicb = &rx_ring->cqicb;
  2818. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2819. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2820. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2821. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2822. void __iomem *doorbell_area =
  2823. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2824. int err = 0;
  2825. u16 bq_len;
  2826. u64 tmp;
  2827. __le64 *base_indirect_ptr;
  2828. int page_entries;
  2829. /* Set up the shadow registers for this ring. */
  2830. rx_ring->prod_idx_sh_reg = shadow_reg;
  2831. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2832. *rx_ring->prod_idx_sh_reg = 0;
  2833. shadow_reg += sizeof(u64);
  2834. shadow_reg_dma += sizeof(u64);
  2835. rx_ring->lbq_base_indirect = shadow_reg;
  2836. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2837. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2838. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2839. rx_ring->sbq_base_indirect = shadow_reg;
  2840. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2841. /* PCI doorbell mem area + 0x00 for consumer index register */
  2842. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2843. rx_ring->cnsmr_idx = 0;
  2844. rx_ring->curr_entry = rx_ring->cq_base;
  2845. /* PCI doorbell mem area + 0x04 for valid register */
  2846. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2847. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2848. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2849. /* PCI doorbell mem area + 0x1c */
  2850. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2851. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2852. cqicb->msix_vect = rx_ring->irq;
  2853. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2854. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2855. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2856. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2857. /*
  2858. * Set up the control block load flags.
  2859. */
  2860. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2861. FLAGS_LV | /* Load MSI-X vector */
  2862. FLAGS_LI; /* Load irq delay values */
  2863. if (rx_ring->lbq_len) {
  2864. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2865. tmp = (u64)rx_ring->lbq_base_dma;
  2866. base_indirect_ptr = rx_ring->lbq_base_indirect;
  2867. page_entries = 0;
  2868. do {
  2869. *base_indirect_ptr = cpu_to_le64(tmp);
  2870. tmp += DB_PAGE_SIZE;
  2871. base_indirect_ptr++;
  2872. page_entries++;
  2873. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2874. cqicb->lbq_addr =
  2875. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2876. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2877. (u16) rx_ring->lbq_buf_size;
  2878. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2879. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2880. (u16) rx_ring->lbq_len;
  2881. cqicb->lbq_len = cpu_to_le16(bq_len);
  2882. rx_ring->lbq_prod_idx = 0;
  2883. rx_ring->lbq_curr_idx = 0;
  2884. rx_ring->lbq_clean_idx = 0;
  2885. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2886. }
  2887. if (rx_ring->sbq_len) {
  2888. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2889. tmp = (u64)rx_ring->sbq_base_dma;
  2890. base_indirect_ptr = rx_ring->sbq_base_indirect;
  2891. page_entries = 0;
  2892. do {
  2893. *base_indirect_ptr = cpu_to_le64(tmp);
  2894. tmp += DB_PAGE_SIZE;
  2895. base_indirect_ptr++;
  2896. page_entries++;
  2897. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2898. cqicb->sbq_addr =
  2899. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2900. cqicb->sbq_buf_size =
  2901. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2902. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2903. (u16) rx_ring->sbq_len;
  2904. cqicb->sbq_len = cpu_to_le16(bq_len);
  2905. rx_ring->sbq_prod_idx = 0;
  2906. rx_ring->sbq_curr_idx = 0;
  2907. rx_ring->sbq_clean_idx = 0;
  2908. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2909. }
  2910. switch (rx_ring->type) {
  2911. case TX_Q:
  2912. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2913. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2914. break;
  2915. case RX_Q:
  2916. /* Inbound completion handling rx_rings run in
  2917. * separate NAPI contexts.
  2918. */
  2919. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2920. 64);
  2921. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2922. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2923. break;
  2924. default:
  2925. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2926. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2927. }
  2928. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2929. CFG_LCQ, rx_ring->cq_id);
  2930. if (err) {
  2931. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2932. return err;
  2933. }
  2934. return err;
  2935. }
  2936. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2937. {
  2938. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2939. void __iomem *doorbell_area =
  2940. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2941. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2942. (tx_ring->wq_id * sizeof(u64));
  2943. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2944. (tx_ring->wq_id * sizeof(u64));
  2945. int err = 0;
  2946. /*
  2947. * Assign doorbell registers for this tx_ring.
  2948. */
  2949. /* TX PCI doorbell mem area for tx producer index */
  2950. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2951. tx_ring->prod_idx = 0;
  2952. /* TX PCI doorbell mem area + 0x04 */
  2953. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2954. /*
  2955. * Assign shadow registers for this tx_ring.
  2956. */
  2957. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2958. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2959. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2960. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2961. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2962. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2963. wqicb->rid = 0;
  2964. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2965. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2966. ql_init_tx_ring(qdev, tx_ring);
  2967. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2968. (u16) tx_ring->wq_id);
  2969. if (err) {
  2970. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2971. return err;
  2972. }
  2973. return err;
  2974. }
  2975. static void ql_disable_msix(struct ql_adapter *qdev)
  2976. {
  2977. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2978. pci_disable_msix(qdev->pdev);
  2979. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2980. kfree(qdev->msi_x_entry);
  2981. qdev->msi_x_entry = NULL;
  2982. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2983. pci_disable_msi(qdev->pdev);
  2984. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2985. }
  2986. }
  2987. /* We start by trying to get the number of vectors
  2988. * stored in qdev->intr_count. If we don't get that
  2989. * many then we reduce the count and try again.
  2990. */
  2991. static void ql_enable_msix(struct ql_adapter *qdev)
  2992. {
  2993. int i, err;
  2994. /* Get the MSIX vectors. */
  2995. if (qlge_irq_type == MSIX_IRQ) {
  2996. /* Try to alloc space for the msix struct,
  2997. * if it fails then go to MSI/legacy.
  2998. */
  2999. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  3000. sizeof(struct msix_entry),
  3001. GFP_KERNEL);
  3002. if (!qdev->msi_x_entry) {
  3003. qlge_irq_type = MSI_IRQ;
  3004. goto msi;
  3005. }
  3006. for (i = 0; i < qdev->intr_count; i++)
  3007. qdev->msi_x_entry[i].entry = i;
  3008. err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
  3009. 1, qdev->intr_count);
  3010. if (err < 0) {
  3011. kfree(qdev->msi_x_entry);
  3012. qdev->msi_x_entry = NULL;
  3013. netif_warn(qdev, ifup, qdev->ndev,
  3014. "MSI-X Enable failed, trying MSI.\n");
  3015. qlge_irq_type = MSI_IRQ;
  3016. } else {
  3017. qdev->intr_count = err;
  3018. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  3019. netif_info(qdev, ifup, qdev->ndev,
  3020. "MSI-X Enabled, got %d vectors.\n",
  3021. qdev->intr_count);
  3022. return;
  3023. }
  3024. }
  3025. msi:
  3026. qdev->intr_count = 1;
  3027. if (qlge_irq_type == MSI_IRQ) {
  3028. if (!pci_enable_msi(qdev->pdev)) {
  3029. set_bit(QL_MSI_ENABLED, &qdev->flags);
  3030. netif_info(qdev, ifup, qdev->ndev,
  3031. "Running with MSI interrupts.\n");
  3032. return;
  3033. }
  3034. }
  3035. qlge_irq_type = LEG_IRQ;
  3036. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3037. "Running with legacy interrupts.\n");
  3038. }
  3039. /* Each vector services 1 RSS ring and and 1 or more
  3040. * TX completion rings. This function loops through
  3041. * the TX completion rings and assigns the vector that
  3042. * will service it. An example would be if there are
  3043. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  3044. * This would mean that vector 0 would service RSS ring 0
  3045. * and TX completion rings 0,1,2 and 3. Vector 1 would
  3046. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  3047. */
  3048. static void ql_set_tx_vect(struct ql_adapter *qdev)
  3049. {
  3050. int i, j, vect;
  3051. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3052. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3053. /* Assign irq vectors to TX rx_rings.*/
  3054. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  3055. i < qdev->rx_ring_count; i++) {
  3056. if (j == tx_rings_per_vector) {
  3057. vect++;
  3058. j = 0;
  3059. }
  3060. qdev->rx_ring[i].irq = vect;
  3061. j++;
  3062. }
  3063. } else {
  3064. /* For single vector all rings have an irq
  3065. * of zero.
  3066. */
  3067. for (i = 0; i < qdev->rx_ring_count; i++)
  3068. qdev->rx_ring[i].irq = 0;
  3069. }
  3070. }
  3071. /* Set the interrupt mask for this vector. Each vector
  3072. * will service 1 RSS ring and 1 or more TX completion
  3073. * rings. This function sets up a bit mask per vector
  3074. * that indicates which rings it services.
  3075. */
  3076. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  3077. {
  3078. int j, vect = ctx->intr;
  3079. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3080. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3081. /* Add the RSS ring serviced by this vector
  3082. * to the mask.
  3083. */
  3084. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3085. /* Add the TX ring(s) serviced by this vector
  3086. * to the mask. */
  3087. for (j = 0; j < tx_rings_per_vector; j++) {
  3088. ctx->irq_mask |=
  3089. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3090. (vect * tx_rings_per_vector) + j].cq_id);
  3091. }
  3092. } else {
  3093. /* For single vector we just shift each queue's
  3094. * ID into the mask.
  3095. */
  3096. for (j = 0; j < qdev->rx_ring_count; j++)
  3097. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3098. }
  3099. }
  3100. /*
  3101. * Here we build the intr_context structures based on
  3102. * our rx_ring count and intr vector count.
  3103. * The intr_context structure is used to hook each vector
  3104. * to possibly different handlers.
  3105. */
  3106. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3107. {
  3108. int i = 0;
  3109. struct intr_context *intr_context = &qdev->intr_context[0];
  3110. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3111. /* Each rx_ring has it's
  3112. * own intr_context since we have separate
  3113. * vectors for each queue.
  3114. */
  3115. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3116. qdev->rx_ring[i].irq = i;
  3117. intr_context->intr = i;
  3118. intr_context->qdev = qdev;
  3119. /* Set up this vector's bit-mask that indicates
  3120. * which queues it services.
  3121. */
  3122. ql_set_irq_mask(qdev, intr_context);
  3123. /*
  3124. * We set up each vectors enable/disable/read bits so
  3125. * there's no bit/mask calculations in the critical path.
  3126. */
  3127. intr_context->intr_en_mask =
  3128. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3129. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3130. | i;
  3131. intr_context->intr_dis_mask =
  3132. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3133. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3134. INTR_EN_IHD | i;
  3135. intr_context->intr_read_mask =
  3136. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3137. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3138. i;
  3139. if (i == 0) {
  3140. /* The first vector/queue handles
  3141. * broadcast/multicast, fatal errors,
  3142. * and firmware events. This in addition
  3143. * to normal inbound NAPI processing.
  3144. */
  3145. intr_context->handler = qlge_isr;
  3146. sprintf(intr_context->name, "%s-rx-%d",
  3147. qdev->ndev->name, i);
  3148. } else {
  3149. /*
  3150. * Inbound queues handle unicast frames only.
  3151. */
  3152. intr_context->handler = qlge_msix_rx_isr;
  3153. sprintf(intr_context->name, "%s-rx-%d",
  3154. qdev->ndev->name, i);
  3155. }
  3156. }
  3157. } else {
  3158. /*
  3159. * All rx_rings use the same intr_context since
  3160. * there is only one vector.
  3161. */
  3162. intr_context->intr = 0;
  3163. intr_context->qdev = qdev;
  3164. /*
  3165. * We set up each vectors enable/disable/read bits so
  3166. * there's no bit/mask calculations in the critical path.
  3167. */
  3168. intr_context->intr_en_mask =
  3169. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3170. intr_context->intr_dis_mask =
  3171. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3172. INTR_EN_TYPE_DISABLE;
  3173. intr_context->intr_read_mask =
  3174. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3175. /*
  3176. * Single interrupt means one handler for all rings.
  3177. */
  3178. intr_context->handler = qlge_isr;
  3179. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3180. /* Set up this vector's bit-mask that indicates
  3181. * which queues it services. In this case there is
  3182. * a single vector so it will service all RSS and
  3183. * TX completion rings.
  3184. */
  3185. ql_set_irq_mask(qdev, intr_context);
  3186. }
  3187. /* Tell the TX completion rings which MSIx vector
  3188. * they will be using.
  3189. */
  3190. ql_set_tx_vect(qdev);
  3191. }
  3192. static void ql_free_irq(struct ql_adapter *qdev)
  3193. {
  3194. int i;
  3195. struct intr_context *intr_context = &qdev->intr_context[0];
  3196. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3197. if (intr_context->hooked) {
  3198. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3199. free_irq(qdev->msi_x_entry[i].vector,
  3200. &qdev->rx_ring[i]);
  3201. } else {
  3202. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3203. }
  3204. }
  3205. }
  3206. ql_disable_msix(qdev);
  3207. }
  3208. static int ql_request_irq(struct ql_adapter *qdev)
  3209. {
  3210. int i;
  3211. int status = 0;
  3212. struct pci_dev *pdev = qdev->pdev;
  3213. struct intr_context *intr_context = &qdev->intr_context[0];
  3214. ql_resolve_queues_to_irqs(qdev);
  3215. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3216. atomic_set(&intr_context->irq_cnt, 0);
  3217. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3218. status = request_irq(qdev->msi_x_entry[i].vector,
  3219. intr_context->handler,
  3220. 0,
  3221. intr_context->name,
  3222. &qdev->rx_ring[i]);
  3223. if (status) {
  3224. netif_err(qdev, ifup, qdev->ndev,
  3225. "Failed request for MSIX interrupt %d.\n",
  3226. i);
  3227. goto err_irq;
  3228. }
  3229. } else {
  3230. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3231. "trying msi or legacy interrupts.\n");
  3232. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3233. "%s: irq = %d.\n", __func__, pdev->irq);
  3234. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3235. "%s: context->name = %s.\n", __func__,
  3236. intr_context->name);
  3237. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3238. "%s: dev_id = 0x%p.\n", __func__,
  3239. &qdev->rx_ring[0]);
  3240. status =
  3241. request_irq(pdev->irq, qlge_isr,
  3242. test_bit(QL_MSI_ENABLED,
  3243. &qdev->
  3244. flags) ? 0 : IRQF_SHARED,
  3245. intr_context->name, &qdev->rx_ring[0]);
  3246. if (status)
  3247. goto err_irq;
  3248. netif_err(qdev, ifup, qdev->ndev,
  3249. "Hooked intr %d, queue type %s, with name %s.\n",
  3250. i,
  3251. qdev->rx_ring[0].type == DEFAULT_Q ?
  3252. "DEFAULT_Q" :
  3253. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3254. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3255. intr_context->name);
  3256. }
  3257. intr_context->hooked = 1;
  3258. }
  3259. return status;
  3260. err_irq:
  3261. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
  3262. ql_free_irq(qdev);
  3263. return status;
  3264. }
  3265. static int ql_start_rss(struct ql_adapter *qdev)
  3266. {
  3267. static const u8 init_hash_seed[] = {
  3268. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3269. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3270. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3271. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3272. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3273. };
  3274. struct ricb *ricb = &qdev->ricb;
  3275. int status = 0;
  3276. int i;
  3277. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3278. memset((void *)ricb, 0, sizeof(*ricb));
  3279. ricb->base_cq = RSS_L4K;
  3280. ricb->flags =
  3281. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3282. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3283. /*
  3284. * Fill out the Indirection Table.
  3285. */
  3286. for (i = 0; i < 1024; i++)
  3287. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3288. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3289. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3290. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3291. if (status) {
  3292. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3293. return status;
  3294. }
  3295. return status;
  3296. }
  3297. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3298. {
  3299. int i, status = 0;
  3300. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3301. if (status)
  3302. return status;
  3303. /* Clear all the entries in the routing table. */
  3304. for (i = 0; i < 16; i++) {
  3305. status = ql_set_routing_reg(qdev, i, 0, 0);
  3306. if (status) {
  3307. netif_err(qdev, ifup, qdev->ndev,
  3308. "Failed to init routing register for CAM packets.\n");
  3309. break;
  3310. }
  3311. }
  3312. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3313. return status;
  3314. }
  3315. /* Initialize the frame-to-queue routing. */
  3316. static int ql_route_initialize(struct ql_adapter *qdev)
  3317. {
  3318. int status = 0;
  3319. /* Clear all the entries in the routing table. */
  3320. status = ql_clear_routing_entries(qdev);
  3321. if (status)
  3322. return status;
  3323. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3324. if (status)
  3325. return status;
  3326. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3327. RT_IDX_IP_CSUM_ERR, 1);
  3328. if (status) {
  3329. netif_err(qdev, ifup, qdev->ndev,
  3330. "Failed to init routing register "
  3331. "for IP CSUM error packets.\n");
  3332. goto exit;
  3333. }
  3334. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3335. RT_IDX_TU_CSUM_ERR, 1);
  3336. if (status) {
  3337. netif_err(qdev, ifup, qdev->ndev,
  3338. "Failed to init routing register "
  3339. "for TCP/UDP CSUM error packets.\n");
  3340. goto exit;
  3341. }
  3342. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3343. if (status) {
  3344. netif_err(qdev, ifup, qdev->ndev,
  3345. "Failed to init routing register for broadcast packets.\n");
  3346. goto exit;
  3347. }
  3348. /* If we have more than one inbound queue, then turn on RSS in the
  3349. * routing block.
  3350. */
  3351. if (qdev->rss_ring_count > 1) {
  3352. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3353. RT_IDX_RSS_MATCH, 1);
  3354. if (status) {
  3355. netif_err(qdev, ifup, qdev->ndev,
  3356. "Failed to init routing register for MATCH RSS packets.\n");
  3357. goto exit;
  3358. }
  3359. }
  3360. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3361. RT_IDX_CAM_HIT, 1);
  3362. if (status)
  3363. netif_err(qdev, ifup, qdev->ndev,
  3364. "Failed to init routing register for CAM packets.\n");
  3365. exit:
  3366. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3367. return status;
  3368. }
  3369. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3370. {
  3371. int status, set;
  3372. /* If check if the link is up and use to
  3373. * determine if we are setting or clearing
  3374. * the MAC address in the CAM.
  3375. */
  3376. set = ql_read32(qdev, STS);
  3377. set &= qdev->port_link_up;
  3378. status = ql_set_mac_addr(qdev, set);
  3379. if (status) {
  3380. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3381. return status;
  3382. }
  3383. status = ql_route_initialize(qdev);
  3384. if (status)
  3385. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3386. return status;
  3387. }
  3388. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3389. {
  3390. u32 value, mask;
  3391. int i;
  3392. int status = 0;
  3393. /*
  3394. * Set up the System register to halt on errors.
  3395. */
  3396. value = SYS_EFE | SYS_FAE;
  3397. mask = value << 16;
  3398. ql_write32(qdev, SYS, mask | value);
  3399. /* Set the default queue, and VLAN behavior. */
  3400. value = NIC_RCV_CFG_DFQ;
  3401. mask = NIC_RCV_CFG_DFQ_MASK;
  3402. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
  3403. value |= NIC_RCV_CFG_RV;
  3404. mask |= (NIC_RCV_CFG_RV << 16);
  3405. }
  3406. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3407. /* Set the MPI interrupt to enabled. */
  3408. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3409. /* Enable the function, set pagesize, enable error checking. */
  3410. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3411. FSC_EC | FSC_VM_PAGE_4K;
  3412. value |= SPLT_SETTING;
  3413. /* Set/clear header splitting. */
  3414. mask = FSC_VM_PAGESIZE_MASK |
  3415. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3416. ql_write32(qdev, FSC, mask | value);
  3417. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3418. /* Set RX packet routing to use port/pci function on which the
  3419. * packet arrived on in addition to usual frame routing.
  3420. * This is helpful on bonding where both interfaces can have
  3421. * the same MAC address.
  3422. */
  3423. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3424. /* Reroute all packets to our Interface.
  3425. * They may have been routed to MPI firmware
  3426. * due to WOL.
  3427. */
  3428. value = ql_read32(qdev, MGMT_RCV_CFG);
  3429. value &= ~MGMT_RCV_CFG_RM;
  3430. mask = 0xffff0000;
  3431. /* Sticky reg needs clearing due to WOL. */
  3432. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3433. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3434. /* Default WOL is enable on Mezz cards */
  3435. if (qdev->pdev->subsystem_device == 0x0068 ||
  3436. qdev->pdev->subsystem_device == 0x0180)
  3437. qdev->wol = WAKE_MAGIC;
  3438. /* Start up the rx queues. */
  3439. for (i = 0; i < qdev->rx_ring_count; i++) {
  3440. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3441. if (status) {
  3442. netif_err(qdev, ifup, qdev->ndev,
  3443. "Failed to start rx ring[%d].\n", i);
  3444. return status;
  3445. }
  3446. }
  3447. /* If there is more than one inbound completion queue
  3448. * then download a RICB to configure RSS.
  3449. */
  3450. if (qdev->rss_ring_count > 1) {
  3451. status = ql_start_rss(qdev);
  3452. if (status) {
  3453. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3454. return status;
  3455. }
  3456. }
  3457. /* Start up the tx queues. */
  3458. for (i = 0; i < qdev->tx_ring_count; i++) {
  3459. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3460. if (status) {
  3461. netif_err(qdev, ifup, qdev->ndev,
  3462. "Failed to start tx ring[%d].\n", i);
  3463. return status;
  3464. }
  3465. }
  3466. /* Initialize the port and set the max framesize. */
  3467. status = qdev->nic_ops->port_initialize(qdev);
  3468. if (status)
  3469. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3470. /* Set up the MAC address and frame routing filter. */
  3471. status = ql_cam_route_initialize(qdev);
  3472. if (status) {
  3473. netif_err(qdev, ifup, qdev->ndev,
  3474. "Failed to init CAM/Routing tables.\n");
  3475. return status;
  3476. }
  3477. /* Start NAPI for the RSS queues. */
  3478. for (i = 0; i < qdev->rss_ring_count; i++)
  3479. napi_enable(&qdev->rx_ring[i].napi);
  3480. return status;
  3481. }
  3482. /* Issue soft reset to chip. */
  3483. static int ql_adapter_reset(struct ql_adapter *qdev)
  3484. {
  3485. u32 value;
  3486. int status = 0;
  3487. unsigned long end_jiffies;
  3488. /* Clear all the entries in the routing table. */
  3489. status = ql_clear_routing_entries(qdev);
  3490. if (status) {
  3491. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3492. return status;
  3493. }
  3494. /* Check if bit is set then skip the mailbox command and
  3495. * clear the bit, else we are in normal reset process.
  3496. */
  3497. if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
  3498. /* Stop management traffic. */
  3499. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3500. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3501. ql_wait_fifo_empty(qdev);
  3502. } else
  3503. clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
  3504. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3505. end_jiffies = jiffies + usecs_to_jiffies(30);
  3506. do {
  3507. value = ql_read32(qdev, RST_FO);
  3508. if ((value & RST_FO_FR) == 0)
  3509. break;
  3510. cpu_relax();
  3511. } while (time_before(jiffies, end_jiffies));
  3512. if (value & RST_FO_FR) {
  3513. netif_err(qdev, ifdown, qdev->ndev,
  3514. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3515. status = -ETIMEDOUT;
  3516. }
  3517. /* Resume management traffic. */
  3518. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3519. return status;
  3520. }
  3521. static void ql_display_dev_info(struct net_device *ndev)
  3522. {
  3523. struct ql_adapter *qdev = netdev_priv(ndev);
  3524. netif_info(qdev, probe, qdev->ndev,
  3525. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3526. "XG Roll = %d, XG Rev = %d.\n",
  3527. qdev->func,
  3528. qdev->port,
  3529. qdev->chip_rev_id & 0x0000000f,
  3530. qdev->chip_rev_id >> 4 & 0x0000000f,
  3531. qdev->chip_rev_id >> 8 & 0x0000000f,
  3532. qdev->chip_rev_id >> 12 & 0x0000000f);
  3533. netif_info(qdev, probe, qdev->ndev,
  3534. "MAC address %pM\n", ndev->dev_addr);
  3535. }
  3536. static int ql_wol(struct ql_adapter *qdev)
  3537. {
  3538. int status = 0;
  3539. u32 wol = MB_WOL_DISABLE;
  3540. /* The CAM is still intact after a reset, but if we
  3541. * are doing WOL, then we may need to program the
  3542. * routing regs. We would also need to issue the mailbox
  3543. * commands to instruct the MPI what to do per the ethtool
  3544. * settings.
  3545. */
  3546. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3547. WAKE_MCAST | WAKE_BCAST)) {
  3548. netif_err(qdev, ifdown, qdev->ndev,
  3549. "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
  3550. qdev->wol);
  3551. return -EINVAL;
  3552. }
  3553. if (qdev->wol & WAKE_MAGIC) {
  3554. status = ql_mb_wol_set_magic(qdev, 1);
  3555. if (status) {
  3556. netif_err(qdev, ifdown, qdev->ndev,
  3557. "Failed to set magic packet on %s.\n",
  3558. qdev->ndev->name);
  3559. return status;
  3560. } else
  3561. netif_info(qdev, drv, qdev->ndev,
  3562. "Enabled magic packet successfully on %s.\n",
  3563. qdev->ndev->name);
  3564. wol |= MB_WOL_MAGIC_PKT;
  3565. }
  3566. if (qdev->wol) {
  3567. wol |= MB_WOL_MODE_ON;
  3568. status = ql_mb_wol_mode(qdev, wol);
  3569. netif_err(qdev, drv, qdev->ndev,
  3570. "WOL %s (wol code 0x%x) on %s\n",
  3571. (status == 0) ? "Successfully set" : "Failed",
  3572. wol, qdev->ndev->name);
  3573. }
  3574. return status;
  3575. }
  3576. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3577. {
  3578. /* Don't kill the reset worker thread if we
  3579. * are in the process of recovery.
  3580. */
  3581. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3582. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3583. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3584. cancel_delayed_work_sync(&qdev->mpi_work);
  3585. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3586. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3587. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3588. }
  3589. static int ql_adapter_down(struct ql_adapter *qdev)
  3590. {
  3591. int i, status = 0;
  3592. ql_link_off(qdev);
  3593. ql_cancel_all_work_sync(qdev);
  3594. for (i = 0; i < qdev->rss_ring_count; i++)
  3595. napi_disable(&qdev->rx_ring[i].napi);
  3596. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3597. ql_disable_interrupts(qdev);
  3598. ql_tx_ring_clean(qdev);
  3599. /* Call netif_napi_del() from common point.
  3600. */
  3601. for (i = 0; i < qdev->rss_ring_count; i++)
  3602. netif_napi_del(&qdev->rx_ring[i].napi);
  3603. status = ql_adapter_reset(qdev);
  3604. if (status)
  3605. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3606. qdev->func);
  3607. ql_free_rx_buffers(qdev);
  3608. return status;
  3609. }
  3610. static int ql_adapter_up(struct ql_adapter *qdev)
  3611. {
  3612. int err = 0;
  3613. err = ql_adapter_initialize(qdev);
  3614. if (err) {
  3615. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3616. goto err_init;
  3617. }
  3618. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3619. ql_alloc_rx_buffers(qdev);
  3620. /* If the port is initialized and the
  3621. * link is up the turn on the carrier.
  3622. */
  3623. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3624. (ql_read32(qdev, STS) & qdev->port_link_up))
  3625. ql_link_on(qdev);
  3626. /* Restore rx mode. */
  3627. clear_bit(QL_ALLMULTI, &qdev->flags);
  3628. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3629. qlge_set_multicast_list(qdev->ndev);
  3630. /* Restore vlan setting. */
  3631. qlge_restore_vlan(qdev);
  3632. ql_enable_interrupts(qdev);
  3633. ql_enable_all_completion_interrupts(qdev);
  3634. netif_tx_start_all_queues(qdev->ndev);
  3635. return 0;
  3636. err_init:
  3637. ql_adapter_reset(qdev);
  3638. return err;
  3639. }
  3640. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3641. {
  3642. ql_free_mem_resources(qdev);
  3643. ql_free_irq(qdev);
  3644. }
  3645. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3646. {
  3647. int status = 0;
  3648. if (ql_alloc_mem_resources(qdev)) {
  3649. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3650. return -ENOMEM;
  3651. }
  3652. status = ql_request_irq(qdev);
  3653. return status;
  3654. }
  3655. static int qlge_close(struct net_device *ndev)
  3656. {
  3657. struct ql_adapter *qdev = netdev_priv(ndev);
  3658. /* If we hit pci_channel_io_perm_failure
  3659. * failure condition, then we already
  3660. * brought the adapter down.
  3661. */
  3662. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3663. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3664. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3665. return 0;
  3666. }
  3667. /*
  3668. * Wait for device to recover from a reset.
  3669. * (Rarely happens, but possible.)
  3670. */
  3671. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3672. msleep(1);
  3673. ql_adapter_down(qdev);
  3674. ql_release_adapter_resources(qdev);
  3675. return 0;
  3676. }
  3677. static int ql_configure_rings(struct ql_adapter *qdev)
  3678. {
  3679. int i;
  3680. struct rx_ring *rx_ring;
  3681. struct tx_ring *tx_ring;
  3682. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3683. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3684. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3685. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3686. /* In a perfect world we have one RSS ring for each CPU
  3687. * and each has it's own vector. To do that we ask for
  3688. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3689. * vector count to what we actually get. We then
  3690. * allocate an RSS ring for each.
  3691. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3692. */
  3693. qdev->intr_count = cpu_cnt;
  3694. ql_enable_msix(qdev);
  3695. /* Adjust the RSS ring count to the actual vector count. */
  3696. qdev->rss_ring_count = qdev->intr_count;
  3697. qdev->tx_ring_count = cpu_cnt;
  3698. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3699. for (i = 0; i < qdev->tx_ring_count; i++) {
  3700. tx_ring = &qdev->tx_ring[i];
  3701. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3702. tx_ring->qdev = qdev;
  3703. tx_ring->wq_id = i;
  3704. tx_ring->wq_len = qdev->tx_ring_size;
  3705. tx_ring->wq_size =
  3706. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3707. /*
  3708. * The completion queue ID for the tx rings start
  3709. * immediately after the rss rings.
  3710. */
  3711. tx_ring->cq_id = qdev->rss_ring_count + i;
  3712. }
  3713. for (i = 0; i < qdev->rx_ring_count; i++) {
  3714. rx_ring = &qdev->rx_ring[i];
  3715. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3716. rx_ring->qdev = qdev;
  3717. rx_ring->cq_id = i;
  3718. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3719. if (i < qdev->rss_ring_count) {
  3720. /*
  3721. * Inbound (RSS) queues.
  3722. */
  3723. rx_ring->cq_len = qdev->rx_ring_size;
  3724. rx_ring->cq_size =
  3725. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3726. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3727. rx_ring->lbq_size =
  3728. rx_ring->lbq_len * sizeof(__le64);
  3729. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3730. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3731. rx_ring->sbq_size =
  3732. rx_ring->sbq_len * sizeof(__le64);
  3733. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3734. rx_ring->type = RX_Q;
  3735. } else {
  3736. /*
  3737. * Outbound queue handles outbound completions only.
  3738. */
  3739. /* outbound cq is same size as tx_ring it services. */
  3740. rx_ring->cq_len = qdev->tx_ring_size;
  3741. rx_ring->cq_size =
  3742. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3743. rx_ring->lbq_len = 0;
  3744. rx_ring->lbq_size = 0;
  3745. rx_ring->lbq_buf_size = 0;
  3746. rx_ring->sbq_len = 0;
  3747. rx_ring->sbq_size = 0;
  3748. rx_ring->sbq_buf_size = 0;
  3749. rx_ring->type = TX_Q;
  3750. }
  3751. }
  3752. return 0;
  3753. }
  3754. static int qlge_open(struct net_device *ndev)
  3755. {
  3756. int err = 0;
  3757. struct ql_adapter *qdev = netdev_priv(ndev);
  3758. err = ql_adapter_reset(qdev);
  3759. if (err)
  3760. return err;
  3761. err = ql_configure_rings(qdev);
  3762. if (err)
  3763. return err;
  3764. err = ql_get_adapter_resources(qdev);
  3765. if (err)
  3766. goto error_up;
  3767. err = ql_adapter_up(qdev);
  3768. if (err)
  3769. goto error_up;
  3770. return err;
  3771. error_up:
  3772. ql_release_adapter_resources(qdev);
  3773. return err;
  3774. }
  3775. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3776. {
  3777. struct rx_ring *rx_ring;
  3778. int i, status;
  3779. u32 lbq_buf_len;
  3780. /* Wait for an outstanding reset to complete. */
  3781. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3782. int i = 4;
  3783. while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3784. netif_err(qdev, ifup, qdev->ndev,
  3785. "Waiting for adapter UP...\n");
  3786. ssleep(1);
  3787. }
  3788. if (!i) {
  3789. netif_err(qdev, ifup, qdev->ndev,
  3790. "Timed out waiting for adapter UP\n");
  3791. return -ETIMEDOUT;
  3792. }
  3793. }
  3794. status = ql_adapter_down(qdev);
  3795. if (status)
  3796. goto error;
  3797. /* Get the new rx buffer size. */
  3798. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3799. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3800. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3801. for (i = 0; i < qdev->rss_ring_count; i++) {
  3802. rx_ring = &qdev->rx_ring[i];
  3803. /* Set the new size. */
  3804. rx_ring->lbq_buf_size = lbq_buf_len;
  3805. }
  3806. status = ql_adapter_up(qdev);
  3807. if (status)
  3808. goto error;
  3809. return status;
  3810. error:
  3811. netif_alert(qdev, ifup, qdev->ndev,
  3812. "Driver up/down cycle failed, closing device.\n");
  3813. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3814. dev_close(qdev->ndev);
  3815. return status;
  3816. }
  3817. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3818. {
  3819. struct ql_adapter *qdev = netdev_priv(ndev);
  3820. int status;
  3821. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3822. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3823. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3824. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3825. } else
  3826. return -EINVAL;
  3827. queue_delayed_work(qdev->workqueue,
  3828. &qdev->mpi_port_cfg_work, 3*HZ);
  3829. ndev->mtu = new_mtu;
  3830. if (!netif_running(qdev->ndev)) {
  3831. return 0;
  3832. }
  3833. status = ql_change_rx_buffers(qdev);
  3834. if (status) {
  3835. netif_err(qdev, ifup, qdev->ndev,
  3836. "Changing MTU failed.\n");
  3837. }
  3838. return status;
  3839. }
  3840. static struct net_device_stats *qlge_get_stats(struct net_device
  3841. *ndev)
  3842. {
  3843. struct ql_adapter *qdev = netdev_priv(ndev);
  3844. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3845. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3846. unsigned long pkts, mcast, dropped, errors, bytes;
  3847. int i;
  3848. /* Get RX stats. */
  3849. pkts = mcast = dropped = errors = bytes = 0;
  3850. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3851. pkts += rx_ring->rx_packets;
  3852. bytes += rx_ring->rx_bytes;
  3853. dropped += rx_ring->rx_dropped;
  3854. errors += rx_ring->rx_errors;
  3855. mcast += rx_ring->rx_multicast;
  3856. }
  3857. ndev->stats.rx_packets = pkts;
  3858. ndev->stats.rx_bytes = bytes;
  3859. ndev->stats.rx_dropped = dropped;
  3860. ndev->stats.rx_errors = errors;
  3861. ndev->stats.multicast = mcast;
  3862. /* Get TX stats. */
  3863. pkts = errors = bytes = 0;
  3864. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3865. pkts += tx_ring->tx_packets;
  3866. bytes += tx_ring->tx_bytes;
  3867. errors += tx_ring->tx_errors;
  3868. }
  3869. ndev->stats.tx_packets = pkts;
  3870. ndev->stats.tx_bytes = bytes;
  3871. ndev->stats.tx_errors = errors;
  3872. return &ndev->stats;
  3873. }
  3874. static void qlge_set_multicast_list(struct net_device *ndev)
  3875. {
  3876. struct ql_adapter *qdev = netdev_priv(ndev);
  3877. struct netdev_hw_addr *ha;
  3878. int i, status;
  3879. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3880. if (status)
  3881. return;
  3882. /*
  3883. * Set or clear promiscuous mode if a
  3884. * transition is taking place.
  3885. */
  3886. if (ndev->flags & IFF_PROMISC) {
  3887. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3888. if (ql_set_routing_reg
  3889. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3890. netif_err(qdev, hw, qdev->ndev,
  3891. "Failed to set promiscuous mode.\n");
  3892. } else {
  3893. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3894. }
  3895. }
  3896. } else {
  3897. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3898. if (ql_set_routing_reg
  3899. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3900. netif_err(qdev, hw, qdev->ndev,
  3901. "Failed to clear promiscuous mode.\n");
  3902. } else {
  3903. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3904. }
  3905. }
  3906. }
  3907. /*
  3908. * Set or clear all multicast mode if a
  3909. * transition is taking place.
  3910. */
  3911. if ((ndev->flags & IFF_ALLMULTI) ||
  3912. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3913. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3914. if (ql_set_routing_reg
  3915. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3916. netif_err(qdev, hw, qdev->ndev,
  3917. "Failed to set all-multi mode.\n");
  3918. } else {
  3919. set_bit(QL_ALLMULTI, &qdev->flags);
  3920. }
  3921. }
  3922. } else {
  3923. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3924. if (ql_set_routing_reg
  3925. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3926. netif_err(qdev, hw, qdev->ndev,
  3927. "Failed to clear all-multi mode.\n");
  3928. } else {
  3929. clear_bit(QL_ALLMULTI, &qdev->flags);
  3930. }
  3931. }
  3932. }
  3933. if (!netdev_mc_empty(ndev)) {
  3934. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3935. if (status)
  3936. goto exit;
  3937. i = 0;
  3938. netdev_for_each_mc_addr(ha, ndev) {
  3939. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3940. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3941. netif_err(qdev, hw, qdev->ndev,
  3942. "Failed to loadmulticast address.\n");
  3943. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3944. goto exit;
  3945. }
  3946. i++;
  3947. }
  3948. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3949. if (ql_set_routing_reg
  3950. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3951. netif_err(qdev, hw, qdev->ndev,
  3952. "Failed to set multicast match mode.\n");
  3953. } else {
  3954. set_bit(QL_ALLMULTI, &qdev->flags);
  3955. }
  3956. }
  3957. exit:
  3958. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3959. }
  3960. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3961. {
  3962. struct ql_adapter *qdev = netdev_priv(ndev);
  3963. struct sockaddr *addr = p;
  3964. int status;
  3965. if (!is_valid_ether_addr(addr->sa_data))
  3966. return -EADDRNOTAVAIL;
  3967. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3968. /* Update local copy of current mac address. */
  3969. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3970. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3971. if (status)
  3972. return status;
  3973. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3974. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3975. if (status)
  3976. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3977. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3978. return status;
  3979. }
  3980. static void qlge_tx_timeout(struct net_device *ndev)
  3981. {
  3982. struct ql_adapter *qdev = netdev_priv(ndev);
  3983. ql_queue_asic_error(qdev);
  3984. }
  3985. static void ql_asic_reset_work(struct work_struct *work)
  3986. {
  3987. struct ql_adapter *qdev =
  3988. container_of(work, struct ql_adapter, asic_reset_work.work);
  3989. int status;
  3990. rtnl_lock();
  3991. status = ql_adapter_down(qdev);
  3992. if (status)
  3993. goto error;
  3994. status = ql_adapter_up(qdev);
  3995. if (status)
  3996. goto error;
  3997. /* Restore rx mode. */
  3998. clear_bit(QL_ALLMULTI, &qdev->flags);
  3999. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  4000. qlge_set_multicast_list(qdev->ndev);
  4001. rtnl_unlock();
  4002. return;
  4003. error:
  4004. netif_alert(qdev, ifup, qdev->ndev,
  4005. "Driver up/down cycle failed, closing device\n");
  4006. set_bit(QL_ADAPTER_UP, &qdev->flags);
  4007. dev_close(qdev->ndev);
  4008. rtnl_unlock();
  4009. }
  4010. static const struct nic_operations qla8012_nic_ops = {
  4011. .get_flash = ql_get_8012_flash_params,
  4012. .port_initialize = ql_8012_port_initialize,
  4013. };
  4014. static const struct nic_operations qla8000_nic_ops = {
  4015. .get_flash = ql_get_8000_flash_params,
  4016. .port_initialize = ql_8000_port_initialize,
  4017. };
  4018. /* Find the pcie function number for the other NIC
  4019. * on this chip. Since both NIC functions share a
  4020. * common firmware we have the lowest enabled function
  4021. * do any common work. Examples would be resetting
  4022. * after a fatal firmware error, or doing a firmware
  4023. * coredump.
  4024. */
  4025. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  4026. {
  4027. int status = 0;
  4028. u32 temp;
  4029. u32 nic_func1, nic_func2;
  4030. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  4031. &temp);
  4032. if (status)
  4033. return status;
  4034. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  4035. MPI_TEST_NIC_FUNC_MASK);
  4036. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  4037. MPI_TEST_NIC_FUNC_MASK);
  4038. if (qdev->func == nic_func1)
  4039. qdev->alt_func = nic_func2;
  4040. else if (qdev->func == nic_func2)
  4041. qdev->alt_func = nic_func1;
  4042. else
  4043. status = -EIO;
  4044. return status;
  4045. }
  4046. static int ql_get_board_info(struct ql_adapter *qdev)
  4047. {
  4048. int status;
  4049. qdev->func =
  4050. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  4051. if (qdev->func > 3)
  4052. return -EIO;
  4053. status = ql_get_alt_pcie_func(qdev);
  4054. if (status)
  4055. return status;
  4056. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  4057. if (qdev->port) {
  4058. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  4059. qdev->port_link_up = STS_PL1;
  4060. qdev->port_init = STS_PI1;
  4061. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  4062. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  4063. } else {
  4064. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  4065. qdev->port_link_up = STS_PL0;
  4066. qdev->port_init = STS_PI0;
  4067. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  4068. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  4069. }
  4070. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  4071. qdev->device_id = qdev->pdev->device;
  4072. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  4073. qdev->nic_ops = &qla8012_nic_ops;
  4074. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  4075. qdev->nic_ops = &qla8000_nic_ops;
  4076. return status;
  4077. }
  4078. static void ql_release_all(struct pci_dev *pdev)
  4079. {
  4080. struct net_device *ndev = pci_get_drvdata(pdev);
  4081. struct ql_adapter *qdev = netdev_priv(ndev);
  4082. if (qdev->workqueue) {
  4083. destroy_workqueue(qdev->workqueue);
  4084. qdev->workqueue = NULL;
  4085. }
  4086. if (qdev->reg_base)
  4087. iounmap(qdev->reg_base);
  4088. if (qdev->doorbell_area)
  4089. iounmap(qdev->doorbell_area);
  4090. vfree(qdev->mpi_coredump);
  4091. pci_release_regions(pdev);
  4092. }
  4093. static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
  4094. int cards_found)
  4095. {
  4096. struct ql_adapter *qdev = netdev_priv(ndev);
  4097. int err = 0;
  4098. memset((void *)qdev, 0, sizeof(*qdev));
  4099. err = pci_enable_device(pdev);
  4100. if (err) {
  4101. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4102. return err;
  4103. }
  4104. qdev->ndev = ndev;
  4105. qdev->pdev = pdev;
  4106. pci_set_drvdata(pdev, ndev);
  4107. /* Set PCIe read request size */
  4108. err = pcie_set_readrq(pdev, 4096);
  4109. if (err) {
  4110. dev_err(&pdev->dev, "Set readrq failed.\n");
  4111. goto err_out1;
  4112. }
  4113. err = pci_request_regions(pdev, DRV_NAME);
  4114. if (err) {
  4115. dev_err(&pdev->dev, "PCI region request failed.\n");
  4116. return err;
  4117. }
  4118. pci_set_master(pdev);
  4119. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4120. set_bit(QL_DMA64, &qdev->flags);
  4121. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4122. } else {
  4123. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4124. if (!err)
  4125. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4126. }
  4127. if (err) {
  4128. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4129. goto err_out2;
  4130. }
  4131. /* Set PCIe reset type for EEH to fundamental. */
  4132. pdev->needs_freset = 1;
  4133. pci_save_state(pdev);
  4134. qdev->reg_base =
  4135. ioremap_nocache(pci_resource_start(pdev, 1),
  4136. pci_resource_len(pdev, 1));
  4137. if (!qdev->reg_base) {
  4138. dev_err(&pdev->dev, "Register mapping failed.\n");
  4139. err = -ENOMEM;
  4140. goto err_out2;
  4141. }
  4142. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4143. qdev->doorbell_area =
  4144. ioremap_nocache(pci_resource_start(pdev, 3),
  4145. pci_resource_len(pdev, 3));
  4146. if (!qdev->doorbell_area) {
  4147. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4148. err = -ENOMEM;
  4149. goto err_out2;
  4150. }
  4151. err = ql_get_board_info(qdev);
  4152. if (err) {
  4153. dev_err(&pdev->dev, "Register access failed.\n");
  4154. err = -EIO;
  4155. goto err_out2;
  4156. }
  4157. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4158. spin_lock_init(&qdev->hw_lock);
  4159. spin_lock_init(&qdev->stats_lock);
  4160. if (qlge_mpi_coredump) {
  4161. qdev->mpi_coredump =
  4162. vmalloc(sizeof(struct ql_mpi_coredump));
  4163. if (qdev->mpi_coredump == NULL) {
  4164. err = -ENOMEM;
  4165. goto err_out2;
  4166. }
  4167. if (qlge_force_coredump)
  4168. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4169. }
  4170. /* make sure the EEPROM is good */
  4171. err = qdev->nic_ops->get_flash(qdev);
  4172. if (err) {
  4173. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4174. goto err_out2;
  4175. }
  4176. /* Keep local copy of current mac address. */
  4177. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4178. /* Set up the default ring sizes. */
  4179. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4180. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4181. /* Set up the coalescing parameters. */
  4182. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4183. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4184. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4185. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4186. /*
  4187. * Set up the operating parameters.
  4188. */
  4189. qdev->workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
  4190. ndev->name);
  4191. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4192. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4193. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4194. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4195. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4196. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4197. init_completion(&qdev->ide_completion);
  4198. mutex_init(&qdev->mpi_mutex);
  4199. if (!cards_found) {
  4200. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4201. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4202. DRV_NAME, DRV_VERSION);
  4203. }
  4204. return 0;
  4205. err_out2:
  4206. ql_release_all(pdev);
  4207. err_out1:
  4208. pci_disable_device(pdev);
  4209. return err;
  4210. }
  4211. static const struct net_device_ops qlge_netdev_ops = {
  4212. .ndo_open = qlge_open,
  4213. .ndo_stop = qlge_close,
  4214. .ndo_start_xmit = qlge_send,
  4215. .ndo_change_mtu = qlge_change_mtu,
  4216. .ndo_get_stats = qlge_get_stats,
  4217. .ndo_set_rx_mode = qlge_set_multicast_list,
  4218. .ndo_set_mac_address = qlge_set_mac_address,
  4219. .ndo_validate_addr = eth_validate_addr,
  4220. .ndo_tx_timeout = qlge_tx_timeout,
  4221. .ndo_fix_features = qlge_fix_features,
  4222. .ndo_set_features = qlge_set_features,
  4223. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4224. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4225. };
  4226. static void ql_timer(struct timer_list *t)
  4227. {
  4228. struct ql_adapter *qdev = from_timer(qdev, t, timer);
  4229. u32 var = 0;
  4230. var = ql_read32(qdev, STS);
  4231. if (pci_channel_offline(qdev->pdev)) {
  4232. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4233. return;
  4234. }
  4235. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4236. }
  4237. static int qlge_probe(struct pci_dev *pdev,
  4238. const struct pci_device_id *pci_entry)
  4239. {
  4240. struct net_device *ndev = NULL;
  4241. struct ql_adapter *qdev = NULL;
  4242. static int cards_found = 0;
  4243. int err = 0;
  4244. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4245. min(MAX_CPUS, netif_get_num_default_rss_queues()));
  4246. if (!ndev)
  4247. return -ENOMEM;
  4248. err = ql_init_device(pdev, ndev, cards_found);
  4249. if (err < 0) {
  4250. free_netdev(ndev);
  4251. return err;
  4252. }
  4253. qdev = netdev_priv(ndev);
  4254. SET_NETDEV_DEV(ndev, &pdev->dev);
  4255. ndev->hw_features = NETIF_F_SG |
  4256. NETIF_F_IP_CSUM |
  4257. NETIF_F_TSO |
  4258. NETIF_F_TSO_ECN |
  4259. NETIF_F_HW_VLAN_CTAG_TX |
  4260. NETIF_F_HW_VLAN_CTAG_RX |
  4261. NETIF_F_HW_VLAN_CTAG_FILTER |
  4262. NETIF_F_RXCSUM;
  4263. ndev->features = ndev->hw_features;
  4264. ndev->vlan_features = ndev->hw_features;
  4265. /* vlan gets same features (except vlan filter) */
  4266. ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
  4267. NETIF_F_HW_VLAN_CTAG_TX |
  4268. NETIF_F_HW_VLAN_CTAG_RX);
  4269. if (test_bit(QL_DMA64, &qdev->flags))
  4270. ndev->features |= NETIF_F_HIGHDMA;
  4271. /*
  4272. * Set up net_device structure.
  4273. */
  4274. ndev->tx_queue_len = qdev->tx_ring_size;
  4275. ndev->irq = pdev->irq;
  4276. ndev->netdev_ops = &qlge_netdev_ops;
  4277. ndev->ethtool_ops = &qlge_ethtool_ops;
  4278. ndev->watchdog_timeo = 10 * HZ;
  4279. /* MTU range: this driver only supports 1500 or 9000, so this only
  4280. * filters out values above or below, and we'll rely on
  4281. * qlge_change_mtu to make sure only 1500 or 9000 are allowed
  4282. */
  4283. ndev->min_mtu = ETH_DATA_LEN;
  4284. ndev->max_mtu = 9000;
  4285. err = register_netdev(ndev);
  4286. if (err) {
  4287. dev_err(&pdev->dev, "net device registration failed.\n");
  4288. ql_release_all(pdev);
  4289. pci_disable_device(pdev);
  4290. free_netdev(ndev);
  4291. return err;
  4292. }
  4293. /* Start up the timer to trigger EEH if
  4294. * the bus goes dead
  4295. */
  4296. timer_setup(&qdev->timer, ql_timer, TIMER_DEFERRABLE);
  4297. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4298. ql_link_off(qdev);
  4299. ql_display_dev_info(ndev);
  4300. atomic_set(&qdev->lb_count, 0);
  4301. cards_found++;
  4302. return 0;
  4303. }
  4304. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4305. {
  4306. return qlge_send(skb, ndev);
  4307. }
  4308. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4309. {
  4310. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4311. }
  4312. static void qlge_remove(struct pci_dev *pdev)
  4313. {
  4314. struct net_device *ndev = pci_get_drvdata(pdev);
  4315. struct ql_adapter *qdev = netdev_priv(ndev);
  4316. del_timer_sync(&qdev->timer);
  4317. ql_cancel_all_work_sync(qdev);
  4318. unregister_netdev(ndev);
  4319. ql_release_all(pdev);
  4320. pci_disable_device(pdev);
  4321. free_netdev(ndev);
  4322. }
  4323. /* Clean up resources without touching hardware. */
  4324. static void ql_eeh_close(struct net_device *ndev)
  4325. {
  4326. int i;
  4327. struct ql_adapter *qdev = netdev_priv(ndev);
  4328. if (netif_carrier_ok(ndev)) {
  4329. netif_carrier_off(ndev);
  4330. netif_stop_queue(ndev);
  4331. }
  4332. /* Disabling the timer */
  4333. ql_cancel_all_work_sync(qdev);
  4334. for (i = 0; i < qdev->rss_ring_count; i++)
  4335. netif_napi_del(&qdev->rx_ring[i].napi);
  4336. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4337. ql_tx_ring_clean(qdev);
  4338. ql_free_rx_buffers(qdev);
  4339. ql_release_adapter_resources(qdev);
  4340. }
  4341. /*
  4342. * This callback is called by the PCI subsystem whenever
  4343. * a PCI bus error is detected.
  4344. */
  4345. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4346. enum pci_channel_state state)
  4347. {
  4348. struct net_device *ndev = pci_get_drvdata(pdev);
  4349. struct ql_adapter *qdev = netdev_priv(ndev);
  4350. switch (state) {
  4351. case pci_channel_io_normal:
  4352. return PCI_ERS_RESULT_CAN_RECOVER;
  4353. case pci_channel_io_frozen:
  4354. netif_device_detach(ndev);
  4355. del_timer_sync(&qdev->timer);
  4356. if (netif_running(ndev))
  4357. ql_eeh_close(ndev);
  4358. pci_disable_device(pdev);
  4359. return PCI_ERS_RESULT_NEED_RESET;
  4360. case pci_channel_io_perm_failure:
  4361. dev_err(&pdev->dev,
  4362. "%s: pci_channel_io_perm_failure.\n", __func__);
  4363. del_timer_sync(&qdev->timer);
  4364. ql_eeh_close(ndev);
  4365. set_bit(QL_EEH_FATAL, &qdev->flags);
  4366. return PCI_ERS_RESULT_DISCONNECT;
  4367. }
  4368. /* Request a slot reset. */
  4369. return PCI_ERS_RESULT_NEED_RESET;
  4370. }
  4371. /*
  4372. * This callback is called after the PCI buss has been reset.
  4373. * Basically, this tries to restart the card from scratch.
  4374. * This is a shortened version of the device probe/discovery code,
  4375. * it resembles the first-half of the () routine.
  4376. */
  4377. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4378. {
  4379. struct net_device *ndev = pci_get_drvdata(pdev);
  4380. struct ql_adapter *qdev = netdev_priv(ndev);
  4381. pdev->error_state = pci_channel_io_normal;
  4382. pci_restore_state(pdev);
  4383. if (pci_enable_device(pdev)) {
  4384. netif_err(qdev, ifup, qdev->ndev,
  4385. "Cannot re-enable PCI device after reset.\n");
  4386. return PCI_ERS_RESULT_DISCONNECT;
  4387. }
  4388. pci_set_master(pdev);
  4389. if (ql_adapter_reset(qdev)) {
  4390. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4391. set_bit(QL_EEH_FATAL, &qdev->flags);
  4392. return PCI_ERS_RESULT_DISCONNECT;
  4393. }
  4394. return PCI_ERS_RESULT_RECOVERED;
  4395. }
  4396. static void qlge_io_resume(struct pci_dev *pdev)
  4397. {
  4398. struct net_device *ndev = pci_get_drvdata(pdev);
  4399. struct ql_adapter *qdev = netdev_priv(ndev);
  4400. int err = 0;
  4401. if (netif_running(ndev)) {
  4402. err = qlge_open(ndev);
  4403. if (err) {
  4404. netif_err(qdev, ifup, qdev->ndev,
  4405. "Device initialization failed after reset.\n");
  4406. return;
  4407. }
  4408. } else {
  4409. netif_err(qdev, ifup, qdev->ndev,
  4410. "Device was not running prior to EEH.\n");
  4411. }
  4412. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4413. netif_device_attach(ndev);
  4414. }
  4415. static const struct pci_error_handlers qlge_err_handler = {
  4416. .error_detected = qlge_io_error_detected,
  4417. .slot_reset = qlge_io_slot_reset,
  4418. .resume = qlge_io_resume,
  4419. };
  4420. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4421. {
  4422. struct net_device *ndev = pci_get_drvdata(pdev);
  4423. struct ql_adapter *qdev = netdev_priv(ndev);
  4424. int err;
  4425. netif_device_detach(ndev);
  4426. del_timer_sync(&qdev->timer);
  4427. if (netif_running(ndev)) {
  4428. err = ql_adapter_down(qdev);
  4429. if (!err)
  4430. return err;
  4431. }
  4432. ql_wol(qdev);
  4433. err = pci_save_state(pdev);
  4434. if (err)
  4435. return err;
  4436. pci_disable_device(pdev);
  4437. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4438. return 0;
  4439. }
  4440. #ifdef CONFIG_PM
  4441. static int qlge_resume(struct pci_dev *pdev)
  4442. {
  4443. struct net_device *ndev = pci_get_drvdata(pdev);
  4444. struct ql_adapter *qdev = netdev_priv(ndev);
  4445. int err;
  4446. pci_set_power_state(pdev, PCI_D0);
  4447. pci_restore_state(pdev);
  4448. err = pci_enable_device(pdev);
  4449. if (err) {
  4450. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4451. return err;
  4452. }
  4453. pci_set_master(pdev);
  4454. pci_enable_wake(pdev, PCI_D3hot, 0);
  4455. pci_enable_wake(pdev, PCI_D3cold, 0);
  4456. if (netif_running(ndev)) {
  4457. err = ql_adapter_up(qdev);
  4458. if (err)
  4459. return err;
  4460. }
  4461. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4462. netif_device_attach(ndev);
  4463. return 0;
  4464. }
  4465. #endif /* CONFIG_PM */
  4466. static void qlge_shutdown(struct pci_dev *pdev)
  4467. {
  4468. qlge_suspend(pdev, PMSG_SUSPEND);
  4469. }
  4470. static struct pci_driver qlge_driver = {
  4471. .name = DRV_NAME,
  4472. .id_table = qlge_pci_tbl,
  4473. .probe = qlge_probe,
  4474. .remove = qlge_remove,
  4475. #ifdef CONFIG_PM
  4476. .suspend = qlge_suspend,
  4477. .resume = qlge_resume,
  4478. #endif
  4479. .shutdown = qlge_shutdown,
  4480. .err_handler = &qlge_err_handler
  4481. };
  4482. module_pci_driver(qlge_driver);