123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782 |
- // SPDX-License-Identifier: GPL-2.0
- /* Copyright (c) 2018, Intel Corporation. */
- /* The driver transmit and receive code */
- #include <linux/prefetch.h>
- #include <linux/mm.h>
- #include "ice.h"
- #define ICE_RX_HDR_SIZE 256
- /**
- * ice_unmap_and_free_tx_buf - Release a Tx buffer
- * @ring: the ring that owns the buffer
- * @tx_buf: the buffer to free
- */
- static void
- ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
- {
- if (tx_buf->skb) {
- dev_kfree_skb_any(tx_buf->skb);
- if (dma_unmap_len(tx_buf, len))
- dma_unmap_single(ring->dev,
- dma_unmap_addr(tx_buf, dma),
- dma_unmap_len(tx_buf, len),
- DMA_TO_DEVICE);
- } else if (dma_unmap_len(tx_buf, len)) {
- dma_unmap_page(ring->dev,
- dma_unmap_addr(tx_buf, dma),
- dma_unmap_len(tx_buf, len),
- DMA_TO_DEVICE);
- }
- tx_buf->next_to_watch = NULL;
- tx_buf->skb = NULL;
- dma_unmap_len_set(tx_buf, len, 0);
- /* tx_buf must be completely set up in the transmit path */
- }
- static struct netdev_queue *txring_txq(const struct ice_ring *ring)
- {
- return netdev_get_tx_queue(ring->netdev, ring->q_index);
- }
- /**
- * ice_clean_tx_ring - Free any empty Tx buffers
- * @tx_ring: ring to be cleaned
- */
- void ice_clean_tx_ring(struct ice_ring *tx_ring)
- {
- unsigned long size;
- u16 i;
- /* ring already cleared, nothing to do */
- if (!tx_ring->tx_buf)
- return;
- /* Free all the Tx ring sk_bufss */
- for (i = 0; i < tx_ring->count; i++)
- ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
- size = sizeof(struct ice_tx_buf) * tx_ring->count;
- memset(tx_ring->tx_buf, 0, size);
- /* Zero out the descriptor ring */
- memset(tx_ring->desc, 0, tx_ring->size);
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
- if (!tx_ring->netdev)
- return;
- /* cleanup Tx queue statistics */
- netdev_tx_reset_queue(txring_txq(tx_ring));
- }
- /**
- * ice_free_tx_ring - Free Tx resources per queue
- * @tx_ring: Tx descriptor ring for a specific queue
- *
- * Free all transmit software resources
- */
- void ice_free_tx_ring(struct ice_ring *tx_ring)
- {
- ice_clean_tx_ring(tx_ring);
- devm_kfree(tx_ring->dev, tx_ring->tx_buf);
- tx_ring->tx_buf = NULL;
- if (tx_ring->desc) {
- dmam_free_coherent(tx_ring->dev, tx_ring->size,
- tx_ring->desc, tx_ring->dma);
- tx_ring->desc = NULL;
- }
- }
- /**
- * ice_clean_tx_irq - Reclaim resources after transmit completes
- * @vsi: the VSI we care about
- * @tx_ring: Tx ring to clean
- * @napi_budget: Used to determine if we are in netpoll
- *
- * Returns true if there's any budget left (e.g. the clean is finished)
- */
- static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring,
- int napi_budget)
- {
- unsigned int total_bytes = 0, total_pkts = 0;
- unsigned int budget = vsi->work_lmt;
- s16 i = tx_ring->next_to_clean;
- struct ice_tx_desc *tx_desc;
- struct ice_tx_buf *tx_buf;
- tx_buf = &tx_ring->tx_buf[i];
- tx_desc = ICE_TX_DESC(tx_ring, i);
- i -= tx_ring->count;
- do {
- struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
- /* if next_to_watch is not set then there is no work pending */
- if (!eop_desc)
- break;
- smp_rmb(); /* prevent any other reads prior to eop_desc */
- /* if the descriptor isn't done, no work yet to do */
- if (!(eop_desc->cmd_type_offset_bsz &
- cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
- break;
- /* clear next_to_watch to prevent false hangs */
- tx_buf->next_to_watch = NULL;
- /* update the statistics for this packet */
- total_bytes += tx_buf->bytecount;
- total_pkts += tx_buf->gso_segs;
- /* free the skb */
- napi_consume_skb(tx_buf->skb, napi_budget);
- /* unmap skb header data */
- dma_unmap_single(tx_ring->dev,
- dma_unmap_addr(tx_buf, dma),
- dma_unmap_len(tx_buf, len),
- DMA_TO_DEVICE);
- /* clear tx_buf data */
- tx_buf->skb = NULL;
- dma_unmap_len_set(tx_buf, len, 0);
- /* unmap remaining buffers */
- while (tx_desc != eop_desc) {
- tx_buf++;
- tx_desc++;
- i++;
- if (unlikely(!i)) {
- i -= tx_ring->count;
- tx_buf = tx_ring->tx_buf;
- tx_desc = ICE_TX_DESC(tx_ring, 0);
- }
- /* unmap any remaining paged data */
- if (dma_unmap_len(tx_buf, len)) {
- dma_unmap_page(tx_ring->dev,
- dma_unmap_addr(tx_buf, dma),
- dma_unmap_len(tx_buf, len),
- DMA_TO_DEVICE);
- dma_unmap_len_set(tx_buf, len, 0);
- }
- }
- /* move us one more past the eop_desc for start of next pkt */
- tx_buf++;
- tx_desc++;
- i++;
- if (unlikely(!i)) {
- i -= tx_ring->count;
- tx_buf = tx_ring->tx_buf;
- tx_desc = ICE_TX_DESC(tx_ring, 0);
- }
- prefetch(tx_desc);
- /* update budget accounting */
- budget--;
- } while (likely(budget));
- i += tx_ring->count;
- tx_ring->next_to_clean = i;
- u64_stats_update_begin(&tx_ring->syncp);
- tx_ring->stats.bytes += total_bytes;
- tx_ring->stats.pkts += total_pkts;
- u64_stats_update_end(&tx_ring->syncp);
- tx_ring->q_vector->tx.total_bytes += total_bytes;
- tx_ring->q_vector->tx.total_pkts += total_pkts;
- netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
- total_bytes);
- #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
- if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
- (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
- /* Make sure that anybody stopping the queue after this
- * sees the new next_to_clean.
- */
- smp_mb();
- if (__netif_subqueue_stopped(tx_ring->netdev,
- tx_ring->q_index) &&
- !test_bit(__ICE_DOWN, vsi->state)) {
- netif_wake_subqueue(tx_ring->netdev,
- tx_ring->q_index);
- ++tx_ring->tx_stats.restart_q;
- }
- }
- return !!budget;
- }
- /**
- * ice_setup_tx_ring - Allocate the Tx descriptors
- * @tx_ring: the tx ring to set up
- *
- * Return 0 on success, negative on error
- */
- int ice_setup_tx_ring(struct ice_ring *tx_ring)
- {
- struct device *dev = tx_ring->dev;
- int bi_size;
- if (!dev)
- return -ENOMEM;
- /* warn if we are about to overwrite the pointer */
- WARN_ON(tx_ring->tx_buf);
- bi_size = sizeof(struct ice_tx_buf) * tx_ring->count;
- tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
- if (!tx_ring->tx_buf)
- return -ENOMEM;
- /* round up to nearest 4K */
- tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc);
- tx_ring->size = ALIGN(tx_ring->size, 4096);
- tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
- GFP_KERNEL);
- if (!tx_ring->desc) {
- dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
- tx_ring->size);
- goto err;
- }
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
- return 0;
- err:
- devm_kfree(dev, tx_ring->tx_buf);
- tx_ring->tx_buf = NULL;
- return -ENOMEM;
- }
- /**
- * ice_clean_rx_ring - Free Rx buffers
- * @rx_ring: ring to be cleaned
- */
- void ice_clean_rx_ring(struct ice_ring *rx_ring)
- {
- struct device *dev = rx_ring->dev;
- unsigned long size;
- u16 i;
- /* ring already cleared, nothing to do */
- if (!rx_ring->rx_buf)
- return;
- /* Free all the Rx ring sk_buffs */
- for (i = 0; i < rx_ring->count; i++) {
- struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
- if (rx_buf->skb) {
- dev_kfree_skb(rx_buf->skb);
- rx_buf->skb = NULL;
- }
- if (!rx_buf->page)
- continue;
- dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE);
- __free_pages(rx_buf->page, 0);
- rx_buf->page = NULL;
- rx_buf->page_offset = 0;
- }
- size = sizeof(struct ice_rx_buf) * rx_ring->count;
- memset(rx_ring->rx_buf, 0, size);
- /* Zero out the descriptor ring */
- memset(rx_ring->desc, 0, rx_ring->size);
- rx_ring->next_to_alloc = 0;
- rx_ring->next_to_clean = 0;
- rx_ring->next_to_use = 0;
- }
- /**
- * ice_free_rx_ring - Free Rx resources
- * @rx_ring: ring to clean the resources from
- *
- * Free all receive software resources
- */
- void ice_free_rx_ring(struct ice_ring *rx_ring)
- {
- ice_clean_rx_ring(rx_ring);
- devm_kfree(rx_ring->dev, rx_ring->rx_buf);
- rx_ring->rx_buf = NULL;
- if (rx_ring->desc) {
- dmam_free_coherent(rx_ring->dev, rx_ring->size,
- rx_ring->desc, rx_ring->dma);
- rx_ring->desc = NULL;
- }
- }
- /**
- * ice_setup_rx_ring - Allocate the Rx descriptors
- * @rx_ring: the rx ring to set up
- *
- * Return 0 on success, negative on error
- */
- int ice_setup_rx_ring(struct ice_ring *rx_ring)
- {
- struct device *dev = rx_ring->dev;
- int bi_size;
- if (!dev)
- return -ENOMEM;
- /* warn if we are about to overwrite the pointer */
- WARN_ON(rx_ring->rx_buf);
- bi_size = sizeof(struct ice_rx_buf) * rx_ring->count;
- rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
- if (!rx_ring->rx_buf)
- return -ENOMEM;
- /* round up to nearest 4K */
- rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc);
- rx_ring->size = ALIGN(rx_ring->size, 4096);
- rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
- GFP_KERNEL);
- if (!rx_ring->desc) {
- dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
- rx_ring->size);
- goto err;
- }
- rx_ring->next_to_use = 0;
- rx_ring->next_to_clean = 0;
- return 0;
- err:
- devm_kfree(dev, rx_ring->rx_buf);
- rx_ring->rx_buf = NULL;
- return -ENOMEM;
- }
- /**
- * ice_release_rx_desc - Store the new tail and head values
- * @rx_ring: ring to bump
- * @val: new head index
- */
- static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
- {
- rx_ring->next_to_use = val;
- /* update next to alloc since we have filled the ring */
- rx_ring->next_to_alloc = val;
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64).
- */
- wmb();
- writel(val, rx_ring->tail);
- }
- /**
- * ice_alloc_mapped_page - recycle or make a new page
- * @rx_ring: ring to use
- * @bi: rx_buf struct to modify
- *
- * Returns true if the page was successfully allocated or
- * reused.
- */
- static bool ice_alloc_mapped_page(struct ice_ring *rx_ring,
- struct ice_rx_buf *bi)
- {
- struct page *page = bi->page;
- dma_addr_t dma;
- /* since we are recycling buffers we should seldom need to alloc */
- if (likely(page)) {
- rx_ring->rx_stats.page_reuse_count++;
- return true;
- }
- /* alloc new page for storage */
- page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
- if (unlikely(!page)) {
- rx_ring->rx_stats.alloc_page_failed++;
- return false;
- }
- /* map page for use */
- dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
- /* if mapping failed free memory back to system since
- * there isn't much point in holding memory we can't use
- */
- if (dma_mapping_error(rx_ring->dev, dma)) {
- __free_pages(page, 0);
- rx_ring->rx_stats.alloc_page_failed++;
- return false;
- }
- bi->dma = dma;
- bi->page = page;
- bi->page_offset = 0;
- return true;
- }
- /**
- * ice_alloc_rx_bufs - Replace used receive buffers
- * @rx_ring: ring to place buffers on
- * @cleaned_count: number of buffers to replace
- *
- * Returns false if all allocations were successful, true if any fail
- */
- bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
- {
- union ice_32b_rx_flex_desc *rx_desc;
- u16 ntu = rx_ring->next_to_use;
- struct ice_rx_buf *bi;
- /* do nothing if no valid netdev defined */
- if (!rx_ring->netdev || !cleaned_count)
- return false;
- /* get the RX descriptor and buffer based on next_to_use */
- rx_desc = ICE_RX_DESC(rx_ring, ntu);
- bi = &rx_ring->rx_buf[ntu];
- do {
- if (!ice_alloc_mapped_page(rx_ring, bi))
- goto no_bufs;
- /* Refresh the desc even if buffer_addrs didn't change
- * because each write-back erases this info.
- */
- rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
- rx_desc++;
- bi++;
- ntu++;
- if (unlikely(ntu == rx_ring->count)) {
- rx_desc = ICE_RX_DESC(rx_ring, 0);
- bi = rx_ring->rx_buf;
- ntu = 0;
- }
- /* clear the status bits for the next_to_use descriptor */
- rx_desc->wb.status_error0 = 0;
- cleaned_count--;
- } while (cleaned_count);
- if (rx_ring->next_to_use != ntu)
- ice_release_rx_desc(rx_ring, ntu);
- return false;
- no_bufs:
- if (rx_ring->next_to_use != ntu)
- ice_release_rx_desc(rx_ring, ntu);
- /* make sure to come back via polling to try again after
- * allocation failure
- */
- return true;
- }
- /**
- * ice_page_is_reserved - check if reuse is possible
- * @page: page struct to check
- */
- static bool ice_page_is_reserved(struct page *page)
- {
- return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
- }
- /**
- * ice_add_rx_frag - Add contents of Rx buffer to sk_buff
- * @rx_buf: buffer containing page to add
- * @rx_desc: descriptor containing length of buffer written by hardware
- * @skb: sk_buf to place the data into
- *
- * This function will add the data contained in rx_buf->page to the skb.
- * This is done either through a direct copy if the data in the buffer is
- * less than the skb header size, otherwise it will just attach the page as
- * a frag to the skb.
- *
- * The function will then update the page offset if necessary and return
- * true if the buffer can be reused by the adapter.
- */
- static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf,
- union ice_32b_rx_flex_desc *rx_desc,
- struct sk_buff *skb)
- {
- #if (PAGE_SIZE < 8192)
- unsigned int truesize = ICE_RXBUF_2048;
- #else
- unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
- unsigned int truesize;
- #endif /* PAGE_SIZE < 8192) */
- struct page *page;
- unsigned int size;
- size = le16_to_cpu(rx_desc->wb.pkt_len) &
- ICE_RX_FLX_DESC_PKT_LEN_M;
- page = rx_buf->page;
- #if (PAGE_SIZE >= 8192)
- truesize = ALIGN(size, L1_CACHE_BYTES);
- #endif /* PAGE_SIZE >= 8192) */
- /* will the data fit in the skb we allocated? if so, just
- * copy it as it is pretty small anyway
- */
- if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) {
- unsigned char *va = page_address(page) + rx_buf->page_offset;
- memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
- /* page is not reserved, we can reuse buffer as-is */
- if (likely(!ice_page_is_reserved(page)))
- return true;
- /* this page cannot be reused so discard it */
- __free_pages(page, 0);
- return false;
- }
- skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
- rx_buf->page_offset, size, truesize);
- /* avoid re-using remote pages */
- if (unlikely(ice_page_is_reserved(page)))
- return false;
- #if (PAGE_SIZE < 8192)
- /* if we are only owner of page we can reuse it */
- if (unlikely(page_count(page) != 1))
- return false;
- /* flip page offset to other buffer */
- rx_buf->page_offset ^= truesize;
- #else
- /* move offset up to the next cache line */
- rx_buf->page_offset += truesize;
- if (rx_buf->page_offset > last_offset)
- return false;
- #endif /* PAGE_SIZE < 8192) */
- /* Even if we own the page, we are not allowed to use atomic_set()
- * This would break get_page_unless_zero() users.
- */
- get_page(rx_buf->page);
- return true;
- }
- /**
- * ice_reuse_rx_page - page flip buffer and store it back on the ring
- * @rx_ring: rx descriptor ring to store buffers on
- * @old_buf: donor buffer to have page reused
- *
- * Synchronizes page for reuse by the adapter
- */
- static void ice_reuse_rx_page(struct ice_ring *rx_ring,
- struct ice_rx_buf *old_buf)
- {
- u16 nta = rx_ring->next_to_alloc;
- struct ice_rx_buf *new_buf;
- new_buf = &rx_ring->rx_buf[nta];
- /* update, and store next to alloc */
- nta++;
- rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
- /* transfer page from old buffer to new buffer */
- *new_buf = *old_buf;
- }
- /**
- * ice_fetch_rx_buf - Allocate skb and populate it
- * @rx_ring: rx descriptor ring to transact packets on
- * @rx_desc: descriptor containing info written by hardware
- *
- * This function allocates an skb on the fly, and populates it with the page
- * data from the current receive descriptor, taking care to set up the skb
- * correctly, as well as handling calling the page recycle function if
- * necessary.
- */
- static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring,
- union ice_32b_rx_flex_desc *rx_desc)
- {
- struct ice_rx_buf *rx_buf;
- struct sk_buff *skb;
- struct page *page;
- rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
- page = rx_buf->page;
- prefetchw(page);
- skb = rx_buf->skb;
- if (likely(!skb)) {
- u8 *page_addr = page_address(page) + rx_buf->page_offset;
- /* prefetch first cache line of first page */
- prefetch(page_addr);
- #if L1_CACHE_BYTES < 128
- prefetch((void *)(page_addr + L1_CACHE_BYTES));
- #endif /* L1_CACHE_BYTES */
- /* allocate a skb to store the frags */
- skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
- ICE_RX_HDR_SIZE,
- GFP_ATOMIC | __GFP_NOWARN);
- if (unlikely(!skb)) {
- rx_ring->rx_stats.alloc_buf_failed++;
- return NULL;
- }
- /* we will be copying header into skb->data in
- * pskb_may_pull so it is in our interest to prefetch
- * it now to avoid a possible cache miss
- */
- prefetchw(skb->data);
- skb_record_rx_queue(skb, rx_ring->q_index);
- } else {
- /* we are reusing so sync this buffer for CPU use */
- dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
- rx_buf->page_offset,
- ICE_RXBUF_2048,
- DMA_FROM_DEVICE);
- rx_buf->skb = NULL;
- }
- /* pull page into skb */
- if (ice_add_rx_frag(rx_buf, rx_desc, skb)) {
- /* hand second half of page back to the ring */
- ice_reuse_rx_page(rx_ring, rx_buf);
- rx_ring->rx_stats.page_reuse_count++;
- } else {
- /* we are not reusing the buffer so unmap it */
- dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
- DMA_FROM_DEVICE);
- }
- /* clear contents of buffer_info */
- rx_buf->page = NULL;
- return skb;
- }
- /**
- * ice_pull_tail - ice specific version of skb_pull_tail
- * @skb: pointer to current skb being adjusted
- *
- * This function is an ice specific version of __pskb_pull_tail. The
- * main difference between this version and the original function is that
- * this function can make several assumptions about the state of things
- * that allow for significant optimizations versus the standard function.
- * As a result we can do things like drop a frag and maintain an accurate
- * truesize for the skb.
- */
- static void ice_pull_tail(struct sk_buff *skb)
- {
- struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
- unsigned int pull_len;
- unsigned char *va;
- /* it is valid to use page_address instead of kmap since we are
- * working with pages allocated out of the lomem pool per
- * alloc_page(GFP_ATOMIC)
- */
- va = skb_frag_address(frag);
- /* we need the header to contain the greater of either ETH_HLEN or
- * 60 bytes if the skb->len is less than 60 for skb_pad.
- */
- pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE);
- /* align pull length to size of long to optimize memcpy performance */
- skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
- /* update all of the pointers */
- skb_frag_size_sub(frag, pull_len);
- frag->page_offset += pull_len;
- skb->data_len -= pull_len;
- skb->tail += pull_len;
- }
- /**
- * ice_cleanup_headers - Correct empty headers
- * @skb: pointer to current skb being fixed
- *
- * Also address the case where we are pulling data in on pages only
- * and as such no data is present in the skb header.
- *
- * In addition if skb is not at least 60 bytes we need to pad it so that
- * it is large enough to qualify as a valid Ethernet frame.
- *
- * Returns true if an error was encountered and skb was freed.
- */
- static bool ice_cleanup_headers(struct sk_buff *skb)
- {
- /* place header in linear portion of buffer */
- if (skb_is_nonlinear(skb))
- ice_pull_tail(skb);
- /* if eth_skb_pad returns an error the skb was freed */
- if (eth_skb_pad(skb))
- return true;
- return false;
- }
- /**
- * ice_test_staterr - tests bits in Rx descriptor status and error fields
- * @rx_desc: pointer to receive descriptor (in le64 format)
- * @stat_err_bits: value to mask
- *
- * This function does some fast chicanery in order to return the
- * value of the mask which is really only used for boolean tests.
- * The status_error_len doesn't need to be shifted because it begins
- * at offset zero.
- */
- static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc,
- const u16 stat_err_bits)
- {
- return !!(rx_desc->wb.status_error0 &
- cpu_to_le16(stat_err_bits));
- }
- /**
- * ice_is_non_eop - process handling of non-EOP buffers
- * @rx_ring: Rx ring being processed
- * @rx_desc: Rx descriptor for current buffer
- * @skb: Current socket buffer containing buffer in progress
- *
- * This function updates next to clean. If the buffer is an EOP buffer
- * this function exits returning false, otherwise it will place the
- * sk_buff in the next buffer to be chained and return true indicating
- * that this is in fact a non-EOP buffer.
- */
- static bool ice_is_non_eop(struct ice_ring *rx_ring,
- union ice_32b_rx_flex_desc *rx_desc,
- struct sk_buff *skb)
- {
- u32 ntc = rx_ring->next_to_clean + 1;
- /* fetch, update, and store next to clean */
- ntc = (ntc < rx_ring->count) ? ntc : 0;
- rx_ring->next_to_clean = ntc;
- prefetch(ICE_RX_DESC(rx_ring, ntc));
- /* if we are the last buffer then there is nothing else to do */
- #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
- if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
- return false;
- /* place skb in next buffer to be received */
- rx_ring->rx_buf[ntc].skb = skb;
- rx_ring->rx_stats.non_eop_descs++;
- return true;
- }
- /**
- * ice_ptype_to_htype - get a hash type
- * @ptype: the ptype value from the descriptor
- *
- * Returns a hash type to be used by skb_set_hash
- */
- static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
- {
- return PKT_HASH_TYPE_NONE;
- }
- /**
- * ice_rx_hash - set the hash value in the skb
- * @rx_ring: descriptor ring
- * @rx_desc: specific descriptor
- * @skb: pointer to current skb
- * @rx_ptype: the ptype value from the descriptor
- */
- static void
- ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
- struct sk_buff *skb, u8 rx_ptype)
- {
- struct ice_32b_rx_flex_desc_nic *nic_mdid;
- u32 hash;
- if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
- return;
- if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
- return;
- nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
- hash = le32_to_cpu(nic_mdid->rss_hash);
- skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
- }
- /**
- * ice_rx_csum - Indicate in skb if checksum is good
- * @vsi: the VSI we care about
- * @skb: skb currently being received and modified
- * @rx_desc: the receive descriptor
- * @ptype: the packet type decoded by hardware
- *
- * skb->protocol must be set before this function is called
- */
- static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
- union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
- {
- struct ice_rx_ptype_decoded decoded;
- u32 rx_error, rx_status;
- bool ipv4, ipv6;
- rx_status = le16_to_cpu(rx_desc->wb.status_error0);
- rx_error = rx_status;
- decoded = ice_decode_rx_desc_ptype(ptype);
- /* Start with CHECKSUM_NONE and by default csum_level = 0 */
- skb->ip_summed = CHECKSUM_NONE;
- skb_checksum_none_assert(skb);
- /* check if Rx checksum is enabled */
- if (!(vsi->netdev->features & NETIF_F_RXCSUM))
- return;
- /* check if HW has decoded the packet and checksum */
- if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
- return;
- if (!(decoded.known && decoded.outer_ip))
- return;
- ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
- (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
- ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
- (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
- if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
- BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
- goto checksum_fail;
- else if (ipv6 && (rx_status &
- (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
- goto checksum_fail;
- /* check for L4 errors and handle packets that were not able to be
- * checksummed due to arrival speed
- */
- if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
- goto checksum_fail;
- /* Only report checksum unnecessary for TCP, UDP, or SCTP */
- switch (decoded.inner_prot) {
- case ICE_RX_PTYPE_INNER_PROT_TCP:
- case ICE_RX_PTYPE_INNER_PROT_UDP:
- case ICE_RX_PTYPE_INNER_PROT_SCTP:
- skb->ip_summed = CHECKSUM_UNNECESSARY;
- default:
- break;
- }
- return;
- checksum_fail:
- vsi->back->hw_csum_rx_error++;
- }
- /**
- * ice_process_skb_fields - Populate skb header fields from Rx descriptor
- * @rx_ring: rx descriptor ring packet is being transacted on
- * @rx_desc: pointer to the EOP Rx descriptor
- * @skb: pointer to current skb being populated
- * @ptype: the packet type decoded by hardware
- *
- * This function checks the ring, descriptor, and packet information in
- * order to populate the hash, checksum, VLAN, protocol, and
- * other fields within the skb.
- */
- static void ice_process_skb_fields(struct ice_ring *rx_ring,
- union ice_32b_rx_flex_desc *rx_desc,
- struct sk_buff *skb, u8 ptype)
- {
- ice_rx_hash(rx_ring, rx_desc, skb, ptype);
- /* modifies the skb - consumes the enet header */
- skb->protocol = eth_type_trans(skb, rx_ring->netdev);
- ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
- }
- /**
- * ice_receive_skb - Send a completed packet up the stack
- * @rx_ring: rx ring in play
- * @skb: packet to send up
- * @vlan_tag: vlan tag for packet
- *
- * This function sends the completed packet (via. skb) up the stack using
- * gro receive functions (with/without vlan tag)
- */
- static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb,
- u16 vlan_tag)
- {
- if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
- (vlan_tag & VLAN_VID_MASK)) {
- __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
- }
- napi_gro_receive(&rx_ring->q_vector->napi, skb);
- }
- /**
- * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
- * @rx_ring: rx descriptor ring to transact packets on
- * @budget: Total limit on number of packets to process
- *
- * This function provides a "bounce buffer" approach to Rx interrupt
- * processing. The advantage to this is that on systems that have
- * expensive overhead for IOMMU access this provides a means of avoiding
- * it by maintaining the mapping of the page to the system.
- *
- * Returns amount of work completed
- */
- static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
- {
- unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
- u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
- bool failure = false;
- /* start the loop to process RX packets bounded by 'budget' */
- while (likely(total_rx_pkts < (unsigned int)budget)) {
- union ice_32b_rx_flex_desc *rx_desc;
- struct sk_buff *skb;
- u16 stat_err_bits;
- u16 vlan_tag = 0;
- u8 rx_ptype;
- /* return some buffers to hardware, one at a time is too slow */
- if (cleaned_count >= ICE_RX_BUF_WRITE) {
- failure = failure ||
- ice_alloc_rx_bufs(rx_ring, cleaned_count);
- cleaned_count = 0;
- }
- /* get the RX desc from RX ring based on 'next_to_clean' */
- rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
- /* status_error_len will always be zero for unused descriptors
- * because it's cleared in cleanup, and overlaps with hdr_addr
- * which is always zero because packet split isn't used, if the
- * hardware wrote DD then it will be non-zero
- */
- stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
- if (!ice_test_staterr(rx_desc, stat_err_bits))
- break;
- /* This memory barrier is needed to keep us from reading
- * any other fields out of the rx_desc until we know the
- * DD bit is set.
- */
- dma_rmb();
- /* allocate (if needed) and populate skb */
- skb = ice_fetch_rx_buf(rx_ring, rx_desc);
- if (!skb)
- break;
- cleaned_count++;
- /* skip if it is NOP desc */
- if (ice_is_non_eop(rx_ring, rx_desc, skb))
- continue;
- stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
- if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
- dev_kfree_skb_any(skb);
- continue;
- }
- rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
- ICE_RX_FLEX_DESC_PTYPE_M;
- stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
- if (ice_test_staterr(rx_desc, stat_err_bits))
- vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
- /* correct empty headers and pad skb if needed (to make valid
- * ethernet frame
- */
- if (ice_cleanup_headers(skb)) {
- skb = NULL;
- continue;
- }
- /* probably a little skewed due to removing CRC */
- total_rx_bytes += skb->len;
- /* populate checksum, VLAN, and protocol */
- ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
- /* send completed skb up the stack */
- ice_receive_skb(rx_ring, skb, vlan_tag);
- /* update budget accounting */
- total_rx_pkts++;
- }
- /* update queue and vector specific stats */
- u64_stats_update_begin(&rx_ring->syncp);
- rx_ring->stats.pkts += total_rx_pkts;
- rx_ring->stats.bytes += total_rx_bytes;
- u64_stats_update_end(&rx_ring->syncp);
- rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
- rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
- /* guarantee a trip back through this routine if there was a failure */
- return failure ? budget : (int)total_rx_pkts;
- }
- /**
- * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
- * @napi: napi struct with our devices info in it
- * @budget: amount of work driver is allowed to do this pass, in packets
- *
- * This function will clean all queues associated with a q_vector.
- *
- * Returns the amount of work done
- */
- int ice_napi_poll(struct napi_struct *napi, int budget)
- {
- struct ice_q_vector *q_vector =
- container_of(napi, struct ice_q_vector, napi);
- struct ice_vsi *vsi = q_vector->vsi;
- struct ice_pf *pf = vsi->back;
- bool clean_complete = true;
- int budget_per_ring = 0;
- struct ice_ring *ring;
- int work_done = 0;
- /* Since the actual Tx work is minimal, we can give the Tx a larger
- * budget and be more aggressive about cleaning up the Tx descriptors.
- */
- ice_for_each_ring(ring, q_vector->tx)
- if (!ice_clean_tx_irq(vsi, ring, budget))
- clean_complete = false;
- /* Handle case where we are called by netpoll with a budget of 0 */
- if (budget <= 0)
- return budget;
- /* We attempt to distribute budget to each Rx queue fairly, but don't
- * allow the budget to go below 1 because that would exit polling early.
- */
- if (q_vector->num_ring_rx)
- budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
- ice_for_each_ring(ring, q_vector->rx) {
- int cleaned;
- cleaned = ice_clean_rx_irq(ring, budget_per_ring);
- work_done += cleaned;
- /* if we clean as many as budgeted, we must not be done */
- if (cleaned >= budget_per_ring)
- clean_complete = false;
- }
- /* If work not completed, return budget and polling will return */
- if (!clean_complete)
- return budget;
- /* Work is done so exit the polling mode and re-enable the interrupt */
- napi_complete_done(napi, work_done);
- if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
- ice_irq_dynamic_ena(&vsi->back->hw, vsi, q_vector);
- return 0;
- }
- /* helper function for building cmd/type/offset */
- static __le64
- build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
- {
- return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
- (td_cmd << ICE_TXD_QW1_CMD_S) |
- (td_offset << ICE_TXD_QW1_OFFSET_S) |
- ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
- (td_tag << ICE_TXD_QW1_L2TAG1_S));
- }
- /**
- * __ice_maybe_stop_tx - 2nd level check for tx stop conditions
- * @tx_ring: the ring to be checked
- * @size: the size buffer we want to assure is available
- *
- * Returns -EBUSY if a stop is needed, else 0
- */
- static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
- {
- netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
- /* Memory barrier before checking head and tail */
- smp_mb();
- /* Check again in a case another CPU has just made room available. */
- if (likely(ICE_DESC_UNUSED(tx_ring) < size))
- return -EBUSY;
- /* A reprieve! - use start_subqueue because it doesn't call schedule */
- netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
- ++tx_ring->tx_stats.restart_q;
- return 0;
- }
- /**
- * ice_maybe_stop_tx - 1st level check for tx stop conditions
- * @tx_ring: the ring to be checked
- * @size: the size buffer we want to assure is available
- *
- * Returns 0 if stop is not needed
- */
- static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
- {
- if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
- return 0;
- return __ice_maybe_stop_tx(tx_ring, size);
- }
- /**
- * ice_tx_map - Build the Tx descriptor
- * @tx_ring: ring to send buffer on
- * @first: first buffer info buffer to use
- * @off: pointer to struct that holds offload parameters
- *
- * This function loops over the skb data pointed to by *first
- * and gets a physical address for each memory location and programs
- * it and the length into the transmit descriptor.
- */
- static void
- ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
- struct ice_tx_offload_params *off)
- {
- u64 td_offset, td_tag, td_cmd;
- u16 i = tx_ring->next_to_use;
- struct skb_frag_struct *frag;
- unsigned int data_len, size;
- struct ice_tx_desc *tx_desc;
- struct ice_tx_buf *tx_buf;
- struct sk_buff *skb;
- dma_addr_t dma;
- td_tag = off->td_l2tag1;
- td_cmd = off->td_cmd;
- td_offset = off->td_offset;
- skb = first->skb;
- data_len = skb->data_len;
- size = skb_headlen(skb);
- tx_desc = ICE_TX_DESC(tx_ring, i);
- if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
- td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
- td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
- ICE_TX_FLAGS_VLAN_S;
- }
- dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
- tx_buf = first;
- for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
- unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
- if (dma_mapping_error(tx_ring->dev, dma))
- goto dma_error;
- /* record length, and DMA address */
- dma_unmap_len_set(tx_buf, len, size);
- dma_unmap_addr_set(tx_buf, dma, dma);
- /* align size to end of page */
- max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
- tx_desc->buf_addr = cpu_to_le64(dma);
- /* account for data chunks larger than the hardware
- * can handle
- */
- while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
- tx_desc->cmd_type_offset_bsz =
- build_ctob(td_cmd, td_offset, max_data, td_tag);
- tx_desc++;
- i++;
- if (i == tx_ring->count) {
- tx_desc = ICE_TX_DESC(tx_ring, 0);
- i = 0;
- }
- dma += max_data;
- size -= max_data;
- max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
- tx_desc->buf_addr = cpu_to_le64(dma);
- }
- if (likely(!data_len))
- break;
- tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
- size, td_tag);
- tx_desc++;
- i++;
- if (i == tx_ring->count) {
- tx_desc = ICE_TX_DESC(tx_ring, 0);
- i = 0;
- }
- size = skb_frag_size(frag);
- data_len -= size;
- dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
- DMA_TO_DEVICE);
- tx_buf = &tx_ring->tx_buf[i];
- }
- /* record bytecount for BQL */
- netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
- /* record SW timestamp if HW timestamp is not available */
- skb_tx_timestamp(first->skb);
- i++;
- if (i == tx_ring->count)
- i = 0;
- /* write last descriptor with RS and EOP bits */
- td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
- tx_desc->cmd_type_offset_bsz =
- build_ctob(td_cmd, td_offset, size, td_tag);
- /* Force memory writes to complete before letting h/w know there
- * are new descriptors to fetch.
- *
- * We also use this memory barrier to make certain all of the
- * status bits have been updated before next_to_watch is written.
- */
- wmb();
- /* set next_to_watch value indicating a packet is present */
- first->next_to_watch = tx_desc;
- tx_ring->next_to_use = i;
- ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
- /* notify HW of packet */
- if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
- writel(i, tx_ring->tail);
- /* we need this if more than one processor can write to our tail
- * at a time, it synchronizes IO on IA64/Altix systems
- */
- mmiowb();
- }
- return;
- dma_error:
- /* clear dma mappings for failed tx_buf map */
- for (;;) {
- tx_buf = &tx_ring->tx_buf[i];
- ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
- if (tx_buf == first)
- break;
- if (i == 0)
- i = tx_ring->count;
- i--;
- }
- tx_ring->next_to_use = i;
- }
- /**
- * ice_tx_csum - Enable Tx checksum offloads
- * @first: pointer to the first descriptor
- * @off: pointer to struct that holds offload parameters
- *
- * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
- */
- static
- int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
- {
- u32 l4_len = 0, l3_len = 0, l2_len = 0;
- struct sk_buff *skb = first->skb;
- union {
- struct iphdr *v4;
- struct ipv6hdr *v6;
- unsigned char *hdr;
- } ip;
- union {
- struct tcphdr *tcp;
- unsigned char *hdr;
- } l4;
- __be16 frag_off, protocol;
- unsigned char *exthdr;
- u32 offset, cmd = 0;
- u8 l4_proto = 0;
- if (skb->ip_summed != CHECKSUM_PARTIAL)
- return 0;
- ip.hdr = skb_network_header(skb);
- l4.hdr = skb_transport_header(skb);
- /* compute outer L2 header size */
- l2_len = ip.hdr - skb->data;
- offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
- if (skb->encapsulation)
- return -1;
- /* Enable IP checksum offloads */
- protocol = vlan_get_protocol(skb);
- if (protocol == htons(ETH_P_IP)) {
- l4_proto = ip.v4->protocol;
- /* the stack computes the IP header already, the only time we
- * need the hardware to recompute it is in the case of TSO.
- */
- if (first->tx_flags & ICE_TX_FLAGS_TSO)
- cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
- else
- cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
- } else if (protocol == htons(ETH_P_IPV6)) {
- cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
- exthdr = ip.hdr + sizeof(*ip.v6);
- l4_proto = ip.v6->nexthdr;
- if (l4.hdr != exthdr)
- ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
- &frag_off);
- } else {
- return -1;
- }
- /* compute inner L3 header size */
- l3_len = l4.hdr - ip.hdr;
- offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
- /* Enable L4 checksum offloads */
- switch (l4_proto) {
- case IPPROTO_TCP:
- /* enable checksum offloads */
- cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
- l4_len = l4.tcp->doff;
- offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
- break;
- case IPPROTO_UDP:
- /* enable UDP checksum offload */
- cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
- l4_len = (sizeof(struct udphdr) >> 2);
- offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
- break;
- case IPPROTO_SCTP:
- default:
- if (first->tx_flags & ICE_TX_FLAGS_TSO)
- return -1;
- skb_checksum_help(skb);
- return 0;
- }
- off->td_cmd |= cmd;
- off->td_offset |= offset;
- return 1;
- }
- /**
- * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
- * @tx_ring: ring to send buffer on
- * @first: pointer to struct ice_tx_buf
- *
- * Checks the skb and set up correspondingly several generic transmit flags
- * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
- *
- * Returns error code indicate the frame should be dropped upon error and the
- * otherwise returns 0 to indicate the flags has been set properly.
- */
- static int
- ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
- {
- struct sk_buff *skb = first->skb;
- __be16 protocol = skb->protocol;
- if (protocol == htons(ETH_P_8021Q) &&
- !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
- /* when HW VLAN acceleration is turned off by the user the
- * stack sets the protocol to 8021q so that the driver
- * can take any steps required to support the SW only
- * VLAN handling. In our case the driver doesn't need
- * to take any further steps so just set the protocol
- * to the encapsulated ethertype.
- */
- skb->protocol = vlan_get_protocol(skb);
- goto out;
- }
- /* if we have a HW VLAN tag being added, default to the HW one */
- if (skb_vlan_tag_present(skb)) {
- first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
- first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
- } else if (protocol == htons(ETH_P_8021Q)) {
- struct vlan_hdr *vhdr, _vhdr;
- /* for SW VLAN, check the next protocol and store the tag */
- vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
- sizeof(_vhdr),
- &_vhdr);
- if (!vhdr)
- return -EINVAL;
- first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
- ICE_TX_FLAGS_VLAN_S;
- first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
- }
- out:
- return 0;
- }
- /**
- * ice_tso - computes mss and TSO length to prepare for TSO
- * @first: pointer to struct ice_tx_buf
- * @off: pointer to struct that holds offload parameters
- *
- * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
- */
- static
- int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
- {
- struct sk_buff *skb = first->skb;
- union {
- struct iphdr *v4;
- struct ipv6hdr *v6;
- unsigned char *hdr;
- } ip;
- union {
- struct tcphdr *tcp;
- unsigned char *hdr;
- } l4;
- u64 cd_mss, cd_tso_len;
- u32 paylen, l4_start;
- int err;
- if (skb->ip_summed != CHECKSUM_PARTIAL)
- return 0;
- if (!skb_is_gso(skb))
- return 0;
- err = skb_cow_head(skb, 0);
- if (err < 0)
- return err;
- ip.hdr = skb_network_header(skb);
- l4.hdr = skb_transport_header(skb);
- /* initialize outer IP header fields */
- if (ip.v4->version == 4) {
- ip.v4->tot_len = 0;
- ip.v4->check = 0;
- } else {
- ip.v6->payload_len = 0;
- }
- /* determine offset of transport header */
- l4_start = l4.hdr - skb->data;
- /* remove payload length from checksum */
- paylen = skb->len - l4_start;
- csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
- /* compute length of segmentation header */
- off->header_len = (l4.tcp->doff * 4) + l4_start;
- /* update gso_segs and bytecount */
- first->gso_segs = skb_shinfo(skb)->gso_segs;
- first->bytecount = (first->gso_segs - 1) * off->header_len;
- cd_tso_len = skb->len - off->header_len;
- cd_mss = skb_shinfo(skb)->gso_size;
- /* record cdesc_qw1 with TSO parameters */
- off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX |
- (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
- (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
- (cd_mss << ICE_TXD_CTX_QW1_MSS_S);
- first->tx_flags |= ICE_TX_FLAGS_TSO;
- return 1;
- }
- /**
- * ice_txd_use_count - estimate the number of descriptors needed for Tx
- * @size: transmit request size in bytes
- *
- * Due to hardware alignment restrictions (4K alignment), we need to
- * assume that we can have no more than 12K of data per descriptor, even
- * though each descriptor can take up to 16K - 1 bytes of aligned memory.
- * Thus, we need to divide by 12K. But division is slow! Instead,
- * we decompose the operation into shifts and one relatively cheap
- * multiply operation.
- *
- * To divide by 12K, we first divide by 4K, then divide by 3:
- * To divide by 4K, shift right by 12 bits
- * To divide by 3, multiply by 85, then divide by 256
- * (Divide by 256 is done by shifting right by 8 bits)
- * Finally, we add one to round up. Because 256 isn't an exact multiple of
- * 3, we'll underestimate near each multiple of 12K. This is actually more
- * accurate as we have 4K - 1 of wiggle room that we can fit into the last
- * segment. For our purposes this is accurate out to 1M which is orders of
- * magnitude greater than our largest possible GSO size.
- *
- * This would then be implemented as:
- * return (((size >> 12) * 85) >> 8) + 1;
- *
- * Since multiplication and division are commutative, we can reorder
- * operations into:
- * return ((size * 85) >> 20) + 1;
- */
- static unsigned int ice_txd_use_count(unsigned int size)
- {
- return ((size * 85) >> 20) + 1;
- }
- /**
- * ice_xmit_desc_count - calculate number of tx descriptors needed
- * @skb: send buffer
- *
- * Returns number of data descriptors needed for this skb.
- */
- static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
- {
- const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
- unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
- unsigned int count = 0, size = skb_headlen(skb);
- for (;;) {
- count += ice_txd_use_count(size);
- if (!nr_frags--)
- break;
- size = skb_frag_size(frag++);
- }
- return count;
- }
- /**
- * __ice_chk_linearize - Check if there are more than 8 buffers per packet
- * @skb: send buffer
- *
- * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
- * and so we need to figure out the cases where we need to linearize the skb.
- *
- * For TSO we need to count the TSO header and segment payload separately.
- * As such we need to check cases where we have 7 fragments or more as we
- * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
- * the segment payload in the first descriptor, and another 7 for the
- * fragments.
- */
- static bool __ice_chk_linearize(struct sk_buff *skb)
- {
- const struct skb_frag_struct *frag, *stale;
- int nr_frags, sum;
- /* no need to check if number of frags is less than 7 */
- nr_frags = skb_shinfo(skb)->nr_frags;
- if (nr_frags < (ICE_MAX_BUF_TXD - 1))
- return false;
- /* We need to walk through the list and validate that each group
- * of 6 fragments totals at least gso_size.
- */
- nr_frags -= ICE_MAX_BUF_TXD - 2;
- frag = &skb_shinfo(skb)->frags[0];
- /* Initialize size to the negative value of gso_size minus 1. We
- * use this as the worst case scenerio in which the frag ahead
- * of us only provides one byte which is why we are limited to 6
- * descriptors for a single transmit as the header and previous
- * fragment are already consuming 2 descriptors.
- */
- sum = 1 - skb_shinfo(skb)->gso_size;
- /* Add size of frags 0 through 4 to create our initial sum */
- sum += skb_frag_size(frag++);
- sum += skb_frag_size(frag++);
- sum += skb_frag_size(frag++);
- sum += skb_frag_size(frag++);
- sum += skb_frag_size(frag++);
- /* Walk through fragments adding latest fragment, testing it, and
- * then removing stale fragments from the sum.
- */
- stale = &skb_shinfo(skb)->frags[0];
- for (;;) {
- sum += skb_frag_size(frag++);
- /* if sum is negative we failed to make sufficient progress */
- if (sum < 0)
- return true;
- if (!nr_frags--)
- break;
- sum -= skb_frag_size(stale++);
- }
- return false;
- }
- /**
- * ice_chk_linearize - Check if there are more than 8 fragments per packet
- * @skb: send buffer
- * @count: number of buffers used
- *
- * Note: Our HW can't scatter-gather more than 8 fragments to build
- * a packet on the wire and so we need to figure out the cases where we
- * need to linearize the skb.
- */
- static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
- {
- /* Both TSO and single send will work if count is less than 8 */
- if (likely(count < ICE_MAX_BUF_TXD))
- return false;
- if (skb_is_gso(skb))
- return __ice_chk_linearize(skb);
- /* we can support up to 8 data buffers for a single send */
- return count != ICE_MAX_BUF_TXD;
- }
- /**
- * ice_xmit_frame_ring - Sends buffer on Tx ring
- * @skb: send buffer
- * @tx_ring: ring to send buffer on
- *
- * Returns NETDEV_TX_OK if sent, else an error code
- */
- static netdev_tx_t
- ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
- {
- struct ice_tx_offload_params offload = { 0 };
- struct ice_tx_buf *first;
- unsigned int count;
- int tso, csum;
- count = ice_xmit_desc_count(skb);
- if (ice_chk_linearize(skb, count)) {
- if (__skb_linearize(skb))
- goto out_drop;
- count = ice_txd_use_count(skb->len);
- tx_ring->tx_stats.tx_linearize++;
- }
- /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
- * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
- * + 4 desc gap to avoid the cache line where head is,
- * + 1 desc for context descriptor,
- * otherwise try next time
- */
- if (ice_maybe_stop_tx(tx_ring, count + 4 + 1)) {
- tx_ring->tx_stats.tx_busy++;
- return NETDEV_TX_BUSY;
- }
- offload.tx_ring = tx_ring;
- /* record the location of the first descriptor for this packet */
- first = &tx_ring->tx_buf[tx_ring->next_to_use];
- first->skb = skb;
- first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
- first->gso_segs = 1;
- first->tx_flags = 0;
- /* prepare the VLAN tagging flags for Tx */
- if (ice_tx_prepare_vlan_flags(tx_ring, first))
- goto out_drop;
- /* set up TSO offload */
- tso = ice_tso(first, &offload);
- if (tso < 0)
- goto out_drop;
- /* always set up Tx checksum offload */
- csum = ice_tx_csum(first, &offload);
- if (csum < 0)
- goto out_drop;
- if (tso || offload.cd_tunnel_params) {
- struct ice_tx_ctx_desc *cdesc;
- int i = tx_ring->next_to_use;
- /* grab the next descriptor */
- cdesc = ICE_TX_CTX_DESC(tx_ring, i);
- i++;
- tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
- /* setup context descriptor */
- cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
- cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
- cdesc->rsvd = cpu_to_le16(0);
- cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
- }
- ice_tx_map(tx_ring, first, &offload);
- return NETDEV_TX_OK;
- out_drop:
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
- /**
- * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
- * @skb: send buffer
- * @netdev: network interface device structure
- *
- * Returns NETDEV_TX_OK if sent, else an error code
- */
- netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
- {
- struct ice_netdev_priv *np = netdev_priv(netdev);
- struct ice_vsi *vsi = np->vsi;
- struct ice_ring *tx_ring;
- tx_ring = vsi->tx_rings[skb->queue_mapping];
- /* hardware can't handle really short frames, hardware padding works
- * beyond this point
- */
- if (skb_put_padto(skb, ICE_MIN_TX_LEN))
- return NETDEV_TX_OK;
- return ice_xmit_frame_ring(skb, tx_ring);
- }
|