i40e_txrx.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. /* Copyright(c) 2013 - 2018 Intel Corporation. */
  3. #ifndef _I40E_TXRX_H_
  4. #define _I40E_TXRX_H_
  5. #include <net/xdp.h>
  6. /* Interrupt Throttling and Rate Limiting Goodies */
  7. #define I40E_DEFAULT_IRQ_WORK 256
  8. /* The datasheet for the X710 and XL710 indicate that the maximum value for
  9. * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
  10. * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
  11. * the register value which is divided by 2 lets use the actual values and
  12. * avoid an excessive amount of translation.
  13. */
  14. #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
  15. #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */
  16. #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */
  17. #define I40E_ITR_100K 10 /* all values below must be even */
  18. #define I40E_ITR_50K 20
  19. #define I40E_ITR_20K 50
  20. #define I40E_ITR_18K 60
  21. #define I40E_ITR_8K 122
  22. #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */
  23. #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
  24. #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
  25. #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
  26. #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  27. #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  28. /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  29. * the value of the rate limit is non-zero
  30. */
  31. #define INTRL_ENA BIT(6)
  32. #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
  33. #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  34. /**
  35. * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
  36. * @intrl: interrupt rate limit to convert
  37. *
  38. * This function converts a decimal interrupt rate limit to the appropriate
  39. * register format expected by the firmware when setting interrupt rate limit.
  40. */
  41. static inline u16 i40e_intrl_usec_to_reg(int intrl)
  42. {
  43. if (intrl >> 2)
  44. return ((intrl >> 2) | INTRL_ENA);
  45. else
  46. return 0;
  47. }
  48. #define I40E_INTRL_8K 125 /* 8000 ints/sec */
  49. #define I40E_INTRL_62K 16 /* 62500 ints/sec */
  50. #define I40E_INTRL_83K 12 /* 83333 ints/sec */
  51. #define I40E_QUEUE_END_OF_LIST 0x7FF
  52. /* this enum matches hardware bits and is meant to be used by DYN_CTLN
  53. * registers and QINT registers or more generally anywhere in the manual
  54. * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  55. * register but instead is a special value meaning "don't update" ITR0/1/2.
  56. */
  57. enum i40e_dyn_idx_t {
  58. I40E_IDX_ITR0 = 0,
  59. I40E_IDX_ITR1 = 1,
  60. I40E_IDX_ITR2 = 2,
  61. I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
  62. };
  63. /* these are indexes into ITRN registers */
  64. #define I40E_RX_ITR I40E_IDX_ITR0
  65. #define I40E_TX_ITR I40E_IDX_ITR1
  66. #define I40E_PE_ITR I40E_IDX_ITR2
  67. /* Supported RSS offloads */
  68. #define I40E_DEFAULT_RSS_HENA ( \
  69. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  70. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  71. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  72. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  73. BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
  74. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
  75. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
  76. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
  77. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
  78. BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
  79. BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
  80. #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
  81. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
  82. BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
  83. BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
  84. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
  85. BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
  86. BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
  87. #define i40e_pf_get_default_rss_hena(pf) \
  88. (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
  89. I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
  90. /* Supported Rx Buffer Sizes (a multiple of 128) */
  91. #define I40E_RXBUFFER_256 256
  92. #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
  93. #define I40E_RXBUFFER_2048 2048
  94. #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
  95. #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
  96. /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
  97. * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
  98. * this adds up to 512 bytes of extra data meaning the smallest allocation
  99. * we could have is 1K.
  100. * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
  101. * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
  102. */
  103. #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
  104. #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
  105. #define i40e_rx_desc i40e_32byte_rx_desc
  106. #define I40E_RX_DMA_ATTR \
  107. (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
  108. /* Attempt to maximize the headroom available for incoming frames. We
  109. * use a 2K buffer for receives and need 1536/1534 to store the data for
  110. * the frame. This leaves us with 512 bytes of room. From that we need
  111. * to deduct the space needed for the shared info and the padding needed
  112. * to IP align the frame.
  113. *
  114. * Note: For cache line sizes 256 or larger this value is going to end
  115. * up negative. In these cases we should fall back to the legacy
  116. * receive path.
  117. */
  118. #if (PAGE_SIZE < 8192)
  119. #define I40E_2K_TOO_SMALL_WITH_PADDING \
  120. ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
  121. static inline int i40e_compute_pad(int rx_buf_len)
  122. {
  123. int page_size, pad_size;
  124. page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
  125. pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
  126. return pad_size;
  127. }
  128. static inline int i40e_skb_pad(void)
  129. {
  130. int rx_buf_len;
  131. /* If a 2K buffer cannot handle a standard Ethernet frame then
  132. * optimize padding for a 3K buffer instead of a 1.5K buffer.
  133. *
  134. * For a 3K buffer we need to add enough padding to allow for
  135. * tailroom due to NET_IP_ALIGN possibly shifting us out of
  136. * cache-line alignment.
  137. */
  138. if (I40E_2K_TOO_SMALL_WITH_PADDING)
  139. rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
  140. else
  141. rx_buf_len = I40E_RXBUFFER_1536;
  142. /* if needed make room for NET_IP_ALIGN */
  143. rx_buf_len -= NET_IP_ALIGN;
  144. return i40e_compute_pad(rx_buf_len);
  145. }
  146. #define I40E_SKB_PAD i40e_skb_pad()
  147. #else
  148. #define I40E_2K_TOO_SMALL_WITH_PADDING false
  149. #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
  150. #endif
  151. /**
  152. * i40e_test_staterr - tests bits in Rx descriptor status and error fields
  153. * @rx_desc: pointer to receive descriptor (in le64 format)
  154. * @stat_err_bits: value to mask
  155. *
  156. * This function does some fast chicanery in order to return the
  157. * value of the mask which is really only used for boolean tests.
  158. * The status_error_len doesn't need to be shifted because it begins
  159. * at offset zero.
  160. */
  161. static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
  162. const u64 stat_err_bits)
  163. {
  164. return !!(rx_desc->wb.qword1.status_error_len &
  165. cpu_to_le64(stat_err_bits));
  166. }
  167. /* How many Rx Buffers do we bundle into one write to the hardware ? */
  168. #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */
  169. #define I40E_RX_INCREMENT(r, i) \
  170. do { \
  171. (i)++; \
  172. if ((i) == (r)->count) \
  173. i = 0; \
  174. r->next_to_clean = i; \
  175. } while (0)
  176. #define I40E_RX_NEXT_DESC(r, i, n) \
  177. do { \
  178. (i)++; \
  179. if ((i) == (r)->count) \
  180. i = 0; \
  181. (n) = I40E_RX_DESC((r), (i)); \
  182. } while (0)
  183. #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
  184. do { \
  185. I40E_RX_NEXT_DESC((r), (i), (n)); \
  186. prefetch((n)); \
  187. } while (0)
  188. #define I40E_MAX_BUFFER_TXD 8
  189. #define I40E_MIN_TX_LEN 17
  190. /* The size limit for a transmit buffer in a descriptor is (16K - 1).
  191. * In order to align with the read requests we will align the value to
  192. * the nearest 4K which represents our maximum read request size.
  193. */
  194. #define I40E_MAX_READ_REQ_SIZE 4096
  195. #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
  196. #define I40E_MAX_DATA_PER_TXD_ALIGNED \
  197. (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
  198. /**
  199. * i40e_txd_use_count - estimate the number of descriptors needed for Tx
  200. * @size: transmit request size in bytes
  201. *
  202. * Due to hardware alignment restrictions (4K alignment), we need to
  203. * assume that we can have no more than 12K of data per descriptor, even
  204. * though each descriptor can take up to 16K - 1 bytes of aligned memory.
  205. * Thus, we need to divide by 12K. But division is slow! Instead,
  206. * we decompose the operation into shifts and one relatively cheap
  207. * multiply operation.
  208. *
  209. * To divide by 12K, we first divide by 4K, then divide by 3:
  210. * To divide by 4K, shift right by 12 bits
  211. * To divide by 3, multiply by 85, then divide by 256
  212. * (Divide by 256 is done by shifting right by 8 bits)
  213. * Finally, we add one to round up. Because 256 isn't an exact multiple of
  214. * 3, we'll underestimate near each multiple of 12K. This is actually more
  215. * accurate as we have 4K - 1 of wiggle room that we can fit into the last
  216. * segment. For our purposes this is accurate out to 1M which is orders of
  217. * magnitude greater than our largest possible GSO size.
  218. *
  219. * This would then be implemented as:
  220. * return (((size >> 12) * 85) >> 8) + 1;
  221. *
  222. * Since multiplication and division are commutative, we can reorder
  223. * operations into:
  224. * return ((size * 85) >> 20) + 1;
  225. */
  226. static inline unsigned int i40e_txd_use_count(unsigned int size)
  227. {
  228. return ((size * 85) >> 20) + 1;
  229. }
  230. /* Tx Descriptors needed, worst case */
  231. #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
  232. #define I40E_MIN_DESC_PENDING 4
  233. #define I40E_TX_FLAGS_HW_VLAN BIT(1)
  234. #define I40E_TX_FLAGS_SW_VLAN BIT(2)
  235. #define I40E_TX_FLAGS_TSO BIT(3)
  236. #define I40E_TX_FLAGS_IPV4 BIT(4)
  237. #define I40E_TX_FLAGS_IPV6 BIT(5)
  238. #define I40E_TX_FLAGS_FCCRC BIT(6)
  239. #define I40E_TX_FLAGS_FSO BIT(7)
  240. #define I40E_TX_FLAGS_TSYN BIT(8)
  241. #define I40E_TX_FLAGS_FD_SB BIT(9)
  242. #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10)
  243. #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
  244. #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
  245. #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
  246. #define I40E_TX_FLAGS_VLAN_SHIFT 16
  247. struct i40e_tx_buffer {
  248. struct i40e_tx_desc *next_to_watch;
  249. union {
  250. struct xdp_frame *xdpf;
  251. struct sk_buff *skb;
  252. void *raw_buf;
  253. };
  254. unsigned int bytecount;
  255. unsigned short gso_segs;
  256. DEFINE_DMA_UNMAP_ADDR(dma);
  257. DEFINE_DMA_UNMAP_LEN(len);
  258. u32 tx_flags;
  259. };
  260. struct i40e_rx_buffer {
  261. dma_addr_t dma;
  262. struct page *page;
  263. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  264. __u32 page_offset;
  265. #else
  266. __u16 page_offset;
  267. #endif
  268. __u16 pagecnt_bias;
  269. };
  270. struct i40e_queue_stats {
  271. u64 packets;
  272. u64 bytes;
  273. };
  274. struct i40e_tx_queue_stats {
  275. u64 restart_queue;
  276. u64 tx_busy;
  277. u64 tx_done_old;
  278. u64 tx_linearize;
  279. u64 tx_force_wb;
  280. int prev_pkt_ctr;
  281. };
  282. struct i40e_rx_queue_stats {
  283. u64 non_eop_descs;
  284. u64 alloc_page_failed;
  285. u64 alloc_buff_failed;
  286. u64 page_reuse_count;
  287. u64 realloc_count;
  288. };
  289. enum i40e_ring_state_t {
  290. __I40E_TX_FDIR_INIT_DONE,
  291. __I40E_TX_XPS_INIT_DONE,
  292. __I40E_RING_STATE_NBITS /* must be last */
  293. };
  294. /* some useful defines for virtchannel interface, which
  295. * is the only remaining user of header split
  296. */
  297. #define I40E_RX_DTYPE_NO_SPLIT 0
  298. #define I40E_RX_DTYPE_HEADER_SPLIT 1
  299. #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
  300. #define I40E_RX_SPLIT_L2 0x1
  301. #define I40E_RX_SPLIT_IP 0x2
  302. #define I40E_RX_SPLIT_TCP_UDP 0x4
  303. #define I40E_RX_SPLIT_SCTP 0x8
  304. /* struct that defines a descriptor ring, associated with a VSI */
  305. struct i40e_ring {
  306. struct i40e_ring *next; /* pointer to next ring in q_vector */
  307. void *desc; /* Descriptor ring memory */
  308. struct device *dev; /* Used for DMA mapping */
  309. struct net_device *netdev; /* netdev ring maps to */
  310. struct bpf_prog *xdp_prog;
  311. union {
  312. struct i40e_tx_buffer *tx_bi;
  313. struct i40e_rx_buffer *rx_bi;
  314. };
  315. DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
  316. u16 queue_index; /* Queue number of ring */
  317. u8 dcb_tc; /* Traffic class of ring */
  318. u8 __iomem *tail;
  319. /* high bit set means dynamic, use accessor routines to read/write.
  320. * hardware only supports 2us resolution for the ITR registers.
  321. * these values always store the USER setting, and must be converted
  322. * before programming to a register.
  323. */
  324. u16 itr_setting;
  325. u16 count; /* Number of descriptors */
  326. u16 reg_idx; /* HW register index of the ring */
  327. u16 rx_buf_len;
  328. /* used in interrupt processing */
  329. u16 next_to_use;
  330. u16 next_to_clean;
  331. u8 atr_sample_rate;
  332. u8 atr_count;
  333. bool ring_active; /* is ring online or not */
  334. bool arm_wb; /* do something to arm write back */
  335. u8 packet_stride;
  336. u16 flags;
  337. #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
  338. #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
  339. #define I40E_TXR_FLAGS_XDP BIT(2)
  340. /* stats structs */
  341. struct i40e_queue_stats stats;
  342. struct u64_stats_sync syncp;
  343. union {
  344. struct i40e_tx_queue_stats tx_stats;
  345. struct i40e_rx_queue_stats rx_stats;
  346. };
  347. unsigned int size; /* length of descriptor ring in bytes */
  348. dma_addr_t dma; /* physical address of ring */
  349. struct i40e_vsi *vsi; /* Backreference to associated VSI */
  350. struct i40e_q_vector *q_vector; /* Backreference to associated vector */
  351. struct rcu_head rcu; /* to avoid race on free */
  352. u16 next_to_alloc;
  353. struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must
  354. * return before it sees the EOP for
  355. * the current packet, we save that skb
  356. * here and resume receiving this
  357. * packet the next time
  358. * i40e_clean_rx_ring_irq() is called
  359. * for this ring.
  360. */
  361. struct i40e_channel *ch;
  362. struct xdp_rxq_info xdp_rxq;
  363. } ____cacheline_internodealigned_in_smp;
  364. static inline bool ring_uses_build_skb(struct i40e_ring *ring)
  365. {
  366. return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
  367. }
  368. static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
  369. {
  370. ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
  371. }
  372. static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
  373. {
  374. ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
  375. }
  376. static inline bool ring_is_xdp(struct i40e_ring *ring)
  377. {
  378. return !!(ring->flags & I40E_TXR_FLAGS_XDP);
  379. }
  380. static inline void set_ring_xdp(struct i40e_ring *ring)
  381. {
  382. ring->flags |= I40E_TXR_FLAGS_XDP;
  383. }
  384. #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002
  385. #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002
  386. #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e
  387. #define I40E_ITR_ADAPTIVE_LATENCY 0x8000
  388. #define I40E_ITR_ADAPTIVE_BULK 0x0000
  389. #define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
  390. struct i40e_ring_container {
  391. struct i40e_ring *ring; /* pointer to linked list of ring(s) */
  392. unsigned long next_update; /* jiffies value of next update */
  393. unsigned int total_bytes; /* total bytes processed this int */
  394. unsigned int total_packets; /* total packets processed this int */
  395. u16 count;
  396. u16 target_itr; /* target ITR setting for ring(s) */
  397. u16 current_itr; /* current ITR setting for ring(s) */
  398. };
  399. /* iterator for handling rings in ring container */
  400. #define i40e_for_each_ring(pos, head) \
  401. for (pos = (head).ring; pos != NULL; pos = pos->next)
  402. static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
  403. {
  404. #if (PAGE_SIZE < 8192)
  405. if (ring->rx_buf_len > (PAGE_SIZE / 2))
  406. return 1;
  407. #endif
  408. return 0;
  409. }
  410. #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
  411. bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
  412. netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  413. void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
  414. void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
  415. int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
  416. int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
  417. void i40e_free_tx_resources(struct i40e_ring *tx_ring);
  418. void i40e_free_rx_resources(struct i40e_ring *rx_ring);
  419. int i40e_napi_poll(struct napi_struct *napi, int budget);
  420. void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
  421. u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
  422. void i40e_detect_recover_hung(struct i40e_vsi *vsi);
  423. int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
  424. bool __i40e_chk_linearize(struct sk_buff *skb);
  425. int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
  426. u32 flags);
  427. /**
  428. * i40e_get_head - Retrieve head from head writeback
  429. * @tx_ring: tx ring to fetch head of
  430. *
  431. * Returns value of Tx ring head based on value stored
  432. * in head write-back location
  433. **/
  434. static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
  435. {
  436. void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
  437. return le32_to_cpu(*(volatile __le32 *)head);
  438. }
  439. /**
  440. * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
  441. * @skb: send buffer
  442. * @tx_ring: ring to send buffer on
  443. *
  444. * Returns number of data descriptors needed for this skb. Returns 0 to indicate
  445. * there is not enough descriptors available in this ring since we need at least
  446. * one descriptor.
  447. **/
  448. static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
  449. {
  450. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
  451. unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
  452. int count = 0, size = skb_headlen(skb);
  453. for (;;) {
  454. count += i40e_txd_use_count(size);
  455. if (!nr_frags--)
  456. break;
  457. size = skb_frag_size(frag++);
  458. }
  459. return count;
  460. }
  461. /**
  462. * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
  463. * @tx_ring: the ring to be checked
  464. * @size: the size buffer we want to assure is available
  465. *
  466. * Returns 0 if stop is not needed
  467. **/
  468. static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  469. {
  470. if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
  471. return 0;
  472. return __i40e_maybe_stop_tx(tx_ring, size);
  473. }
  474. /**
  475. * i40e_chk_linearize - Check if there are more than 8 fragments per packet
  476. * @skb: send buffer
  477. * @count: number of buffers used
  478. *
  479. * Note: Our HW can't scatter-gather more than 8 fragments to build
  480. * a packet on the wire and so we need to figure out the cases where we
  481. * need to linearize the skb.
  482. **/
  483. static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
  484. {
  485. /* Both TSO and single send will work if count is less than 8 */
  486. if (likely(count < I40E_MAX_BUFFER_TXD))
  487. return false;
  488. if (skb_is_gso(skb))
  489. return __i40e_chk_linearize(skb);
  490. /* we can support up to 8 data buffers for a single send */
  491. return count != I40E_MAX_BUFFER_TXD;
  492. }
  493. /**
  494. * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
  495. * @ring: Tx ring to find the netdev equivalent of
  496. **/
  497. static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
  498. {
  499. return netdev_get_tx_queue(ring->netdev, ring->queue_index);
  500. }
  501. #endif /* _I40E_TXRX_H_ */