bnxt.c 233 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141
  1. /* Broadcom NetXtreme-C/E network driver.
  2. *
  3. * Copyright (c) 2014-2016 Broadcom Corporation
  4. * Copyright (c) 2016-2018 Broadcom Limited
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/stringify.h>
  12. #include <linux/kernel.h>
  13. #include <linux/timer.h>
  14. #include <linux/errno.h>
  15. #include <linux/ioport.h>
  16. #include <linux/slab.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/pci.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/bitops.h>
  25. #include <linux/io.h>
  26. #include <linux/irq.h>
  27. #include <linux/delay.h>
  28. #include <asm/byteorder.h>
  29. #include <asm/page.h>
  30. #include <linux/time.h>
  31. #include <linux/mii.h>
  32. #include <linux/if.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/if_bridge.h>
  35. #include <linux/rtc.h>
  36. #include <linux/bpf.h>
  37. #include <net/ip.h>
  38. #include <net/tcp.h>
  39. #include <net/udp.h>
  40. #include <net/checksum.h>
  41. #include <net/ip6_checksum.h>
  42. #include <net/udp_tunnel.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/log2.h>
  47. #include <linux/aer.h>
  48. #include <linux/bitmap.h>
  49. #include <linux/cpu_rmap.h>
  50. #include <linux/cpumask.h>
  51. #include <net/pkt_cls.h>
  52. #include "bnxt_hsi.h"
  53. #include "bnxt.h"
  54. #include "bnxt_ulp.h"
  55. #include "bnxt_sriov.h"
  56. #include "bnxt_ethtool.h"
  57. #include "bnxt_dcb.h"
  58. #include "bnxt_xdp.h"
  59. #include "bnxt_vfr.h"
  60. #include "bnxt_tc.h"
  61. #include "bnxt_devlink.h"
  62. #include "bnxt_debugfs.h"
  63. #define BNXT_TX_TIMEOUT (5 * HZ)
  64. static const char version[] =
  65. "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
  66. MODULE_LICENSE("GPL");
  67. MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
  68. MODULE_VERSION(DRV_MODULE_VERSION);
  69. #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
  70. #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
  71. #define BNXT_RX_COPY_THRESH 256
  72. #define BNXT_TX_PUSH_THRESH 164
  73. enum board_idx {
  74. BCM57301,
  75. BCM57302,
  76. BCM57304,
  77. BCM57417_NPAR,
  78. BCM58700,
  79. BCM57311,
  80. BCM57312,
  81. BCM57402,
  82. BCM57404,
  83. BCM57406,
  84. BCM57402_NPAR,
  85. BCM57407,
  86. BCM57412,
  87. BCM57414,
  88. BCM57416,
  89. BCM57417,
  90. BCM57412_NPAR,
  91. BCM57314,
  92. BCM57417_SFP,
  93. BCM57416_SFP,
  94. BCM57404_NPAR,
  95. BCM57406_NPAR,
  96. BCM57407_SFP,
  97. BCM57407_NPAR,
  98. BCM57414_NPAR,
  99. BCM57416_NPAR,
  100. BCM57452,
  101. BCM57454,
  102. BCM5745x_NPAR,
  103. BCM58802,
  104. BCM58804,
  105. BCM58808,
  106. NETXTREME_E_VF,
  107. NETXTREME_C_VF,
  108. NETXTREME_S_VF,
  109. };
  110. /* indexed by enum above */
  111. static const struct {
  112. char *name;
  113. } board_info[] = {
  114. [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
  115. [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
  116. [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
  117. [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
  118. [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
  119. [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
  120. [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
  121. [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
  122. [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
  123. [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
  124. [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
  125. [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
  126. [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
  127. [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
  128. [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
  129. [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
  130. [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
  131. [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
  132. [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
  133. [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
  134. [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
  135. [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
  136. [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
  137. [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
  138. [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
  139. [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
  140. [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
  141. [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
  142. [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
  143. [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
  144. [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
  145. [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
  146. [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
  147. [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
  148. [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
  149. };
  150. static const struct pci_device_id bnxt_pci_tbl[] = {
  151. { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
  152. { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
  153. { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
  154. { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
  155. { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
  156. { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
  157. { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
  158. { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
  159. { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
  160. { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
  161. { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
  162. { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
  163. { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
  164. { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
  165. { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
  166. { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
  167. { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
  168. { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
  169. { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
  170. { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
  171. { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
  172. { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
  173. { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
  174. { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
  175. { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
  176. { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
  177. { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
  178. { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
  179. { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
  180. { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
  181. { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
  182. { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
  183. { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
  184. { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
  185. { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
  186. { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
  187. { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
  188. #ifdef CONFIG_BNXT_SRIOV
  189. { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
  190. { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
  191. { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
  192. { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
  193. { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
  194. { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
  195. { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
  196. { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
  197. { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
  198. #endif
  199. { 0 }
  200. };
  201. MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
  202. static const u16 bnxt_vf_req_snif[] = {
  203. HWRM_FUNC_CFG,
  204. HWRM_FUNC_VF_CFG,
  205. HWRM_PORT_PHY_QCFG,
  206. HWRM_CFA_L2_FILTER_ALLOC,
  207. };
  208. static const u16 bnxt_async_events_arr[] = {
  209. ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
  210. ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
  211. ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
  212. ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
  213. ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
  214. };
  215. static struct workqueue_struct *bnxt_pf_wq;
  216. static bool bnxt_vf_pciid(enum board_idx idx)
  217. {
  218. return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
  219. idx == NETXTREME_S_VF);
  220. }
  221. #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
  222. #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
  223. #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
  224. #define BNXT_CP_DB_REARM(db, raw_cons) \
  225. writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
  226. #define BNXT_CP_DB(db, raw_cons) \
  227. writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
  228. #define BNXT_CP_DB_IRQ_DIS(db) \
  229. writel(DB_CP_IRQ_DIS_FLAGS, db)
  230. const u16 bnxt_lhint_arr[] = {
  231. TX_BD_FLAGS_LHINT_512_AND_SMALLER,
  232. TX_BD_FLAGS_LHINT_512_TO_1023,
  233. TX_BD_FLAGS_LHINT_1024_TO_2047,
  234. TX_BD_FLAGS_LHINT_1024_TO_2047,
  235. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  236. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  237. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  238. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  239. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  240. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  241. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  242. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  243. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  244. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  245. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  246. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  247. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  248. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  249. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  250. };
  251. static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
  252. {
  253. struct metadata_dst *md_dst = skb_metadata_dst(skb);
  254. if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
  255. return 0;
  256. return md_dst->u.port_info.port_id;
  257. }
  258. static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
  259. {
  260. struct bnxt *bp = netdev_priv(dev);
  261. struct tx_bd *txbd;
  262. struct tx_bd_ext *txbd1;
  263. struct netdev_queue *txq;
  264. int i;
  265. dma_addr_t mapping;
  266. unsigned int length, pad = 0;
  267. u32 len, free_size, vlan_tag_flags, cfa_action, flags;
  268. u16 prod, last_frag;
  269. struct pci_dev *pdev = bp->pdev;
  270. struct bnxt_tx_ring_info *txr;
  271. struct bnxt_sw_tx_bd *tx_buf;
  272. i = skb_get_queue_mapping(skb);
  273. if (unlikely(i >= bp->tx_nr_rings)) {
  274. dev_kfree_skb_any(skb);
  275. return NETDEV_TX_OK;
  276. }
  277. txq = netdev_get_tx_queue(dev, i);
  278. txr = &bp->tx_ring[bp->tx_ring_map[i]];
  279. prod = txr->tx_prod;
  280. free_size = bnxt_tx_avail(bp, txr);
  281. if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
  282. netif_tx_stop_queue(txq);
  283. return NETDEV_TX_BUSY;
  284. }
  285. length = skb->len;
  286. len = skb_headlen(skb);
  287. last_frag = skb_shinfo(skb)->nr_frags;
  288. txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
  289. txbd->tx_bd_opaque = prod;
  290. tx_buf = &txr->tx_buf_ring[prod];
  291. tx_buf->skb = skb;
  292. tx_buf->nr_frags = last_frag;
  293. vlan_tag_flags = 0;
  294. cfa_action = bnxt_xmit_get_cfa_action(skb);
  295. if (skb_vlan_tag_present(skb)) {
  296. vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
  297. skb_vlan_tag_get(skb);
  298. /* Currently supports 8021Q, 8021AD vlan offloads
  299. * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
  300. */
  301. if (skb->vlan_proto == htons(ETH_P_8021Q))
  302. vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
  303. }
  304. if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
  305. struct tx_push_buffer *tx_push_buf = txr->tx_push;
  306. struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
  307. struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
  308. void *pdata = tx_push_buf->data;
  309. u64 *end;
  310. int j, push_len;
  311. /* Set COAL_NOW to be ready quickly for the next push */
  312. tx_push->tx_bd_len_flags_type =
  313. cpu_to_le32((length << TX_BD_LEN_SHIFT) |
  314. TX_BD_TYPE_LONG_TX_BD |
  315. TX_BD_FLAGS_LHINT_512_AND_SMALLER |
  316. TX_BD_FLAGS_COAL_NOW |
  317. TX_BD_FLAGS_PACKET_END |
  318. (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
  319. if (skb->ip_summed == CHECKSUM_PARTIAL)
  320. tx_push1->tx_bd_hsize_lflags =
  321. cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
  322. else
  323. tx_push1->tx_bd_hsize_lflags = 0;
  324. tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
  325. tx_push1->tx_bd_cfa_action =
  326. cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
  327. end = pdata + length;
  328. end = PTR_ALIGN(end, 8) - 1;
  329. *end = 0;
  330. skb_copy_from_linear_data(skb, pdata, len);
  331. pdata += len;
  332. for (j = 0; j < last_frag; j++) {
  333. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  334. void *fptr;
  335. fptr = skb_frag_address_safe(frag);
  336. if (!fptr)
  337. goto normal_tx;
  338. memcpy(pdata, fptr, skb_frag_size(frag));
  339. pdata += skb_frag_size(frag);
  340. }
  341. txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
  342. txbd->tx_bd_haddr = txr->data_mapping;
  343. prod = NEXT_TX(prod);
  344. txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
  345. memcpy(txbd, tx_push1, sizeof(*txbd));
  346. prod = NEXT_TX(prod);
  347. tx_push->doorbell =
  348. cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
  349. txr->tx_prod = prod;
  350. tx_buf->is_push = 1;
  351. netdev_tx_sent_queue(txq, skb->len);
  352. wmb(); /* Sync is_push and byte queue before pushing data */
  353. push_len = (length + sizeof(*tx_push) + 7) / 8;
  354. if (push_len > 16) {
  355. __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
  356. __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
  357. (push_len - 16) << 1);
  358. } else {
  359. __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
  360. push_len);
  361. }
  362. goto tx_done;
  363. }
  364. normal_tx:
  365. if (length < BNXT_MIN_PKT_SIZE) {
  366. pad = BNXT_MIN_PKT_SIZE - length;
  367. if (skb_pad(skb, pad)) {
  368. /* SKB already freed. */
  369. tx_buf->skb = NULL;
  370. return NETDEV_TX_OK;
  371. }
  372. length = BNXT_MIN_PKT_SIZE;
  373. }
  374. mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
  375. if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
  376. dev_kfree_skb_any(skb);
  377. tx_buf->skb = NULL;
  378. return NETDEV_TX_OK;
  379. }
  380. dma_unmap_addr_set(tx_buf, mapping, mapping);
  381. flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
  382. ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
  383. txbd->tx_bd_haddr = cpu_to_le64(mapping);
  384. prod = NEXT_TX(prod);
  385. txbd1 = (struct tx_bd_ext *)
  386. &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
  387. txbd1->tx_bd_hsize_lflags = 0;
  388. if (skb_is_gso(skb)) {
  389. u32 hdr_len;
  390. if (skb->encapsulation)
  391. hdr_len = skb_inner_network_offset(skb) +
  392. skb_inner_network_header_len(skb) +
  393. inner_tcp_hdrlen(skb);
  394. else
  395. hdr_len = skb_transport_offset(skb) +
  396. tcp_hdrlen(skb);
  397. txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
  398. TX_BD_FLAGS_T_IPID |
  399. (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
  400. length = skb_shinfo(skb)->gso_size;
  401. txbd1->tx_bd_mss = cpu_to_le32(length);
  402. length += hdr_len;
  403. } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
  404. txbd1->tx_bd_hsize_lflags =
  405. cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
  406. txbd1->tx_bd_mss = 0;
  407. }
  408. length >>= 9;
  409. flags |= bnxt_lhint_arr[length];
  410. txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
  411. txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
  412. txbd1->tx_bd_cfa_action =
  413. cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
  414. for (i = 0; i < last_frag; i++) {
  415. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  416. prod = NEXT_TX(prod);
  417. txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
  418. len = skb_frag_size(frag);
  419. mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
  420. DMA_TO_DEVICE);
  421. if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
  422. goto tx_dma_error;
  423. tx_buf = &txr->tx_buf_ring[prod];
  424. dma_unmap_addr_set(tx_buf, mapping, mapping);
  425. txbd->tx_bd_haddr = cpu_to_le64(mapping);
  426. flags = len << TX_BD_LEN_SHIFT;
  427. txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
  428. }
  429. flags &= ~TX_BD_LEN;
  430. txbd->tx_bd_len_flags_type =
  431. cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
  432. TX_BD_FLAGS_PACKET_END);
  433. netdev_tx_sent_queue(txq, skb->len);
  434. /* Sync BD data before updating doorbell */
  435. wmb();
  436. prod = NEXT_TX(prod);
  437. txr->tx_prod = prod;
  438. if (!skb->xmit_more || netif_xmit_stopped(txq))
  439. bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
  440. tx_done:
  441. mmiowb();
  442. if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
  443. if (skb->xmit_more && !tx_buf->is_push)
  444. bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
  445. netif_tx_stop_queue(txq);
  446. /* netif_tx_stop_queue() must be done before checking
  447. * tx index in bnxt_tx_avail() below, because in
  448. * bnxt_tx_int(), we update tx index before checking for
  449. * netif_tx_queue_stopped().
  450. */
  451. smp_mb();
  452. if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
  453. netif_tx_wake_queue(txq);
  454. }
  455. return NETDEV_TX_OK;
  456. tx_dma_error:
  457. last_frag = i;
  458. /* start back at beginning and unmap skb */
  459. prod = txr->tx_prod;
  460. tx_buf = &txr->tx_buf_ring[prod];
  461. tx_buf->skb = NULL;
  462. dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
  463. skb_headlen(skb), PCI_DMA_TODEVICE);
  464. prod = NEXT_TX(prod);
  465. /* unmap remaining mapped pages */
  466. for (i = 0; i < last_frag; i++) {
  467. prod = NEXT_TX(prod);
  468. tx_buf = &txr->tx_buf_ring[prod];
  469. dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
  470. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  471. PCI_DMA_TODEVICE);
  472. }
  473. dev_kfree_skb_any(skb);
  474. return NETDEV_TX_OK;
  475. }
  476. static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
  477. {
  478. struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
  479. struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
  480. u16 cons = txr->tx_cons;
  481. struct pci_dev *pdev = bp->pdev;
  482. int i;
  483. unsigned int tx_bytes = 0;
  484. for (i = 0; i < nr_pkts; i++) {
  485. struct bnxt_sw_tx_bd *tx_buf;
  486. struct sk_buff *skb;
  487. int j, last;
  488. tx_buf = &txr->tx_buf_ring[cons];
  489. cons = NEXT_TX(cons);
  490. skb = tx_buf->skb;
  491. tx_buf->skb = NULL;
  492. if (tx_buf->is_push) {
  493. tx_buf->is_push = 0;
  494. goto next_tx_int;
  495. }
  496. dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
  497. skb_headlen(skb), PCI_DMA_TODEVICE);
  498. last = tx_buf->nr_frags;
  499. for (j = 0; j < last; j++) {
  500. cons = NEXT_TX(cons);
  501. tx_buf = &txr->tx_buf_ring[cons];
  502. dma_unmap_page(
  503. &pdev->dev,
  504. dma_unmap_addr(tx_buf, mapping),
  505. skb_frag_size(&skb_shinfo(skb)->frags[j]),
  506. PCI_DMA_TODEVICE);
  507. }
  508. next_tx_int:
  509. cons = NEXT_TX(cons);
  510. tx_bytes += skb->len;
  511. dev_kfree_skb_any(skb);
  512. }
  513. netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
  514. txr->tx_cons = cons;
  515. /* Need to make the tx_cons update visible to bnxt_start_xmit()
  516. * before checking for netif_tx_queue_stopped(). Without the
  517. * memory barrier, there is a small possibility that bnxt_start_xmit()
  518. * will miss it and cause the queue to be stopped forever.
  519. */
  520. smp_mb();
  521. if (unlikely(netif_tx_queue_stopped(txq)) &&
  522. (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  523. __netif_tx_lock(txq, smp_processor_id());
  524. if (netif_tx_queue_stopped(txq) &&
  525. bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
  526. txr->dev_state != BNXT_DEV_STATE_CLOSING)
  527. netif_tx_wake_queue(txq);
  528. __netif_tx_unlock(txq);
  529. }
  530. }
  531. static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
  532. gfp_t gfp)
  533. {
  534. struct device *dev = &bp->pdev->dev;
  535. struct page *page;
  536. page = alloc_page(gfp);
  537. if (!page)
  538. return NULL;
  539. *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
  540. DMA_ATTR_WEAK_ORDERING);
  541. if (dma_mapping_error(dev, *mapping)) {
  542. __free_page(page);
  543. return NULL;
  544. }
  545. *mapping += bp->rx_dma_offset;
  546. return page;
  547. }
  548. static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
  549. gfp_t gfp)
  550. {
  551. u8 *data;
  552. struct pci_dev *pdev = bp->pdev;
  553. data = kmalloc(bp->rx_buf_size, gfp);
  554. if (!data)
  555. return NULL;
  556. *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
  557. bp->rx_buf_use_size, bp->rx_dir,
  558. DMA_ATTR_WEAK_ORDERING);
  559. if (dma_mapping_error(&pdev->dev, *mapping)) {
  560. kfree(data);
  561. data = NULL;
  562. }
  563. return data;
  564. }
  565. int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
  566. u16 prod, gfp_t gfp)
  567. {
  568. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  569. struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
  570. dma_addr_t mapping;
  571. if (BNXT_RX_PAGE_MODE(bp)) {
  572. struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
  573. if (!page)
  574. return -ENOMEM;
  575. rx_buf->data = page;
  576. rx_buf->data_ptr = page_address(page) + bp->rx_offset;
  577. } else {
  578. u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
  579. if (!data)
  580. return -ENOMEM;
  581. rx_buf->data = data;
  582. rx_buf->data_ptr = data + bp->rx_offset;
  583. }
  584. rx_buf->mapping = mapping;
  585. rxbd->rx_bd_haddr = cpu_to_le64(mapping);
  586. return 0;
  587. }
  588. void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
  589. {
  590. u16 prod = rxr->rx_prod;
  591. struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
  592. struct rx_bd *cons_bd, *prod_bd;
  593. prod_rx_buf = &rxr->rx_buf_ring[prod];
  594. cons_rx_buf = &rxr->rx_buf_ring[cons];
  595. prod_rx_buf->data = data;
  596. prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
  597. prod_rx_buf->mapping = cons_rx_buf->mapping;
  598. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  599. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  600. prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
  601. }
  602. static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
  603. {
  604. u16 next, max = rxr->rx_agg_bmap_size;
  605. next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
  606. if (next >= max)
  607. next = find_first_zero_bit(rxr->rx_agg_bmap, max);
  608. return next;
  609. }
  610. static inline int bnxt_alloc_rx_page(struct bnxt *bp,
  611. struct bnxt_rx_ring_info *rxr,
  612. u16 prod, gfp_t gfp)
  613. {
  614. struct rx_bd *rxbd =
  615. &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  616. struct bnxt_sw_rx_agg_bd *rx_agg_buf;
  617. struct pci_dev *pdev = bp->pdev;
  618. struct page *page;
  619. dma_addr_t mapping;
  620. u16 sw_prod = rxr->rx_sw_agg_prod;
  621. unsigned int offset = 0;
  622. if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
  623. page = rxr->rx_page;
  624. if (!page) {
  625. page = alloc_page(gfp);
  626. if (!page)
  627. return -ENOMEM;
  628. rxr->rx_page = page;
  629. rxr->rx_page_offset = 0;
  630. }
  631. offset = rxr->rx_page_offset;
  632. rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
  633. if (rxr->rx_page_offset == PAGE_SIZE)
  634. rxr->rx_page = NULL;
  635. else
  636. get_page(page);
  637. } else {
  638. page = alloc_page(gfp);
  639. if (!page)
  640. return -ENOMEM;
  641. }
  642. mapping = dma_map_page_attrs(&pdev->dev, page, offset,
  643. BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
  644. DMA_ATTR_WEAK_ORDERING);
  645. if (dma_mapping_error(&pdev->dev, mapping)) {
  646. __free_page(page);
  647. return -EIO;
  648. }
  649. if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
  650. sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
  651. __set_bit(sw_prod, rxr->rx_agg_bmap);
  652. rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
  653. rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
  654. rx_agg_buf->page = page;
  655. rx_agg_buf->offset = offset;
  656. rx_agg_buf->mapping = mapping;
  657. rxbd->rx_bd_haddr = cpu_to_le64(mapping);
  658. rxbd->rx_bd_opaque = sw_prod;
  659. return 0;
  660. }
  661. static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
  662. u32 agg_bufs)
  663. {
  664. struct bnxt *bp = bnapi->bp;
  665. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  666. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  667. u16 prod = rxr->rx_agg_prod;
  668. u16 sw_prod = rxr->rx_sw_agg_prod;
  669. u32 i;
  670. for (i = 0; i < agg_bufs; i++) {
  671. u16 cons;
  672. struct rx_agg_cmp *agg;
  673. struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
  674. struct rx_bd *prod_bd;
  675. struct page *page;
  676. agg = (struct rx_agg_cmp *)
  677. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  678. cons = agg->rx_agg_cmp_opaque;
  679. __clear_bit(cons, rxr->rx_agg_bmap);
  680. if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
  681. sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
  682. __set_bit(sw_prod, rxr->rx_agg_bmap);
  683. prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
  684. cons_rx_buf = &rxr->rx_agg_ring[cons];
  685. /* It is possible for sw_prod to be equal to cons, so
  686. * set cons_rx_buf->page to NULL first.
  687. */
  688. page = cons_rx_buf->page;
  689. cons_rx_buf->page = NULL;
  690. prod_rx_buf->page = page;
  691. prod_rx_buf->offset = cons_rx_buf->offset;
  692. prod_rx_buf->mapping = cons_rx_buf->mapping;
  693. prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  694. prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
  695. prod_bd->rx_bd_opaque = sw_prod;
  696. prod = NEXT_RX_AGG(prod);
  697. sw_prod = NEXT_RX_AGG(sw_prod);
  698. cp_cons = NEXT_CMP(cp_cons);
  699. }
  700. rxr->rx_agg_prod = prod;
  701. rxr->rx_sw_agg_prod = sw_prod;
  702. }
  703. static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
  704. struct bnxt_rx_ring_info *rxr,
  705. u16 cons, void *data, u8 *data_ptr,
  706. dma_addr_t dma_addr,
  707. unsigned int offset_and_len)
  708. {
  709. unsigned int payload = offset_and_len >> 16;
  710. unsigned int len = offset_and_len & 0xffff;
  711. struct skb_frag_struct *frag;
  712. struct page *page = data;
  713. u16 prod = rxr->rx_prod;
  714. struct sk_buff *skb;
  715. int off, err;
  716. err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  717. if (unlikely(err)) {
  718. bnxt_reuse_rx_data(rxr, cons, data);
  719. return NULL;
  720. }
  721. dma_addr -= bp->rx_dma_offset;
  722. dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
  723. DMA_ATTR_WEAK_ORDERING);
  724. if (unlikely(!payload))
  725. payload = eth_get_headlen(data_ptr, len);
  726. skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
  727. if (!skb) {
  728. __free_page(page);
  729. return NULL;
  730. }
  731. off = (void *)data_ptr - page_address(page);
  732. skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
  733. memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
  734. payload + NET_IP_ALIGN);
  735. frag = &skb_shinfo(skb)->frags[0];
  736. skb_frag_size_sub(frag, payload);
  737. frag->page_offset += payload;
  738. skb->data_len -= payload;
  739. skb->tail += payload;
  740. return skb;
  741. }
  742. static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
  743. struct bnxt_rx_ring_info *rxr, u16 cons,
  744. void *data, u8 *data_ptr,
  745. dma_addr_t dma_addr,
  746. unsigned int offset_and_len)
  747. {
  748. u16 prod = rxr->rx_prod;
  749. struct sk_buff *skb;
  750. int err;
  751. err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  752. if (unlikely(err)) {
  753. bnxt_reuse_rx_data(rxr, cons, data);
  754. return NULL;
  755. }
  756. skb = build_skb(data, 0);
  757. dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  758. bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
  759. if (!skb) {
  760. kfree(data);
  761. return NULL;
  762. }
  763. skb_reserve(skb, bp->rx_offset);
  764. skb_put(skb, offset_and_len & 0xffff);
  765. return skb;
  766. }
  767. static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
  768. struct sk_buff *skb, u16 cp_cons,
  769. u32 agg_bufs)
  770. {
  771. struct pci_dev *pdev = bp->pdev;
  772. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  773. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  774. u16 prod = rxr->rx_agg_prod;
  775. u32 i;
  776. for (i = 0; i < agg_bufs; i++) {
  777. u16 cons, frag_len;
  778. struct rx_agg_cmp *agg;
  779. struct bnxt_sw_rx_agg_bd *cons_rx_buf;
  780. struct page *page;
  781. dma_addr_t mapping;
  782. agg = (struct rx_agg_cmp *)
  783. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  784. cons = agg->rx_agg_cmp_opaque;
  785. frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
  786. RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
  787. cons_rx_buf = &rxr->rx_agg_ring[cons];
  788. skb_fill_page_desc(skb, i, cons_rx_buf->page,
  789. cons_rx_buf->offset, frag_len);
  790. __clear_bit(cons, rxr->rx_agg_bmap);
  791. /* It is possible for bnxt_alloc_rx_page() to allocate
  792. * a sw_prod index that equals the cons index, so we
  793. * need to clear the cons entry now.
  794. */
  795. mapping = cons_rx_buf->mapping;
  796. page = cons_rx_buf->page;
  797. cons_rx_buf->page = NULL;
  798. if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
  799. struct skb_shared_info *shinfo;
  800. unsigned int nr_frags;
  801. shinfo = skb_shinfo(skb);
  802. nr_frags = --shinfo->nr_frags;
  803. __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
  804. dev_kfree_skb(skb);
  805. cons_rx_buf->page = page;
  806. /* Update prod since possibly some pages have been
  807. * allocated already.
  808. */
  809. rxr->rx_agg_prod = prod;
  810. bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
  811. return NULL;
  812. }
  813. dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
  814. PCI_DMA_FROMDEVICE,
  815. DMA_ATTR_WEAK_ORDERING);
  816. skb->data_len += frag_len;
  817. skb->len += frag_len;
  818. skb->truesize += PAGE_SIZE;
  819. prod = NEXT_RX_AGG(prod);
  820. cp_cons = NEXT_CMP(cp_cons);
  821. }
  822. rxr->rx_agg_prod = prod;
  823. return skb;
  824. }
  825. static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
  826. u8 agg_bufs, u32 *raw_cons)
  827. {
  828. u16 last;
  829. struct rx_agg_cmp *agg;
  830. *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
  831. last = RING_CMP(*raw_cons);
  832. agg = (struct rx_agg_cmp *)
  833. &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
  834. return RX_AGG_CMP_VALID(agg, *raw_cons);
  835. }
  836. static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
  837. unsigned int len,
  838. dma_addr_t mapping)
  839. {
  840. struct bnxt *bp = bnapi->bp;
  841. struct pci_dev *pdev = bp->pdev;
  842. struct sk_buff *skb;
  843. skb = napi_alloc_skb(&bnapi->napi, len);
  844. if (!skb)
  845. return NULL;
  846. dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
  847. bp->rx_dir);
  848. memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
  849. len + NET_IP_ALIGN);
  850. dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
  851. bp->rx_dir);
  852. skb_put(skb, len);
  853. return skb;
  854. }
  855. static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
  856. u32 *raw_cons, void *cmp)
  857. {
  858. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  859. struct rx_cmp *rxcmp = cmp;
  860. u32 tmp_raw_cons = *raw_cons;
  861. u8 cmp_type, agg_bufs = 0;
  862. cmp_type = RX_CMP_TYPE(rxcmp);
  863. if (cmp_type == CMP_TYPE_RX_L2_CMP) {
  864. agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
  865. RX_CMP_AGG_BUFS) >>
  866. RX_CMP_AGG_BUFS_SHIFT;
  867. } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
  868. struct rx_tpa_end_cmp *tpa_end = cmp;
  869. agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
  870. RX_TPA_END_CMP_AGG_BUFS) >>
  871. RX_TPA_END_CMP_AGG_BUFS_SHIFT;
  872. }
  873. if (agg_bufs) {
  874. if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
  875. return -EBUSY;
  876. }
  877. *raw_cons = tmp_raw_cons;
  878. return 0;
  879. }
  880. static void bnxt_queue_sp_work(struct bnxt *bp)
  881. {
  882. if (BNXT_PF(bp))
  883. queue_work(bnxt_pf_wq, &bp->sp_task);
  884. else
  885. schedule_work(&bp->sp_task);
  886. }
  887. static void bnxt_cancel_sp_work(struct bnxt *bp)
  888. {
  889. if (BNXT_PF(bp))
  890. flush_workqueue(bnxt_pf_wq);
  891. else
  892. cancel_work_sync(&bp->sp_task);
  893. }
  894. static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
  895. {
  896. if (!rxr->bnapi->in_reset) {
  897. rxr->bnapi->in_reset = true;
  898. set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
  899. bnxt_queue_sp_work(bp);
  900. }
  901. rxr->rx_next_cons = 0xffff;
  902. }
  903. static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
  904. struct rx_tpa_start_cmp *tpa_start,
  905. struct rx_tpa_start_cmp_ext *tpa_start1)
  906. {
  907. u8 agg_id = TPA_START_AGG_ID(tpa_start);
  908. u16 cons, prod;
  909. struct bnxt_tpa_info *tpa_info;
  910. struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
  911. struct rx_bd *prod_bd;
  912. dma_addr_t mapping;
  913. cons = tpa_start->rx_tpa_start_cmp_opaque;
  914. prod = rxr->rx_prod;
  915. cons_rx_buf = &rxr->rx_buf_ring[cons];
  916. prod_rx_buf = &rxr->rx_buf_ring[prod];
  917. tpa_info = &rxr->rx_tpa[agg_id];
  918. if (unlikely(cons != rxr->rx_next_cons)) {
  919. bnxt_sched_reset(bp, rxr);
  920. return;
  921. }
  922. /* Store cfa_code in tpa_info to use in tpa_end
  923. * completion processing.
  924. */
  925. tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
  926. prod_rx_buf->data = tpa_info->data;
  927. prod_rx_buf->data_ptr = tpa_info->data_ptr;
  928. mapping = tpa_info->mapping;
  929. prod_rx_buf->mapping = mapping;
  930. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  931. prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
  932. tpa_info->data = cons_rx_buf->data;
  933. tpa_info->data_ptr = cons_rx_buf->data_ptr;
  934. cons_rx_buf->data = NULL;
  935. tpa_info->mapping = cons_rx_buf->mapping;
  936. tpa_info->len =
  937. le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
  938. RX_TPA_START_CMP_LEN_SHIFT;
  939. if (likely(TPA_START_HASH_VALID(tpa_start))) {
  940. u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
  941. tpa_info->hash_type = PKT_HASH_TYPE_L4;
  942. tpa_info->gso_type = SKB_GSO_TCPV4;
  943. /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
  944. if (hash_type == 3)
  945. tpa_info->gso_type = SKB_GSO_TCPV6;
  946. tpa_info->rss_hash =
  947. le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
  948. } else {
  949. tpa_info->hash_type = PKT_HASH_TYPE_NONE;
  950. tpa_info->gso_type = 0;
  951. if (netif_msg_rx_err(bp))
  952. netdev_warn(bp->dev, "TPA packet without valid hash\n");
  953. }
  954. tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
  955. tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
  956. tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
  957. rxr->rx_prod = NEXT_RX(prod);
  958. cons = NEXT_RX(cons);
  959. rxr->rx_next_cons = NEXT_RX(cons);
  960. cons_rx_buf = &rxr->rx_buf_ring[cons];
  961. bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
  962. rxr->rx_prod = NEXT_RX(rxr->rx_prod);
  963. cons_rx_buf->data = NULL;
  964. }
  965. static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
  966. u16 cp_cons, u32 agg_bufs)
  967. {
  968. if (agg_bufs)
  969. bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
  970. }
  971. static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
  972. int payload_off, int tcp_ts,
  973. struct sk_buff *skb)
  974. {
  975. #ifdef CONFIG_INET
  976. struct tcphdr *th;
  977. int len, nw_off;
  978. u16 outer_ip_off, inner_ip_off, inner_mac_off;
  979. u32 hdr_info = tpa_info->hdr_info;
  980. bool loopback = false;
  981. inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
  982. inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
  983. outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
  984. /* If the packet is an internal loopback packet, the offsets will
  985. * have an extra 4 bytes.
  986. */
  987. if (inner_mac_off == 4) {
  988. loopback = true;
  989. } else if (inner_mac_off > 4) {
  990. __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
  991. ETH_HLEN - 2));
  992. /* We only support inner iPv4/ipv6. If we don't see the
  993. * correct protocol ID, it must be a loopback packet where
  994. * the offsets are off by 4.
  995. */
  996. if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
  997. loopback = true;
  998. }
  999. if (loopback) {
  1000. /* internal loopback packet, subtract all offsets by 4 */
  1001. inner_ip_off -= 4;
  1002. inner_mac_off -= 4;
  1003. outer_ip_off -= 4;
  1004. }
  1005. nw_off = inner_ip_off - ETH_HLEN;
  1006. skb_set_network_header(skb, nw_off);
  1007. if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
  1008. struct ipv6hdr *iph = ipv6_hdr(skb);
  1009. skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
  1010. len = skb->len - skb_transport_offset(skb);
  1011. th = tcp_hdr(skb);
  1012. th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
  1013. } else {
  1014. struct iphdr *iph = ip_hdr(skb);
  1015. skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
  1016. len = skb->len - skb_transport_offset(skb);
  1017. th = tcp_hdr(skb);
  1018. th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
  1019. }
  1020. if (inner_mac_off) { /* tunnel */
  1021. struct udphdr *uh = NULL;
  1022. __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
  1023. ETH_HLEN - 2));
  1024. if (proto == htons(ETH_P_IP)) {
  1025. struct iphdr *iph = (struct iphdr *)skb->data;
  1026. if (iph->protocol == IPPROTO_UDP)
  1027. uh = (struct udphdr *)(iph + 1);
  1028. } else {
  1029. struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
  1030. if (iph->nexthdr == IPPROTO_UDP)
  1031. uh = (struct udphdr *)(iph + 1);
  1032. }
  1033. if (uh) {
  1034. if (uh->check)
  1035. skb_shinfo(skb)->gso_type |=
  1036. SKB_GSO_UDP_TUNNEL_CSUM;
  1037. else
  1038. skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
  1039. }
  1040. }
  1041. #endif
  1042. return skb;
  1043. }
  1044. #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
  1045. #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
  1046. static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
  1047. int payload_off, int tcp_ts,
  1048. struct sk_buff *skb)
  1049. {
  1050. #ifdef CONFIG_INET
  1051. struct tcphdr *th;
  1052. int len, nw_off, tcp_opt_len = 0;
  1053. if (tcp_ts)
  1054. tcp_opt_len = 12;
  1055. if (tpa_info->gso_type == SKB_GSO_TCPV4) {
  1056. struct iphdr *iph;
  1057. nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
  1058. ETH_HLEN;
  1059. skb_set_network_header(skb, nw_off);
  1060. iph = ip_hdr(skb);
  1061. skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
  1062. len = skb->len - skb_transport_offset(skb);
  1063. th = tcp_hdr(skb);
  1064. th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
  1065. } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
  1066. struct ipv6hdr *iph;
  1067. nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
  1068. ETH_HLEN;
  1069. skb_set_network_header(skb, nw_off);
  1070. iph = ipv6_hdr(skb);
  1071. skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
  1072. len = skb->len - skb_transport_offset(skb);
  1073. th = tcp_hdr(skb);
  1074. th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
  1075. } else {
  1076. dev_kfree_skb_any(skb);
  1077. return NULL;
  1078. }
  1079. if (nw_off) { /* tunnel */
  1080. struct udphdr *uh = NULL;
  1081. if (skb->protocol == htons(ETH_P_IP)) {
  1082. struct iphdr *iph = (struct iphdr *)skb->data;
  1083. if (iph->protocol == IPPROTO_UDP)
  1084. uh = (struct udphdr *)(iph + 1);
  1085. } else {
  1086. struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
  1087. if (iph->nexthdr == IPPROTO_UDP)
  1088. uh = (struct udphdr *)(iph + 1);
  1089. }
  1090. if (uh) {
  1091. if (uh->check)
  1092. skb_shinfo(skb)->gso_type |=
  1093. SKB_GSO_UDP_TUNNEL_CSUM;
  1094. else
  1095. skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
  1096. }
  1097. }
  1098. #endif
  1099. return skb;
  1100. }
  1101. static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
  1102. struct bnxt_tpa_info *tpa_info,
  1103. struct rx_tpa_end_cmp *tpa_end,
  1104. struct rx_tpa_end_cmp_ext *tpa_end1,
  1105. struct sk_buff *skb)
  1106. {
  1107. #ifdef CONFIG_INET
  1108. int payload_off;
  1109. u16 segs;
  1110. segs = TPA_END_TPA_SEGS(tpa_end);
  1111. if (segs == 1)
  1112. return skb;
  1113. NAPI_GRO_CB(skb)->count = segs;
  1114. skb_shinfo(skb)->gso_size =
  1115. le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
  1116. skb_shinfo(skb)->gso_type = tpa_info->gso_type;
  1117. payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
  1118. RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
  1119. RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
  1120. skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
  1121. if (likely(skb))
  1122. tcp_gro_complete(skb);
  1123. #endif
  1124. return skb;
  1125. }
  1126. /* Given the cfa_code of a received packet determine which
  1127. * netdev (vf-rep or PF) the packet is destined to.
  1128. */
  1129. static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
  1130. {
  1131. struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
  1132. /* if vf-rep dev is NULL, the must belongs to the PF */
  1133. return dev ? dev : bp->dev;
  1134. }
  1135. static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
  1136. struct bnxt_napi *bnapi,
  1137. u32 *raw_cons,
  1138. struct rx_tpa_end_cmp *tpa_end,
  1139. struct rx_tpa_end_cmp_ext *tpa_end1,
  1140. u8 *event)
  1141. {
  1142. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1143. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  1144. u8 agg_id = TPA_END_AGG_ID(tpa_end);
  1145. u8 *data_ptr, agg_bufs;
  1146. u16 cp_cons = RING_CMP(*raw_cons);
  1147. unsigned int len;
  1148. struct bnxt_tpa_info *tpa_info;
  1149. dma_addr_t mapping;
  1150. struct sk_buff *skb;
  1151. void *data;
  1152. if (unlikely(bnapi->in_reset)) {
  1153. int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
  1154. if (rc < 0)
  1155. return ERR_PTR(-EBUSY);
  1156. return NULL;
  1157. }
  1158. tpa_info = &rxr->rx_tpa[agg_id];
  1159. data = tpa_info->data;
  1160. data_ptr = tpa_info->data_ptr;
  1161. prefetch(data_ptr);
  1162. len = tpa_info->len;
  1163. mapping = tpa_info->mapping;
  1164. agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
  1165. RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
  1166. if (agg_bufs) {
  1167. if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
  1168. return ERR_PTR(-EBUSY);
  1169. *event |= BNXT_AGG_EVENT;
  1170. cp_cons = NEXT_CMP(cp_cons);
  1171. }
  1172. if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
  1173. bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
  1174. if (agg_bufs > MAX_SKB_FRAGS)
  1175. netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
  1176. agg_bufs, (int)MAX_SKB_FRAGS);
  1177. return NULL;
  1178. }
  1179. if (len <= bp->rx_copy_thresh) {
  1180. skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
  1181. if (!skb) {
  1182. bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
  1183. return NULL;
  1184. }
  1185. } else {
  1186. u8 *new_data;
  1187. dma_addr_t new_mapping;
  1188. new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
  1189. if (!new_data) {
  1190. bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
  1191. return NULL;
  1192. }
  1193. tpa_info->data = new_data;
  1194. tpa_info->data_ptr = new_data + bp->rx_offset;
  1195. tpa_info->mapping = new_mapping;
  1196. skb = build_skb(data, 0);
  1197. dma_unmap_single_attrs(&bp->pdev->dev, mapping,
  1198. bp->rx_buf_use_size, bp->rx_dir,
  1199. DMA_ATTR_WEAK_ORDERING);
  1200. if (!skb) {
  1201. kfree(data);
  1202. bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
  1203. return NULL;
  1204. }
  1205. skb_reserve(skb, bp->rx_offset);
  1206. skb_put(skb, len);
  1207. }
  1208. if (agg_bufs) {
  1209. skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
  1210. if (!skb) {
  1211. /* Page reuse already handled by bnxt_rx_pages(). */
  1212. return NULL;
  1213. }
  1214. }
  1215. skb->protocol =
  1216. eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
  1217. if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
  1218. skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
  1219. if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
  1220. (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
  1221. u16 vlan_proto = tpa_info->metadata >>
  1222. RX_CMP_FLAGS2_METADATA_TPID_SFT;
  1223. u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
  1224. __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
  1225. }
  1226. skb_checksum_none_assert(skb);
  1227. if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
  1228. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1229. skb->csum_level =
  1230. (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
  1231. }
  1232. if (TPA_END_GRO(tpa_end))
  1233. skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
  1234. return skb;
  1235. }
  1236. static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
  1237. struct sk_buff *skb)
  1238. {
  1239. if (skb->dev != bp->dev) {
  1240. /* this packet belongs to a vf-rep */
  1241. bnxt_vf_rep_rx(bp, skb);
  1242. return;
  1243. }
  1244. skb_record_rx_queue(skb, bnapi->index);
  1245. napi_gro_receive(&bnapi->napi, skb);
  1246. }
  1247. /* returns the following:
  1248. * 1 - 1 packet successfully received
  1249. * 0 - successful TPA_START, packet not completed yet
  1250. * -EBUSY - completion ring does not have all the agg buffers yet
  1251. * -ENOMEM - packet aborted due to out of memory
  1252. * -EIO - packet aborted due to hw error indicated in BD
  1253. */
  1254. static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
  1255. u8 *event)
  1256. {
  1257. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1258. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  1259. struct net_device *dev = bp->dev;
  1260. struct rx_cmp *rxcmp;
  1261. struct rx_cmp_ext *rxcmp1;
  1262. u32 tmp_raw_cons = *raw_cons;
  1263. u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
  1264. struct bnxt_sw_rx_bd *rx_buf;
  1265. unsigned int len;
  1266. u8 *data_ptr, agg_bufs, cmp_type;
  1267. dma_addr_t dma_addr;
  1268. struct sk_buff *skb;
  1269. void *data;
  1270. int rc = 0;
  1271. u32 misc;
  1272. rxcmp = (struct rx_cmp *)
  1273. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1274. tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
  1275. cp_cons = RING_CMP(tmp_raw_cons);
  1276. rxcmp1 = (struct rx_cmp_ext *)
  1277. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1278. if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
  1279. return -EBUSY;
  1280. cmp_type = RX_CMP_TYPE(rxcmp);
  1281. prod = rxr->rx_prod;
  1282. if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
  1283. bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
  1284. (struct rx_tpa_start_cmp_ext *)rxcmp1);
  1285. *event |= BNXT_RX_EVENT;
  1286. goto next_rx_no_prod_no_len;
  1287. } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
  1288. skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
  1289. (struct rx_tpa_end_cmp *)rxcmp,
  1290. (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
  1291. if (IS_ERR(skb))
  1292. return -EBUSY;
  1293. rc = -ENOMEM;
  1294. if (likely(skb)) {
  1295. bnxt_deliver_skb(bp, bnapi, skb);
  1296. rc = 1;
  1297. }
  1298. *event |= BNXT_RX_EVENT;
  1299. goto next_rx_no_prod_no_len;
  1300. }
  1301. cons = rxcmp->rx_cmp_opaque;
  1302. rx_buf = &rxr->rx_buf_ring[cons];
  1303. data = rx_buf->data;
  1304. data_ptr = rx_buf->data_ptr;
  1305. if (unlikely(cons != rxr->rx_next_cons)) {
  1306. int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
  1307. bnxt_sched_reset(bp, rxr);
  1308. return rc1;
  1309. }
  1310. prefetch(data_ptr);
  1311. misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
  1312. agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
  1313. if (agg_bufs) {
  1314. if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
  1315. return -EBUSY;
  1316. cp_cons = NEXT_CMP(cp_cons);
  1317. *event |= BNXT_AGG_EVENT;
  1318. }
  1319. *event |= BNXT_RX_EVENT;
  1320. rx_buf->data = NULL;
  1321. if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
  1322. bnxt_reuse_rx_data(rxr, cons, data);
  1323. if (agg_bufs)
  1324. bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
  1325. rc = -EIO;
  1326. goto next_rx;
  1327. }
  1328. len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
  1329. dma_addr = rx_buf->mapping;
  1330. if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
  1331. rc = 1;
  1332. goto next_rx;
  1333. }
  1334. if (len <= bp->rx_copy_thresh) {
  1335. skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
  1336. bnxt_reuse_rx_data(rxr, cons, data);
  1337. if (!skb) {
  1338. rc = -ENOMEM;
  1339. goto next_rx;
  1340. }
  1341. } else {
  1342. u32 payload;
  1343. if (rx_buf->data_ptr == data_ptr)
  1344. payload = misc & RX_CMP_PAYLOAD_OFFSET;
  1345. else
  1346. payload = 0;
  1347. skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
  1348. payload | len);
  1349. if (!skb) {
  1350. rc = -ENOMEM;
  1351. goto next_rx;
  1352. }
  1353. }
  1354. if (agg_bufs) {
  1355. skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
  1356. if (!skb) {
  1357. rc = -ENOMEM;
  1358. goto next_rx;
  1359. }
  1360. }
  1361. if (RX_CMP_HASH_VALID(rxcmp)) {
  1362. u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
  1363. enum pkt_hash_types type = PKT_HASH_TYPE_L4;
  1364. /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
  1365. if (hash_type != 1 && hash_type != 3)
  1366. type = PKT_HASH_TYPE_L3;
  1367. skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
  1368. }
  1369. cfa_code = RX_CMP_CFA_CODE(rxcmp1);
  1370. skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
  1371. if ((rxcmp1->rx_cmp_flags2 &
  1372. cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
  1373. (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
  1374. u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
  1375. u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
  1376. u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
  1377. __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
  1378. }
  1379. skb_checksum_none_assert(skb);
  1380. if (RX_CMP_L4_CS_OK(rxcmp1)) {
  1381. if (dev->features & NETIF_F_RXCSUM) {
  1382. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1383. skb->csum_level = RX_CMP_ENCAP(rxcmp1);
  1384. }
  1385. } else {
  1386. if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
  1387. if (dev->features & NETIF_F_RXCSUM)
  1388. cpr->rx_l4_csum_errors++;
  1389. }
  1390. }
  1391. bnxt_deliver_skb(bp, bnapi, skb);
  1392. rc = 1;
  1393. next_rx:
  1394. rxr->rx_prod = NEXT_RX(prod);
  1395. rxr->rx_next_cons = NEXT_RX(cons);
  1396. cpr->rx_packets += 1;
  1397. cpr->rx_bytes += len;
  1398. next_rx_no_prod_no_len:
  1399. *raw_cons = tmp_raw_cons;
  1400. return rc;
  1401. }
  1402. /* In netpoll mode, if we are using a combined completion ring, we need to
  1403. * discard the rx packets and recycle the buffers.
  1404. */
  1405. static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
  1406. u32 *raw_cons, u8 *event)
  1407. {
  1408. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1409. u32 tmp_raw_cons = *raw_cons;
  1410. struct rx_cmp_ext *rxcmp1;
  1411. struct rx_cmp *rxcmp;
  1412. u16 cp_cons;
  1413. u8 cmp_type;
  1414. cp_cons = RING_CMP(tmp_raw_cons);
  1415. rxcmp = (struct rx_cmp *)
  1416. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1417. tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
  1418. cp_cons = RING_CMP(tmp_raw_cons);
  1419. rxcmp1 = (struct rx_cmp_ext *)
  1420. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1421. if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
  1422. return -EBUSY;
  1423. cmp_type = RX_CMP_TYPE(rxcmp);
  1424. if (cmp_type == CMP_TYPE_RX_L2_CMP) {
  1425. rxcmp1->rx_cmp_cfa_code_errors_v2 |=
  1426. cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
  1427. } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
  1428. struct rx_tpa_end_cmp_ext *tpa_end1;
  1429. tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
  1430. tpa_end1->rx_tpa_end_cmp_errors_v2 |=
  1431. cpu_to_le32(RX_TPA_END_CMP_ERRORS);
  1432. }
  1433. return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
  1434. }
  1435. #define BNXT_GET_EVENT_PORT(data) \
  1436. ((data) & \
  1437. ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
  1438. static int bnxt_async_event_process(struct bnxt *bp,
  1439. struct hwrm_async_event_cmpl *cmpl)
  1440. {
  1441. u16 event_id = le16_to_cpu(cmpl->event_id);
  1442. /* TODO CHIMP_FW: Define event id's for link change, error etc */
  1443. switch (event_id) {
  1444. case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
  1445. u32 data1 = le32_to_cpu(cmpl->event_data1);
  1446. struct bnxt_link_info *link_info = &bp->link_info;
  1447. if (BNXT_VF(bp))
  1448. goto async_event_process_exit;
  1449. /* print unsupported speed warning in forced speed mode only */
  1450. if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
  1451. (data1 & 0x20000)) {
  1452. u16 fw_speed = link_info->force_link_speed;
  1453. u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
  1454. if (speed != SPEED_UNKNOWN)
  1455. netdev_warn(bp->dev, "Link speed %d no longer supported\n",
  1456. speed);
  1457. }
  1458. set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
  1459. /* fall thru */
  1460. }
  1461. case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
  1462. set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
  1463. break;
  1464. case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
  1465. set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
  1466. break;
  1467. case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
  1468. u32 data1 = le32_to_cpu(cmpl->event_data1);
  1469. u16 port_id = BNXT_GET_EVENT_PORT(data1);
  1470. if (BNXT_VF(bp))
  1471. break;
  1472. if (bp->pf.port_id != port_id)
  1473. break;
  1474. set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
  1475. break;
  1476. }
  1477. case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
  1478. if (BNXT_PF(bp))
  1479. goto async_event_process_exit;
  1480. set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
  1481. break;
  1482. default:
  1483. goto async_event_process_exit;
  1484. }
  1485. bnxt_queue_sp_work(bp);
  1486. async_event_process_exit:
  1487. bnxt_ulp_async_events(bp, cmpl);
  1488. return 0;
  1489. }
  1490. static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
  1491. {
  1492. u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
  1493. struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
  1494. struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
  1495. (struct hwrm_fwd_req_cmpl *)txcmp;
  1496. switch (cmpl_type) {
  1497. case CMPL_BASE_TYPE_HWRM_DONE:
  1498. seq_id = le16_to_cpu(h_cmpl->sequence_id);
  1499. if (seq_id == bp->hwrm_intr_seq_id)
  1500. bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
  1501. else
  1502. netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
  1503. break;
  1504. case CMPL_BASE_TYPE_HWRM_FWD_REQ:
  1505. vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
  1506. if ((vf_id < bp->pf.first_vf_id) ||
  1507. (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
  1508. netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
  1509. vf_id);
  1510. return -EINVAL;
  1511. }
  1512. set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
  1513. set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
  1514. bnxt_queue_sp_work(bp);
  1515. break;
  1516. case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
  1517. bnxt_async_event_process(bp,
  1518. (struct hwrm_async_event_cmpl *)txcmp);
  1519. default:
  1520. break;
  1521. }
  1522. return 0;
  1523. }
  1524. static irqreturn_t bnxt_msix(int irq, void *dev_instance)
  1525. {
  1526. struct bnxt_napi *bnapi = dev_instance;
  1527. struct bnxt *bp = bnapi->bp;
  1528. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1529. u32 cons = RING_CMP(cpr->cp_raw_cons);
  1530. cpr->event_ctr++;
  1531. prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
  1532. napi_schedule(&bnapi->napi);
  1533. return IRQ_HANDLED;
  1534. }
  1535. static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
  1536. {
  1537. u32 raw_cons = cpr->cp_raw_cons;
  1538. u16 cons = RING_CMP(raw_cons);
  1539. struct tx_cmp *txcmp;
  1540. txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
  1541. return TX_CMP_VALID(txcmp, raw_cons);
  1542. }
  1543. static irqreturn_t bnxt_inta(int irq, void *dev_instance)
  1544. {
  1545. struct bnxt_napi *bnapi = dev_instance;
  1546. struct bnxt *bp = bnapi->bp;
  1547. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1548. u32 cons = RING_CMP(cpr->cp_raw_cons);
  1549. u32 int_status;
  1550. prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
  1551. if (!bnxt_has_work(bp, cpr)) {
  1552. int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
  1553. /* return if erroneous interrupt */
  1554. if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
  1555. return IRQ_NONE;
  1556. }
  1557. /* disable ring IRQ */
  1558. BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
  1559. /* Return here if interrupt is shared and is disabled. */
  1560. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1561. return IRQ_HANDLED;
  1562. napi_schedule(&bnapi->napi);
  1563. return IRQ_HANDLED;
  1564. }
  1565. static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
  1566. {
  1567. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1568. u32 raw_cons = cpr->cp_raw_cons;
  1569. u32 cons;
  1570. int tx_pkts = 0;
  1571. int rx_pkts = 0;
  1572. u8 event = 0;
  1573. struct tx_cmp *txcmp;
  1574. while (1) {
  1575. int rc;
  1576. cons = RING_CMP(raw_cons);
  1577. txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
  1578. if (!TX_CMP_VALID(txcmp, raw_cons))
  1579. break;
  1580. /* The valid test of the entry must be done first before
  1581. * reading any further.
  1582. */
  1583. dma_rmb();
  1584. if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
  1585. tx_pkts++;
  1586. /* return full budget so NAPI will complete. */
  1587. if (unlikely(tx_pkts > bp->tx_wake_thresh))
  1588. rx_pkts = budget;
  1589. } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
  1590. if (likely(budget))
  1591. rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
  1592. else
  1593. rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
  1594. &event);
  1595. if (likely(rc >= 0))
  1596. rx_pkts += rc;
  1597. /* Increment rx_pkts when rc is -ENOMEM to count towards
  1598. * the NAPI budget. Otherwise, we may potentially loop
  1599. * here forever if we consistently cannot allocate
  1600. * buffers.
  1601. */
  1602. else if (rc == -ENOMEM && budget)
  1603. rx_pkts++;
  1604. else if (rc == -EBUSY) /* partial completion */
  1605. break;
  1606. } else if (unlikely((TX_CMP_TYPE(txcmp) ==
  1607. CMPL_BASE_TYPE_HWRM_DONE) ||
  1608. (TX_CMP_TYPE(txcmp) ==
  1609. CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
  1610. (TX_CMP_TYPE(txcmp) ==
  1611. CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
  1612. bnxt_hwrm_handler(bp, txcmp);
  1613. }
  1614. raw_cons = NEXT_RAW_CMP(raw_cons);
  1615. if (rx_pkts == budget)
  1616. break;
  1617. }
  1618. if (event & BNXT_TX_EVENT) {
  1619. struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
  1620. void __iomem *db = txr->tx_doorbell;
  1621. u16 prod = txr->tx_prod;
  1622. /* Sync BD data before updating doorbell */
  1623. wmb();
  1624. bnxt_db_write_relaxed(bp, db, DB_KEY_TX | prod);
  1625. }
  1626. cpr->cp_raw_cons = raw_cons;
  1627. /* ACK completion ring before freeing tx ring and producing new
  1628. * buffers in rx/agg rings to prevent overflowing the completion
  1629. * ring.
  1630. */
  1631. BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
  1632. if (tx_pkts)
  1633. bnapi->tx_int(bp, bnapi, tx_pkts);
  1634. if (event & BNXT_RX_EVENT) {
  1635. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  1636. bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
  1637. if (event & BNXT_AGG_EVENT)
  1638. bnxt_db_write(bp, rxr->rx_agg_doorbell,
  1639. DB_KEY_RX | rxr->rx_agg_prod);
  1640. }
  1641. return rx_pkts;
  1642. }
  1643. static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
  1644. {
  1645. struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
  1646. struct bnxt *bp = bnapi->bp;
  1647. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1648. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  1649. struct tx_cmp *txcmp;
  1650. struct rx_cmp_ext *rxcmp1;
  1651. u32 cp_cons, tmp_raw_cons;
  1652. u32 raw_cons = cpr->cp_raw_cons;
  1653. u32 rx_pkts = 0;
  1654. u8 event = 0;
  1655. while (1) {
  1656. int rc;
  1657. cp_cons = RING_CMP(raw_cons);
  1658. txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1659. if (!TX_CMP_VALID(txcmp, raw_cons))
  1660. break;
  1661. if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
  1662. tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
  1663. cp_cons = RING_CMP(tmp_raw_cons);
  1664. rxcmp1 = (struct rx_cmp_ext *)
  1665. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1666. if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
  1667. break;
  1668. /* force an error to recycle the buffer */
  1669. rxcmp1->rx_cmp_cfa_code_errors_v2 |=
  1670. cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
  1671. rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
  1672. if (likely(rc == -EIO) && budget)
  1673. rx_pkts++;
  1674. else if (rc == -EBUSY) /* partial completion */
  1675. break;
  1676. } else if (unlikely(TX_CMP_TYPE(txcmp) ==
  1677. CMPL_BASE_TYPE_HWRM_DONE)) {
  1678. bnxt_hwrm_handler(bp, txcmp);
  1679. } else {
  1680. netdev_err(bp->dev,
  1681. "Invalid completion received on special ring\n");
  1682. }
  1683. raw_cons = NEXT_RAW_CMP(raw_cons);
  1684. if (rx_pkts == budget)
  1685. break;
  1686. }
  1687. cpr->cp_raw_cons = raw_cons;
  1688. BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
  1689. bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
  1690. if (event & BNXT_AGG_EVENT)
  1691. bnxt_db_write(bp, rxr->rx_agg_doorbell,
  1692. DB_KEY_RX | rxr->rx_agg_prod);
  1693. if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
  1694. napi_complete_done(napi, rx_pkts);
  1695. BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
  1696. }
  1697. return rx_pkts;
  1698. }
  1699. static int bnxt_poll(struct napi_struct *napi, int budget)
  1700. {
  1701. struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
  1702. struct bnxt *bp = bnapi->bp;
  1703. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1704. int work_done = 0;
  1705. while (1) {
  1706. work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
  1707. if (work_done >= budget)
  1708. break;
  1709. if (!bnxt_has_work(bp, cpr)) {
  1710. if (napi_complete_done(napi, work_done))
  1711. BNXT_CP_DB_REARM(cpr->cp_doorbell,
  1712. cpr->cp_raw_cons);
  1713. break;
  1714. }
  1715. }
  1716. if (bp->flags & BNXT_FLAG_DIM) {
  1717. struct net_dim_sample dim_sample;
  1718. net_dim_sample(cpr->event_ctr,
  1719. cpr->rx_packets,
  1720. cpr->rx_bytes,
  1721. &dim_sample);
  1722. net_dim(&cpr->dim, dim_sample);
  1723. }
  1724. mmiowb();
  1725. return work_done;
  1726. }
  1727. static void bnxt_free_tx_skbs(struct bnxt *bp)
  1728. {
  1729. int i, max_idx;
  1730. struct pci_dev *pdev = bp->pdev;
  1731. if (!bp->tx_ring)
  1732. return;
  1733. max_idx = bp->tx_nr_pages * TX_DESC_CNT;
  1734. for (i = 0; i < bp->tx_nr_rings; i++) {
  1735. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  1736. int j;
  1737. for (j = 0; j < max_idx;) {
  1738. struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  1739. struct sk_buff *skb = tx_buf->skb;
  1740. int k, last;
  1741. if (!skb) {
  1742. j++;
  1743. continue;
  1744. }
  1745. tx_buf->skb = NULL;
  1746. if (tx_buf->is_push) {
  1747. dev_kfree_skb(skb);
  1748. j += 2;
  1749. continue;
  1750. }
  1751. dma_unmap_single(&pdev->dev,
  1752. dma_unmap_addr(tx_buf, mapping),
  1753. skb_headlen(skb),
  1754. PCI_DMA_TODEVICE);
  1755. last = tx_buf->nr_frags;
  1756. j += 2;
  1757. for (k = 0; k < last; k++, j++) {
  1758. int ring_idx = j & bp->tx_ring_mask;
  1759. skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
  1760. tx_buf = &txr->tx_buf_ring[ring_idx];
  1761. dma_unmap_page(
  1762. &pdev->dev,
  1763. dma_unmap_addr(tx_buf, mapping),
  1764. skb_frag_size(frag), PCI_DMA_TODEVICE);
  1765. }
  1766. dev_kfree_skb(skb);
  1767. }
  1768. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  1769. }
  1770. }
  1771. static void bnxt_free_rx_skbs(struct bnxt *bp)
  1772. {
  1773. int i, max_idx, max_agg_idx;
  1774. struct pci_dev *pdev = bp->pdev;
  1775. if (!bp->rx_ring)
  1776. return;
  1777. max_idx = bp->rx_nr_pages * RX_DESC_CNT;
  1778. max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
  1779. for (i = 0; i < bp->rx_nr_rings; i++) {
  1780. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  1781. int j;
  1782. if (rxr->rx_tpa) {
  1783. for (j = 0; j < MAX_TPA; j++) {
  1784. struct bnxt_tpa_info *tpa_info =
  1785. &rxr->rx_tpa[j];
  1786. u8 *data = tpa_info->data;
  1787. if (!data)
  1788. continue;
  1789. dma_unmap_single_attrs(&pdev->dev,
  1790. tpa_info->mapping,
  1791. bp->rx_buf_use_size,
  1792. bp->rx_dir,
  1793. DMA_ATTR_WEAK_ORDERING);
  1794. tpa_info->data = NULL;
  1795. kfree(data);
  1796. }
  1797. }
  1798. for (j = 0; j < max_idx; j++) {
  1799. struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
  1800. dma_addr_t mapping = rx_buf->mapping;
  1801. void *data = rx_buf->data;
  1802. if (!data)
  1803. continue;
  1804. rx_buf->data = NULL;
  1805. if (BNXT_RX_PAGE_MODE(bp)) {
  1806. mapping -= bp->rx_dma_offset;
  1807. dma_unmap_page_attrs(&pdev->dev, mapping,
  1808. PAGE_SIZE, bp->rx_dir,
  1809. DMA_ATTR_WEAK_ORDERING);
  1810. __free_page(data);
  1811. } else {
  1812. dma_unmap_single_attrs(&pdev->dev, mapping,
  1813. bp->rx_buf_use_size,
  1814. bp->rx_dir,
  1815. DMA_ATTR_WEAK_ORDERING);
  1816. kfree(data);
  1817. }
  1818. }
  1819. for (j = 0; j < max_agg_idx; j++) {
  1820. struct bnxt_sw_rx_agg_bd *rx_agg_buf =
  1821. &rxr->rx_agg_ring[j];
  1822. struct page *page = rx_agg_buf->page;
  1823. if (!page)
  1824. continue;
  1825. dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
  1826. BNXT_RX_PAGE_SIZE,
  1827. PCI_DMA_FROMDEVICE,
  1828. DMA_ATTR_WEAK_ORDERING);
  1829. rx_agg_buf->page = NULL;
  1830. __clear_bit(j, rxr->rx_agg_bmap);
  1831. __free_page(page);
  1832. }
  1833. if (rxr->rx_page) {
  1834. __free_page(rxr->rx_page);
  1835. rxr->rx_page = NULL;
  1836. }
  1837. }
  1838. }
  1839. static void bnxt_free_skbs(struct bnxt *bp)
  1840. {
  1841. bnxt_free_tx_skbs(bp);
  1842. bnxt_free_rx_skbs(bp);
  1843. }
  1844. static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
  1845. {
  1846. struct pci_dev *pdev = bp->pdev;
  1847. int i;
  1848. for (i = 0; i < ring->nr_pages; i++) {
  1849. if (!ring->pg_arr[i])
  1850. continue;
  1851. dma_free_coherent(&pdev->dev, ring->page_size,
  1852. ring->pg_arr[i], ring->dma_arr[i]);
  1853. ring->pg_arr[i] = NULL;
  1854. }
  1855. if (ring->pg_tbl) {
  1856. dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
  1857. ring->pg_tbl, ring->pg_tbl_map);
  1858. ring->pg_tbl = NULL;
  1859. }
  1860. if (ring->vmem_size && *ring->vmem) {
  1861. vfree(*ring->vmem);
  1862. *ring->vmem = NULL;
  1863. }
  1864. }
  1865. static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
  1866. {
  1867. int i;
  1868. struct pci_dev *pdev = bp->pdev;
  1869. if (ring->nr_pages > 1) {
  1870. ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
  1871. ring->nr_pages * 8,
  1872. &ring->pg_tbl_map,
  1873. GFP_KERNEL);
  1874. if (!ring->pg_tbl)
  1875. return -ENOMEM;
  1876. }
  1877. for (i = 0; i < ring->nr_pages; i++) {
  1878. ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
  1879. ring->page_size,
  1880. &ring->dma_arr[i],
  1881. GFP_KERNEL);
  1882. if (!ring->pg_arr[i])
  1883. return -ENOMEM;
  1884. if (ring->nr_pages > 1)
  1885. ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
  1886. }
  1887. if (ring->vmem_size) {
  1888. *ring->vmem = vzalloc(ring->vmem_size);
  1889. if (!(*ring->vmem))
  1890. return -ENOMEM;
  1891. }
  1892. return 0;
  1893. }
  1894. static void bnxt_free_rx_rings(struct bnxt *bp)
  1895. {
  1896. int i;
  1897. if (!bp->rx_ring)
  1898. return;
  1899. for (i = 0; i < bp->rx_nr_rings; i++) {
  1900. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  1901. struct bnxt_ring_struct *ring;
  1902. if (rxr->xdp_prog)
  1903. bpf_prog_put(rxr->xdp_prog);
  1904. if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
  1905. xdp_rxq_info_unreg(&rxr->xdp_rxq);
  1906. kfree(rxr->rx_tpa);
  1907. rxr->rx_tpa = NULL;
  1908. kfree(rxr->rx_agg_bmap);
  1909. rxr->rx_agg_bmap = NULL;
  1910. ring = &rxr->rx_ring_struct;
  1911. bnxt_free_ring(bp, ring);
  1912. ring = &rxr->rx_agg_ring_struct;
  1913. bnxt_free_ring(bp, ring);
  1914. }
  1915. }
  1916. static int bnxt_alloc_rx_rings(struct bnxt *bp)
  1917. {
  1918. int i, rc, agg_rings = 0, tpa_rings = 0;
  1919. if (!bp->rx_ring)
  1920. return -ENOMEM;
  1921. if (bp->flags & BNXT_FLAG_AGG_RINGS)
  1922. agg_rings = 1;
  1923. if (bp->flags & BNXT_FLAG_TPA)
  1924. tpa_rings = 1;
  1925. for (i = 0; i < bp->rx_nr_rings; i++) {
  1926. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  1927. struct bnxt_ring_struct *ring;
  1928. ring = &rxr->rx_ring_struct;
  1929. rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
  1930. if (rc < 0)
  1931. return rc;
  1932. rc = bnxt_alloc_ring(bp, ring);
  1933. if (rc)
  1934. return rc;
  1935. if (agg_rings) {
  1936. u16 mem_size;
  1937. ring = &rxr->rx_agg_ring_struct;
  1938. rc = bnxt_alloc_ring(bp, ring);
  1939. if (rc)
  1940. return rc;
  1941. ring->grp_idx = i;
  1942. rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
  1943. mem_size = rxr->rx_agg_bmap_size / 8;
  1944. rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
  1945. if (!rxr->rx_agg_bmap)
  1946. return -ENOMEM;
  1947. if (tpa_rings) {
  1948. rxr->rx_tpa = kcalloc(MAX_TPA,
  1949. sizeof(struct bnxt_tpa_info),
  1950. GFP_KERNEL);
  1951. if (!rxr->rx_tpa)
  1952. return -ENOMEM;
  1953. }
  1954. }
  1955. }
  1956. return 0;
  1957. }
  1958. static void bnxt_free_tx_rings(struct bnxt *bp)
  1959. {
  1960. int i;
  1961. struct pci_dev *pdev = bp->pdev;
  1962. if (!bp->tx_ring)
  1963. return;
  1964. for (i = 0; i < bp->tx_nr_rings; i++) {
  1965. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  1966. struct bnxt_ring_struct *ring;
  1967. if (txr->tx_push) {
  1968. dma_free_coherent(&pdev->dev, bp->tx_push_size,
  1969. txr->tx_push, txr->tx_push_mapping);
  1970. txr->tx_push = NULL;
  1971. }
  1972. ring = &txr->tx_ring_struct;
  1973. bnxt_free_ring(bp, ring);
  1974. }
  1975. }
  1976. static int bnxt_alloc_tx_rings(struct bnxt *bp)
  1977. {
  1978. int i, j, rc;
  1979. struct pci_dev *pdev = bp->pdev;
  1980. bp->tx_push_size = 0;
  1981. if (bp->tx_push_thresh) {
  1982. int push_size;
  1983. push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
  1984. bp->tx_push_thresh);
  1985. if (push_size > 256) {
  1986. push_size = 0;
  1987. bp->tx_push_thresh = 0;
  1988. }
  1989. bp->tx_push_size = push_size;
  1990. }
  1991. for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
  1992. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  1993. struct bnxt_ring_struct *ring;
  1994. u8 qidx;
  1995. ring = &txr->tx_ring_struct;
  1996. rc = bnxt_alloc_ring(bp, ring);
  1997. if (rc)
  1998. return rc;
  1999. ring->grp_idx = txr->bnapi->index;
  2000. if (bp->tx_push_size) {
  2001. dma_addr_t mapping;
  2002. /* One pre-allocated DMA buffer to backup
  2003. * TX push operation
  2004. */
  2005. txr->tx_push = dma_alloc_coherent(&pdev->dev,
  2006. bp->tx_push_size,
  2007. &txr->tx_push_mapping,
  2008. GFP_KERNEL);
  2009. if (!txr->tx_push)
  2010. return -ENOMEM;
  2011. mapping = txr->tx_push_mapping +
  2012. sizeof(struct tx_push_bd);
  2013. txr->data_mapping = cpu_to_le64(mapping);
  2014. memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
  2015. }
  2016. qidx = bp->tc_to_qidx[j];
  2017. ring->queue_id = bp->q_info[qidx].queue_id;
  2018. if (i < bp->tx_nr_rings_xdp)
  2019. continue;
  2020. if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
  2021. j++;
  2022. }
  2023. return 0;
  2024. }
  2025. static void bnxt_free_cp_rings(struct bnxt *bp)
  2026. {
  2027. int i;
  2028. if (!bp->bnapi)
  2029. return;
  2030. for (i = 0; i < bp->cp_nr_rings; i++) {
  2031. struct bnxt_napi *bnapi = bp->bnapi[i];
  2032. struct bnxt_cp_ring_info *cpr;
  2033. struct bnxt_ring_struct *ring;
  2034. if (!bnapi)
  2035. continue;
  2036. cpr = &bnapi->cp_ring;
  2037. ring = &cpr->cp_ring_struct;
  2038. bnxt_free_ring(bp, ring);
  2039. }
  2040. }
  2041. static int bnxt_alloc_cp_rings(struct bnxt *bp)
  2042. {
  2043. int i, rc, ulp_base_vec, ulp_msix;
  2044. ulp_msix = bnxt_get_ulp_msix_num(bp);
  2045. ulp_base_vec = bnxt_get_ulp_msix_base(bp);
  2046. for (i = 0; i < bp->cp_nr_rings; i++) {
  2047. struct bnxt_napi *bnapi = bp->bnapi[i];
  2048. struct bnxt_cp_ring_info *cpr;
  2049. struct bnxt_ring_struct *ring;
  2050. if (!bnapi)
  2051. continue;
  2052. cpr = &bnapi->cp_ring;
  2053. ring = &cpr->cp_ring_struct;
  2054. rc = bnxt_alloc_ring(bp, ring);
  2055. if (rc)
  2056. return rc;
  2057. if (ulp_msix && i >= ulp_base_vec)
  2058. ring->map_idx = i + ulp_msix;
  2059. else
  2060. ring->map_idx = i;
  2061. }
  2062. return 0;
  2063. }
  2064. static void bnxt_init_ring_struct(struct bnxt *bp)
  2065. {
  2066. int i;
  2067. for (i = 0; i < bp->cp_nr_rings; i++) {
  2068. struct bnxt_napi *bnapi = bp->bnapi[i];
  2069. struct bnxt_cp_ring_info *cpr;
  2070. struct bnxt_rx_ring_info *rxr;
  2071. struct bnxt_tx_ring_info *txr;
  2072. struct bnxt_ring_struct *ring;
  2073. if (!bnapi)
  2074. continue;
  2075. cpr = &bnapi->cp_ring;
  2076. ring = &cpr->cp_ring_struct;
  2077. ring->nr_pages = bp->cp_nr_pages;
  2078. ring->page_size = HW_CMPD_RING_SIZE;
  2079. ring->pg_arr = (void **)cpr->cp_desc_ring;
  2080. ring->dma_arr = cpr->cp_desc_mapping;
  2081. ring->vmem_size = 0;
  2082. rxr = bnapi->rx_ring;
  2083. if (!rxr)
  2084. goto skip_rx;
  2085. ring = &rxr->rx_ring_struct;
  2086. ring->nr_pages = bp->rx_nr_pages;
  2087. ring->page_size = HW_RXBD_RING_SIZE;
  2088. ring->pg_arr = (void **)rxr->rx_desc_ring;
  2089. ring->dma_arr = rxr->rx_desc_mapping;
  2090. ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
  2091. ring->vmem = (void **)&rxr->rx_buf_ring;
  2092. ring = &rxr->rx_agg_ring_struct;
  2093. ring->nr_pages = bp->rx_agg_nr_pages;
  2094. ring->page_size = HW_RXBD_RING_SIZE;
  2095. ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
  2096. ring->dma_arr = rxr->rx_agg_desc_mapping;
  2097. ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
  2098. ring->vmem = (void **)&rxr->rx_agg_ring;
  2099. skip_rx:
  2100. txr = bnapi->tx_ring;
  2101. if (!txr)
  2102. continue;
  2103. ring = &txr->tx_ring_struct;
  2104. ring->nr_pages = bp->tx_nr_pages;
  2105. ring->page_size = HW_RXBD_RING_SIZE;
  2106. ring->pg_arr = (void **)txr->tx_desc_ring;
  2107. ring->dma_arr = txr->tx_desc_mapping;
  2108. ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
  2109. ring->vmem = (void **)&txr->tx_buf_ring;
  2110. }
  2111. }
  2112. static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
  2113. {
  2114. int i;
  2115. u32 prod;
  2116. struct rx_bd **rx_buf_ring;
  2117. rx_buf_ring = (struct rx_bd **)ring->pg_arr;
  2118. for (i = 0, prod = 0; i < ring->nr_pages; i++) {
  2119. int j;
  2120. struct rx_bd *rxbd;
  2121. rxbd = rx_buf_ring[i];
  2122. if (!rxbd)
  2123. continue;
  2124. for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
  2125. rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
  2126. rxbd->rx_bd_opaque = prod;
  2127. }
  2128. }
  2129. }
  2130. static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
  2131. {
  2132. struct net_device *dev = bp->dev;
  2133. struct bnxt_rx_ring_info *rxr;
  2134. struct bnxt_ring_struct *ring;
  2135. u32 prod, type;
  2136. int i;
  2137. type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
  2138. RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
  2139. if (NET_IP_ALIGN == 2)
  2140. type |= RX_BD_FLAGS_SOP;
  2141. rxr = &bp->rx_ring[ring_nr];
  2142. ring = &rxr->rx_ring_struct;
  2143. bnxt_init_rxbd_pages(ring, type);
  2144. if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
  2145. rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
  2146. if (IS_ERR(rxr->xdp_prog)) {
  2147. int rc = PTR_ERR(rxr->xdp_prog);
  2148. rxr->xdp_prog = NULL;
  2149. return rc;
  2150. }
  2151. }
  2152. prod = rxr->rx_prod;
  2153. for (i = 0; i < bp->rx_ring_size; i++) {
  2154. if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
  2155. netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
  2156. ring_nr, i, bp->rx_ring_size);
  2157. break;
  2158. }
  2159. prod = NEXT_RX(prod);
  2160. }
  2161. rxr->rx_prod = prod;
  2162. ring->fw_ring_id = INVALID_HW_RING_ID;
  2163. ring = &rxr->rx_agg_ring_struct;
  2164. ring->fw_ring_id = INVALID_HW_RING_ID;
  2165. if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
  2166. return 0;
  2167. type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
  2168. RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
  2169. bnxt_init_rxbd_pages(ring, type);
  2170. prod = rxr->rx_agg_prod;
  2171. for (i = 0; i < bp->rx_agg_ring_size; i++) {
  2172. if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
  2173. netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
  2174. ring_nr, i, bp->rx_ring_size);
  2175. break;
  2176. }
  2177. prod = NEXT_RX_AGG(prod);
  2178. }
  2179. rxr->rx_agg_prod = prod;
  2180. if (bp->flags & BNXT_FLAG_TPA) {
  2181. if (rxr->rx_tpa) {
  2182. u8 *data;
  2183. dma_addr_t mapping;
  2184. for (i = 0; i < MAX_TPA; i++) {
  2185. data = __bnxt_alloc_rx_data(bp, &mapping,
  2186. GFP_KERNEL);
  2187. if (!data)
  2188. return -ENOMEM;
  2189. rxr->rx_tpa[i].data = data;
  2190. rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
  2191. rxr->rx_tpa[i].mapping = mapping;
  2192. }
  2193. } else {
  2194. netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
  2195. return -ENOMEM;
  2196. }
  2197. }
  2198. return 0;
  2199. }
  2200. static void bnxt_init_cp_rings(struct bnxt *bp)
  2201. {
  2202. int i;
  2203. for (i = 0; i < bp->cp_nr_rings; i++) {
  2204. struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
  2205. struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
  2206. ring->fw_ring_id = INVALID_HW_RING_ID;
  2207. cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
  2208. cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
  2209. }
  2210. }
  2211. static int bnxt_init_rx_rings(struct bnxt *bp)
  2212. {
  2213. int i, rc = 0;
  2214. if (BNXT_RX_PAGE_MODE(bp)) {
  2215. bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
  2216. bp->rx_dma_offset = XDP_PACKET_HEADROOM;
  2217. } else {
  2218. bp->rx_offset = BNXT_RX_OFFSET;
  2219. bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
  2220. }
  2221. for (i = 0; i < bp->rx_nr_rings; i++) {
  2222. rc = bnxt_init_one_rx_ring(bp, i);
  2223. if (rc)
  2224. break;
  2225. }
  2226. return rc;
  2227. }
  2228. static int bnxt_init_tx_rings(struct bnxt *bp)
  2229. {
  2230. u16 i;
  2231. bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
  2232. MAX_SKB_FRAGS + 1);
  2233. for (i = 0; i < bp->tx_nr_rings; i++) {
  2234. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  2235. struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
  2236. ring->fw_ring_id = INVALID_HW_RING_ID;
  2237. }
  2238. return 0;
  2239. }
  2240. static void bnxt_free_ring_grps(struct bnxt *bp)
  2241. {
  2242. kfree(bp->grp_info);
  2243. bp->grp_info = NULL;
  2244. }
  2245. static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
  2246. {
  2247. int i;
  2248. if (irq_re_init) {
  2249. bp->grp_info = kcalloc(bp->cp_nr_rings,
  2250. sizeof(struct bnxt_ring_grp_info),
  2251. GFP_KERNEL);
  2252. if (!bp->grp_info)
  2253. return -ENOMEM;
  2254. }
  2255. for (i = 0; i < bp->cp_nr_rings; i++) {
  2256. if (irq_re_init)
  2257. bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
  2258. bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
  2259. bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
  2260. bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
  2261. bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
  2262. }
  2263. return 0;
  2264. }
  2265. static void bnxt_free_vnics(struct bnxt *bp)
  2266. {
  2267. kfree(bp->vnic_info);
  2268. bp->vnic_info = NULL;
  2269. bp->nr_vnics = 0;
  2270. }
  2271. static int bnxt_alloc_vnics(struct bnxt *bp)
  2272. {
  2273. int num_vnics = 1;
  2274. #ifdef CONFIG_RFS_ACCEL
  2275. if (bp->flags & BNXT_FLAG_RFS)
  2276. num_vnics += bp->rx_nr_rings;
  2277. #endif
  2278. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  2279. num_vnics++;
  2280. bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
  2281. GFP_KERNEL);
  2282. if (!bp->vnic_info)
  2283. return -ENOMEM;
  2284. bp->nr_vnics = num_vnics;
  2285. return 0;
  2286. }
  2287. static void bnxt_init_vnics(struct bnxt *bp)
  2288. {
  2289. int i;
  2290. for (i = 0; i < bp->nr_vnics; i++) {
  2291. struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
  2292. vnic->fw_vnic_id = INVALID_HW_RING_ID;
  2293. vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
  2294. vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
  2295. vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
  2296. if (bp->vnic_info[i].rss_hash_key) {
  2297. if (i == 0)
  2298. prandom_bytes(vnic->rss_hash_key,
  2299. HW_HASH_KEY_SIZE);
  2300. else
  2301. memcpy(vnic->rss_hash_key,
  2302. bp->vnic_info[0].rss_hash_key,
  2303. HW_HASH_KEY_SIZE);
  2304. }
  2305. }
  2306. }
  2307. static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
  2308. {
  2309. int pages;
  2310. pages = ring_size / desc_per_pg;
  2311. if (!pages)
  2312. return 1;
  2313. pages++;
  2314. while (pages & (pages - 1))
  2315. pages++;
  2316. return pages;
  2317. }
  2318. void bnxt_set_tpa_flags(struct bnxt *bp)
  2319. {
  2320. bp->flags &= ~BNXT_FLAG_TPA;
  2321. if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
  2322. return;
  2323. if (bp->dev->features & NETIF_F_LRO)
  2324. bp->flags |= BNXT_FLAG_LRO;
  2325. else if (bp->dev->features & NETIF_F_GRO_HW)
  2326. bp->flags |= BNXT_FLAG_GRO;
  2327. }
  2328. /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
  2329. * be set on entry.
  2330. */
  2331. void bnxt_set_ring_params(struct bnxt *bp)
  2332. {
  2333. u32 ring_size, rx_size, rx_space;
  2334. u32 agg_factor = 0, agg_ring_size = 0;
  2335. /* 8 for CRC and VLAN */
  2336. rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
  2337. rx_space = rx_size + NET_SKB_PAD +
  2338. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2339. bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
  2340. ring_size = bp->rx_ring_size;
  2341. bp->rx_agg_ring_size = 0;
  2342. bp->rx_agg_nr_pages = 0;
  2343. if (bp->flags & BNXT_FLAG_TPA)
  2344. agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
  2345. bp->flags &= ~BNXT_FLAG_JUMBO;
  2346. if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
  2347. u32 jumbo_factor;
  2348. bp->flags |= BNXT_FLAG_JUMBO;
  2349. jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  2350. if (jumbo_factor > agg_factor)
  2351. agg_factor = jumbo_factor;
  2352. }
  2353. agg_ring_size = ring_size * agg_factor;
  2354. if (agg_ring_size) {
  2355. bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
  2356. RX_DESC_CNT);
  2357. if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
  2358. u32 tmp = agg_ring_size;
  2359. bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
  2360. agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
  2361. netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
  2362. tmp, agg_ring_size);
  2363. }
  2364. bp->rx_agg_ring_size = agg_ring_size;
  2365. bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
  2366. rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
  2367. rx_space = rx_size + NET_SKB_PAD +
  2368. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2369. }
  2370. bp->rx_buf_use_size = rx_size;
  2371. bp->rx_buf_size = rx_space;
  2372. bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
  2373. bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
  2374. ring_size = bp->tx_ring_size;
  2375. bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
  2376. bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
  2377. ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
  2378. bp->cp_ring_size = ring_size;
  2379. bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
  2380. if (bp->cp_nr_pages > MAX_CP_PAGES) {
  2381. bp->cp_nr_pages = MAX_CP_PAGES;
  2382. bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
  2383. netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
  2384. ring_size, bp->cp_ring_size);
  2385. }
  2386. bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
  2387. bp->cp_ring_mask = bp->cp_bit - 1;
  2388. }
  2389. /* Changing allocation mode of RX rings.
  2390. * TODO: Update when extending xdp_rxq_info to support allocation modes.
  2391. */
  2392. int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
  2393. {
  2394. if (page_mode) {
  2395. if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
  2396. return -EOPNOTSUPP;
  2397. bp->dev->max_mtu =
  2398. min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
  2399. bp->flags &= ~BNXT_FLAG_AGG_RINGS;
  2400. bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
  2401. bp->rx_dir = DMA_BIDIRECTIONAL;
  2402. bp->rx_skb_func = bnxt_rx_page_skb;
  2403. /* Disable LRO or GRO_HW */
  2404. netdev_update_features(bp->dev);
  2405. } else {
  2406. bp->dev->max_mtu = bp->max_mtu;
  2407. bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
  2408. bp->rx_dir = DMA_FROM_DEVICE;
  2409. bp->rx_skb_func = bnxt_rx_skb;
  2410. }
  2411. return 0;
  2412. }
  2413. static void bnxt_free_vnic_attributes(struct bnxt *bp)
  2414. {
  2415. int i;
  2416. struct bnxt_vnic_info *vnic;
  2417. struct pci_dev *pdev = bp->pdev;
  2418. if (!bp->vnic_info)
  2419. return;
  2420. for (i = 0; i < bp->nr_vnics; i++) {
  2421. vnic = &bp->vnic_info[i];
  2422. kfree(vnic->fw_grp_ids);
  2423. vnic->fw_grp_ids = NULL;
  2424. kfree(vnic->uc_list);
  2425. vnic->uc_list = NULL;
  2426. if (vnic->mc_list) {
  2427. dma_free_coherent(&pdev->dev, vnic->mc_list_size,
  2428. vnic->mc_list, vnic->mc_list_mapping);
  2429. vnic->mc_list = NULL;
  2430. }
  2431. if (vnic->rss_table) {
  2432. dma_free_coherent(&pdev->dev, PAGE_SIZE,
  2433. vnic->rss_table,
  2434. vnic->rss_table_dma_addr);
  2435. vnic->rss_table = NULL;
  2436. }
  2437. vnic->rss_hash_key = NULL;
  2438. vnic->flags = 0;
  2439. }
  2440. }
  2441. static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
  2442. {
  2443. int i, rc = 0, size;
  2444. struct bnxt_vnic_info *vnic;
  2445. struct pci_dev *pdev = bp->pdev;
  2446. int max_rings;
  2447. for (i = 0; i < bp->nr_vnics; i++) {
  2448. vnic = &bp->vnic_info[i];
  2449. if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
  2450. int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
  2451. if (mem_size > 0) {
  2452. vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
  2453. if (!vnic->uc_list) {
  2454. rc = -ENOMEM;
  2455. goto out;
  2456. }
  2457. }
  2458. }
  2459. if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
  2460. vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
  2461. vnic->mc_list =
  2462. dma_alloc_coherent(&pdev->dev,
  2463. vnic->mc_list_size,
  2464. &vnic->mc_list_mapping,
  2465. GFP_KERNEL);
  2466. if (!vnic->mc_list) {
  2467. rc = -ENOMEM;
  2468. goto out;
  2469. }
  2470. }
  2471. if (vnic->flags & BNXT_VNIC_RSS_FLAG)
  2472. max_rings = bp->rx_nr_rings;
  2473. else
  2474. max_rings = 1;
  2475. vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
  2476. if (!vnic->fw_grp_ids) {
  2477. rc = -ENOMEM;
  2478. goto out;
  2479. }
  2480. if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
  2481. !(vnic->flags & BNXT_VNIC_RSS_FLAG))
  2482. continue;
  2483. /* Allocate rss table and hash key */
  2484. vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
  2485. &vnic->rss_table_dma_addr,
  2486. GFP_KERNEL);
  2487. if (!vnic->rss_table) {
  2488. rc = -ENOMEM;
  2489. goto out;
  2490. }
  2491. size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
  2492. vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
  2493. vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
  2494. }
  2495. return 0;
  2496. out:
  2497. return rc;
  2498. }
  2499. static void bnxt_free_hwrm_resources(struct bnxt *bp)
  2500. {
  2501. struct pci_dev *pdev = bp->pdev;
  2502. dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
  2503. bp->hwrm_cmd_resp_dma_addr);
  2504. bp->hwrm_cmd_resp_addr = NULL;
  2505. if (bp->hwrm_dbg_resp_addr) {
  2506. dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
  2507. bp->hwrm_dbg_resp_addr,
  2508. bp->hwrm_dbg_resp_dma_addr);
  2509. bp->hwrm_dbg_resp_addr = NULL;
  2510. }
  2511. }
  2512. static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
  2513. {
  2514. struct pci_dev *pdev = bp->pdev;
  2515. bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
  2516. &bp->hwrm_cmd_resp_dma_addr,
  2517. GFP_KERNEL);
  2518. if (!bp->hwrm_cmd_resp_addr)
  2519. return -ENOMEM;
  2520. bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
  2521. HWRM_DBG_REG_BUF_SIZE,
  2522. &bp->hwrm_dbg_resp_dma_addr,
  2523. GFP_KERNEL);
  2524. if (!bp->hwrm_dbg_resp_addr)
  2525. netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
  2526. return 0;
  2527. }
  2528. static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
  2529. {
  2530. if (bp->hwrm_short_cmd_req_addr) {
  2531. struct pci_dev *pdev = bp->pdev;
  2532. dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
  2533. bp->hwrm_short_cmd_req_addr,
  2534. bp->hwrm_short_cmd_req_dma_addr);
  2535. bp->hwrm_short_cmd_req_addr = NULL;
  2536. }
  2537. }
  2538. static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
  2539. {
  2540. struct pci_dev *pdev = bp->pdev;
  2541. bp->hwrm_short_cmd_req_addr =
  2542. dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
  2543. &bp->hwrm_short_cmd_req_dma_addr,
  2544. GFP_KERNEL);
  2545. if (!bp->hwrm_short_cmd_req_addr)
  2546. return -ENOMEM;
  2547. return 0;
  2548. }
  2549. static void bnxt_free_stats(struct bnxt *bp)
  2550. {
  2551. u32 size, i;
  2552. struct pci_dev *pdev = bp->pdev;
  2553. bp->flags &= ~BNXT_FLAG_PORT_STATS;
  2554. bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
  2555. if (bp->hw_rx_port_stats) {
  2556. dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
  2557. bp->hw_rx_port_stats,
  2558. bp->hw_rx_port_stats_map);
  2559. bp->hw_rx_port_stats = NULL;
  2560. }
  2561. if (bp->hw_rx_port_stats_ext) {
  2562. dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
  2563. bp->hw_rx_port_stats_ext,
  2564. bp->hw_rx_port_stats_ext_map);
  2565. bp->hw_rx_port_stats_ext = NULL;
  2566. }
  2567. if (!bp->bnapi)
  2568. return;
  2569. size = sizeof(struct ctx_hw_stats);
  2570. for (i = 0; i < bp->cp_nr_rings; i++) {
  2571. struct bnxt_napi *bnapi = bp->bnapi[i];
  2572. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  2573. if (cpr->hw_stats) {
  2574. dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
  2575. cpr->hw_stats_map);
  2576. cpr->hw_stats = NULL;
  2577. }
  2578. }
  2579. }
  2580. static int bnxt_alloc_stats(struct bnxt *bp)
  2581. {
  2582. u32 size, i;
  2583. struct pci_dev *pdev = bp->pdev;
  2584. size = sizeof(struct ctx_hw_stats);
  2585. for (i = 0; i < bp->cp_nr_rings; i++) {
  2586. struct bnxt_napi *bnapi = bp->bnapi[i];
  2587. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  2588. cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
  2589. &cpr->hw_stats_map,
  2590. GFP_KERNEL);
  2591. if (!cpr->hw_stats)
  2592. return -ENOMEM;
  2593. cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
  2594. }
  2595. if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
  2596. bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
  2597. sizeof(struct tx_port_stats) + 1024;
  2598. bp->hw_rx_port_stats =
  2599. dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
  2600. &bp->hw_rx_port_stats_map,
  2601. GFP_KERNEL);
  2602. if (!bp->hw_rx_port_stats)
  2603. return -ENOMEM;
  2604. bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
  2605. 512;
  2606. bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
  2607. sizeof(struct rx_port_stats) + 512;
  2608. bp->flags |= BNXT_FLAG_PORT_STATS;
  2609. /* Display extended statistics only if FW supports it */
  2610. if (bp->hwrm_spec_code < 0x10804 ||
  2611. bp->hwrm_spec_code == 0x10900)
  2612. return 0;
  2613. bp->hw_rx_port_stats_ext =
  2614. dma_zalloc_coherent(&pdev->dev,
  2615. sizeof(struct rx_port_stats_ext),
  2616. &bp->hw_rx_port_stats_ext_map,
  2617. GFP_KERNEL);
  2618. if (!bp->hw_rx_port_stats_ext)
  2619. return 0;
  2620. bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
  2621. }
  2622. return 0;
  2623. }
  2624. static void bnxt_clear_ring_indices(struct bnxt *bp)
  2625. {
  2626. int i;
  2627. if (!bp->bnapi)
  2628. return;
  2629. for (i = 0; i < bp->cp_nr_rings; i++) {
  2630. struct bnxt_napi *bnapi = bp->bnapi[i];
  2631. struct bnxt_cp_ring_info *cpr;
  2632. struct bnxt_rx_ring_info *rxr;
  2633. struct bnxt_tx_ring_info *txr;
  2634. if (!bnapi)
  2635. continue;
  2636. cpr = &bnapi->cp_ring;
  2637. cpr->cp_raw_cons = 0;
  2638. txr = bnapi->tx_ring;
  2639. if (txr) {
  2640. txr->tx_prod = 0;
  2641. txr->tx_cons = 0;
  2642. }
  2643. rxr = bnapi->rx_ring;
  2644. if (rxr) {
  2645. rxr->rx_prod = 0;
  2646. rxr->rx_agg_prod = 0;
  2647. rxr->rx_sw_agg_prod = 0;
  2648. rxr->rx_next_cons = 0;
  2649. }
  2650. }
  2651. }
  2652. static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
  2653. {
  2654. #ifdef CONFIG_RFS_ACCEL
  2655. int i;
  2656. /* Under rtnl_lock and all our NAPIs have been disabled. It's
  2657. * safe to delete the hash table.
  2658. */
  2659. for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
  2660. struct hlist_head *head;
  2661. struct hlist_node *tmp;
  2662. struct bnxt_ntuple_filter *fltr;
  2663. head = &bp->ntp_fltr_hash_tbl[i];
  2664. hlist_for_each_entry_safe(fltr, tmp, head, hash) {
  2665. hlist_del(&fltr->hash);
  2666. kfree(fltr);
  2667. }
  2668. }
  2669. if (irq_reinit) {
  2670. kfree(bp->ntp_fltr_bmap);
  2671. bp->ntp_fltr_bmap = NULL;
  2672. }
  2673. bp->ntp_fltr_count = 0;
  2674. #endif
  2675. }
  2676. static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
  2677. {
  2678. #ifdef CONFIG_RFS_ACCEL
  2679. int i, rc = 0;
  2680. if (!(bp->flags & BNXT_FLAG_RFS))
  2681. return 0;
  2682. for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
  2683. INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
  2684. bp->ntp_fltr_count = 0;
  2685. bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
  2686. sizeof(long),
  2687. GFP_KERNEL);
  2688. if (!bp->ntp_fltr_bmap)
  2689. rc = -ENOMEM;
  2690. return rc;
  2691. #else
  2692. return 0;
  2693. #endif
  2694. }
  2695. static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
  2696. {
  2697. bnxt_free_vnic_attributes(bp);
  2698. bnxt_free_tx_rings(bp);
  2699. bnxt_free_rx_rings(bp);
  2700. bnxt_free_cp_rings(bp);
  2701. bnxt_free_ntp_fltrs(bp, irq_re_init);
  2702. if (irq_re_init) {
  2703. bnxt_free_stats(bp);
  2704. bnxt_free_ring_grps(bp);
  2705. bnxt_free_vnics(bp);
  2706. kfree(bp->tx_ring_map);
  2707. bp->tx_ring_map = NULL;
  2708. kfree(bp->tx_ring);
  2709. bp->tx_ring = NULL;
  2710. kfree(bp->rx_ring);
  2711. bp->rx_ring = NULL;
  2712. kfree(bp->bnapi);
  2713. bp->bnapi = NULL;
  2714. } else {
  2715. bnxt_clear_ring_indices(bp);
  2716. }
  2717. }
  2718. static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
  2719. {
  2720. int i, j, rc, size, arr_size;
  2721. void *bnapi;
  2722. if (irq_re_init) {
  2723. /* Allocate bnapi mem pointer array and mem block for
  2724. * all queues
  2725. */
  2726. arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
  2727. bp->cp_nr_rings);
  2728. size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
  2729. bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
  2730. if (!bnapi)
  2731. return -ENOMEM;
  2732. bp->bnapi = bnapi;
  2733. bnapi += arr_size;
  2734. for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
  2735. bp->bnapi[i] = bnapi;
  2736. bp->bnapi[i]->index = i;
  2737. bp->bnapi[i]->bp = bp;
  2738. }
  2739. bp->rx_ring = kcalloc(bp->rx_nr_rings,
  2740. sizeof(struct bnxt_rx_ring_info),
  2741. GFP_KERNEL);
  2742. if (!bp->rx_ring)
  2743. return -ENOMEM;
  2744. for (i = 0; i < bp->rx_nr_rings; i++) {
  2745. bp->rx_ring[i].bnapi = bp->bnapi[i];
  2746. bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
  2747. }
  2748. bp->tx_ring = kcalloc(bp->tx_nr_rings,
  2749. sizeof(struct bnxt_tx_ring_info),
  2750. GFP_KERNEL);
  2751. if (!bp->tx_ring)
  2752. return -ENOMEM;
  2753. bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
  2754. GFP_KERNEL);
  2755. if (!bp->tx_ring_map)
  2756. return -ENOMEM;
  2757. if (bp->flags & BNXT_FLAG_SHARED_RINGS)
  2758. j = 0;
  2759. else
  2760. j = bp->rx_nr_rings;
  2761. for (i = 0; i < bp->tx_nr_rings; i++, j++) {
  2762. bp->tx_ring[i].bnapi = bp->bnapi[j];
  2763. bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
  2764. bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
  2765. if (i >= bp->tx_nr_rings_xdp) {
  2766. bp->tx_ring[i].txq_index = i -
  2767. bp->tx_nr_rings_xdp;
  2768. bp->bnapi[j]->tx_int = bnxt_tx_int;
  2769. } else {
  2770. bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
  2771. bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
  2772. }
  2773. }
  2774. rc = bnxt_alloc_stats(bp);
  2775. if (rc)
  2776. goto alloc_mem_err;
  2777. rc = bnxt_alloc_ntp_fltrs(bp);
  2778. if (rc)
  2779. goto alloc_mem_err;
  2780. rc = bnxt_alloc_vnics(bp);
  2781. if (rc)
  2782. goto alloc_mem_err;
  2783. }
  2784. bnxt_init_ring_struct(bp);
  2785. rc = bnxt_alloc_rx_rings(bp);
  2786. if (rc)
  2787. goto alloc_mem_err;
  2788. rc = bnxt_alloc_tx_rings(bp);
  2789. if (rc)
  2790. goto alloc_mem_err;
  2791. rc = bnxt_alloc_cp_rings(bp);
  2792. if (rc)
  2793. goto alloc_mem_err;
  2794. bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
  2795. BNXT_VNIC_UCAST_FLAG;
  2796. rc = bnxt_alloc_vnic_attributes(bp);
  2797. if (rc)
  2798. goto alloc_mem_err;
  2799. return 0;
  2800. alloc_mem_err:
  2801. bnxt_free_mem(bp, true);
  2802. return rc;
  2803. }
  2804. static void bnxt_disable_int(struct bnxt *bp)
  2805. {
  2806. int i;
  2807. if (!bp->bnapi)
  2808. return;
  2809. for (i = 0; i < bp->cp_nr_rings; i++) {
  2810. struct bnxt_napi *bnapi = bp->bnapi[i];
  2811. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  2812. struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
  2813. if (ring->fw_ring_id != INVALID_HW_RING_ID)
  2814. BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
  2815. }
  2816. }
  2817. static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
  2818. {
  2819. struct bnxt_napi *bnapi = bp->bnapi[n];
  2820. struct bnxt_cp_ring_info *cpr;
  2821. cpr = &bnapi->cp_ring;
  2822. return cpr->cp_ring_struct.map_idx;
  2823. }
  2824. static void bnxt_disable_int_sync(struct bnxt *bp)
  2825. {
  2826. int i;
  2827. atomic_inc(&bp->intr_sem);
  2828. bnxt_disable_int(bp);
  2829. for (i = 0; i < bp->cp_nr_rings; i++) {
  2830. int map_idx = bnxt_cp_num_to_irq_num(bp, i);
  2831. synchronize_irq(bp->irq_tbl[map_idx].vector);
  2832. }
  2833. }
  2834. static void bnxt_enable_int(struct bnxt *bp)
  2835. {
  2836. int i;
  2837. atomic_set(&bp->intr_sem, 0);
  2838. for (i = 0; i < bp->cp_nr_rings; i++) {
  2839. struct bnxt_napi *bnapi = bp->bnapi[i];
  2840. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  2841. BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
  2842. }
  2843. }
  2844. void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
  2845. u16 cmpl_ring, u16 target_id)
  2846. {
  2847. struct input *req = request;
  2848. req->req_type = cpu_to_le16(req_type);
  2849. req->cmpl_ring = cpu_to_le16(cmpl_ring);
  2850. req->target_id = cpu_to_le16(target_id);
  2851. req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
  2852. }
  2853. static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
  2854. int timeout, bool silent)
  2855. {
  2856. int i, intr_process, rc, tmo_count;
  2857. struct input *req = msg;
  2858. u32 *data = msg;
  2859. __le32 *resp_len;
  2860. u8 *valid;
  2861. u16 cp_ring_id, len = 0;
  2862. struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
  2863. u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
  2864. struct hwrm_short_input short_input = {0};
  2865. req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
  2866. memset(resp, 0, PAGE_SIZE);
  2867. cp_ring_id = le16_to_cpu(req->cmpl_ring);
  2868. intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
  2869. if (bp->flags & BNXT_FLAG_SHORT_CMD) {
  2870. void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
  2871. memcpy(short_cmd_req, req, msg_len);
  2872. memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
  2873. msg_len);
  2874. short_input.req_type = req->req_type;
  2875. short_input.signature =
  2876. cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
  2877. short_input.size = cpu_to_le16(msg_len);
  2878. short_input.req_addr =
  2879. cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
  2880. data = (u32 *)&short_input;
  2881. msg_len = sizeof(short_input);
  2882. /* Sync memory write before updating doorbell */
  2883. wmb();
  2884. max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
  2885. }
  2886. /* Write request msg to hwrm channel */
  2887. __iowrite32_copy(bp->bar0, data, msg_len / 4);
  2888. for (i = msg_len; i < max_req_len; i += 4)
  2889. writel(0, bp->bar0 + i);
  2890. /* currently supports only one outstanding message */
  2891. if (intr_process)
  2892. bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
  2893. /* Ring channel doorbell */
  2894. writel(1, bp->bar0 + 0x100);
  2895. if (!timeout)
  2896. timeout = DFLT_HWRM_CMD_TIMEOUT;
  2897. /* convert timeout to usec */
  2898. timeout *= 1000;
  2899. i = 0;
  2900. /* Short timeout for the first few iterations:
  2901. * number of loops = number of loops for short timeout +
  2902. * number of loops for standard timeout.
  2903. */
  2904. tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
  2905. timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
  2906. tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
  2907. resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
  2908. if (intr_process) {
  2909. /* Wait until hwrm response cmpl interrupt is processed */
  2910. while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
  2911. i++ < tmo_count) {
  2912. /* on first few passes, just barely sleep */
  2913. if (i < HWRM_SHORT_TIMEOUT_COUNTER)
  2914. usleep_range(HWRM_SHORT_MIN_TIMEOUT,
  2915. HWRM_SHORT_MAX_TIMEOUT);
  2916. else
  2917. usleep_range(HWRM_MIN_TIMEOUT,
  2918. HWRM_MAX_TIMEOUT);
  2919. }
  2920. if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
  2921. netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
  2922. le16_to_cpu(req->req_type));
  2923. return -1;
  2924. }
  2925. len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
  2926. HWRM_RESP_LEN_SFT;
  2927. valid = bp->hwrm_cmd_resp_addr + len - 1;
  2928. } else {
  2929. int j;
  2930. /* Check if response len is updated */
  2931. for (i = 0; i < tmo_count; i++) {
  2932. len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
  2933. HWRM_RESP_LEN_SFT;
  2934. if (len)
  2935. break;
  2936. /* on first few passes, just barely sleep */
  2937. if (i < DFLT_HWRM_CMD_TIMEOUT)
  2938. usleep_range(HWRM_SHORT_MIN_TIMEOUT,
  2939. HWRM_SHORT_MAX_TIMEOUT);
  2940. else
  2941. usleep_range(HWRM_MIN_TIMEOUT,
  2942. HWRM_MAX_TIMEOUT);
  2943. }
  2944. if (i >= tmo_count) {
  2945. netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
  2946. HWRM_TOTAL_TIMEOUT(i),
  2947. le16_to_cpu(req->req_type),
  2948. le16_to_cpu(req->seq_id), len);
  2949. return -1;
  2950. }
  2951. /* Last byte of resp contains valid bit */
  2952. valid = bp->hwrm_cmd_resp_addr + len - 1;
  2953. for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
  2954. /* make sure we read from updated DMA memory */
  2955. dma_rmb();
  2956. if (*valid)
  2957. break;
  2958. udelay(1);
  2959. }
  2960. if (j >= HWRM_VALID_BIT_DELAY_USEC) {
  2961. netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
  2962. HWRM_TOTAL_TIMEOUT(i),
  2963. le16_to_cpu(req->req_type),
  2964. le16_to_cpu(req->seq_id), len, *valid);
  2965. return -1;
  2966. }
  2967. }
  2968. /* Zero valid bit for compatibility. Valid bit in an older spec
  2969. * may become a new field in a newer spec. We must make sure that
  2970. * a new field not implemented by old spec will read zero.
  2971. */
  2972. *valid = 0;
  2973. rc = le16_to_cpu(resp->error_code);
  2974. if (rc && !silent)
  2975. netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
  2976. le16_to_cpu(resp->req_type),
  2977. le16_to_cpu(resp->seq_id), rc);
  2978. return rc;
  2979. }
  2980. int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
  2981. {
  2982. return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
  2983. }
  2984. int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
  2985. int timeout)
  2986. {
  2987. return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
  2988. }
  2989. int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
  2990. {
  2991. int rc;
  2992. mutex_lock(&bp->hwrm_cmd_lock);
  2993. rc = _hwrm_send_message(bp, msg, msg_len, timeout);
  2994. mutex_unlock(&bp->hwrm_cmd_lock);
  2995. return rc;
  2996. }
  2997. int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
  2998. int timeout)
  2999. {
  3000. int rc;
  3001. mutex_lock(&bp->hwrm_cmd_lock);
  3002. rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
  3003. mutex_unlock(&bp->hwrm_cmd_lock);
  3004. return rc;
  3005. }
  3006. int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
  3007. int bmap_size)
  3008. {
  3009. struct hwrm_func_drv_rgtr_input req = {0};
  3010. DECLARE_BITMAP(async_events_bmap, 256);
  3011. u32 *events = (u32 *)async_events_bmap;
  3012. int i;
  3013. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
  3014. req.enables =
  3015. cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
  3016. memset(async_events_bmap, 0, sizeof(async_events_bmap));
  3017. for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
  3018. __set_bit(bnxt_async_events_arr[i], async_events_bmap);
  3019. if (bmap && bmap_size) {
  3020. for (i = 0; i < bmap_size; i++) {
  3021. if (test_bit(i, bmap))
  3022. __set_bit(i, async_events_bmap);
  3023. }
  3024. }
  3025. for (i = 0; i < 8; i++)
  3026. req.async_event_fwd[i] |= cpu_to_le32(events[i]);
  3027. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3028. }
  3029. static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
  3030. {
  3031. struct hwrm_func_drv_rgtr_input req = {0};
  3032. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
  3033. req.enables =
  3034. cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
  3035. FUNC_DRV_RGTR_REQ_ENABLES_VER);
  3036. req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
  3037. req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
  3038. req.ver_maj_8b = DRV_VER_MAJ;
  3039. req.ver_min_8b = DRV_VER_MIN;
  3040. req.ver_upd_8b = DRV_VER_UPD;
  3041. req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
  3042. req.ver_min = cpu_to_le16(DRV_VER_MIN);
  3043. req.ver_upd = cpu_to_le16(DRV_VER_UPD);
  3044. if (BNXT_PF(bp)) {
  3045. u32 data[8];
  3046. int i;
  3047. memset(data, 0, sizeof(data));
  3048. for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
  3049. u16 cmd = bnxt_vf_req_snif[i];
  3050. unsigned int bit, idx;
  3051. idx = cmd / 32;
  3052. bit = cmd % 32;
  3053. data[idx] |= 1 << bit;
  3054. }
  3055. for (i = 0; i < 8; i++)
  3056. req.vf_req_fwd[i] = cpu_to_le32(data[i]);
  3057. req.enables |=
  3058. cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
  3059. }
  3060. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3061. }
  3062. static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
  3063. {
  3064. struct hwrm_func_drv_unrgtr_input req = {0};
  3065. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
  3066. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3067. }
  3068. static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
  3069. {
  3070. u32 rc = 0;
  3071. struct hwrm_tunnel_dst_port_free_input req = {0};
  3072. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
  3073. req.tunnel_type = tunnel_type;
  3074. switch (tunnel_type) {
  3075. case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
  3076. req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
  3077. break;
  3078. case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
  3079. req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
  3080. break;
  3081. default:
  3082. break;
  3083. }
  3084. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3085. if (rc)
  3086. netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
  3087. rc);
  3088. return rc;
  3089. }
  3090. static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
  3091. u8 tunnel_type)
  3092. {
  3093. u32 rc = 0;
  3094. struct hwrm_tunnel_dst_port_alloc_input req = {0};
  3095. struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  3096. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
  3097. req.tunnel_type = tunnel_type;
  3098. req.tunnel_dst_port_val = port;
  3099. mutex_lock(&bp->hwrm_cmd_lock);
  3100. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3101. if (rc) {
  3102. netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
  3103. rc);
  3104. goto err_out;
  3105. }
  3106. switch (tunnel_type) {
  3107. case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
  3108. bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
  3109. break;
  3110. case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
  3111. bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
  3112. break;
  3113. default:
  3114. break;
  3115. }
  3116. err_out:
  3117. mutex_unlock(&bp->hwrm_cmd_lock);
  3118. return rc;
  3119. }
  3120. static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
  3121. {
  3122. struct hwrm_cfa_l2_set_rx_mask_input req = {0};
  3123. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3124. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
  3125. req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
  3126. req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
  3127. req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
  3128. req.mask = cpu_to_le32(vnic->rx_mask);
  3129. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3130. }
  3131. #ifdef CONFIG_RFS_ACCEL
  3132. static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
  3133. struct bnxt_ntuple_filter *fltr)
  3134. {
  3135. struct hwrm_cfa_ntuple_filter_free_input req = {0};
  3136. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
  3137. req.ntuple_filter_id = fltr->filter_id;
  3138. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3139. }
  3140. #define BNXT_NTP_FLTR_FLAGS \
  3141. (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
  3142. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
  3143. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
  3144. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
  3145. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
  3146. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
  3147. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
  3148. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
  3149. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
  3150. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
  3151. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
  3152. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
  3153. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
  3154. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
  3155. #define BNXT_NTP_TUNNEL_FLTR_FLAG \
  3156. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
  3157. static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
  3158. struct bnxt_ntuple_filter *fltr)
  3159. {
  3160. int rc = 0;
  3161. struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
  3162. struct hwrm_cfa_ntuple_filter_alloc_output *resp =
  3163. bp->hwrm_cmd_resp_addr;
  3164. struct flow_keys *keys = &fltr->fkeys;
  3165. struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
  3166. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
  3167. req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
  3168. req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
  3169. req.ethertype = htons(ETH_P_IP);
  3170. memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
  3171. req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
  3172. req.ip_protocol = keys->basic.ip_proto;
  3173. if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
  3174. int i;
  3175. req.ethertype = htons(ETH_P_IPV6);
  3176. req.ip_addr_type =
  3177. CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
  3178. *(struct in6_addr *)&req.src_ipaddr[0] =
  3179. keys->addrs.v6addrs.src;
  3180. *(struct in6_addr *)&req.dst_ipaddr[0] =
  3181. keys->addrs.v6addrs.dst;
  3182. for (i = 0; i < 4; i++) {
  3183. req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
  3184. req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
  3185. }
  3186. } else {
  3187. req.src_ipaddr[0] = keys->addrs.v4addrs.src;
  3188. req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
  3189. req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
  3190. req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
  3191. }
  3192. if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
  3193. req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
  3194. req.tunnel_type =
  3195. CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
  3196. }
  3197. req.src_port = keys->ports.src;
  3198. req.src_port_mask = cpu_to_be16(0xffff);
  3199. req.dst_port = keys->ports.dst;
  3200. req.dst_port_mask = cpu_to_be16(0xffff);
  3201. req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
  3202. mutex_lock(&bp->hwrm_cmd_lock);
  3203. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3204. if (!rc)
  3205. fltr->filter_id = resp->ntuple_filter_id;
  3206. mutex_unlock(&bp->hwrm_cmd_lock);
  3207. return rc;
  3208. }
  3209. #endif
  3210. static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
  3211. u8 *mac_addr)
  3212. {
  3213. u32 rc = 0;
  3214. struct hwrm_cfa_l2_filter_alloc_input req = {0};
  3215. struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  3216. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
  3217. req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
  3218. if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
  3219. req.flags |=
  3220. cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
  3221. req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
  3222. req.enables =
  3223. cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
  3224. CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
  3225. CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
  3226. memcpy(req.l2_addr, mac_addr, ETH_ALEN);
  3227. req.l2_addr_mask[0] = 0xff;
  3228. req.l2_addr_mask[1] = 0xff;
  3229. req.l2_addr_mask[2] = 0xff;
  3230. req.l2_addr_mask[3] = 0xff;
  3231. req.l2_addr_mask[4] = 0xff;
  3232. req.l2_addr_mask[5] = 0xff;
  3233. mutex_lock(&bp->hwrm_cmd_lock);
  3234. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3235. if (!rc)
  3236. bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
  3237. resp->l2_filter_id;
  3238. mutex_unlock(&bp->hwrm_cmd_lock);
  3239. return rc;
  3240. }
  3241. static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
  3242. {
  3243. u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
  3244. int rc = 0;
  3245. /* Any associated ntuple filters will also be cleared by firmware. */
  3246. mutex_lock(&bp->hwrm_cmd_lock);
  3247. for (i = 0; i < num_of_vnics; i++) {
  3248. struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
  3249. for (j = 0; j < vnic->uc_filter_count; j++) {
  3250. struct hwrm_cfa_l2_filter_free_input req = {0};
  3251. bnxt_hwrm_cmd_hdr_init(bp, &req,
  3252. HWRM_CFA_L2_FILTER_FREE, -1, -1);
  3253. req.l2_filter_id = vnic->fw_l2_filter_id[j];
  3254. rc = _hwrm_send_message(bp, &req, sizeof(req),
  3255. HWRM_CMD_TIMEOUT);
  3256. }
  3257. vnic->uc_filter_count = 0;
  3258. }
  3259. mutex_unlock(&bp->hwrm_cmd_lock);
  3260. return rc;
  3261. }
  3262. static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
  3263. {
  3264. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3265. struct hwrm_vnic_tpa_cfg_input req = {0};
  3266. if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
  3267. return 0;
  3268. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
  3269. if (tpa_flags) {
  3270. u16 mss = bp->dev->mtu - 40;
  3271. u32 nsegs, n, segs = 0, flags;
  3272. flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
  3273. VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
  3274. VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
  3275. VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
  3276. VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
  3277. if (tpa_flags & BNXT_FLAG_GRO)
  3278. flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
  3279. req.flags = cpu_to_le32(flags);
  3280. req.enables =
  3281. cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
  3282. VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
  3283. VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
  3284. /* Number of segs are log2 units, and first packet is not
  3285. * included as part of this units.
  3286. */
  3287. if (mss <= BNXT_RX_PAGE_SIZE) {
  3288. n = BNXT_RX_PAGE_SIZE / mss;
  3289. nsegs = (MAX_SKB_FRAGS - 1) * n;
  3290. } else {
  3291. n = mss / BNXT_RX_PAGE_SIZE;
  3292. if (mss & (BNXT_RX_PAGE_SIZE - 1))
  3293. n++;
  3294. nsegs = (MAX_SKB_FRAGS - n) / n;
  3295. }
  3296. segs = ilog2(nsegs);
  3297. req.max_agg_segs = cpu_to_le16(segs);
  3298. req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
  3299. req.min_agg_len = cpu_to_le32(512);
  3300. }
  3301. req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
  3302. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3303. }
  3304. static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
  3305. {
  3306. u32 i, j, max_rings;
  3307. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3308. struct hwrm_vnic_rss_cfg_input req = {0};
  3309. if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
  3310. return 0;
  3311. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
  3312. if (set_rss) {
  3313. req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
  3314. if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
  3315. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  3316. max_rings = bp->rx_nr_rings - 1;
  3317. else
  3318. max_rings = bp->rx_nr_rings;
  3319. } else {
  3320. max_rings = 1;
  3321. }
  3322. /* Fill the RSS indirection table with ring group ids */
  3323. for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
  3324. if (j == max_rings)
  3325. j = 0;
  3326. vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
  3327. }
  3328. req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
  3329. req.hash_key_tbl_addr =
  3330. cpu_to_le64(vnic->rss_hash_key_dma_addr);
  3331. }
  3332. req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
  3333. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3334. }
  3335. static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
  3336. {
  3337. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3338. struct hwrm_vnic_plcmodes_cfg_input req = {0};
  3339. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
  3340. req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
  3341. VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
  3342. VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
  3343. req.enables =
  3344. cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
  3345. VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
  3346. /* thresholds not implemented in firmware yet */
  3347. req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
  3348. req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
  3349. req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
  3350. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3351. }
  3352. static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
  3353. u16 ctx_idx)
  3354. {
  3355. struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
  3356. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
  3357. req.rss_cos_lb_ctx_id =
  3358. cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
  3359. hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3360. bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
  3361. }
  3362. static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
  3363. {
  3364. int i, j;
  3365. for (i = 0; i < bp->nr_vnics; i++) {
  3366. struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
  3367. for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
  3368. if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
  3369. bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
  3370. }
  3371. }
  3372. bp->rsscos_nr_ctxs = 0;
  3373. }
  3374. static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
  3375. {
  3376. int rc;
  3377. struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
  3378. struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
  3379. bp->hwrm_cmd_resp_addr;
  3380. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
  3381. -1);
  3382. mutex_lock(&bp->hwrm_cmd_lock);
  3383. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3384. if (!rc)
  3385. bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
  3386. le16_to_cpu(resp->rss_cos_lb_ctx_id);
  3387. mutex_unlock(&bp->hwrm_cmd_lock);
  3388. return rc;
  3389. }
  3390. static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
  3391. {
  3392. if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
  3393. return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
  3394. return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
  3395. }
  3396. int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
  3397. {
  3398. unsigned int ring = 0, grp_idx;
  3399. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3400. struct hwrm_vnic_cfg_input req = {0};
  3401. u16 def_vlan = 0;
  3402. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
  3403. req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
  3404. /* Only RSS support for now TBD: COS & LB */
  3405. if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
  3406. req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
  3407. req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
  3408. VNIC_CFG_REQ_ENABLES_MRU);
  3409. } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
  3410. req.rss_rule =
  3411. cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
  3412. req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
  3413. VNIC_CFG_REQ_ENABLES_MRU);
  3414. req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
  3415. } else {
  3416. req.rss_rule = cpu_to_le16(0xffff);
  3417. }
  3418. if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
  3419. (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
  3420. req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
  3421. req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
  3422. } else {
  3423. req.cos_rule = cpu_to_le16(0xffff);
  3424. }
  3425. if (vnic->flags & BNXT_VNIC_RSS_FLAG)
  3426. ring = 0;
  3427. else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
  3428. ring = vnic_id - 1;
  3429. else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
  3430. ring = bp->rx_nr_rings - 1;
  3431. grp_idx = bp->rx_ring[ring].bnapi->index;
  3432. req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
  3433. req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
  3434. req.lb_rule = cpu_to_le16(0xffff);
  3435. req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
  3436. VLAN_HLEN);
  3437. #ifdef CONFIG_BNXT_SRIOV
  3438. if (BNXT_VF(bp))
  3439. def_vlan = bp->vf.vlan;
  3440. #endif
  3441. if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
  3442. req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
  3443. if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
  3444. req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
  3445. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3446. }
  3447. static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
  3448. {
  3449. u32 rc = 0;
  3450. if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
  3451. struct hwrm_vnic_free_input req = {0};
  3452. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
  3453. req.vnic_id =
  3454. cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
  3455. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3456. if (rc)
  3457. return rc;
  3458. bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
  3459. }
  3460. return rc;
  3461. }
  3462. static void bnxt_hwrm_vnic_free(struct bnxt *bp)
  3463. {
  3464. u16 i;
  3465. for (i = 0; i < bp->nr_vnics; i++)
  3466. bnxt_hwrm_vnic_free_one(bp, i);
  3467. }
  3468. static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
  3469. unsigned int start_rx_ring_idx,
  3470. unsigned int nr_rings)
  3471. {
  3472. int rc = 0;
  3473. unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
  3474. struct hwrm_vnic_alloc_input req = {0};
  3475. struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  3476. /* map ring groups to this vnic */
  3477. for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
  3478. grp_idx = bp->rx_ring[i].bnapi->index;
  3479. if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
  3480. netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
  3481. j, nr_rings);
  3482. break;
  3483. }
  3484. bp->vnic_info[vnic_id].fw_grp_ids[j] =
  3485. bp->grp_info[grp_idx].fw_grp_id;
  3486. }
  3487. bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
  3488. bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
  3489. if (vnic_id == 0)
  3490. req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
  3491. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
  3492. mutex_lock(&bp->hwrm_cmd_lock);
  3493. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3494. if (!rc)
  3495. bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
  3496. mutex_unlock(&bp->hwrm_cmd_lock);
  3497. return rc;
  3498. }
  3499. static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
  3500. {
  3501. struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  3502. struct hwrm_vnic_qcaps_input req = {0};
  3503. int rc;
  3504. if (bp->hwrm_spec_code < 0x10600)
  3505. return 0;
  3506. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
  3507. mutex_lock(&bp->hwrm_cmd_lock);
  3508. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3509. if (!rc) {
  3510. u32 flags = le32_to_cpu(resp->flags);
  3511. if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)
  3512. bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
  3513. if (flags &
  3514. VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
  3515. bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
  3516. }
  3517. mutex_unlock(&bp->hwrm_cmd_lock);
  3518. return rc;
  3519. }
  3520. static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
  3521. {
  3522. u16 i;
  3523. u32 rc = 0;
  3524. mutex_lock(&bp->hwrm_cmd_lock);
  3525. for (i = 0; i < bp->rx_nr_rings; i++) {
  3526. struct hwrm_ring_grp_alloc_input req = {0};
  3527. struct hwrm_ring_grp_alloc_output *resp =
  3528. bp->hwrm_cmd_resp_addr;
  3529. unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
  3530. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
  3531. req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
  3532. req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
  3533. req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
  3534. req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
  3535. rc = _hwrm_send_message(bp, &req, sizeof(req),
  3536. HWRM_CMD_TIMEOUT);
  3537. if (rc)
  3538. break;
  3539. bp->grp_info[grp_idx].fw_grp_id =
  3540. le32_to_cpu(resp->ring_group_id);
  3541. }
  3542. mutex_unlock(&bp->hwrm_cmd_lock);
  3543. return rc;
  3544. }
  3545. static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
  3546. {
  3547. u16 i;
  3548. u32 rc = 0;
  3549. struct hwrm_ring_grp_free_input req = {0};
  3550. if (!bp->grp_info)
  3551. return 0;
  3552. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
  3553. mutex_lock(&bp->hwrm_cmd_lock);
  3554. for (i = 0; i < bp->cp_nr_rings; i++) {
  3555. if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
  3556. continue;
  3557. req.ring_group_id =
  3558. cpu_to_le32(bp->grp_info[i].fw_grp_id);
  3559. rc = _hwrm_send_message(bp, &req, sizeof(req),
  3560. HWRM_CMD_TIMEOUT);
  3561. if (rc)
  3562. break;
  3563. bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
  3564. }
  3565. mutex_unlock(&bp->hwrm_cmd_lock);
  3566. return rc;
  3567. }
  3568. static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
  3569. struct bnxt_ring_struct *ring,
  3570. u32 ring_type, u32 map_index)
  3571. {
  3572. int rc = 0, err = 0;
  3573. struct hwrm_ring_alloc_input req = {0};
  3574. struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  3575. struct bnxt_ring_grp_info *grp_info;
  3576. u16 ring_id;
  3577. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
  3578. req.enables = 0;
  3579. if (ring->nr_pages > 1) {
  3580. req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
  3581. /* Page size is in log2 units */
  3582. req.page_size = BNXT_PAGE_SHIFT;
  3583. req.page_tbl_depth = 1;
  3584. } else {
  3585. req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
  3586. }
  3587. req.fbo = 0;
  3588. /* Association of ring index with doorbell index and MSIX number */
  3589. req.logical_id = cpu_to_le16(map_index);
  3590. switch (ring_type) {
  3591. case HWRM_RING_ALLOC_TX:
  3592. req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
  3593. /* Association of transmit ring with completion ring */
  3594. grp_info = &bp->grp_info[ring->grp_idx];
  3595. req.cmpl_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
  3596. req.length = cpu_to_le32(bp->tx_ring_mask + 1);
  3597. req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
  3598. req.queue_id = cpu_to_le16(ring->queue_id);
  3599. break;
  3600. case HWRM_RING_ALLOC_RX:
  3601. req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
  3602. req.length = cpu_to_le32(bp->rx_ring_mask + 1);
  3603. break;
  3604. case HWRM_RING_ALLOC_AGG:
  3605. req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
  3606. req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
  3607. break;
  3608. case HWRM_RING_ALLOC_CMPL:
  3609. req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
  3610. req.length = cpu_to_le32(bp->cp_ring_mask + 1);
  3611. if (bp->flags & BNXT_FLAG_USING_MSIX)
  3612. req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
  3613. break;
  3614. default:
  3615. netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
  3616. ring_type);
  3617. return -1;
  3618. }
  3619. mutex_lock(&bp->hwrm_cmd_lock);
  3620. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3621. err = le16_to_cpu(resp->error_code);
  3622. ring_id = le16_to_cpu(resp->ring_id);
  3623. mutex_unlock(&bp->hwrm_cmd_lock);
  3624. if (rc || err) {
  3625. netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
  3626. ring_type, rc, err);
  3627. return -EIO;
  3628. }
  3629. ring->fw_ring_id = ring_id;
  3630. return rc;
  3631. }
  3632. static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
  3633. {
  3634. int rc;
  3635. if (BNXT_PF(bp)) {
  3636. struct hwrm_func_cfg_input req = {0};
  3637. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
  3638. req.fid = cpu_to_le16(0xffff);
  3639. req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
  3640. req.async_event_cr = cpu_to_le16(idx);
  3641. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3642. } else {
  3643. struct hwrm_func_vf_cfg_input req = {0};
  3644. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
  3645. req.enables =
  3646. cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
  3647. req.async_event_cr = cpu_to_le16(idx);
  3648. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3649. }
  3650. return rc;
  3651. }
  3652. static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
  3653. {
  3654. int i, rc = 0;
  3655. for (i = 0; i < bp->cp_nr_rings; i++) {
  3656. struct bnxt_napi *bnapi = bp->bnapi[i];
  3657. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  3658. struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
  3659. u32 map_idx = ring->map_idx;
  3660. cpr->cp_doorbell = bp->bar1 + map_idx * 0x80;
  3661. rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL,
  3662. map_idx);
  3663. if (rc)
  3664. goto err_out;
  3665. BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
  3666. bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
  3667. if (!i) {
  3668. rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
  3669. if (rc)
  3670. netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
  3671. }
  3672. }
  3673. for (i = 0; i < bp->tx_nr_rings; i++) {
  3674. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  3675. struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
  3676. u32 map_idx = i;
  3677. rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
  3678. map_idx);
  3679. if (rc)
  3680. goto err_out;
  3681. txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
  3682. }
  3683. for (i = 0; i < bp->rx_nr_rings; i++) {
  3684. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  3685. struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
  3686. u32 map_idx = rxr->bnapi->index;
  3687. rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
  3688. map_idx);
  3689. if (rc)
  3690. goto err_out;
  3691. rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
  3692. writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
  3693. bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
  3694. }
  3695. if (bp->flags & BNXT_FLAG_AGG_RINGS) {
  3696. for (i = 0; i < bp->rx_nr_rings; i++) {
  3697. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  3698. struct bnxt_ring_struct *ring =
  3699. &rxr->rx_agg_ring_struct;
  3700. u32 grp_idx = ring->grp_idx;
  3701. u32 map_idx = grp_idx + bp->rx_nr_rings;
  3702. rc = hwrm_ring_alloc_send_msg(bp, ring,
  3703. HWRM_RING_ALLOC_AGG,
  3704. map_idx);
  3705. if (rc)
  3706. goto err_out;
  3707. rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
  3708. writel(DB_KEY_RX | rxr->rx_agg_prod,
  3709. rxr->rx_agg_doorbell);
  3710. bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
  3711. }
  3712. }
  3713. err_out:
  3714. return rc;
  3715. }
  3716. static int hwrm_ring_free_send_msg(struct bnxt *bp,
  3717. struct bnxt_ring_struct *ring,
  3718. u32 ring_type, int cmpl_ring_id)
  3719. {
  3720. int rc;
  3721. struct hwrm_ring_free_input req = {0};
  3722. struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
  3723. u16 error_code;
  3724. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
  3725. req.ring_type = ring_type;
  3726. req.ring_id = cpu_to_le16(ring->fw_ring_id);
  3727. mutex_lock(&bp->hwrm_cmd_lock);
  3728. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3729. error_code = le16_to_cpu(resp->error_code);
  3730. mutex_unlock(&bp->hwrm_cmd_lock);
  3731. if (rc || error_code) {
  3732. netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
  3733. ring_type, rc, error_code);
  3734. return -EIO;
  3735. }
  3736. return 0;
  3737. }
  3738. static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
  3739. {
  3740. int i;
  3741. if (!bp->bnapi)
  3742. return;
  3743. for (i = 0; i < bp->tx_nr_rings; i++) {
  3744. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  3745. struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
  3746. u32 grp_idx = txr->bnapi->index;
  3747. u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
  3748. if (ring->fw_ring_id != INVALID_HW_RING_ID) {
  3749. hwrm_ring_free_send_msg(bp, ring,
  3750. RING_FREE_REQ_RING_TYPE_TX,
  3751. close_path ? cmpl_ring_id :
  3752. INVALID_HW_RING_ID);
  3753. ring->fw_ring_id = INVALID_HW_RING_ID;
  3754. }
  3755. }
  3756. for (i = 0; i < bp->rx_nr_rings; i++) {
  3757. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  3758. struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
  3759. u32 grp_idx = rxr->bnapi->index;
  3760. u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
  3761. if (ring->fw_ring_id != INVALID_HW_RING_ID) {
  3762. hwrm_ring_free_send_msg(bp, ring,
  3763. RING_FREE_REQ_RING_TYPE_RX,
  3764. close_path ? cmpl_ring_id :
  3765. INVALID_HW_RING_ID);
  3766. ring->fw_ring_id = INVALID_HW_RING_ID;
  3767. bp->grp_info[grp_idx].rx_fw_ring_id =
  3768. INVALID_HW_RING_ID;
  3769. }
  3770. }
  3771. for (i = 0; i < bp->rx_nr_rings; i++) {
  3772. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  3773. struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
  3774. u32 grp_idx = rxr->bnapi->index;
  3775. u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
  3776. if (ring->fw_ring_id != INVALID_HW_RING_ID) {
  3777. hwrm_ring_free_send_msg(bp, ring,
  3778. RING_FREE_REQ_RING_TYPE_RX,
  3779. close_path ? cmpl_ring_id :
  3780. INVALID_HW_RING_ID);
  3781. ring->fw_ring_id = INVALID_HW_RING_ID;
  3782. bp->grp_info[grp_idx].agg_fw_ring_id =
  3783. INVALID_HW_RING_ID;
  3784. }
  3785. }
  3786. /* The completion rings are about to be freed. After that the
  3787. * IRQ doorbell will not work anymore. So we need to disable
  3788. * IRQ here.
  3789. */
  3790. bnxt_disable_int_sync(bp);
  3791. for (i = 0; i < bp->cp_nr_rings; i++) {
  3792. struct bnxt_napi *bnapi = bp->bnapi[i];
  3793. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  3794. struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
  3795. if (ring->fw_ring_id != INVALID_HW_RING_ID) {
  3796. hwrm_ring_free_send_msg(bp, ring,
  3797. RING_FREE_REQ_RING_TYPE_L2_CMPL,
  3798. INVALID_HW_RING_ID);
  3799. ring->fw_ring_id = INVALID_HW_RING_ID;
  3800. bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
  3801. }
  3802. }
  3803. }
  3804. static int bnxt_hwrm_get_rings(struct bnxt *bp)
  3805. {
  3806. struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  3807. struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
  3808. struct hwrm_func_qcfg_input req = {0};
  3809. int rc;
  3810. if (bp->hwrm_spec_code < 0x10601)
  3811. return 0;
  3812. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
  3813. req.fid = cpu_to_le16(0xffff);
  3814. mutex_lock(&bp->hwrm_cmd_lock);
  3815. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3816. if (rc) {
  3817. mutex_unlock(&bp->hwrm_cmd_lock);
  3818. return -EIO;
  3819. }
  3820. hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
  3821. if (bp->flags & BNXT_FLAG_NEW_RM) {
  3822. u16 cp, stats;
  3823. hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
  3824. hw_resc->resv_hw_ring_grps =
  3825. le32_to_cpu(resp->alloc_hw_ring_grps);
  3826. hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
  3827. cp = le16_to_cpu(resp->alloc_cmpl_rings);
  3828. stats = le16_to_cpu(resp->alloc_stat_ctx);
  3829. cp = min_t(u16, cp, stats);
  3830. hw_resc->resv_cp_rings = cp;
  3831. }
  3832. mutex_unlock(&bp->hwrm_cmd_lock);
  3833. return 0;
  3834. }
  3835. /* Caller must hold bp->hwrm_cmd_lock */
  3836. int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
  3837. {
  3838. struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  3839. struct hwrm_func_qcfg_input req = {0};
  3840. int rc;
  3841. if (bp->hwrm_spec_code < 0x10601)
  3842. return 0;
  3843. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
  3844. req.fid = cpu_to_le16(fid);
  3845. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3846. if (!rc)
  3847. *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
  3848. return rc;
  3849. }
  3850. static void
  3851. __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
  3852. int tx_rings, int rx_rings, int ring_grps,
  3853. int cp_rings, int vnics)
  3854. {
  3855. u32 enables = 0;
  3856. bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
  3857. req->fid = cpu_to_le16(0xffff);
  3858. enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
  3859. req->num_tx_rings = cpu_to_le16(tx_rings);
  3860. if (bp->flags & BNXT_FLAG_NEW_RM) {
  3861. enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
  3862. enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
  3863. FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
  3864. enables |= ring_grps ?
  3865. FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
  3866. enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
  3867. req->num_rx_rings = cpu_to_le16(rx_rings);
  3868. req->num_hw_ring_grps = cpu_to_le16(ring_grps);
  3869. req->num_cmpl_rings = cpu_to_le16(cp_rings);
  3870. req->num_stat_ctxs = req->num_cmpl_rings;
  3871. req->num_vnics = cpu_to_le16(vnics);
  3872. }
  3873. req->enables = cpu_to_le32(enables);
  3874. }
  3875. static void
  3876. __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
  3877. struct hwrm_func_vf_cfg_input *req, int tx_rings,
  3878. int rx_rings, int ring_grps, int cp_rings,
  3879. int vnics)
  3880. {
  3881. u32 enables = 0;
  3882. bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
  3883. enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
  3884. enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
  3885. enables |= cp_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
  3886. FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
  3887. enables |= ring_grps ? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
  3888. enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
  3889. req->num_tx_rings = cpu_to_le16(tx_rings);
  3890. req->num_rx_rings = cpu_to_le16(rx_rings);
  3891. req->num_hw_ring_grps = cpu_to_le16(ring_grps);
  3892. req->num_cmpl_rings = cpu_to_le16(cp_rings);
  3893. req->num_stat_ctxs = req->num_cmpl_rings;
  3894. req->num_vnics = cpu_to_le16(vnics);
  3895. req->enables = cpu_to_le32(enables);
  3896. }
  3897. static int
  3898. bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
  3899. int ring_grps, int cp_rings, int vnics)
  3900. {
  3901. struct hwrm_func_cfg_input req = {0};
  3902. int rc;
  3903. __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
  3904. cp_rings, vnics);
  3905. if (!req.enables)
  3906. return 0;
  3907. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3908. if (rc)
  3909. return -ENOMEM;
  3910. if (bp->hwrm_spec_code < 0x10601)
  3911. bp->hw_resc.resv_tx_rings = tx_rings;
  3912. rc = bnxt_hwrm_get_rings(bp);
  3913. return rc;
  3914. }
  3915. static int
  3916. bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
  3917. int ring_grps, int cp_rings, int vnics)
  3918. {
  3919. struct hwrm_func_vf_cfg_input req = {0};
  3920. int rc;
  3921. if (!(bp->flags & BNXT_FLAG_NEW_RM)) {
  3922. bp->hw_resc.resv_tx_rings = tx_rings;
  3923. return 0;
  3924. }
  3925. __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
  3926. cp_rings, vnics);
  3927. req.enables |= cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
  3928. FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS);
  3929. req.num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
  3930. req.num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
  3931. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3932. if (rc)
  3933. return -ENOMEM;
  3934. rc = bnxt_hwrm_get_rings(bp);
  3935. return rc;
  3936. }
  3937. static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
  3938. int cp, int vnic)
  3939. {
  3940. if (BNXT_PF(bp))
  3941. return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, vnic);
  3942. else
  3943. return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, vnic);
  3944. }
  3945. static int bnxt_cp_rings_in_use(struct bnxt *bp)
  3946. {
  3947. int cp = bp->cp_nr_rings;
  3948. int ulp_msix, ulp_base;
  3949. ulp_msix = bnxt_get_ulp_msix_num(bp);
  3950. if (ulp_msix) {
  3951. ulp_base = bnxt_get_ulp_msix_base(bp);
  3952. cp += ulp_msix;
  3953. if ((ulp_base + ulp_msix) > cp)
  3954. cp = ulp_base + ulp_msix;
  3955. }
  3956. return cp;
  3957. }
  3958. static bool bnxt_need_reserve_rings(struct bnxt *bp)
  3959. {
  3960. struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
  3961. int cp = bnxt_cp_rings_in_use(bp);
  3962. int rx = bp->rx_nr_rings;
  3963. int vnic = 1, grp = rx;
  3964. if (bp->hwrm_spec_code < 0x10601)
  3965. return false;
  3966. if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
  3967. return true;
  3968. if (bp->flags & BNXT_FLAG_RFS)
  3969. vnic = rx + 1;
  3970. if (bp->flags & BNXT_FLAG_AGG_RINGS)
  3971. rx <<= 1;
  3972. if ((bp->flags & BNXT_FLAG_NEW_RM) &&
  3973. (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
  3974. hw_resc->resv_hw_ring_grps != grp || hw_resc->resv_vnics != vnic))
  3975. return true;
  3976. return false;
  3977. }
  3978. static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
  3979. bool shared);
  3980. static int __bnxt_reserve_rings(struct bnxt *bp)
  3981. {
  3982. struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
  3983. int cp = bnxt_cp_rings_in_use(bp);
  3984. int tx = bp->tx_nr_rings;
  3985. int rx = bp->rx_nr_rings;
  3986. int grp, rx_rings, rc;
  3987. bool sh = false;
  3988. int vnic = 1;
  3989. if (!bnxt_need_reserve_rings(bp))
  3990. return 0;
  3991. if (bp->flags & BNXT_FLAG_SHARED_RINGS)
  3992. sh = true;
  3993. if (bp->flags & BNXT_FLAG_RFS)
  3994. vnic = rx + 1;
  3995. if (bp->flags & BNXT_FLAG_AGG_RINGS)
  3996. rx <<= 1;
  3997. grp = bp->rx_nr_rings;
  3998. rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, vnic);
  3999. if (rc)
  4000. return rc;
  4001. tx = hw_resc->resv_tx_rings;
  4002. if (bp->flags & BNXT_FLAG_NEW_RM) {
  4003. rx = hw_resc->resv_rx_rings;
  4004. cp = hw_resc->resv_cp_rings;
  4005. grp = hw_resc->resv_hw_ring_grps;
  4006. vnic = hw_resc->resv_vnics;
  4007. }
  4008. rx_rings = rx;
  4009. if (bp->flags & BNXT_FLAG_AGG_RINGS) {
  4010. if (rx >= 2) {
  4011. rx_rings = rx >> 1;
  4012. } else {
  4013. if (netif_running(bp->dev))
  4014. return -ENOMEM;
  4015. bp->flags &= ~BNXT_FLAG_AGG_RINGS;
  4016. bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
  4017. bp->dev->hw_features &= ~NETIF_F_LRO;
  4018. bp->dev->features &= ~NETIF_F_LRO;
  4019. bnxt_set_ring_params(bp);
  4020. }
  4021. }
  4022. rx_rings = min_t(int, rx_rings, grp);
  4023. rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
  4024. if (bp->flags & BNXT_FLAG_AGG_RINGS)
  4025. rx = rx_rings << 1;
  4026. cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
  4027. bp->tx_nr_rings = tx;
  4028. bp->rx_nr_rings = rx_rings;
  4029. bp->cp_nr_rings = cp;
  4030. if (!tx || !rx || !cp || !grp || !vnic)
  4031. return -ENOMEM;
  4032. return rc;
  4033. }
  4034. static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
  4035. int ring_grps, int cp_rings, int vnics)
  4036. {
  4037. struct hwrm_func_vf_cfg_input req = {0};
  4038. u32 flags;
  4039. int rc;
  4040. if (!(bp->flags & BNXT_FLAG_NEW_RM))
  4041. return 0;
  4042. __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
  4043. cp_rings, vnics);
  4044. flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
  4045. FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
  4046. FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
  4047. FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
  4048. FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
  4049. FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
  4050. req.flags = cpu_to_le32(flags);
  4051. rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4052. if (rc)
  4053. return -ENOMEM;
  4054. return 0;
  4055. }
  4056. static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
  4057. int ring_grps, int cp_rings, int vnics)
  4058. {
  4059. struct hwrm_func_cfg_input req = {0};
  4060. u32 flags;
  4061. int rc;
  4062. __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
  4063. cp_rings, vnics);
  4064. flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
  4065. if (bp->flags & BNXT_FLAG_NEW_RM)
  4066. flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
  4067. FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
  4068. FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
  4069. FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
  4070. FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
  4071. req.flags = cpu_to_le32(flags);
  4072. rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4073. if (rc)
  4074. return -ENOMEM;
  4075. return 0;
  4076. }
  4077. static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
  4078. int ring_grps, int cp_rings, int vnics)
  4079. {
  4080. if (bp->hwrm_spec_code < 0x10801)
  4081. return 0;
  4082. if (BNXT_PF(bp))
  4083. return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
  4084. ring_grps, cp_rings, vnics);
  4085. return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
  4086. cp_rings, vnics);
  4087. }
  4088. static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
  4089. struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
  4090. {
  4091. u16 val, tmr, max, flags;
  4092. max = hw_coal->bufs_per_record * 128;
  4093. if (hw_coal->budget)
  4094. max = hw_coal->bufs_per_record * hw_coal->budget;
  4095. val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
  4096. req->num_cmpl_aggr_int = cpu_to_le16(val);
  4097. /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
  4098. val = min_t(u16, val, 63);
  4099. req->num_cmpl_dma_aggr = cpu_to_le16(val);
  4100. /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
  4101. val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
  4102. req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
  4103. tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
  4104. tmr = max_t(u16, tmr, 1);
  4105. req->int_lat_tmr_max = cpu_to_le16(tmr);
  4106. /* min timer set to 1/2 of interrupt timer */
  4107. val = tmr / 2;
  4108. req->int_lat_tmr_min = cpu_to_le16(val);
  4109. /* buf timer set to 1/4 of interrupt timer */
  4110. val = max_t(u16, tmr / 4, 1);
  4111. req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
  4112. tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
  4113. tmr = max_t(u16, tmr, 1);
  4114. req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
  4115. flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
  4116. if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
  4117. flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
  4118. req->flags = cpu_to_le16(flags);
  4119. }
  4120. int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
  4121. {
  4122. struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
  4123. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  4124. struct bnxt_coal coal;
  4125. unsigned int grp_idx;
  4126. /* Tick values in micro seconds.
  4127. * 1 coal_buf x bufs_per_record = 1 completion record.
  4128. */
  4129. memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
  4130. coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
  4131. coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
  4132. if (!bnapi->rx_ring)
  4133. return -ENODEV;
  4134. bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
  4135. HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
  4136. bnxt_hwrm_set_coal_params(&coal, &req_rx);
  4137. grp_idx = bnapi->index;
  4138. req_rx.ring_id = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
  4139. return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
  4140. HWRM_CMD_TIMEOUT);
  4141. }
  4142. int bnxt_hwrm_set_coal(struct bnxt *bp)
  4143. {
  4144. int i, rc = 0;
  4145. struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
  4146. req_tx = {0}, *req;
  4147. bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
  4148. HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
  4149. bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
  4150. HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
  4151. bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
  4152. bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
  4153. mutex_lock(&bp->hwrm_cmd_lock);
  4154. for (i = 0; i < bp->cp_nr_rings; i++) {
  4155. struct bnxt_napi *bnapi = bp->bnapi[i];
  4156. req = &req_rx;
  4157. if (!bnapi->rx_ring)
  4158. req = &req_tx;
  4159. req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
  4160. rc = _hwrm_send_message(bp, req, sizeof(*req),
  4161. HWRM_CMD_TIMEOUT);
  4162. if (rc)
  4163. break;
  4164. }
  4165. mutex_unlock(&bp->hwrm_cmd_lock);
  4166. return rc;
  4167. }
  4168. static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
  4169. {
  4170. int rc = 0, i;
  4171. struct hwrm_stat_ctx_free_input req = {0};
  4172. if (!bp->bnapi)
  4173. return 0;
  4174. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  4175. return 0;
  4176. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
  4177. mutex_lock(&bp->hwrm_cmd_lock);
  4178. for (i = 0; i < bp->cp_nr_rings; i++) {
  4179. struct bnxt_napi *bnapi = bp->bnapi[i];
  4180. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  4181. if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
  4182. req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
  4183. rc = _hwrm_send_message(bp, &req, sizeof(req),
  4184. HWRM_CMD_TIMEOUT);
  4185. if (rc)
  4186. break;
  4187. cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
  4188. }
  4189. }
  4190. mutex_unlock(&bp->hwrm_cmd_lock);
  4191. return rc;
  4192. }
  4193. static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
  4194. {
  4195. int rc = 0, i;
  4196. struct hwrm_stat_ctx_alloc_input req = {0};
  4197. struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  4198. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  4199. return 0;
  4200. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
  4201. req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
  4202. mutex_lock(&bp->hwrm_cmd_lock);
  4203. for (i = 0; i < bp->cp_nr_rings; i++) {
  4204. struct bnxt_napi *bnapi = bp->bnapi[i];
  4205. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  4206. req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
  4207. rc = _hwrm_send_message(bp, &req, sizeof(req),
  4208. HWRM_CMD_TIMEOUT);
  4209. if (rc)
  4210. break;
  4211. cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
  4212. bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
  4213. }
  4214. mutex_unlock(&bp->hwrm_cmd_lock);
  4215. return rc;
  4216. }
  4217. static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
  4218. {
  4219. struct hwrm_func_qcfg_input req = {0};
  4220. struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  4221. u16 flags;
  4222. int rc;
  4223. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
  4224. req.fid = cpu_to_le16(0xffff);
  4225. mutex_lock(&bp->hwrm_cmd_lock);
  4226. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4227. if (rc)
  4228. goto func_qcfg_exit;
  4229. #ifdef CONFIG_BNXT_SRIOV
  4230. if (BNXT_VF(bp)) {
  4231. struct bnxt_vf_info *vf = &bp->vf;
  4232. vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
  4233. }
  4234. #endif
  4235. flags = le16_to_cpu(resp->flags);
  4236. if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
  4237. FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
  4238. bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
  4239. if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
  4240. bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
  4241. }
  4242. if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
  4243. bp->flags |= BNXT_FLAG_MULTI_HOST;
  4244. switch (resp->port_partition_type) {
  4245. case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
  4246. case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
  4247. case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
  4248. bp->port_partition_type = resp->port_partition_type;
  4249. break;
  4250. }
  4251. if (bp->hwrm_spec_code < 0x10707 ||
  4252. resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
  4253. bp->br_mode = BRIDGE_MODE_VEB;
  4254. else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
  4255. bp->br_mode = BRIDGE_MODE_VEPA;
  4256. else
  4257. bp->br_mode = BRIDGE_MODE_UNDEF;
  4258. bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
  4259. if (!bp->max_mtu)
  4260. bp->max_mtu = BNXT_MAX_MTU;
  4261. func_qcfg_exit:
  4262. mutex_unlock(&bp->hwrm_cmd_lock);
  4263. return rc;
  4264. }
  4265. int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
  4266. {
  4267. struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  4268. struct hwrm_func_resource_qcaps_input req = {0};
  4269. struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
  4270. int rc;
  4271. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
  4272. req.fid = cpu_to_le16(0xffff);
  4273. mutex_lock(&bp->hwrm_cmd_lock);
  4274. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4275. if (rc) {
  4276. rc = -EIO;
  4277. goto hwrm_func_resc_qcaps_exit;
  4278. }
  4279. hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
  4280. if (!all)
  4281. goto hwrm_func_resc_qcaps_exit;
  4282. hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
  4283. hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
  4284. hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
  4285. hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
  4286. hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
  4287. hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
  4288. hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
  4289. hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
  4290. hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
  4291. hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
  4292. hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
  4293. hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
  4294. hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
  4295. hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
  4296. hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
  4297. hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
  4298. if (BNXT_PF(bp)) {
  4299. struct bnxt_pf_info *pf = &bp->pf;
  4300. pf->vf_resv_strategy =
  4301. le16_to_cpu(resp->vf_reservation_strategy);
  4302. if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL)
  4303. pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
  4304. }
  4305. hwrm_func_resc_qcaps_exit:
  4306. mutex_unlock(&bp->hwrm_cmd_lock);
  4307. return rc;
  4308. }
  4309. static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
  4310. {
  4311. int rc = 0;
  4312. struct hwrm_func_qcaps_input req = {0};
  4313. struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  4314. struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
  4315. u32 flags;
  4316. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
  4317. req.fid = cpu_to_le16(0xffff);
  4318. mutex_lock(&bp->hwrm_cmd_lock);
  4319. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4320. if (rc)
  4321. goto hwrm_func_qcaps_exit;
  4322. flags = le32_to_cpu(resp->flags);
  4323. if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
  4324. bp->flags |= BNXT_FLAG_ROCEV1_CAP;
  4325. if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
  4326. bp->flags |= BNXT_FLAG_ROCEV2_CAP;
  4327. bp->tx_push_thresh = 0;
  4328. if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
  4329. bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
  4330. hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
  4331. hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
  4332. hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
  4333. hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
  4334. hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
  4335. if (!hw_resc->max_hw_ring_grps)
  4336. hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
  4337. hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
  4338. hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
  4339. hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
  4340. if (BNXT_PF(bp)) {
  4341. struct bnxt_pf_info *pf = &bp->pf;
  4342. pf->fw_fid = le16_to_cpu(resp->fid);
  4343. pf->port_id = le16_to_cpu(resp->port_id);
  4344. bp->dev->dev_port = pf->port_id;
  4345. memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
  4346. pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
  4347. pf->max_vfs = le16_to_cpu(resp->max_vfs);
  4348. pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
  4349. pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
  4350. pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
  4351. pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
  4352. pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
  4353. pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
  4354. if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
  4355. bp->flags |= BNXT_FLAG_WOL_CAP;
  4356. } else {
  4357. #ifdef CONFIG_BNXT_SRIOV
  4358. struct bnxt_vf_info *vf = &bp->vf;
  4359. vf->fw_fid = le16_to_cpu(resp->fid);
  4360. memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
  4361. #endif
  4362. }
  4363. hwrm_func_qcaps_exit:
  4364. mutex_unlock(&bp->hwrm_cmd_lock);
  4365. return rc;
  4366. }
  4367. static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
  4368. {
  4369. int rc;
  4370. rc = __bnxt_hwrm_func_qcaps(bp);
  4371. if (rc)
  4372. return rc;
  4373. if (bp->hwrm_spec_code >= 0x10803) {
  4374. rc = bnxt_hwrm_func_resc_qcaps(bp, true);
  4375. if (!rc)
  4376. bp->flags |= BNXT_FLAG_NEW_RM;
  4377. }
  4378. return 0;
  4379. }
  4380. static int bnxt_hwrm_func_reset(struct bnxt *bp)
  4381. {
  4382. struct hwrm_func_reset_input req = {0};
  4383. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
  4384. req.enables = 0;
  4385. return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
  4386. }
  4387. static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
  4388. {
  4389. int rc = 0;
  4390. struct hwrm_queue_qportcfg_input req = {0};
  4391. struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
  4392. u8 i, *qptr;
  4393. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
  4394. mutex_lock(&bp->hwrm_cmd_lock);
  4395. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4396. if (rc)
  4397. goto qportcfg_exit;
  4398. if (!resp->max_configurable_queues) {
  4399. rc = -EINVAL;
  4400. goto qportcfg_exit;
  4401. }
  4402. bp->max_tc = resp->max_configurable_queues;
  4403. bp->max_lltc = resp->max_configurable_lossless_queues;
  4404. if (bp->max_tc > BNXT_MAX_QUEUE)
  4405. bp->max_tc = BNXT_MAX_QUEUE;
  4406. if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
  4407. bp->max_tc = 1;
  4408. if (bp->max_lltc > bp->max_tc)
  4409. bp->max_lltc = bp->max_tc;
  4410. qptr = &resp->queue_id0;
  4411. for (i = 0; i < bp->max_tc; i++) {
  4412. bp->q_info[i].queue_id = *qptr++;
  4413. bp->q_info[i].queue_profile = *qptr++;
  4414. bp->tc_to_qidx[i] = i;
  4415. }
  4416. qportcfg_exit:
  4417. mutex_unlock(&bp->hwrm_cmd_lock);
  4418. return rc;
  4419. }
  4420. static int bnxt_hwrm_ver_get(struct bnxt *bp)
  4421. {
  4422. int rc;
  4423. struct hwrm_ver_get_input req = {0};
  4424. struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
  4425. u32 dev_caps_cfg;
  4426. bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
  4427. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
  4428. req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
  4429. req.hwrm_intf_min = HWRM_VERSION_MINOR;
  4430. req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
  4431. mutex_lock(&bp->hwrm_cmd_lock);
  4432. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4433. if (rc)
  4434. goto hwrm_ver_get_exit;
  4435. memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
  4436. bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
  4437. resp->hwrm_intf_min_8b << 8 |
  4438. resp->hwrm_intf_upd_8b;
  4439. if (resp->hwrm_intf_maj_8b < 1) {
  4440. netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
  4441. resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
  4442. resp->hwrm_intf_upd_8b);
  4443. netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
  4444. }
  4445. snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
  4446. resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
  4447. resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
  4448. bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
  4449. if (!bp->hwrm_cmd_timeout)
  4450. bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
  4451. if (resp->hwrm_intf_maj_8b >= 1)
  4452. bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
  4453. bp->chip_num = le16_to_cpu(resp->chip_num);
  4454. if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
  4455. !resp->chip_metal)
  4456. bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
  4457. dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
  4458. if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
  4459. (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
  4460. bp->flags |= BNXT_FLAG_SHORT_CMD;
  4461. hwrm_ver_get_exit:
  4462. mutex_unlock(&bp->hwrm_cmd_lock);
  4463. return rc;
  4464. }
  4465. int bnxt_hwrm_fw_set_time(struct bnxt *bp)
  4466. {
  4467. struct hwrm_fw_set_time_input req = {0};
  4468. struct tm tm;
  4469. time64_t now = ktime_get_real_seconds();
  4470. if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
  4471. bp->hwrm_spec_code < 0x10400)
  4472. return -EOPNOTSUPP;
  4473. time64_to_tm(now, 0, &tm);
  4474. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
  4475. req.year = cpu_to_le16(1900 + tm.tm_year);
  4476. req.month = 1 + tm.tm_mon;
  4477. req.day = tm.tm_mday;
  4478. req.hour = tm.tm_hour;
  4479. req.minute = tm.tm_min;
  4480. req.second = tm.tm_sec;
  4481. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4482. }
  4483. static int bnxt_hwrm_port_qstats(struct bnxt *bp)
  4484. {
  4485. int rc;
  4486. struct bnxt_pf_info *pf = &bp->pf;
  4487. struct hwrm_port_qstats_input req = {0};
  4488. if (!(bp->flags & BNXT_FLAG_PORT_STATS))
  4489. return 0;
  4490. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
  4491. req.port_id = cpu_to_le16(pf->port_id);
  4492. req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
  4493. req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
  4494. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4495. return rc;
  4496. }
  4497. static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
  4498. {
  4499. struct hwrm_port_qstats_ext_input req = {0};
  4500. struct bnxt_pf_info *pf = &bp->pf;
  4501. if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
  4502. return 0;
  4503. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
  4504. req.port_id = cpu_to_le16(pf->port_id);
  4505. req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
  4506. req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
  4507. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4508. }
  4509. static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
  4510. {
  4511. if (bp->vxlan_port_cnt) {
  4512. bnxt_hwrm_tunnel_dst_port_free(
  4513. bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
  4514. }
  4515. bp->vxlan_port_cnt = 0;
  4516. if (bp->nge_port_cnt) {
  4517. bnxt_hwrm_tunnel_dst_port_free(
  4518. bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
  4519. }
  4520. bp->nge_port_cnt = 0;
  4521. }
  4522. static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
  4523. {
  4524. int rc, i;
  4525. u32 tpa_flags = 0;
  4526. if (set_tpa)
  4527. tpa_flags = bp->flags & BNXT_FLAG_TPA;
  4528. for (i = 0; i < bp->nr_vnics; i++) {
  4529. rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
  4530. if (rc) {
  4531. netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
  4532. i, rc);
  4533. return rc;
  4534. }
  4535. }
  4536. return 0;
  4537. }
  4538. static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
  4539. {
  4540. int i;
  4541. for (i = 0; i < bp->nr_vnics; i++)
  4542. bnxt_hwrm_vnic_set_rss(bp, i, false);
  4543. }
  4544. static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
  4545. bool irq_re_init)
  4546. {
  4547. if (bp->vnic_info) {
  4548. bnxt_hwrm_clear_vnic_filter(bp);
  4549. /* clear all RSS setting before free vnic ctx */
  4550. bnxt_hwrm_clear_vnic_rss(bp);
  4551. bnxt_hwrm_vnic_ctx_free(bp);
  4552. /* before free the vnic, undo the vnic tpa settings */
  4553. if (bp->flags & BNXT_FLAG_TPA)
  4554. bnxt_set_tpa(bp, false);
  4555. bnxt_hwrm_vnic_free(bp);
  4556. }
  4557. bnxt_hwrm_ring_free(bp, close_path);
  4558. bnxt_hwrm_ring_grp_free(bp);
  4559. if (irq_re_init) {
  4560. bnxt_hwrm_stat_ctx_free(bp);
  4561. bnxt_hwrm_free_tunnel_ports(bp);
  4562. }
  4563. }
  4564. static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
  4565. {
  4566. struct hwrm_func_cfg_input req = {0};
  4567. int rc;
  4568. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
  4569. req.fid = cpu_to_le16(0xffff);
  4570. req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
  4571. if (br_mode == BRIDGE_MODE_VEB)
  4572. req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
  4573. else if (br_mode == BRIDGE_MODE_VEPA)
  4574. req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
  4575. else
  4576. return -EINVAL;
  4577. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4578. if (rc)
  4579. rc = -EIO;
  4580. return rc;
  4581. }
  4582. static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
  4583. {
  4584. struct hwrm_func_cfg_input req = {0};
  4585. int rc;
  4586. if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
  4587. return 0;
  4588. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
  4589. req.fid = cpu_to_le16(0xffff);
  4590. req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
  4591. req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
  4592. if (size == 128)
  4593. req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
  4594. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4595. if (rc)
  4596. rc = -EIO;
  4597. return rc;
  4598. }
  4599. static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
  4600. {
  4601. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  4602. int rc;
  4603. if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
  4604. goto skip_rss_ctx;
  4605. /* allocate context for vnic */
  4606. rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
  4607. if (rc) {
  4608. netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
  4609. vnic_id, rc);
  4610. goto vnic_setup_err;
  4611. }
  4612. bp->rsscos_nr_ctxs++;
  4613. if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
  4614. rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
  4615. if (rc) {
  4616. netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
  4617. vnic_id, rc);
  4618. goto vnic_setup_err;
  4619. }
  4620. bp->rsscos_nr_ctxs++;
  4621. }
  4622. skip_rss_ctx:
  4623. /* configure default vnic, ring grp */
  4624. rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
  4625. if (rc) {
  4626. netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
  4627. vnic_id, rc);
  4628. goto vnic_setup_err;
  4629. }
  4630. /* Enable RSS hashing on vnic */
  4631. rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
  4632. if (rc) {
  4633. netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
  4634. vnic_id, rc);
  4635. goto vnic_setup_err;
  4636. }
  4637. if (bp->flags & BNXT_FLAG_AGG_RINGS) {
  4638. rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
  4639. if (rc) {
  4640. netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
  4641. vnic_id, rc);
  4642. }
  4643. }
  4644. vnic_setup_err:
  4645. return rc;
  4646. }
  4647. static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
  4648. {
  4649. #ifdef CONFIG_RFS_ACCEL
  4650. int i, rc = 0;
  4651. for (i = 0; i < bp->rx_nr_rings; i++) {
  4652. struct bnxt_vnic_info *vnic;
  4653. u16 vnic_id = i + 1;
  4654. u16 ring_id = i;
  4655. if (vnic_id >= bp->nr_vnics)
  4656. break;
  4657. vnic = &bp->vnic_info[vnic_id];
  4658. vnic->flags |= BNXT_VNIC_RFS_FLAG;
  4659. if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
  4660. vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
  4661. rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
  4662. if (rc) {
  4663. netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
  4664. vnic_id, rc);
  4665. break;
  4666. }
  4667. rc = bnxt_setup_vnic(bp, vnic_id);
  4668. if (rc)
  4669. break;
  4670. }
  4671. return rc;
  4672. #else
  4673. return 0;
  4674. #endif
  4675. }
  4676. /* Allow PF and VF with default VLAN to be in promiscuous mode */
  4677. static bool bnxt_promisc_ok(struct bnxt *bp)
  4678. {
  4679. #ifdef CONFIG_BNXT_SRIOV
  4680. if (BNXT_VF(bp) && !bp->vf.vlan)
  4681. return false;
  4682. #endif
  4683. return true;
  4684. }
  4685. static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
  4686. {
  4687. unsigned int rc = 0;
  4688. rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
  4689. if (rc) {
  4690. netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
  4691. rc);
  4692. return rc;
  4693. }
  4694. rc = bnxt_hwrm_vnic_cfg(bp, 1);
  4695. if (rc) {
  4696. netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
  4697. rc);
  4698. return rc;
  4699. }
  4700. return rc;
  4701. }
  4702. static int bnxt_cfg_rx_mode(struct bnxt *);
  4703. static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
  4704. static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
  4705. {
  4706. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  4707. int rc = 0;
  4708. unsigned int rx_nr_rings = bp->rx_nr_rings;
  4709. if (irq_re_init) {
  4710. rc = bnxt_hwrm_stat_ctx_alloc(bp);
  4711. if (rc) {
  4712. netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
  4713. rc);
  4714. goto err_out;
  4715. }
  4716. }
  4717. rc = bnxt_hwrm_ring_alloc(bp);
  4718. if (rc) {
  4719. netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
  4720. goto err_out;
  4721. }
  4722. rc = bnxt_hwrm_ring_grp_alloc(bp);
  4723. if (rc) {
  4724. netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
  4725. goto err_out;
  4726. }
  4727. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  4728. rx_nr_rings--;
  4729. /* default vnic 0 */
  4730. rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
  4731. if (rc) {
  4732. netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
  4733. goto err_out;
  4734. }
  4735. rc = bnxt_setup_vnic(bp, 0);
  4736. if (rc)
  4737. goto err_out;
  4738. if (bp->flags & BNXT_FLAG_RFS) {
  4739. rc = bnxt_alloc_rfs_vnics(bp);
  4740. if (rc)
  4741. goto err_out;
  4742. }
  4743. if (bp->flags & BNXT_FLAG_TPA) {
  4744. rc = bnxt_set_tpa(bp, true);
  4745. if (rc)
  4746. goto err_out;
  4747. }
  4748. if (BNXT_VF(bp))
  4749. bnxt_update_vf_mac(bp);
  4750. /* Filter for default vnic 0 */
  4751. rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
  4752. if (rc) {
  4753. netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
  4754. goto err_out;
  4755. }
  4756. vnic->uc_filter_count = 1;
  4757. vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
  4758. if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
  4759. vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
  4760. if (bp->dev->flags & IFF_ALLMULTI) {
  4761. vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
  4762. vnic->mc_list_count = 0;
  4763. } else {
  4764. u32 mask = 0;
  4765. bnxt_mc_list_updated(bp, &mask);
  4766. vnic->rx_mask |= mask;
  4767. }
  4768. rc = bnxt_cfg_rx_mode(bp);
  4769. if (rc)
  4770. goto err_out;
  4771. rc = bnxt_hwrm_set_coal(bp);
  4772. if (rc)
  4773. netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
  4774. rc);
  4775. if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
  4776. rc = bnxt_setup_nitroa0_vnic(bp);
  4777. if (rc)
  4778. netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
  4779. rc);
  4780. }
  4781. if (BNXT_VF(bp)) {
  4782. bnxt_hwrm_func_qcfg(bp);
  4783. netdev_update_features(bp->dev);
  4784. }
  4785. return 0;
  4786. err_out:
  4787. bnxt_hwrm_resource_free(bp, 0, true);
  4788. return rc;
  4789. }
  4790. static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
  4791. {
  4792. bnxt_hwrm_resource_free(bp, 1, irq_re_init);
  4793. return 0;
  4794. }
  4795. static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
  4796. {
  4797. bnxt_init_cp_rings(bp);
  4798. bnxt_init_rx_rings(bp);
  4799. bnxt_init_tx_rings(bp);
  4800. bnxt_init_ring_grps(bp, irq_re_init);
  4801. bnxt_init_vnics(bp);
  4802. return bnxt_init_chip(bp, irq_re_init);
  4803. }
  4804. static int bnxt_set_real_num_queues(struct bnxt *bp)
  4805. {
  4806. int rc;
  4807. struct net_device *dev = bp->dev;
  4808. rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
  4809. bp->tx_nr_rings_xdp);
  4810. if (rc)
  4811. return rc;
  4812. rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
  4813. if (rc)
  4814. return rc;
  4815. #ifdef CONFIG_RFS_ACCEL
  4816. if (bp->flags & BNXT_FLAG_RFS)
  4817. dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
  4818. #endif
  4819. return rc;
  4820. }
  4821. static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
  4822. bool shared)
  4823. {
  4824. int _rx = *rx, _tx = *tx;
  4825. if (shared) {
  4826. *rx = min_t(int, _rx, max);
  4827. *tx = min_t(int, _tx, max);
  4828. } else {
  4829. if (max < 2)
  4830. return -ENOMEM;
  4831. while (_rx + _tx > max) {
  4832. if (_rx > _tx && _rx > 1)
  4833. _rx--;
  4834. else if (_tx > 1)
  4835. _tx--;
  4836. }
  4837. *rx = _rx;
  4838. *tx = _tx;
  4839. }
  4840. return 0;
  4841. }
  4842. static void bnxt_setup_msix(struct bnxt *bp)
  4843. {
  4844. const int len = sizeof(bp->irq_tbl[0].name);
  4845. struct net_device *dev = bp->dev;
  4846. int tcs, i;
  4847. tcs = netdev_get_num_tc(dev);
  4848. if (tcs > 1) {
  4849. int i, off, count;
  4850. for (i = 0; i < tcs; i++) {
  4851. count = bp->tx_nr_rings_per_tc;
  4852. off = i * count;
  4853. netdev_set_tc_queue(dev, i, count, off);
  4854. }
  4855. }
  4856. for (i = 0; i < bp->cp_nr_rings; i++) {
  4857. int map_idx = bnxt_cp_num_to_irq_num(bp, i);
  4858. char *attr;
  4859. if (bp->flags & BNXT_FLAG_SHARED_RINGS)
  4860. attr = "TxRx";
  4861. else if (i < bp->rx_nr_rings)
  4862. attr = "rx";
  4863. else
  4864. attr = "tx";
  4865. snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
  4866. attr, i);
  4867. bp->irq_tbl[map_idx].handler = bnxt_msix;
  4868. }
  4869. }
  4870. static void bnxt_setup_inta(struct bnxt *bp)
  4871. {
  4872. const int len = sizeof(bp->irq_tbl[0].name);
  4873. if (netdev_get_num_tc(bp->dev))
  4874. netdev_reset_tc(bp->dev);
  4875. snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
  4876. 0);
  4877. bp->irq_tbl[0].handler = bnxt_inta;
  4878. }
  4879. static int bnxt_setup_int_mode(struct bnxt *bp)
  4880. {
  4881. int rc;
  4882. if (bp->flags & BNXT_FLAG_USING_MSIX)
  4883. bnxt_setup_msix(bp);
  4884. else
  4885. bnxt_setup_inta(bp);
  4886. rc = bnxt_set_real_num_queues(bp);
  4887. return rc;
  4888. }
  4889. #ifdef CONFIG_RFS_ACCEL
  4890. static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
  4891. {
  4892. return bp->hw_resc.max_rsscos_ctxs;
  4893. }
  4894. static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
  4895. {
  4896. return bp->hw_resc.max_vnics;
  4897. }
  4898. #endif
  4899. unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
  4900. {
  4901. return bp->hw_resc.max_stat_ctxs;
  4902. }
  4903. void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
  4904. {
  4905. bp->hw_resc.max_stat_ctxs = max;
  4906. }
  4907. unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
  4908. {
  4909. return bp->hw_resc.max_cp_rings;
  4910. }
  4911. void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
  4912. {
  4913. bp->hw_resc.max_cp_rings = max;
  4914. }
  4915. unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
  4916. {
  4917. struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
  4918. return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
  4919. }
  4920. void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
  4921. {
  4922. bp->hw_resc.max_irqs = max_irqs;
  4923. }
  4924. int bnxt_get_avail_msix(struct bnxt *bp, int num)
  4925. {
  4926. int max_cp = bnxt_get_max_func_cp_rings(bp);
  4927. int max_irq = bnxt_get_max_func_irqs(bp);
  4928. int total_req = bp->cp_nr_rings + num;
  4929. int max_idx, avail_msix;
  4930. max_idx = min_t(int, bp->total_irqs, max_cp);
  4931. avail_msix = max_idx - bp->cp_nr_rings;
  4932. if (!(bp->flags & BNXT_FLAG_NEW_RM) || avail_msix >= num)
  4933. return avail_msix;
  4934. if (max_irq < total_req) {
  4935. num = max_irq - bp->cp_nr_rings;
  4936. if (num <= 0)
  4937. return 0;
  4938. }
  4939. return num;
  4940. }
  4941. static int bnxt_get_num_msix(struct bnxt *bp)
  4942. {
  4943. if (!(bp->flags & BNXT_FLAG_NEW_RM))
  4944. return bnxt_get_max_func_irqs(bp);
  4945. return bnxt_cp_rings_in_use(bp);
  4946. }
  4947. static int bnxt_init_msix(struct bnxt *bp)
  4948. {
  4949. int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
  4950. struct msix_entry *msix_ent;
  4951. total_vecs = bnxt_get_num_msix(bp);
  4952. max = bnxt_get_max_func_irqs(bp);
  4953. if (total_vecs > max)
  4954. total_vecs = max;
  4955. if (!total_vecs)
  4956. return 0;
  4957. msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
  4958. if (!msix_ent)
  4959. return -ENOMEM;
  4960. for (i = 0; i < total_vecs; i++) {
  4961. msix_ent[i].entry = i;
  4962. msix_ent[i].vector = 0;
  4963. }
  4964. if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
  4965. min = 2;
  4966. total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
  4967. ulp_msix = bnxt_get_ulp_msix_num(bp);
  4968. if (total_vecs < 0 || total_vecs < ulp_msix) {
  4969. rc = -ENODEV;
  4970. goto msix_setup_exit;
  4971. }
  4972. bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
  4973. if (bp->irq_tbl) {
  4974. for (i = 0; i < total_vecs; i++)
  4975. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4976. bp->total_irqs = total_vecs;
  4977. /* Trim rings based upon num of vectors allocated */
  4978. rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
  4979. total_vecs - ulp_msix, min == 1);
  4980. if (rc)
  4981. goto msix_setup_exit;
  4982. bp->cp_nr_rings = (min == 1) ?
  4983. max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
  4984. bp->tx_nr_rings + bp->rx_nr_rings;
  4985. } else {
  4986. rc = -ENOMEM;
  4987. goto msix_setup_exit;
  4988. }
  4989. bp->flags |= BNXT_FLAG_USING_MSIX;
  4990. kfree(msix_ent);
  4991. return 0;
  4992. msix_setup_exit:
  4993. netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
  4994. kfree(bp->irq_tbl);
  4995. bp->irq_tbl = NULL;
  4996. pci_disable_msix(bp->pdev);
  4997. kfree(msix_ent);
  4998. return rc;
  4999. }
  5000. static int bnxt_init_inta(struct bnxt *bp)
  5001. {
  5002. bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
  5003. if (!bp->irq_tbl)
  5004. return -ENOMEM;
  5005. bp->total_irqs = 1;
  5006. bp->rx_nr_rings = 1;
  5007. bp->tx_nr_rings = 1;
  5008. bp->cp_nr_rings = 1;
  5009. bp->flags |= BNXT_FLAG_SHARED_RINGS;
  5010. bp->irq_tbl[0].vector = bp->pdev->irq;
  5011. return 0;
  5012. }
  5013. static int bnxt_init_int_mode(struct bnxt *bp)
  5014. {
  5015. int rc = 0;
  5016. if (bp->flags & BNXT_FLAG_MSIX_CAP)
  5017. rc = bnxt_init_msix(bp);
  5018. if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
  5019. /* fallback to INTA */
  5020. rc = bnxt_init_inta(bp);
  5021. }
  5022. return rc;
  5023. }
  5024. static void bnxt_clear_int_mode(struct bnxt *bp)
  5025. {
  5026. if (bp->flags & BNXT_FLAG_USING_MSIX)
  5027. pci_disable_msix(bp->pdev);
  5028. kfree(bp->irq_tbl);
  5029. bp->irq_tbl = NULL;
  5030. bp->flags &= ~BNXT_FLAG_USING_MSIX;
  5031. }
  5032. int bnxt_reserve_rings(struct bnxt *bp)
  5033. {
  5034. int tcs = netdev_get_num_tc(bp->dev);
  5035. int rc;
  5036. if (!bnxt_need_reserve_rings(bp))
  5037. return 0;
  5038. rc = __bnxt_reserve_rings(bp);
  5039. if (rc) {
  5040. netdev_err(bp->dev, "ring reservation failure rc: %d\n", rc);
  5041. return rc;
  5042. }
  5043. if ((bp->flags & BNXT_FLAG_NEW_RM) &&
  5044. (bnxt_get_num_msix(bp) != bp->total_irqs)) {
  5045. bnxt_ulp_irq_stop(bp);
  5046. bnxt_clear_int_mode(bp);
  5047. rc = bnxt_init_int_mode(bp);
  5048. bnxt_ulp_irq_restart(bp, rc);
  5049. if (rc)
  5050. return rc;
  5051. }
  5052. if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
  5053. netdev_err(bp->dev, "tx ring reservation failure\n");
  5054. netdev_reset_tc(bp->dev);
  5055. bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
  5056. return -ENOMEM;
  5057. }
  5058. bp->num_stat_ctxs = bp->cp_nr_rings;
  5059. return 0;
  5060. }
  5061. static void bnxt_free_irq(struct bnxt *bp)
  5062. {
  5063. struct bnxt_irq *irq;
  5064. int i;
  5065. #ifdef CONFIG_RFS_ACCEL
  5066. free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
  5067. bp->dev->rx_cpu_rmap = NULL;
  5068. #endif
  5069. if (!bp->irq_tbl || !bp->bnapi)
  5070. return;
  5071. for (i = 0; i < bp->cp_nr_rings; i++) {
  5072. int map_idx = bnxt_cp_num_to_irq_num(bp, i);
  5073. irq = &bp->irq_tbl[map_idx];
  5074. if (irq->requested) {
  5075. if (irq->have_cpumask) {
  5076. irq_set_affinity_hint(irq->vector, NULL);
  5077. free_cpumask_var(irq->cpu_mask);
  5078. irq->have_cpumask = 0;
  5079. }
  5080. free_irq(irq->vector, bp->bnapi[i]);
  5081. }
  5082. irq->requested = 0;
  5083. }
  5084. }
  5085. static int bnxt_request_irq(struct bnxt *bp)
  5086. {
  5087. int i, j, rc = 0;
  5088. unsigned long flags = 0;
  5089. #ifdef CONFIG_RFS_ACCEL
  5090. struct cpu_rmap *rmap;
  5091. #endif
  5092. rc = bnxt_setup_int_mode(bp);
  5093. if (rc) {
  5094. netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
  5095. rc);
  5096. return rc;
  5097. }
  5098. #ifdef CONFIG_RFS_ACCEL
  5099. rmap = bp->dev->rx_cpu_rmap;
  5100. #endif
  5101. if (!(bp->flags & BNXT_FLAG_USING_MSIX))
  5102. flags = IRQF_SHARED;
  5103. for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
  5104. int map_idx = bnxt_cp_num_to_irq_num(bp, i);
  5105. struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
  5106. #ifdef CONFIG_RFS_ACCEL
  5107. if (rmap && bp->bnapi[i]->rx_ring) {
  5108. rc = irq_cpu_rmap_add(rmap, irq->vector);
  5109. if (rc)
  5110. netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
  5111. j);
  5112. j++;
  5113. }
  5114. #endif
  5115. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5116. bp->bnapi[i]);
  5117. if (rc)
  5118. break;
  5119. irq->requested = 1;
  5120. if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
  5121. int numa_node = dev_to_node(&bp->pdev->dev);
  5122. irq->have_cpumask = 1;
  5123. cpumask_set_cpu(cpumask_local_spread(i, numa_node),
  5124. irq->cpu_mask);
  5125. rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
  5126. if (rc) {
  5127. netdev_warn(bp->dev,
  5128. "Set affinity failed, IRQ = %d\n",
  5129. irq->vector);
  5130. break;
  5131. }
  5132. }
  5133. }
  5134. return rc;
  5135. }
  5136. static void bnxt_del_napi(struct bnxt *bp)
  5137. {
  5138. int i;
  5139. if (!bp->bnapi)
  5140. return;
  5141. for (i = 0; i < bp->cp_nr_rings; i++) {
  5142. struct bnxt_napi *bnapi = bp->bnapi[i];
  5143. napi_hash_del(&bnapi->napi);
  5144. netif_napi_del(&bnapi->napi);
  5145. }
  5146. /* We called napi_hash_del() before netif_napi_del(), we need
  5147. * to respect an RCU grace period before freeing napi structures.
  5148. */
  5149. synchronize_net();
  5150. }
  5151. static void bnxt_init_napi(struct bnxt *bp)
  5152. {
  5153. int i;
  5154. unsigned int cp_nr_rings = bp->cp_nr_rings;
  5155. struct bnxt_napi *bnapi;
  5156. if (bp->flags & BNXT_FLAG_USING_MSIX) {
  5157. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  5158. cp_nr_rings--;
  5159. for (i = 0; i < cp_nr_rings; i++) {
  5160. bnapi = bp->bnapi[i];
  5161. netif_napi_add(bp->dev, &bnapi->napi,
  5162. bnxt_poll, 64);
  5163. }
  5164. if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
  5165. bnapi = bp->bnapi[cp_nr_rings];
  5166. netif_napi_add(bp->dev, &bnapi->napi,
  5167. bnxt_poll_nitroa0, 64);
  5168. }
  5169. } else {
  5170. bnapi = bp->bnapi[0];
  5171. netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
  5172. }
  5173. }
  5174. static void bnxt_disable_napi(struct bnxt *bp)
  5175. {
  5176. int i;
  5177. if (!bp->bnapi)
  5178. return;
  5179. for (i = 0; i < bp->cp_nr_rings; i++) {
  5180. struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
  5181. if (bp->bnapi[i]->rx_ring)
  5182. cancel_work_sync(&cpr->dim.work);
  5183. napi_disable(&bp->bnapi[i]->napi);
  5184. }
  5185. }
  5186. static void bnxt_enable_napi(struct bnxt *bp)
  5187. {
  5188. int i;
  5189. for (i = 0; i < bp->cp_nr_rings; i++) {
  5190. struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
  5191. bp->bnapi[i]->in_reset = false;
  5192. if (bp->bnapi[i]->rx_ring) {
  5193. INIT_WORK(&cpr->dim.work, bnxt_dim_work);
  5194. cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
  5195. }
  5196. napi_enable(&bp->bnapi[i]->napi);
  5197. }
  5198. }
  5199. void bnxt_tx_disable(struct bnxt *bp)
  5200. {
  5201. int i;
  5202. struct bnxt_tx_ring_info *txr;
  5203. if (bp->tx_ring) {
  5204. for (i = 0; i < bp->tx_nr_rings; i++) {
  5205. txr = &bp->tx_ring[i];
  5206. txr->dev_state = BNXT_DEV_STATE_CLOSING;
  5207. }
  5208. }
  5209. /* Stop all TX queues */
  5210. netif_tx_disable(bp->dev);
  5211. netif_carrier_off(bp->dev);
  5212. }
  5213. void bnxt_tx_enable(struct bnxt *bp)
  5214. {
  5215. int i;
  5216. struct bnxt_tx_ring_info *txr;
  5217. for (i = 0; i < bp->tx_nr_rings; i++) {
  5218. txr = &bp->tx_ring[i];
  5219. txr->dev_state = 0;
  5220. }
  5221. netif_tx_wake_all_queues(bp->dev);
  5222. if (bp->link_info.link_up)
  5223. netif_carrier_on(bp->dev);
  5224. }
  5225. static void bnxt_report_link(struct bnxt *bp)
  5226. {
  5227. if (bp->link_info.link_up) {
  5228. const char *duplex;
  5229. const char *flow_ctrl;
  5230. u32 speed;
  5231. u16 fec;
  5232. netif_carrier_on(bp->dev);
  5233. if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
  5234. duplex = "full";
  5235. else
  5236. duplex = "half";
  5237. if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
  5238. flow_ctrl = "ON - receive & transmit";
  5239. else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
  5240. flow_ctrl = "ON - transmit";
  5241. else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
  5242. flow_ctrl = "ON - receive";
  5243. else
  5244. flow_ctrl = "none";
  5245. speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
  5246. netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
  5247. speed, duplex, flow_ctrl);
  5248. if (bp->flags & BNXT_FLAG_EEE_CAP)
  5249. netdev_info(bp->dev, "EEE is %s\n",
  5250. bp->eee.eee_active ? "active" :
  5251. "not active");
  5252. fec = bp->link_info.fec_cfg;
  5253. if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
  5254. netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
  5255. (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
  5256. (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
  5257. (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
  5258. } else {
  5259. netif_carrier_off(bp->dev);
  5260. netdev_err(bp->dev, "NIC Link is Down\n");
  5261. }
  5262. }
  5263. static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
  5264. {
  5265. int rc = 0;
  5266. struct hwrm_port_phy_qcaps_input req = {0};
  5267. struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  5268. struct bnxt_link_info *link_info = &bp->link_info;
  5269. if (bp->hwrm_spec_code < 0x10201)
  5270. return 0;
  5271. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
  5272. mutex_lock(&bp->hwrm_cmd_lock);
  5273. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5274. if (rc)
  5275. goto hwrm_phy_qcaps_exit;
  5276. if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
  5277. struct ethtool_eee *eee = &bp->eee;
  5278. u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
  5279. bp->flags |= BNXT_FLAG_EEE_CAP;
  5280. eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
  5281. bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
  5282. PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
  5283. bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
  5284. PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
  5285. }
  5286. if (resp->supported_speeds_auto_mode)
  5287. link_info->support_auto_speeds =
  5288. le16_to_cpu(resp->supported_speeds_auto_mode);
  5289. bp->port_count = resp->port_cnt;
  5290. hwrm_phy_qcaps_exit:
  5291. mutex_unlock(&bp->hwrm_cmd_lock);
  5292. return rc;
  5293. }
  5294. static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
  5295. {
  5296. int rc = 0;
  5297. struct bnxt_link_info *link_info = &bp->link_info;
  5298. struct hwrm_port_phy_qcfg_input req = {0};
  5299. struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  5300. u8 link_up = link_info->link_up;
  5301. u16 diff;
  5302. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
  5303. mutex_lock(&bp->hwrm_cmd_lock);
  5304. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5305. if (rc) {
  5306. mutex_unlock(&bp->hwrm_cmd_lock);
  5307. return rc;
  5308. }
  5309. memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
  5310. link_info->phy_link_status = resp->link;
  5311. link_info->duplex = resp->duplex_cfg;
  5312. if (bp->hwrm_spec_code >= 0x10800)
  5313. link_info->duplex = resp->duplex_state;
  5314. link_info->pause = resp->pause;
  5315. link_info->auto_mode = resp->auto_mode;
  5316. link_info->auto_pause_setting = resp->auto_pause;
  5317. link_info->lp_pause = resp->link_partner_adv_pause;
  5318. link_info->force_pause_setting = resp->force_pause;
  5319. link_info->duplex_setting = resp->duplex_cfg;
  5320. if (link_info->phy_link_status == BNXT_LINK_LINK)
  5321. link_info->link_speed = le16_to_cpu(resp->link_speed);
  5322. else
  5323. link_info->link_speed = 0;
  5324. link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
  5325. link_info->support_speeds = le16_to_cpu(resp->support_speeds);
  5326. link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
  5327. link_info->lp_auto_link_speeds =
  5328. le16_to_cpu(resp->link_partner_adv_speeds);
  5329. link_info->preemphasis = le32_to_cpu(resp->preemphasis);
  5330. link_info->phy_ver[0] = resp->phy_maj;
  5331. link_info->phy_ver[1] = resp->phy_min;
  5332. link_info->phy_ver[2] = resp->phy_bld;
  5333. link_info->media_type = resp->media_type;
  5334. link_info->phy_type = resp->phy_type;
  5335. link_info->transceiver = resp->xcvr_pkg_type;
  5336. link_info->phy_addr = resp->eee_config_phy_addr &
  5337. PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
  5338. link_info->module_status = resp->module_status;
  5339. if (bp->flags & BNXT_FLAG_EEE_CAP) {
  5340. struct ethtool_eee *eee = &bp->eee;
  5341. u16 fw_speeds;
  5342. eee->eee_active = 0;
  5343. if (resp->eee_config_phy_addr &
  5344. PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
  5345. eee->eee_active = 1;
  5346. fw_speeds = le16_to_cpu(
  5347. resp->link_partner_adv_eee_link_speed_mask);
  5348. eee->lp_advertised =
  5349. _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
  5350. }
  5351. /* Pull initial EEE config */
  5352. if (!chng_link_state) {
  5353. if (resp->eee_config_phy_addr &
  5354. PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
  5355. eee->eee_enabled = 1;
  5356. fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
  5357. eee->advertised =
  5358. _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
  5359. if (resp->eee_config_phy_addr &
  5360. PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
  5361. __le32 tmr;
  5362. eee->tx_lpi_enabled = 1;
  5363. tmr = resp->xcvr_identifier_type_tx_lpi_timer;
  5364. eee->tx_lpi_timer = le32_to_cpu(tmr) &
  5365. PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
  5366. }
  5367. }
  5368. }
  5369. link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
  5370. if (bp->hwrm_spec_code >= 0x10504)
  5371. link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
  5372. /* TODO: need to add more logic to report VF link */
  5373. if (chng_link_state) {
  5374. if (link_info->phy_link_status == BNXT_LINK_LINK)
  5375. link_info->link_up = 1;
  5376. else
  5377. link_info->link_up = 0;
  5378. if (link_up != link_info->link_up)
  5379. bnxt_report_link(bp);
  5380. } else {
  5381. /* alwasy link down if not require to update link state */
  5382. link_info->link_up = 0;
  5383. }
  5384. mutex_unlock(&bp->hwrm_cmd_lock);
  5385. if (!BNXT_SINGLE_PF(bp))
  5386. return 0;
  5387. diff = link_info->support_auto_speeds ^ link_info->advertising;
  5388. if ((link_info->support_auto_speeds | diff) !=
  5389. link_info->support_auto_speeds) {
  5390. /* An advertised speed is no longer supported, so we need to
  5391. * update the advertisement settings. Caller holds RTNL
  5392. * so we can modify link settings.
  5393. */
  5394. link_info->advertising = link_info->support_auto_speeds;
  5395. if (link_info->autoneg & BNXT_AUTONEG_SPEED)
  5396. bnxt_hwrm_set_link_setting(bp, true, false);
  5397. }
  5398. return 0;
  5399. }
  5400. static void bnxt_get_port_module_status(struct bnxt *bp)
  5401. {
  5402. struct bnxt_link_info *link_info = &bp->link_info;
  5403. struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
  5404. u8 module_status;
  5405. if (bnxt_update_link(bp, true))
  5406. return;
  5407. module_status = link_info->module_status;
  5408. switch (module_status) {
  5409. case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
  5410. case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
  5411. case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
  5412. netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
  5413. bp->pf.port_id);
  5414. if (bp->hwrm_spec_code >= 0x10201) {
  5415. netdev_warn(bp->dev, "Module part number %s\n",
  5416. resp->phy_vendor_partnumber);
  5417. }
  5418. if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
  5419. netdev_warn(bp->dev, "TX is disabled\n");
  5420. if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
  5421. netdev_warn(bp->dev, "SFP+ module is shutdown\n");
  5422. }
  5423. }
  5424. static void
  5425. bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
  5426. {
  5427. if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
  5428. if (bp->hwrm_spec_code >= 0x10201)
  5429. req->auto_pause =
  5430. PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
  5431. if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
  5432. req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
  5433. if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
  5434. req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
  5435. req->enables |=
  5436. cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
  5437. } else {
  5438. if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
  5439. req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
  5440. if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
  5441. req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
  5442. req->enables |=
  5443. cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
  5444. if (bp->hwrm_spec_code >= 0x10201) {
  5445. req->auto_pause = req->force_pause;
  5446. req->enables |= cpu_to_le32(
  5447. PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
  5448. }
  5449. }
  5450. }
  5451. static void bnxt_hwrm_set_link_common(struct bnxt *bp,
  5452. struct hwrm_port_phy_cfg_input *req)
  5453. {
  5454. u8 autoneg = bp->link_info.autoneg;
  5455. u16 fw_link_speed = bp->link_info.req_link_speed;
  5456. u16 advertising = bp->link_info.advertising;
  5457. if (autoneg & BNXT_AUTONEG_SPEED) {
  5458. req->auto_mode |=
  5459. PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
  5460. req->enables |= cpu_to_le32(
  5461. PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
  5462. req->auto_link_speed_mask = cpu_to_le16(advertising);
  5463. req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
  5464. req->flags |=
  5465. cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
  5466. } else {
  5467. req->force_link_speed = cpu_to_le16(fw_link_speed);
  5468. req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
  5469. }
  5470. /* tell chimp that the setting takes effect immediately */
  5471. req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
  5472. }
  5473. int bnxt_hwrm_set_pause(struct bnxt *bp)
  5474. {
  5475. struct hwrm_port_phy_cfg_input req = {0};
  5476. int rc;
  5477. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
  5478. bnxt_hwrm_set_pause_common(bp, &req);
  5479. if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
  5480. bp->link_info.force_link_chng)
  5481. bnxt_hwrm_set_link_common(bp, &req);
  5482. mutex_lock(&bp->hwrm_cmd_lock);
  5483. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5484. if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
  5485. /* since changing of pause setting doesn't trigger any link
  5486. * change event, the driver needs to update the current pause
  5487. * result upon successfully return of the phy_cfg command
  5488. */
  5489. bp->link_info.pause =
  5490. bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
  5491. bp->link_info.auto_pause_setting = 0;
  5492. if (!bp->link_info.force_link_chng)
  5493. bnxt_report_link(bp);
  5494. }
  5495. bp->link_info.force_link_chng = false;
  5496. mutex_unlock(&bp->hwrm_cmd_lock);
  5497. return rc;
  5498. }
  5499. static void bnxt_hwrm_set_eee(struct bnxt *bp,
  5500. struct hwrm_port_phy_cfg_input *req)
  5501. {
  5502. struct ethtool_eee *eee = &bp->eee;
  5503. if (eee->eee_enabled) {
  5504. u16 eee_speeds;
  5505. u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
  5506. if (eee->tx_lpi_enabled)
  5507. flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
  5508. else
  5509. flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
  5510. req->flags |= cpu_to_le32(flags);
  5511. eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
  5512. req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
  5513. req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
  5514. } else {
  5515. req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
  5516. }
  5517. }
  5518. int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
  5519. {
  5520. struct hwrm_port_phy_cfg_input req = {0};
  5521. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
  5522. if (set_pause)
  5523. bnxt_hwrm_set_pause_common(bp, &req);
  5524. bnxt_hwrm_set_link_common(bp, &req);
  5525. if (set_eee)
  5526. bnxt_hwrm_set_eee(bp, &req);
  5527. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5528. }
  5529. static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
  5530. {
  5531. struct hwrm_port_phy_cfg_input req = {0};
  5532. if (!BNXT_SINGLE_PF(bp))
  5533. return 0;
  5534. if (pci_num_vf(bp->pdev))
  5535. return 0;
  5536. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
  5537. req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
  5538. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5539. }
  5540. static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
  5541. {
  5542. struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  5543. struct hwrm_port_led_qcaps_input req = {0};
  5544. struct bnxt_pf_info *pf = &bp->pf;
  5545. int rc;
  5546. if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
  5547. return 0;
  5548. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
  5549. req.port_id = cpu_to_le16(pf->port_id);
  5550. mutex_lock(&bp->hwrm_cmd_lock);
  5551. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5552. if (rc) {
  5553. mutex_unlock(&bp->hwrm_cmd_lock);
  5554. return rc;
  5555. }
  5556. if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
  5557. int i;
  5558. bp->num_leds = resp->num_leds;
  5559. memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
  5560. bp->num_leds);
  5561. for (i = 0; i < bp->num_leds; i++) {
  5562. struct bnxt_led_info *led = &bp->leds[i];
  5563. __le16 caps = led->led_state_caps;
  5564. if (!led->led_group_id ||
  5565. !BNXT_LED_ALT_BLINK_CAP(caps)) {
  5566. bp->num_leds = 0;
  5567. break;
  5568. }
  5569. }
  5570. }
  5571. mutex_unlock(&bp->hwrm_cmd_lock);
  5572. return 0;
  5573. }
  5574. int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
  5575. {
  5576. struct hwrm_wol_filter_alloc_input req = {0};
  5577. struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  5578. int rc;
  5579. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
  5580. req.port_id = cpu_to_le16(bp->pf.port_id);
  5581. req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
  5582. req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
  5583. memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
  5584. mutex_lock(&bp->hwrm_cmd_lock);
  5585. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5586. if (!rc)
  5587. bp->wol_filter_id = resp->wol_filter_id;
  5588. mutex_unlock(&bp->hwrm_cmd_lock);
  5589. return rc;
  5590. }
  5591. int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
  5592. {
  5593. struct hwrm_wol_filter_free_input req = {0};
  5594. int rc;
  5595. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
  5596. req.port_id = cpu_to_le16(bp->pf.port_id);
  5597. req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
  5598. req.wol_filter_id = bp->wol_filter_id;
  5599. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5600. return rc;
  5601. }
  5602. static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
  5603. {
  5604. struct hwrm_wol_filter_qcfg_input req = {0};
  5605. struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  5606. u16 next_handle = 0;
  5607. int rc;
  5608. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
  5609. req.port_id = cpu_to_le16(bp->pf.port_id);
  5610. req.handle = cpu_to_le16(handle);
  5611. mutex_lock(&bp->hwrm_cmd_lock);
  5612. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5613. if (!rc) {
  5614. next_handle = le16_to_cpu(resp->next_handle);
  5615. if (next_handle != 0) {
  5616. if (resp->wol_type ==
  5617. WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
  5618. bp->wol = 1;
  5619. bp->wol_filter_id = resp->wol_filter_id;
  5620. }
  5621. }
  5622. }
  5623. mutex_unlock(&bp->hwrm_cmd_lock);
  5624. return next_handle;
  5625. }
  5626. static void bnxt_get_wol_settings(struct bnxt *bp)
  5627. {
  5628. u16 handle = 0;
  5629. if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
  5630. return;
  5631. do {
  5632. handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
  5633. } while (handle && handle != 0xffff);
  5634. }
  5635. static bool bnxt_eee_config_ok(struct bnxt *bp)
  5636. {
  5637. struct ethtool_eee *eee = &bp->eee;
  5638. struct bnxt_link_info *link_info = &bp->link_info;
  5639. if (!(bp->flags & BNXT_FLAG_EEE_CAP))
  5640. return true;
  5641. if (eee->eee_enabled) {
  5642. u32 advertising =
  5643. _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
  5644. if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
  5645. eee->eee_enabled = 0;
  5646. return false;
  5647. }
  5648. if (eee->advertised & ~advertising) {
  5649. eee->advertised = advertising & eee->supported;
  5650. return false;
  5651. }
  5652. }
  5653. return true;
  5654. }
  5655. static int bnxt_update_phy_setting(struct bnxt *bp)
  5656. {
  5657. int rc;
  5658. bool update_link = false;
  5659. bool update_pause = false;
  5660. bool update_eee = false;
  5661. struct bnxt_link_info *link_info = &bp->link_info;
  5662. rc = bnxt_update_link(bp, true);
  5663. if (rc) {
  5664. netdev_err(bp->dev, "failed to update link (rc: %x)\n",
  5665. rc);
  5666. return rc;
  5667. }
  5668. if (!BNXT_SINGLE_PF(bp))
  5669. return 0;
  5670. if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
  5671. (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
  5672. link_info->req_flow_ctrl)
  5673. update_pause = true;
  5674. if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
  5675. link_info->force_pause_setting != link_info->req_flow_ctrl)
  5676. update_pause = true;
  5677. if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
  5678. if (BNXT_AUTO_MODE(link_info->auto_mode))
  5679. update_link = true;
  5680. if (link_info->req_link_speed != link_info->force_link_speed)
  5681. update_link = true;
  5682. if (link_info->req_duplex != link_info->duplex_setting)
  5683. update_link = true;
  5684. } else {
  5685. if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
  5686. update_link = true;
  5687. if (link_info->advertising != link_info->auto_link_speeds)
  5688. update_link = true;
  5689. }
  5690. /* The last close may have shutdown the link, so need to call
  5691. * PHY_CFG to bring it back up.
  5692. */
  5693. if (!netif_carrier_ok(bp->dev))
  5694. update_link = true;
  5695. if (!bnxt_eee_config_ok(bp))
  5696. update_eee = true;
  5697. if (update_link)
  5698. rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
  5699. else if (update_pause)
  5700. rc = bnxt_hwrm_set_pause(bp);
  5701. if (rc) {
  5702. netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
  5703. rc);
  5704. return rc;
  5705. }
  5706. return rc;
  5707. }
  5708. /* Common routine to pre-map certain register block to different GRC window.
  5709. * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
  5710. * in PF and 3 windows in VF that can be customized to map in different
  5711. * register blocks.
  5712. */
  5713. static void bnxt_preset_reg_win(struct bnxt *bp)
  5714. {
  5715. if (BNXT_PF(bp)) {
  5716. /* CAG registers map to GRC window #4 */
  5717. writel(BNXT_CAG_REG_BASE,
  5718. bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
  5719. }
  5720. }
  5721. static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
  5722. static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
  5723. {
  5724. int rc = 0;
  5725. bnxt_preset_reg_win(bp);
  5726. netif_carrier_off(bp->dev);
  5727. if (irq_re_init) {
  5728. /* Reserve rings now if none were reserved at driver probe. */
  5729. rc = bnxt_init_dflt_ring_mode(bp);
  5730. if (rc) {
  5731. netdev_err(bp->dev, "Failed to reserve default rings at open\n");
  5732. return rc;
  5733. }
  5734. rc = bnxt_reserve_rings(bp);
  5735. if (rc)
  5736. return rc;
  5737. }
  5738. if ((bp->flags & BNXT_FLAG_RFS) &&
  5739. !(bp->flags & BNXT_FLAG_USING_MSIX)) {
  5740. /* disable RFS if falling back to INTA */
  5741. bp->dev->hw_features &= ~NETIF_F_NTUPLE;
  5742. bp->flags &= ~BNXT_FLAG_RFS;
  5743. }
  5744. rc = bnxt_alloc_mem(bp, irq_re_init);
  5745. if (rc) {
  5746. netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
  5747. goto open_err_free_mem;
  5748. }
  5749. if (irq_re_init) {
  5750. bnxt_init_napi(bp);
  5751. rc = bnxt_request_irq(bp);
  5752. if (rc) {
  5753. netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
  5754. goto open_err;
  5755. }
  5756. }
  5757. bnxt_enable_napi(bp);
  5758. bnxt_debug_dev_init(bp);
  5759. rc = bnxt_init_nic(bp, irq_re_init);
  5760. if (rc) {
  5761. netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
  5762. goto open_err;
  5763. }
  5764. if (link_re_init) {
  5765. mutex_lock(&bp->link_lock);
  5766. rc = bnxt_update_phy_setting(bp);
  5767. mutex_unlock(&bp->link_lock);
  5768. if (rc)
  5769. netdev_warn(bp->dev, "failed to update phy settings\n");
  5770. }
  5771. if (irq_re_init)
  5772. udp_tunnel_get_rx_info(bp->dev);
  5773. set_bit(BNXT_STATE_OPEN, &bp->state);
  5774. bnxt_enable_int(bp);
  5775. /* Enable TX queues */
  5776. bnxt_tx_enable(bp);
  5777. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5778. /* Poll link status and check for SFP+ module status */
  5779. bnxt_get_port_module_status(bp);
  5780. /* VF-reps may need to be re-opened after the PF is re-opened */
  5781. if (BNXT_PF(bp))
  5782. bnxt_vf_reps_open(bp);
  5783. return 0;
  5784. open_err:
  5785. bnxt_debug_dev_exit(bp);
  5786. bnxt_disable_napi(bp);
  5787. bnxt_del_napi(bp);
  5788. open_err_free_mem:
  5789. bnxt_free_skbs(bp);
  5790. bnxt_free_irq(bp);
  5791. bnxt_free_mem(bp, true);
  5792. return rc;
  5793. }
  5794. /* rtnl_lock held */
  5795. int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
  5796. {
  5797. int rc = 0;
  5798. rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
  5799. if (rc) {
  5800. netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
  5801. dev_close(bp->dev);
  5802. }
  5803. return rc;
  5804. }
  5805. /* rtnl_lock held, open the NIC half way by allocating all resources, but
  5806. * NAPI, IRQ, and TX are not enabled. This is mainly used for offline
  5807. * self tests.
  5808. */
  5809. int bnxt_half_open_nic(struct bnxt *bp)
  5810. {
  5811. int rc = 0;
  5812. rc = bnxt_alloc_mem(bp, false);
  5813. if (rc) {
  5814. netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
  5815. goto half_open_err;
  5816. }
  5817. rc = bnxt_init_nic(bp, false);
  5818. if (rc) {
  5819. netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
  5820. goto half_open_err;
  5821. }
  5822. return 0;
  5823. half_open_err:
  5824. bnxt_free_skbs(bp);
  5825. bnxt_free_mem(bp, false);
  5826. dev_close(bp->dev);
  5827. return rc;
  5828. }
  5829. /* rtnl_lock held, this call can only be made after a previous successful
  5830. * call to bnxt_half_open_nic().
  5831. */
  5832. void bnxt_half_close_nic(struct bnxt *bp)
  5833. {
  5834. bnxt_hwrm_resource_free(bp, false, false);
  5835. bnxt_free_skbs(bp);
  5836. bnxt_free_mem(bp, false);
  5837. }
  5838. static int bnxt_open(struct net_device *dev)
  5839. {
  5840. struct bnxt *bp = netdev_priv(dev);
  5841. return __bnxt_open_nic(bp, true, true);
  5842. }
  5843. static bool bnxt_drv_busy(struct bnxt *bp)
  5844. {
  5845. return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
  5846. test_bit(BNXT_STATE_READ_STATS, &bp->state));
  5847. }
  5848. static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
  5849. bool link_re_init)
  5850. {
  5851. /* Close the VF-reps before closing PF */
  5852. if (BNXT_PF(bp))
  5853. bnxt_vf_reps_close(bp);
  5854. /* Change device state to avoid TX queue wake up's */
  5855. bnxt_tx_disable(bp);
  5856. clear_bit(BNXT_STATE_OPEN, &bp->state);
  5857. smp_mb__after_atomic();
  5858. while (bnxt_drv_busy(bp))
  5859. msleep(20);
  5860. /* Flush rings and and disable interrupts */
  5861. bnxt_shutdown_nic(bp, irq_re_init);
  5862. /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
  5863. bnxt_debug_dev_exit(bp);
  5864. bnxt_disable_napi(bp);
  5865. del_timer_sync(&bp->timer);
  5866. bnxt_free_skbs(bp);
  5867. if (irq_re_init) {
  5868. bnxt_free_irq(bp);
  5869. bnxt_del_napi(bp);
  5870. }
  5871. bnxt_free_mem(bp, irq_re_init);
  5872. }
  5873. int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
  5874. {
  5875. int rc = 0;
  5876. #ifdef CONFIG_BNXT_SRIOV
  5877. if (bp->sriov_cfg) {
  5878. rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
  5879. !bp->sriov_cfg,
  5880. BNXT_SRIOV_CFG_WAIT_TMO);
  5881. if (rc)
  5882. netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
  5883. }
  5884. #endif
  5885. __bnxt_close_nic(bp, irq_re_init, link_re_init);
  5886. return rc;
  5887. }
  5888. static int bnxt_close(struct net_device *dev)
  5889. {
  5890. struct bnxt *bp = netdev_priv(dev);
  5891. bnxt_close_nic(bp, true, true);
  5892. bnxt_hwrm_shutdown_link(bp);
  5893. return 0;
  5894. }
  5895. /* rtnl_lock held */
  5896. static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5897. {
  5898. switch (cmd) {
  5899. case SIOCGMIIPHY:
  5900. /* fallthru */
  5901. case SIOCGMIIREG: {
  5902. if (!netif_running(dev))
  5903. return -EAGAIN;
  5904. return 0;
  5905. }
  5906. case SIOCSMIIREG:
  5907. if (!netif_running(dev))
  5908. return -EAGAIN;
  5909. return 0;
  5910. default:
  5911. /* do nothing */
  5912. break;
  5913. }
  5914. return -EOPNOTSUPP;
  5915. }
  5916. static void
  5917. bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
  5918. {
  5919. u32 i;
  5920. struct bnxt *bp = netdev_priv(dev);
  5921. set_bit(BNXT_STATE_READ_STATS, &bp->state);
  5922. /* Make sure bnxt_close_nic() sees that we are reading stats before
  5923. * we check the BNXT_STATE_OPEN flag.
  5924. */
  5925. smp_mb__after_atomic();
  5926. if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
  5927. clear_bit(BNXT_STATE_READ_STATS, &bp->state);
  5928. return;
  5929. }
  5930. /* TODO check if we need to synchronize with bnxt_close path */
  5931. for (i = 0; i < bp->cp_nr_rings; i++) {
  5932. struct bnxt_napi *bnapi = bp->bnapi[i];
  5933. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  5934. struct ctx_hw_stats *hw_stats = cpr->hw_stats;
  5935. stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
  5936. stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
  5937. stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
  5938. stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
  5939. stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
  5940. stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
  5941. stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
  5942. stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
  5943. stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
  5944. stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
  5945. stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
  5946. stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
  5947. stats->rx_missed_errors +=
  5948. le64_to_cpu(hw_stats->rx_discard_pkts);
  5949. stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
  5950. stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
  5951. }
  5952. if (bp->flags & BNXT_FLAG_PORT_STATS) {
  5953. struct rx_port_stats *rx = bp->hw_rx_port_stats;
  5954. struct tx_port_stats *tx = bp->hw_tx_port_stats;
  5955. stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
  5956. stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
  5957. stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
  5958. le64_to_cpu(rx->rx_ovrsz_frames) +
  5959. le64_to_cpu(rx->rx_runt_frames);
  5960. stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
  5961. le64_to_cpu(rx->rx_jbr_frames);
  5962. stats->collisions = le64_to_cpu(tx->tx_total_collisions);
  5963. stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
  5964. stats->tx_errors = le64_to_cpu(tx->tx_err);
  5965. }
  5966. clear_bit(BNXT_STATE_READ_STATS, &bp->state);
  5967. }
  5968. static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
  5969. {
  5970. struct net_device *dev = bp->dev;
  5971. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  5972. struct netdev_hw_addr *ha;
  5973. u8 *haddr;
  5974. int mc_count = 0;
  5975. bool update = false;
  5976. int off = 0;
  5977. netdev_for_each_mc_addr(ha, dev) {
  5978. if (mc_count >= BNXT_MAX_MC_ADDRS) {
  5979. *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
  5980. vnic->mc_list_count = 0;
  5981. return false;
  5982. }
  5983. haddr = ha->addr;
  5984. if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
  5985. memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
  5986. update = true;
  5987. }
  5988. off += ETH_ALEN;
  5989. mc_count++;
  5990. }
  5991. if (mc_count)
  5992. *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
  5993. if (mc_count != vnic->mc_list_count) {
  5994. vnic->mc_list_count = mc_count;
  5995. update = true;
  5996. }
  5997. return update;
  5998. }
  5999. static bool bnxt_uc_list_updated(struct bnxt *bp)
  6000. {
  6001. struct net_device *dev = bp->dev;
  6002. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  6003. struct netdev_hw_addr *ha;
  6004. int off = 0;
  6005. if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
  6006. return true;
  6007. netdev_for_each_uc_addr(ha, dev) {
  6008. if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
  6009. return true;
  6010. off += ETH_ALEN;
  6011. }
  6012. return false;
  6013. }
  6014. static void bnxt_set_rx_mode(struct net_device *dev)
  6015. {
  6016. struct bnxt *bp = netdev_priv(dev);
  6017. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  6018. u32 mask = vnic->rx_mask;
  6019. bool mc_update = false;
  6020. bool uc_update;
  6021. if (!netif_running(dev))
  6022. return;
  6023. mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
  6024. CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
  6025. CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
  6026. if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
  6027. mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
  6028. uc_update = bnxt_uc_list_updated(bp);
  6029. if (dev->flags & IFF_ALLMULTI) {
  6030. mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
  6031. vnic->mc_list_count = 0;
  6032. } else {
  6033. mc_update = bnxt_mc_list_updated(bp, &mask);
  6034. }
  6035. if (mask != vnic->rx_mask || uc_update || mc_update) {
  6036. vnic->rx_mask = mask;
  6037. set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
  6038. bnxt_queue_sp_work(bp);
  6039. }
  6040. }
  6041. static int bnxt_cfg_rx_mode(struct bnxt *bp)
  6042. {
  6043. struct net_device *dev = bp->dev;
  6044. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  6045. struct netdev_hw_addr *ha;
  6046. int i, off = 0, rc;
  6047. bool uc_update;
  6048. netif_addr_lock_bh(dev);
  6049. uc_update = bnxt_uc_list_updated(bp);
  6050. netif_addr_unlock_bh(dev);
  6051. if (!uc_update)
  6052. goto skip_uc;
  6053. mutex_lock(&bp->hwrm_cmd_lock);
  6054. for (i = 1; i < vnic->uc_filter_count; i++) {
  6055. struct hwrm_cfa_l2_filter_free_input req = {0};
  6056. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
  6057. -1);
  6058. req.l2_filter_id = vnic->fw_l2_filter_id[i];
  6059. rc = _hwrm_send_message(bp, &req, sizeof(req),
  6060. HWRM_CMD_TIMEOUT);
  6061. }
  6062. mutex_unlock(&bp->hwrm_cmd_lock);
  6063. vnic->uc_filter_count = 1;
  6064. netif_addr_lock_bh(dev);
  6065. if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
  6066. vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
  6067. } else {
  6068. netdev_for_each_uc_addr(ha, dev) {
  6069. memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
  6070. off += ETH_ALEN;
  6071. vnic->uc_filter_count++;
  6072. }
  6073. }
  6074. netif_addr_unlock_bh(dev);
  6075. for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
  6076. rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
  6077. if (rc) {
  6078. netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
  6079. rc);
  6080. vnic->uc_filter_count = i;
  6081. return rc;
  6082. }
  6083. }
  6084. skip_uc:
  6085. rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
  6086. if (rc)
  6087. netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
  6088. rc);
  6089. return rc;
  6090. }
  6091. static bool bnxt_can_reserve_rings(struct bnxt *bp)
  6092. {
  6093. #ifdef CONFIG_BNXT_SRIOV
  6094. if ((bp->flags & BNXT_FLAG_NEW_RM) && BNXT_VF(bp)) {
  6095. struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
  6096. /* No minimum rings were provisioned by the PF. Don't
  6097. * reserve rings by default when device is down.
  6098. */
  6099. if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
  6100. return true;
  6101. if (!netif_running(bp->dev))
  6102. return false;
  6103. }
  6104. #endif
  6105. return true;
  6106. }
  6107. /* If the chip and firmware supports RFS */
  6108. static bool bnxt_rfs_supported(struct bnxt *bp)
  6109. {
  6110. if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
  6111. return true;
  6112. if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
  6113. return true;
  6114. return false;
  6115. }
  6116. /* If runtime conditions support RFS */
  6117. static bool bnxt_rfs_capable(struct bnxt *bp)
  6118. {
  6119. #ifdef CONFIG_RFS_ACCEL
  6120. int vnics, max_vnics, max_rss_ctxs;
  6121. if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
  6122. return false;
  6123. vnics = 1 + bp->rx_nr_rings;
  6124. max_vnics = bnxt_get_max_func_vnics(bp);
  6125. max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
  6126. /* RSS contexts not a limiting factor */
  6127. if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
  6128. max_rss_ctxs = max_vnics;
  6129. if (vnics > max_vnics || vnics > max_rss_ctxs) {
  6130. if (bp->rx_nr_rings > 1)
  6131. netdev_warn(bp->dev,
  6132. "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
  6133. min(max_rss_ctxs - 1, max_vnics - 1));
  6134. return false;
  6135. }
  6136. if (!(bp->flags & BNXT_FLAG_NEW_RM))
  6137. return true;
  6138. if (vnics == bp->hw_resc.resv_vnics)
  6139. return true;
  6140. bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, vnics);
  6141. if (vnics <= bp->hw_resc.resv_vnics)
  6142. return true;
  6143. netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
  6144. bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 1);
  6145. return false;
  6146. #else
  6147. return false;
  6148. #endif
  6149. }
  6150. static netdev_features_t bnxt_fix_features(struct net_device *dev,
  6151. netdev_features_t features)
  6152. {
  6153. struct bnxt *bp = netdev_priv(dev);
  6154. if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
  6155. features &= ~NETIF_F_NTUPLE;
  6156. if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
  6157. features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
  6158. if (!(features & NETIF_F_GRO))
  6159. features &= ~NETIF_F_GRO_HW;
  6160. if (features & NETIF_F_GRO_HW)
  6161. features &= ~NETIF_F_LRO;
  6162. /* Both CTAG and STAG VLAN accelaration on the RX side have to be
  6163. * turned on or off together.
  6164. */
  6165. if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
  6166. (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
  6167. if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
  6168. features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
  6169. NETIF_F_HW_VLAN_STAG_RX);
  6170. else
  6171. features |= NETIF_F_HW_VLAN_CTAG_RX |
  6172. NETIF_F_HW_VLAN_STAG_RX;
  6173. }
  6174. #ifdef CONFIG_BNXT_SRIOV
  6175. if (BNXT_VF(bp)) {
  6176. if (bp->vf.vlan) {
  6177. features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
  6178. NETIF_F_HW_VLAN_STAG_RX);
  6179. }
  6180. }
  6181. #endif
  6182. return features;
  6183. }
  6184. static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
  6185. {
  6186. struct bnxt *bp = netdev_priv(dev);
  6187. u32 flags = bp->flags;
  6188. u32 changes;
  6189. int rc = 0;
  6190. bool re_init = false;
  6191. bool update_tpa = false;
  6192. flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
  6193. if (features & NETIF_F_GRO_HW)
  6194. flags |= BNXT_FLAG_GRO;
  6195. else if (features & NETIF_F_LRO)
  6196. flags |= BNXT_FLAG_LRO;
  6197. if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
  6198. flags &= ~BNXT_FLAG_TPA;
  6199. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  6200. flags |= BNXT_FLAG_STRIP_VLAN;
  6201. if (features & NETIF_F_NTUPLE)
  6202. flags |= BNXT_FLAG_RFS;
  6203. changes = flags ^ bp->flags;
  6204. if (changes & BNXT_FLAG_TPA) {
  6205. update_tpa = true;
  6206. if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
  6207. (flags & BNXT_FLAG_TPA) == 0)
  6208. re_init = true;
  6209. }
  6210. if (changes & ~BNXT_FLAG_TPA)
  6211. re_init = true;
  6212. if (flags != bp->flags) {
  6213. u32 old_flags = bp->flags;
  6214. bp->flags = flags;
  6215. if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
  6216. if (update_tpa)
  6217. bnxt_set_ring_params(bp);
  6218. return rc;
  6219. }
  6220. if (re_init) {
  6221. bnxt_close_nic(bp, false, false);
  6222. if (update_tpa)
  6223. bnxt_set_ring_params(bp);
  6224. return bnxt_open_nic(bp, false, false);
  6225. }
  6226. if (update_tpa) {
  6227. rc = bnxt_set_tpa(bp,
  6228. (flags & BNXT_FLAG_TPA) ?
  6229. true : false);
  6230. if (rc)
  6231. bp->flags = old_flags;
  6232. }
  6233. }
  6234. return rc;
  6235. }
  6236. static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
  6237. {
  6238. struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
  6239. int i = bnapi->index;
  6240. if (!txr)
  6241. return;
  6242. netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
  6243. i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
  6244. txr->tx_cons);
  6245. }
  6246. static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
  6247. {
  6248. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  6249. int i = bnapi->index;
  6250. if (!rxr)
  6251. return;
  6252. netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
  6253. i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
  6254. rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
  6255. rxr->rx_sw_agg_prod);
  6256. }
  6257. static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
  6258. {
  6259. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  6260. int i = bnapi->index;
  6261. netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
  6262. i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
  6263. }
  6264. static void bnxt_dbg_dump_states(struct bnxt *bp)
  6265. {
  6266. int i;
  6267. struct bnxt_napi *bnapi;
  6268. for (i = 0; i < bp->cp_nr_rings; i++) {
  6269. bnapi = bp->bnapi[i];
  6270. if (netif_msg_drv(bp)) {
  6271. bnxt_dump_tx_sw_state(bnapi);
  6272. bnxt_dump_rx_sw_state(bnapi);
  6273. bnxt_dump_cp_sw_state(bnapi);
  6274. }
  6275. }
  6276. }
  6277. static void bnxt_reset_task(struct bnxt *bp, bool silent)
  6278. {
  6279. if (!silent)
  6280. bnxt_dbg_dump_states(bp);
  6281. if (netif_running(bp->dev)) {
  6282. int rc;
  6283. if (!silent)
  6284. bnxt_ulp_stop(bp);
  6285. bnxt_close_nic(bp, false, false);
  6286. rc = bnxt_open_nic(bp, false, false);
  6287. if (!silent && !rc)
  6288. bnxt_ulp_start(bp);
  6289. }
  6290. }
  6291. static void bnxt_tx_timeout(struct net_device *dev)
  6292. {
  6293. struct bnxt *bp = netdev_priv(dev);
  6294. netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
  6295. set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
  6296. bnxt_queue_sp_work(bp);
  6297. }
  6298. #ifdef CONFIG_NET_POLL_CONTROLLER
  6299. static void bnxt_poll_controller(struct net_device *dev)
  6300. {
  6301. struct bnxt *bp = netdev_priv(dev);
  6302. int i;
  6303. /* Only process tx rings/combined rings in netpoll mode. */
  6304. for (i = 0; i < bp->tx_nr_rings; i++) {
  6305. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  6306. napi_schedule(&txr->bnapi->napi);
  6307. }
  6308. }
  6309. #endif
  6310. static void bnxt_timer(struct timer_list *t)
  6311. {
  6312. struct bnxt *bp = from_timer(bp, t, timer);
  6313. struct net_device *dev = bp->dev;
  6314. if (!netif_running(dev))
  6315. return;
  6316. if (atomic_read(&bp->intr_sem) != 0)
  6317. goto bnxt_restart_timer;
  6318. if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
  6319. bp->stats_coal_ticks) {
  6320. set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
  6321. bnxt_queue_sp_work(bp);
  6322. }
  6323. if (bnxt_tc_flower_enabled(bp)) {
  6324. set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
  6325. bnxt_queue_sp_work(bp);
  6326. }
  6327. bnxt_restart_timer:
  6328. mod_timer(&bp->timer, jiffies + bp->current_interval);
  6329. }
  6330. static void bnxt_rtnl_lock_sp(struct bnxt *bp)
  6331. {
  6332. /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
  6333. * set. If the device is being closed, bnxt_close() may be holding
  6334. * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
  6335. * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
  6336. */
  6337. clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  6338. rtnl_lock();
  6339. }
  6340. static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
  6341. {
  6342. set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  6343. rtnl_unlock();
  6344. }
  6345. /* Only called from bnxt_sp_task() */
  6346. static void bnxt_reset(struct bnxt *bp, bool silent)
  6347. {
  6348. bnxt_rtnl_lock_sp(bp);
  6349. if (test_bit(BNXT_STATE_OPEN, &bp->state))
  6350. bnxt_reset_task(bp, silent);
  6351. bnxt_rtnl_unlock_sp(bp);
  6352. }
  6353. static void bnxt_cfg_ntp_filters(struct bnxt *);
  6354. static void bnxt_sp_task(struct work_struct *work)
  6355. {
  6356. struct bnxt *bp = container_of(work, struct bnxt, sp_task);
  6357. set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  6358. smp_mb__after_atomic();
  6359. if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
  6360. clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  6361. return;
  6362. }
  6363. if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
  6364. bnxt_cfg_rx_mode(bp);
  6365. if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
  6366. bnxt_cfg_ntp_filters(bp);
  6367. if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
  6368. bnxt_hwrm_exec_fwd_req(bp);
  6369. if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
  6370. bnxt_hwrm_tunnel_dst_port_alloc(
  6371. bp, bp->vxlan_port,
  6372. TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
  6373. }
  6374. if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
  6375. bnxt_hwrm_tunnel_dst_port_free(
  6376. bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
  6377. }
  6378. if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
  6379. bnxt_hwrm_tunnel_dst_port_alloc(
  6380. bp, bp->nge_port,
  6381. TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
  6382. }
  6383. if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
  6384. bnxt_hwrm_tunnel_dst_port_free(
  6385. bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
  6386. }
  6387. if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
  6388. bnxt_hwrm_port_qstats(bp);
  6389. bnxt_hwrm_port_qstats_ext(bp);
  6390. }
  6391. if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
  6392. int rc;
  6393. mutex_lock(&bp->link_lock);
  6394. if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
  6395. &bp->sp_event))
  6396. bnxt_hwrm_phy_qcaps(bp);
  6397. rc = bnxt_update_link(bp, true);
  6398. mutex_unlock(&bp->link_lock);
  6399. if (rc)
  6400. netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
  6401. rc);
  6402. }
  6403. if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
  6404. mutex_lock(&bp->link_lock);
  6405. bnxt_get_port_module_status(bp);
  6406. mutex_unlock(&bp->link_lock);
  6407. }
  6408. if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
  6409. bnxt_tc_flow_stats_work(bp);
  6410. /* These functions below will clear BNXT_STATE_IN_SP_TASK. They
  6411. * must be the last functions to be called before exiting.
  6412. */
  6413. if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
  6414. bnxt_reset(bp, false);
  6415. if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
  6416. bnxt_reset(bp, true);
  6417. smp_mb__before_atomic();
  6418. clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  6419. }
  6420. /* Under rtnl_lock */
  6421. int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
  6422. int tx_xdp)
  6423. {
  6424. int max_rx, max_tx, tx_sets = 1;
  6425. int tx_rings_needed;
  6426. int rx_rings = rx;
  6427. int cp, vnics, rc;
  6428. if (tcs)
  6429. tx_sets = tcs;
  6430. rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
  6431. if (rc)
  6432. return rc;
  6433. if (max_rx < rx)
  6434. return -ENOMEM;
  6435. tx_rings_needed = tx * tx_sets + tx_xdp;
  6436. if (max_tx < tx_rings_needed)
  6437. return -ENOMEM;
  6438. vnics = 1;
  6439. if (bp->flags & BNXT_FLAG_RFS)
  6440. vnics += rx_rings;
  6441. if (bp->flags & BNXT_FLAG_AGG_RINGS)
  6442. rx_rings <<= 1;
  6443. cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
  6444. if (bp->flags & BNXT_FLAG_NEW_RM)
  6445. cp += bnxt_get_ulp_msix_num(bp);
  6446. return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
  6447. vnics);
  6448. }
  6449. static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
  6450. {
  6451. if (bp->bar2) {
  6452. pci_iounmap(pdev, bp->bar2);
  6453. bp->bar2 = NULL;
  6454. }
  6455. if (bp->bar1) {
  6456. pci_iounmap(pdev, bp->bar1);
  6457. bp->bar1 = NULL;
  6458. }
  6459. if (bp->bar0) {
  6460. pci_iounmap(pdev, bp->bar0);
  6461. bp->bar0 = NULL;
  6462. }
  6463. }
  6464. static void bnxt_cleanup_pci(struct bnxt *bp)
  6465. {
  6466. bnxt_unmap_bars(bp, bp->pdev);
  6467. pci_release_regions(bp->pdev);
  6468. pci_disable_device(bp->pdev);
  6469. }
  6470. static void bnxt_init_dflt_coal(struct bnxt *bp)
  6471. {
  6472. struct bnxt_coal *coal;
  6473. /* Tick values in micro seconds.
  6474. * 1 coal_buf x bufs_per_record = 1 completion record.
  6475. */
  6476. coal = &bp->rx_coal;
  6477. coal->coal_ticks = 14;
  6478. coal->coal_bufs = 30;
  6479. coal->coal_ticks_irq = 1;
  6480. coal->coal_bufs_irq = 2;
  6481. coal->idle_thresh = 50;
  6482. coal->bufs_per_record = 2;
  6483. coal->budget = 64; /* NAPI budget */
  6484. coal = &bp->tx_coal;
  6485. coal->coal_ticks = 28;
  6486. coal->coal_bufs = 30;
  6487. coal->coal_ticks_irq = 2;
  6488. coal->coal_bufs_irq = 2;
  6489. coal->bufs_per_record = 1;
  6490. bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
  6491. }
  6492. static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
  6493. {
  6494. int rc;
  6495. struct bnxt *bp = netdev_priv(dev);
  6496. SET_NETDEV_DEV(dev, &pdev->dev);
  6497. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6498. rc = pci_enable_device(pdev);
  6499. if (rc) {
  6500. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6501. goto init_err;
  6502. }
  6503. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6504. dev_err(&pdev->dev,
  6505. "Cannot find PCI device base address, aborting\n");
  6506. rc = -ENODEV;
  6507. goto init_err_disable;
  6508. }
  6509. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6510. if (rc) {
  6511. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6512. goto init_err_disable;
  6513. }
  6514. if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
  6515. dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
  6516. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6517. goto init_err_disable;
  6518. }
  6519. pci_set_master(pdev);
  6520. bp->dev = dev;
  6521. bp->pdev = pdev;
  6522. bp->bar0 = pci_ioremap_bar(pdev, 0);
  6523. if (!bp->bar0) {
  6524. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  6525. rc = -ENOMEM;
  6526. goto init_err_release;
  6527. }
  6528. bp->bar1 = pci_ioremap_bar(pdev, 2);
  6529. if (!bp->bar1) {
  6530. dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
  6531. rc = -ENOMEM;
  6532. goto init_err_release;
  6533. }
  6534. bp->bar2 = pci_ioremap_bar(pdev, 4);
  6535. if (!bp->bar2) {
  6536. dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
  6537. rc = -ENOMEM;
  6538. goto init_err_release;
  6539. }
  6540. pci_enable_pcie_error_reporting(pdev);
  6541. INIT_WORK(&bp->sp_task, bnxt_sp_task);
  6542. spin_lock_init(&bp->ntp_fltr_lock);
  6543. bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
  6544. bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
  6545. bnxt_init_dflt_coal(bp);
  6546. timer_setup(&bp->timer, bnxt_timer, 0);
  6547. bp->current_interval = BNXT_TIMER_INTERVAL;
  6548. clear_bit(BNXT_STATE_OPEN, &bp->state);
  6549. return 0;
  6550. init_err_release:
  6551. bnxt_unmap_bars(bp, pdev);
  6552. pci_release_regions(pdev);
  6553. init_err_disable:
  6554. pci_disable_device(pdev);
  6555. init_err:
  6556. return rc;
  6557. }
  6558. /* rtnl_lock held */
  6559. static int bnxt_change_mac_addr(struct net_device *dev, void *p)
  6560. {
  6561. struct sockaddr *addr = p;
  6562. struct bnxt *bp = netdev_priv(dev);
  6563. int rc = 0;
  6564. if (!is_valid_ether_addr(addr->sa_data))
  6565. return -EADDRNOTAVAIL;
  6566. if (ether_addr_equal(addr->sa_data, dev->dev_addr))
  6567. return 0;
  6568. rc = bnxt_approve_mac(bp, addr->sa_data);
  6569. if (rc)
  6570. return rc;
  6571. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6572. if (netif_running(dev)) {
  6573. bnxt_close_nic(bp, false, false);
  6574. rc = bnxt_open_nic(bp, false, false);
  6575. }
  6576. return rc;
  6577. }
  6578. /* rtnl_lock held */
  6579. static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
  6580. {
  6581. struct bnxt *bp = netdev_priv(dev);
  6582. if (netif_running(dev))
  6583. bnxt_close_nic(bp, false, false);
  6584. dev->mtu = new_mtu;
  6585. bnxt_set_ring_params(bp);
  6586. if (netif_running(dev))
  6587. return bnxt_open_nic(bp, false, false);
  6588. return 0;
  6589. }
  6590. int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
  6591. {
  6592. struct bnxt *bp = netdev_priv(dev);
  6593. bool sh = false;
  6594. int rc;
  6595. if (tc > bp->max_tc) {
  6596. netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
  6597. tc, bp->max_tc);
  6598. return -EINVAL;
  6599. }
  6600. if (netdev_get_num_tc(dev) == tc)
  6601. return 0;
  6602. if (bp->flags & BNXT_FLAG_SHARED_RINGS)
  6603. sh = true;
  6604. rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
  6605. sh, tc, bp->tx_nr_rings_xdp);
  6606. if (rc)
  6607. return rc;
  6608. /* Needs to close the device and do hw resource re-allocations */
  6609. if (netif_running(bp->dev))
  6610. bnxt_close_nic(bp, true, false);
  6611. if (tc) {
  6612. bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
  6613. netdev_set_num_tc(dev, tc);
  6614. } else {
  6615. bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
  6616. netdev_reset_tc(dev);
  6617. }
  6618. bp->tx_nr_rings += bp->tx_nr_rings_xdp;
  6619. bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
  6620. bp->tx_nr_rings + bp->rx_nr_rings;
  6621. bp->num_stat_ctxs = bp->cp_nr_rings;
  6622. if (netif_running(bp->dev))
  6623. return bnxt_open_nic(bp, true, false);
  6624. return 0;
  6625. }
  6626. static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
  6627. void *cb_priv)
  6628. {
  6629. struct bnxt *bp = cb_priv;
  6630. if (!bnxt_tc_flower_enabled(bp) ||
  6631. !tc_cls_can_offload_and_chain0(bp->dev, type_data))
  6632. return -EOPNOTSUPP;
  6633. switch (type) {
  6634. case TC_SETUP_CLSFLOWER:
  6635. return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
  6636. default:
  6637. return -EOPNOTSUPP;
  6638. }
  6639. }
  6640. static int bnxt_setup_tc_block(struct net_device *dev,
  6641. struct tc_block_offload *f)
  6642. {
  6643. struct bnxt *bp = netdev_priv(dev);
  6644. if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
  6645. return -EOPNOTSUPP;
  6646. switch (f->command) {
  6647. case TC_BLOCK_BIND:
  6648. return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
  6649. bp, bp);
  6650. case TC_BLOCK_UNBIND:
  6651. tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
  6652. return 0;
  6653. default:
  6654. return -EOPNOTSUPP;
  6655. }
  6656. }
  6657. static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
  6658. void *type_data)
  6659. {
  6660. switch (type) {
  6661. case TC_SETUP_BLOCK:
  6662. return bnxt_setup_tc_block(dev, type_data);
  6663. case TC_SETUP_QDISC_MQPRIO: {
  6664. struct tc_mqprio_qopt *mqprio = type_data;
  6665. mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
  6666. return bnxt_setup_mq_tc(dev, mqprio->num_tc);
  6667. }
  6668. default:
  6669. return -EOPNOTSUPP;
  6670. }
  6671. }
  6672. #ifdef CONFIG_RFS_ACCEL
  6673. static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
  6674. struct bnxt_ntuple_filter *f2)
  6675. {
  6676. struct flow_keys *keys1 = &f1->fkeys;
  6677. struct flow_keys *keys2 = &f2->fkeys;
  6678. if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
  6679. keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
  6680. keys1->ports.ports == keys2->ports.ports &&
  6681. keys1->basic.ip_proto == keys2->basic.ip_proto &&
  6682. keys1->basic.n_proto == keys2->basic.n_proto &&
  6683. keys1->control.flags == keys2->control.flags &&
  6684. ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
  6685. ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
  6686. return true;
  6687. return false;
  6688. }
  6689. static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
  6690. u16 rxq_index, u32 flow_id)
  6691. {
  6692. struct bnxt *bp = netdev_priv(dev);
  6693. struct bnxt_ntuple_filter *fltr, *new_fltr;
  6694. struct flow_keys *fkeys;
  6695. struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
  6696. int rc = 0, idx, bit_id, l2_idx = 0;
  6697. struct hlist_head *head;
  6698. if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
  6699. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  6700. int off = 0, j;
  6701. netif_addr_lock_bh(dev);
  6702. for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
  6703. if (ether_addr_equal(eth->h_dest,
  6704. vnic->uc_list + off)) {
  6705. l2_idx = j + 1;
  6706. break;
  6707. }
  6708. }
  6709. netif_addr_unlock_bh(dev);
  6710. if (!l2_idx)
  6711. return -EINVAL;
  6712. }
  6713. new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
  6714. if (!new_fltr)
  6715. return -ENOMEM;
  6716. fkeys = &new_fltr->fkeys;
  6717. if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
  6718. rc = -EPROTONOSUPPORT;
  6719. goto err_free;
  6720. }
  6721. if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
  6722. fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
  6723. ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
  6724. (fkeys->basic.ip_proto != IPPROTO_UDP))) {
  6725. rc = -EPROTONOSUPPORT;
  6726. goto err_free;
  6727. }
  6728. if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
  6729. bp->hwrm_spec_code < 0x10601) {
  6730. rc = -EPROTONOSUPPORT;
  6731. goto err_free;
  6732. }
  6733. if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
  6734. bp->hwrm_spec_code < 0x10601) {
  6735. rc = -EPROTONOSUPPORT;
  6736. goto err_free;
  6737. }
  6738. memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
  6739. memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
  6740. idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
  6741. head = &bp->ntp_fltr_hash_tbl[idx];
  6742. rcu_read_lock();
  6743. hlist_for_each_entry_rcu(fltr, head, hash) {
  6744. if (bnxt_fltr_match(fltr, new_fltr)) {
  6745. rcu_read_unlock();
  6746. rc = 0;
  6747. goto err_free;
  6748. }
  6749. }
  6750. rcu_read_unlock();
  6751. spin_lock_bh(&bp->ntp_fltr_lock);
  6752. bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
  6753. BNXT_NTP_FLTR_MAX_FLTR, 0);
  6754. if (bit_id < 0) {
  6755. spin_unlock_bh(&bp->ntp_fltr_lock);
  6756. rc = -ENOMEM;
  6757. goto err_free;
  6758. }
  6759. new_fltr->sw_id = (u16)bit_id;
  6760. new_fltr->flow_id = flow_id;
  6761. new_fltr->l2_fltr_idx = l2_idx;
  6762. new_fltr->rxq = rxq_index;
  6763. hlist_add_head_rcu(&new_fltr->hash, head);
  6764. bp->ntp_fltr_count++;
  6765. spin_unlock_bh(&bp->ntp_fltr_lock);
  6766. set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
  6767. bnxt_queue_sp_work(bp);
  6768. return new_fltr->sw_id;
  6769. err_free:
  6770. kfree(new_fltr);
  6771. return rc;
  6772. }
  6773. static void bnxt_cfg_ntp_filters(struct bnxt *bp)
  6774. {
  6775. int i;
  6776. for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
  6777. struct hlist_head *head;
  6778. struct hlist_node *tmp;
  6779. struct bnxt_ntuple_filter *fltr;
  6780. int rc;
  6781. head = &bp->ntp_fltr_hash_tbl[i];
  6782. hlist_for_each_entry_safe(fltr, tmp, head, hash) {
  6783. bool del = false;
  6784. if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
  6785. if (rps_may_expire_flow(bp->dev, fltr->rxq,
  6786. fltr->flow_id,
  6787. fltr->sw_id)) {
  6788. bnxt_hwrm_cfa_ntuple_filter_free(bp,
  6789. fltr);
  6790. del = true;
  6791. }
  6792. } else {
  6793. rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
  6794. fltr);
  6795. if (rc)
  6796. del = true;
  6797. else
  6798. set_bit(BNXT_FLTR_VALID, &fltr->state);
  6799. }
  6800. if (del) {
  6801. spin_lock_bh(&bp->ntp_fltr_lock);
  6802. hlist_del_rcu(&fltr->hash);
  6803. bp->ntp_fltr_count--;
  6804. spin_unlock_bh(&bp->ntp_fltr_lock);
  6805. synchronize_rcu();
  6806. clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
  6807. kfree(fltr);
  6808. }
  6809. }
  6810. }
  6811. if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
  6812. netdev_info(bp->dev, "Receive PF driver unload event!");
  6813. }
  6814. #else
  6815. static void bnxt_cfg_ntp_filters(struct bnxt *bp)
  6816. {
  6817. }
  6818. #endif /* CONFIG_RFS_ACCEL */
  6819. static void bnxt_udp_tunnel_add(struct net_device *dev,
  6820. struct udp_tunnel_info *ti)
  6821. {
  6822. struct bnxt *bp = netdev_priv(dev);
  6823. if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
  6824. return;
  6825. if (!netif_running(dev))
  6826. return;
  6827. switch (ti->type) {
  6828. case UDP_TUNNEL_TYPE_VXLAN:
  6829. if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
  6830. return;
  6831. bp->vxlan_port_cnt++;
  6832. if (bp->vxlan_port_cnt == 1) {
  6833. bp->vxlan_port = ti->port;
  6834. set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
  6835. bnxt_queue_sp_work(bp);
  6836. }
  6837. break;
  6838. case UDP_TUNNEL_TYPE_GENEVE:
  6839. if (bp->nge_port_cnt && bp->nge_port != ti->port)
  6840. return;
  6841. bp->nge_port_cnt++;
  6842. if (bp->nge_port_cnt == 1) {
  6843. bp->nge_port = ti->port;
  6844. set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
  6845. }
  6846. break;
  6847. default:
  6848. return;
  6849. }
  6850. bnxt_queue_sp_work(bp);
  6851. }
  6852. static void bnxt_udp_tunnel_del(struct net_device *dev,
  6853. struct udp_tunnel_info *ti)
  6854. {
  6855. struct bnxt *bp = netdev_priv(dev);
  6856. if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
  6857. return;
  6858. if (!netif_running(dev))
  6859. return;
  6860. switch (ti->type) {
  6861. case UDP_TUNNEL_TYPE_VXLAN:
  6862. if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
  6863. return;
  6864. bp->vxlan_port_cnt--;
  6865. if (bp->vxlan_port_cnt != 0)
  6866. return;
  6867. set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
  6868. break;
  6869. case UDP_TUNNEL_TYPE_GENEVE:
  6870. if (!bp->nge_port_cnt || bp->nge_port != ti->port)
  6871. return;
  6872. bp->nge_port_cnt--;
  6873. if (bp->nge_port_cnt != 0)
  6874. return;
  6875. set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
  6876. break;
  6877. default:
  6878. return;
  6879. }
  6880. bnxt_queue_sp_work(bp);
  6881. }
  6882. static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  6883. struct net_device *dev, u32 filter_mask,
  6884. int nlflags)
  6885. {
  6886. struct bnxt *bp = netdev_priv(dev);
  6887. return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
  6888. nlflags, filter_mask, NULL);
  6889. }
  6890. static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
  6891. u16 flags)
  6892. {
  6893. struct bnxt *bp = netdev_priv(dev);
  6894. struct nlattr *attr, *br_spec;
  6895. int rem, rc = 0;
  6896. if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
  6897. return -EOPNOTSUPP;
  6898. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  6899. if (!br_spec)
  6900. return -EINVAL;
  6901. nla_for_each_nested(attr, br_spec, rem) {
  6902. u16 mode;
  6903. if (nla_type(attr) != IFLA_BRIDGE_MODE)
  6904. continue;
  6905. if (nla_len(attr) < sizeof(mode))
  6906. return -EINVAL;
  6907. mode = nla_get_u16(attr);
  6908. if (mode == bp->br_mode)
  6909. break;
  6910. rc = bnxt_hwrm_set_br_mode(bp, mode);
  6911. if (!rc)
  6912. bp->br_mode = mode;
  6913. break;
  6914. }
  6915. return rc;
  6916. }
  6917. static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
  6918. size_t len)
  6919. {
  6920. struct bnxt *bp = netdev_priv(dev);
  6921. int rc;
  6922. /* The PF and it's VF-reps only support the switchdev framework */
  6923. if (!BNXT_PF(bp))
  6924. return -EOPNOTSUPP;
  6925. rc = snprintf(buf, len, "p%d", bp->pf.port_id);
  6926. if (rc >= len)
  6927. return -EOPNOTSUPP;
  6928. return 0;
  6929. }
  6930. int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
  6931. {
  6932. if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
  6933. return -EOPNOTSUPP;
  6934. /* The PF and it's VF-reps only support the switchdev framework */
  6935. if (!BNXT_PF(bp))
  6936. return -EOPNOTSUPP;
  6937. switch (attr->id) {
  6938. case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
  6939. attr->u.ppid.id_len = sizeof(bp->switch_id);
  6940. memcpy(attr->u.ppid.id, bp->switch_id, attr->u.ppid.id_len);
  6941. break;
  6942. default:
  6943. return -EOPNOTSUPP;
  6944. }
  6945. return 0;
  6946. }
  6947. static int bnxt_swdev_port_attr_get(struct net_device *dev,
  6948. struct switchdev_attr *attr)
  6949. {
  6950. return bnxt_port_attr_get(netdev_priv(dev), attr);
  6951. }
  6952. static const struct switchdev_ops bnxt_switchdev_ops = {
  6953. .switchdev_port_attr_get = bnxt_swdev_port_attr_get
  6954. };
  6955. static const struct net_device_ops bnxt_netdev_ops = {
  6956. .ndo_open = bnxt_open,
  6957. .ndo_start_xmit = bnxt_start_xmit,
  6958. .ndo_stop = bnxt_close,
  6959. .ndo_get_stats64 = bnxt_get_stats64,
  6960. .ndo_set_rx_mode = bnxt_set_rx_mode,
  6961. .ndo_do_ioctl = bnxt_ioctl,
  6962. .ndo_validate_addr = eth_validate_addr,
  6963. .ndo_set_mac_address = bnxt_change_mac_addr,
  6964. .ndo_change_mtu = bnxt_change_mtu,
  6965. .ndo_fix_features = bnxt_fix_features,
  6966. .ndo_set_features = bnxt_set_features,
  6967. .ndo_tx_timeout = bnxt_tx_timeout,
  6968. #ifdef CONFIG_BNXT_SRIOV
  6969. .ndo_get_vf_config = bnxt_get_vf_config,
  6970. .ndo_set_vf_mac = bnxt_set_vf_mac,
  6971. .ndo_set_vf_vlan = bnxt_set_vf_vlan,
  6972. .ndo_set_vf_rate = bnxt_set_vf_bw,
  6973. .ndo_set_vf_link_state = bnxt_set_vf_link_state,
  6974. .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
  6975. .ndo_set_vf_trust = bnxt_set_vf_trust,
  6976. #endif
  6977. #ifdef CONFIG_NET_POLL_CONTROLLER
  6978. .ndo_poll_controller = bnxt_poll_controller,
  6979. #endif
  6980. .ndo_setup_tc = bnxt_setup_tc,
  6981. #ifdef CONFIG_RFS_ACCEL
  6982. .ndo_rx_flow_steer = bnxt_rx_flow_steer,
  6983. #endif
  6984. .ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
  6985. .ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
  6986. .ndo_bpf = bnxt_xdp,
  6987. .ndo_bridge_getlink = bnxt_bridge_getlink,
  6988. .ndo_bridge_setlink = bnxt_bridge_setlink,
  6989. .ndo_get_phys_port_name = bnxt_get_phys_port_name
  6990. };
  6991. static void bnxt_remove_one(struct pci_dev *pdev)
  6992. {
  6993. struct net_device *dev = pci_get_drvdata(pdev);
  6994. struct bnxt *bp = netdev_priv(dev);
  6995. if (BNXT_PF(bp)) {
  6996. bnxt_sriov_disable(bp);
  6997. bnxt_dl_unregister(bp);
  6998. }
  6999. pci_disable_pcie_error_reporting(pdev);
  7000. unregister_netdev(dev);
  7001. bnxt_shutdown_tc(bp);
  7002. bnxt_cancel_sp_work(bp);
  7003. bp->sp_event = 0;
  7004. bnxt_clear_int_mode(bp);
  7005. bnxt_hwrm_func_drv_unrgtr(bp);
  7006. bnxt_free_hwrm_resources(bp);
  7007. bnxt_free_hwrm_short_cmd_req(bp);
  7008. bnxt_ethtool_free(bp);
  7009. bnxt_dcb_free(bp);
  7010. kfree(bp->edev);
  7011. bp->edev = NULL;
  7012. bnxt_cleanup_pci(bp);
  7013. free_netdev(dev);
  7014. }
  7015. static int bnxt_probe_phy(struct bnxt *bp)
  7016. {
  7017. int rc = 0;
  7018. struct bnxt_link_info *link_info = &bp->link_info;
  7019. rc = bnxt_hwrm_phy_qcaps(bp);
  7020. if (rc) {
  7021. netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
  7022. rc);
  7023. return rc;
  7024. }
  7025. mutex_init(&bp->link_lock);
  7026. rc = bnxt_update_link(bp, false);
  7027. if (rc) {
  7028. netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
  7029. rc);
  7030. return rc;
  7031. }
  7032. /* Older firmware does not have supported_auto_speeds, so assume
  7033. * that all supported speeds can be autonegotiated.
  7034. */
  7035. if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
  7036. link_info->support_auto_speeds = link_info->support_speeds;
  7037. /*initialize the ethool setting copy with NVM settings */
  7038. if (BNXT_AUTO_MODE(link_info->auto_mode)) {
  7039. link_info->autoneg = BNXT_AUTONEG_SPEED;
  7040. if (bp->hwrm_spec_code >= 0x10201) {
  7041. if (link_info->auto_pause_setting &
  7042. PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
  7043. link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
  7044. } else {
  7045. link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
  7046. }
  7047. link_info->advertising = link_info->auto_link_speeds;
  7048. } else {
  7049. link_info->req_link_speed = link_info->force_link_speed;
  7050. link_info->req_duplex = link_info->duplex_setting;
  7051. }
  7052. if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
  7053. link_info->req_flow_ctrl =
  7054. link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
  7055. else
  7056. link_info->req_flow_ctrl = link_info->force_pause_setting;
  7057. return rc;
  7058. }
  7059. static int bnxt_get_max_irq(struct pci_dev *pdev)
  7060. {
  7061. u16 ctrl;
  7062. if (!pdev->msix_cap)
  7063. return 1;
  7064. pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
  7065. return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
  7066. }
  7067. static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
  7068. int *max_cp)
  7069. {
  7070. struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
  7071. int max_ring_grps = 0;
  7072. *max_tx = hw_resc->max_tx_rings;
  7073. *max_rx = hw_resc->max_rx_rings;
  7074. *max_cp = min_t(int, hw_resc->max_irqs, hw_resc->max_cp_rings);
  7075. *max_cp = min_t(int, *max_cp, hw_resc->max_stat_ctxs);
  7076. max_ring_grps = hw_resc->max_hw_ring_grps;
  7077. if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
  7078. *max_cp -= 1;
  7079. *max_rx -= 2;
  7080. }
  7081. if (bp->flags & BNXT_FLAG_AGG_RINGS)
  7082. *max_rx >>= 1;
  7083. *max_rx = min_t(int, *max_rx, max_ring_grps);
  7084. }
  7085. int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
  7086. {
  7087. int rx, tx, cp;
  7088. _bnxt_get_max_rings(bp, &rx, &tx, &cp);
  7089. if (!rx || !tx || !cp)
  7090. return -ENOMEM;
  7091. *max_rx = rx;
  7092. *max_tx = tx;
  7093. return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
  7094. }
  7095. static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
  7096. bool shared)
  7097. {
  7098. int rc;
  7099. rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
  7100. if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
  7101. /* Not enough rings, try disabling agg rings. */
  7102. bp->flags &= ~BNXT_FLAG_AGG_RINGS;
  7103. rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
  7104. if (rc)
  7105. return rc;
  7106. bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
  7107. bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
  7108. bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
  7109. bnxt_set_ring_params(bp);
  7110. }
  7111. if (bp->flags & BNXT_FLAG_ROCE_CAP) {
  7112. int max_cp, max_stat, max_irq;
  7113. /* Reserve minimum resources for RoCE */
  7114. max_cp = bnxt_get_max_func_cp_rings(bp);
  7115. max_stat = bnxt_get_max_func_stat_ctxs(bp);
  7116. max_irq = bnxt_get_max_func_irqs(bp);
  7117. if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
  7118. max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
  7119. max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
  7120. return 0;
  7121. max_cp -= BNXT_MIN_ROCE_CP_RINGS;
  7122. max_irq -= BNXT_MIN_ROCE_CP_RINGS;
  7123. max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
  7124. max_cp = min_t(int, max_cp, max_irq);
  7125. max_cp = min_t(int, max_cp, max_stat);
  7126. rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
  7127. if (rc)
  7128. rc = 0;
  7129. }
  7130. return rc;
  7131. }
  7132. /* In initial default shared ring setting, each shared ring must have a
  7133. * RX/TX ring pair.
  7134. */
  7135. static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
  7136. {
  7137. bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
  7138. bp->rx_nr_rings = bp->cp_nr_rings;
  7139. bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
  7140. bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
  7141. }
  7142. static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
  7143. {
  7144. int dflt_rings, max_rx_rings, max_tx_rings, rc;
  7145. if (!bnxt_can_reserve_rings(bp))
  7146. return 0;
  7147. if (sh)
  7148. bp->flags |= BNXT_FLAG_SHARED_RINGS;
  7149. dflt_rings = netif_get_num_default_rss_queues();
  7150. /* Reduce default rings on multi-port cards so that total default
  7151. * rings do not exceed CPU count.
  7152. */
  7153. if (bp->port_count > 1) {
  7154. int max_rings =
  7155. max_t(int, num_online_cpus() / bp->port_count, 1);
  7156. dflt_rings = min_t(int, dflt_rings, max_rings);
  7157. }
  7158. rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
  7159. if (rc)
  7160. return rc;
  7161. bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
  7162. bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
  7163. if (sh)
  7164. bnxt_trim_dflt_sh_rings(bp);
  7165. else
  7166. bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
  7167. bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
  7168. rc = __bnxt_reserve_rings(bp);
  7169. if (rc)
  7170. netdev_warn(bp->dev, "Unable to reserve tx rings\n");
  7171. bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
  7172. if (sh)
  7173. bnxt_trim_dflt_sh_rings(bp);
  7174. /* Rings may have been trimmed, re-reserve the trimmed rings. */
  7175. if (bnxt_need_reserve_rings(bp)) {
  7176. rc = __bnxt_reserve_rings(bp);
  7177. if (rc)
  7178. netdev_warn(bp->dev, "2nd rings reservation failed.\n");
  7179. bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
  7180. }
  7181. bp->num_stat_ctxs = bp->cp_nr_rings;
  7182. if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
  7183. bp->rx_nr_rings++;
  7184. bp->cp_nr_rings++;
  7185. }
  7186. return rc;
  7187. }
  7188. static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
  7189. {
  7190. int rc;
  7191. if (bp->tx_nr_rings)
  7192. return 0;
  7193. rc = bnxt_set_dflt_rings(bp, true);
  7194. if (rc) {
  7195. netdev_err(bp->dev, "Not enough rings available.\n");
  7196. return rc;
  7197. }
  7198. rc = bnxt_init_int_mode(bp);
  7199. if (rc)
  7200. return rc;
  7201. bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
  7202. if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
  7203. bp->flags |= BNXT_FLAG_RFS;
  7204. bp->dev->features |= NETIF_F_NTUPLE;
  7205. }
  7206. return 0;
  7207. }
  7208. int bnxt_restore_pf_fw_resources(struct bnxt *bp)
  7209. {
  7210. int rc;
  7211. ASSERT_RTNL();
  7212. bnxt_hwrm_func_qcaps(bp);
  7213. if (netif_running(bp->dev))
  7214. __bnxt_close_nic(bp, true, false);
  7215. bnxt_ulp_irq_stop(bp);
  7216. bnxt_clear_int_mode(bp);
  7217. rc = bnxt_init_int_mode(bp);
  7218. bnxt_ulp_irq_restart(bp, rc);
  7219. if (netif_running(bp->dev)) {
  7220. if (rc)
  7221. dev_close(bp->dev);
  7222. else
  7223. rc = bnxt_open_nic(bp, true, false);
  7224. }
  7225. return rc;
  7226. }
  7227. static int bnxt_init_mac_addr(struct bnxt *bp)
  7228. {
  7229. int rc = 0;
  7230. if (BNXT_PF(bp)) {
  7231. memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
  7232. } else {
  7233. #ifdef CONFIG_BNXT_SRIOV
  7234. struct bnxt_vf_info *vf = &bp->vf;
  7235. if (is_valid_ether_addr(vf->mac_addr)) {
  7236. /* overwrite netdev dev_addr with admin VF MAC */
  7237. memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
  7238. } else {
  7239. eth_hw_addr_random(bp->dev);
  7240. }
  7241. rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
  7242. #endif
  7243. }
  7244. return rc;
  7245. }
  7246. static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  7247. {
  7248. static int version_printed;
  7249. struct net_device *dev;
  7250. struct bnxt *bp;
  7251. int rc, max_irqs;
  7252. if (pci_is_bridge(pdev))
  7253. return -ENODEV;
  7254. if (version_printed++ == 0)
  7255. pr_info("%s", version);
  7256. max_irqs = bnxt_get_max_irq(pdev);
  7257. dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
  7258. if (!dev)
  7259. return -ENOMEM;
  7260. bp = netdev_priv(dev);
  7261. if (bnxt_vf_pciid(ent->driver_data))
  7262. bp->flags |= BNXT_FLAG_VF;
  7263. if (pdev->msix_cap)
  7264. bp->flags |= BNXT_FLAG_MSIX_CAP;
  7265. rc = bnxt_init_board(pdev, dev);
  7266. if (rc < 0)
  7267. goto init_err_free;
  7268. dev->netdev_ops = &bnxt_netdev_ops;
  7269. dev->watchdog_timeo = BNXT_TX_TIMEOUT;
  7270. dev->ethtool_ops = &bnxt_ethtool_ops;
  7271. SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
  7272. pci_set_drvdata(pdev, dev);
  7273. rc = bnxt_alloc_hwrm_resources(bp);
  7274. if (rc)
  7275. goto init_err_pci_clean;
  7276. mutex_init(&bp->hwrm_cmd_lock);
  7277. rc = bnxt_hwrm_ver_get(bp);
  7278. if (rc)
  7279. goto init_err_pci_clean;
  7280. if (bp->flags & BNXT_FLAG_SHORT_CMD) {
  7281. rc = bnxt_alloc_hwrm_short_cmd_req(bp);
  7282. if (rc)
  7283. goto init_err_pci_clean;
  7284. }
  7285. rc = bnxt_hwrm_func_reset(bp);
  7286. if (rc)
  7287. goto init_err_pci_clean;
  7288. bnxt_hwrm_fw_set_time(bp);
  7289. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
  7290. NETIF_F_TSO | NETIF_F_TSO6 |
  7291. NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
  7292. NETIF_F_GSO_IPXIP4 |
  7293. NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
  7294. NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
  7295. NETIF_F_RXCSUM | NETIF_F_GRO;
  7296. if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
  7297. dev->hw_features |= NETIF_F_LRO;
  7298. dev->hw_enc_features =
  7299. NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
  7300. NETIF_F_TSO | NETIF_F_TSO6 |
  7301. NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
  7302. NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
  7303. NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
  7304. dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
  7305. NETIF_F_GSO_GRE_CSUM;
  7306. dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
  7307. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
  7308. NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
  7309. if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
  7310. dev->hw_features |= NETIF_F_GRO_HW;
  7311. dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
  7312. if (dev->features & NETIF_F_GRO_HW)
  7313. dev->features &= ~NETIF_F_LRO;
  7314. dev->priv_flags |= IFF_UNICAST_FLT;
  7315. #ifdef CONFIG_BNXT_SRIOV
  7316. init_waitqueue_head(&bp->sriov_cfg_wait);
  7317. mutex_init(&bp->sriov_lock);
  7318. #endif
  7319. bp->gro_func = bnxt_gro_func_5730x;
  7320. if (BNXT_CHIP_P4_PLUS(bp))
  7321. bp->gro_func = bnxt_gro_func_5731x;
  7322. else
  7323. bp->flags |= BNXT_FLAG_DOUBLE_DB;
  7324. rc = bnxt_hwrm_func_drv_rgtr(bp);
  7325. if (rc)
  7326. goto init_err_pci_clean;
  7327. rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
  7328. if (rc)
  7329. goto init_err_pci_clean;
  7330. bp->ulp_probe = bnxt_ulp_probe;
  7331. /* Get the MAX capabilities for this function */
  7332. rc = bnxt_hwrm_func_qcaps(bp);
  7333. if (rc) {
  7334. netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
  7335. rc);
  7336. rc = -1;
  7337. goto init_err_pci_clean;
  7338. }
  7339. rc = bnxt_init_mac_addr(bp);
  7340. if (rc) {
  7341. dev_err(&pdev->dev, "Unable to initialize mac address.\n");
  7342. rc = -EADDRNOTAVAIL;
  7343. goto init_err_pci_clean;
  7344. }
  7345. rc = bnxt_hwrm_queue_qportcfg(bp);
  7346. if (rc) {
  7347. netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
  7348. rc);
  7349. rc = -1;
  7350. goto init_err_pci_clean;
  7351. }
  7352. bnxt_hwrm_func_qcfg(bp);
  7353. bnxt_hwrm_port_led_qcaps(bp);
  7354. bnxt_ethtool_init(bp);
  7355. bnxt_dcb_init(bp);
  7356. /* MTU range: 60 - FW defined max */
  7357. dev->min_mtu = ETH_ZLEN;
  7358. dev->max_mtu = bp->max_mtu;
  7359. rc = bnxt_probe_phy(bp);
  7360. if (rc)
  7361. goto init_err_pci_clean;
  7362. bnxt_set_rx_skb_mode(bp, false);
  7363. bnxt_set_tpa_flags(bp);
  7364. bnxt_set_ring_params(bp);
  7365. bnxt_set_max_func_irqs(bp, max_irqs);
  7366. rc = bnxt_set_dflt_rings(bp, true);
  7367. if (rc) {
  7368. netdev_err(bp->dev, "Not enough rings available.\n");
  7369. rc = -ENOMEM;
  7370. goto init_err_pci_clean;
  7371. }
  7372. /* Default RSS hash cfg. */
  7373. bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
  7374. VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
  7375. VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
  7376. VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
  7377. if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
  7378. bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
  7379. bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
  7380. VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
  7381. }
  7382. bnxt_hwrm_vnic_qcaps(bp);
  7383. if (bnxt_rfs_supported(bp)) {
  7384. dev->hw_features |= NETIF_F_NTUPLE;
  7385. if (bnxt_rfs_capable(bp)) {
  7386. bp->flags |= BNXT_FLAG_RFS;
  7387. dev->features |= NETIF_F_NTUPLE;
  7388. }
  7389. }
  7390. if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
  7391. bp->flags |= BNXT_FLAG_STRIP_VLAN;
  7392. rc = bnxt_init_int_mode(bp);
  7393. if (rc)
  7394. goto init_err_pci_clean;
  7395. /* No TC has been set yet and rings may have been trimmed due to
  7396. * limited MSIX, so we re-initialize the TX rings per TC.
  7397. */
  7398. bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
  7399. bnxt_get_wol_settings(bp);
  7400. if (bp->flags & BNXT_FLAG_WOL_CAP)
  7401. device_set_wakeup_enable(&pdev->dev, bp->wol);
  7402. else
  7403. device_set_wakeup_capable(&pdev->dev, false);
  7404. bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
  7405. if (BNXT_PF(bp)) {
  7406. if (!bnxt_pf_wq) {
  7407. bnxt_pf_wq =
  7408. create_singlethread_workqueue("bnxt_pf_wq");
  7409. if (!bnxt_pf_wq) {
  7410. dev_err(&pdev->dev, "Unable to create workqueue.\n");
  7411. goto init_err_pci_clean;
  7412. }
  7413. }
  7414. bnxt_init_tc(bp);
  7415. }
  7416. rc = register_netdev(dev);
  7417. if (rc)
  7418. goto init_err_cleanup_tc;
  7419. if (BNXT_PF(bp))
  7420. bnxt_dl_register(bp);
  7421. netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
  7422. board_info[ent->driver_data].name,
  7423. (long)pci_resource_start(pdev, 0), dev->dev_addr);
  7424. pcie_print_link_status(pdev);
  7425. return 0;
  7426. init_err_cleanup_tc:
  7427. bnxt_shutdown_tc(bp);
  7428. bnxt_clear_int_mode(bp);
  7429. init_err_pci_clean:
  7430. bnxt_cleanup_pci(bp);
  7431. init_err_free:
  7432. free_netdev(dev);
  7433. return rc;
  7434. }
  7435. static void bnxt_shutdown(struct pci_dev *pdev)
  7436. {
  7437. struct net_device *dev = pci_get_drvdata(pdev);
  7438. struct bnxt *bp;
  7439. if (!dev)
  7440. return;
  7441. rtnl_lock();
  7442. bp = netdev_priv(dev);
  7443. if (!bp)
  7444. goto shutdown_exit;
  7445. if (netif_running(dev))
  7446. dev_close(dev);
  7447. bnxt_ulp_shutdown(bp);
  7448. if (system_state == SYSTEM_POWER_OFF) {
  7449. bnxt_clear_int_mode(bp);
  7450. pci_wake_from_d3(pdev, bp->wol);
  7451. pci_set_power_state(pdev, PCI_D3hot);
  7452. }
  7453. shutdown_exit:
  7454. rtnl_unlock();
  7455. }
  7456. #ifdef CONFIG_PM_SLEEP
  7457. static int bnxt_suspend(struct device *device)
  7458. {
  7459. struct pci_dev *pdev = to_pci_dev(device);
  7460. struct net_device *dev = pci_get_drvdata(pdev);
  7461. struct bnxt *bp = netdev_priv(dev);
  7462. int rc = 0;
  7463. rtnl_lock();
  7464. if (netif_running(dev)) {
  7465. netif_device_detach(dev);
  7466. rc = bnxt_close(dev);
  7467. }
  7468. bnxt_hwrm_func_drv_unrgtr(bp);
  7469. rtnl_unlock();
  7470. return rc;
  7471. }
  7472. static int bnxt_resume(struct device *device)
  7473. {
  7474. struct pci_dev *pdev = to_pci_dev(device);
  7475. struct net_device *dev = pci_get_drvdata(pdev);
  7476. struct bnxt *bp = netdev_priv(dev);
  7477. int rc = 0;
  7478. rtnl_lock();
  7479. if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
  7480. rc = -ENODEV;
  7481. goto resume_exit;
  7482. }
  7483. rc = bnxt_hwrm_func_reset(bp);
  7484. if (rc) {
  7485. rc = -EBUSY;
  7486. goto resume_exit;
  7487. }
  7488. bnxt_get_wol_settings(bp);
  7489. if (netif_running(dev)) {
  7490. rc = bnxt_open(dev);
  7491. if (!rc)
  7492. netif_device_attach(dev);
  7493. }
  7494. resume_exit:
  7495. rtnl_unlock();
  7496. return rc;
  7497. }
  7498. static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
  7499. #define BNXT_PM_OPS (&bnxt_pm_ops)
  7500. #else
  7501. #define BNXT_PM_OPS NULL
  7502. #endif /* CONFIG_PM_SLEEP */
  7503. /**
  7504. * bnxt_io_error_detected - called when PCI error is detected
  7505. * @pdev: Pointer to PCI device
  7506. * @state: The current pci connection state
  7507. *
  7508. * This function is called after a PCI bus error affecting
  7509. * this device has been detected.
  7510. */
  7511. static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
  7512. pci_channel_state_t state)
  7513. {
  7514. struct net_device *netdev = pci_get_drvdata(pdev);
  7515. struct bnxt *bp = netdev_priv(netdev);
  7516. netdev_info(netdev, "PCI I/O error detected\n");
  7517. rtnl_lock();
  7518. netif_device_detach(netdev);
  7519. bnxt_ulp_stop(bp);
  7520. if (state == pci_channel_io_perm_failure) {
  7521. rtnl_unlock();
  7522. return PCI_ERS_RESULT_DISCONNECT;
  7523. }
  7524. if (netif_running(netdev))
  7525. bnxt_close(netdev);
  7526. pci_disable_device(pdev);
  7527. rtnl_unlock();
  7528. /* Request a slot slot reset. */
  7529. return PCI_ERS_RESULT_NEED_RESET;
  7530. }
  7531. /**
  7532. * bnxt_io_slot_reset - called after the pci bus has been reset.
  7533. * @pdev: Pointer to PCI device
  7534. *
  7535. * Restart the card from scratch, as if from a cold-boot.
  7536. * At this point, the card has exprienced a hard reset,
  7537. * followed by fixups by BIOS, and has its config space
  7538. * set up identically to what it was at cold boot.
  7539. */
  7540. static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
  7541. {
  7542. struct net_device *netdev = pci_get_drvdata(pdev);
  7543. struct bnxt *bp = netdev_priv(netdev);
  7544. int err = 0;
  7545. pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
  7546. netdev_info(bp->dev, "PCI Slot Reset\n");
  7547. rtnl_lock();
  7548. if (pci_enable_device(pdev)) {
  7549. dev_err(&pdev->dev,
  7550. "Cannot re-enable PCI device after reset.\n");
  7551. } else {
  7552. pci_set_master(pdev);
  7553. err = bnxt_hwrm_func_reset(bp);
  7554. if (!err && netif_running(netdev))
  7555. err = bnxt_open(netdev);
  7556. if (!err) {
  7557. result = PCI_ERS_RESULT_RECOVERED;
  7558. bnxt_ulp_start(bp);
  7559. }
  7560. }
  7561. if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
  7562. dev_close(netdev);
  7563. rtnl_unlock();
  7564. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7565. if (err) {
  7566. dev_err(&pdev->dev,
  7567. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7568. err); /* non-fatal, continue */
  7569. }
  7570. return PCI_ERS_RESULT_RECOVERED;
  7571. }
  7572. /**
  7573. * bnxt_io_resume - called when traffic can start flowing again.
  7574. * @pdev: Pointer to PCI device
  7575. *
  7576. * This callback is called when the error recovery driver tells
  7577. * us that its OK to resume normal operation.
  7578. */
  7579. static void bnxt_io_resume(struct pci_dev *pdev)
  7580. {
  7581. struct net_device *netdev = pci_get_drvdata(pdev);
  7582. rtnl_lock();
  7583. netif_device_attach(netdev);
  7584. rtnl_unlock();
  7585. }
  7586. static const struct pci_error_handlers bnxt_err_handler = {
  7587. .error_detected = bnxt_io_error_detected,
  7588. .slot_reset = bnxt_io_slot_reset,
  7589. .resume = bnxt_io_resume
  7590. };
  7591. static struct pci_driver bnxt_pci_driver = {
  7592. .name = DRV_MODULE_NAME,
  7593. .id_table = bnxt_pci_tbl,
  7594. .probe = bnxt_init_one,
  7595. .remove = bnxt_remove_one,
  7596. .shutdown = bnxt_shutdown,
  7597. .driver.pm = BNXT_PM_OPS,
  7598. .err_handler = &bnxt_err_handler,
  7599. #if defined(CONFIG_BNXT_SRIOV)
  7600. .sriov_configure = bnxt_sriov_configure,
  7601. #endif
  7602. };
  7603. static int __init bnxt_init(void)
  7604. {
  7605. bnxt_debug_init();
  7606. return pci_register_driver(&bnxt_pci_driver);
  7607. }
  7608. static void __exit bnxt_exit(void)
  7609. {
  7610. pci_unregister_driver(&bnxt_pci_driver);
  7611. if (bnxt_pf_wq)
  7612. destroy_workqueue(bnxt_pf_wq);
  7613. bnxt_debug_exit();
  7614. }
  7615. module_init(bnxt_init);
  7616. module_exit(bnxt_exit);