cadence-quadspi.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. /*
  2. * Driver for Cadence QSPI Controller
  3. *
  4. * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/err.h>
  24. #include <linux/errno.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/jiffies.h>
  28. #include <linux/kernel.h>
  29. #include <linux/module.h>
  30. #include <linux/mtd/mtd.h>
  31. #include <linux/mtd/partitions.h>
  32. #include <linux/mtd/spi-nor.h>
  33. #include <linux/of_device.h>
  34. #include <linux/of.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/sched.h>
  38. #include <linux/spi/spi.h>
  39. #include <linux/timer.h>
  40. #define CQSPI_NAME "cadence-qspi"
  41. #define CQSPI_MAX_CHIPSELECT 16
  42. /* Quirks */
  43. #define CQSPI_NEEDS_WR_DELAY BIT(0)
  44. struct cqspi_st;
  45. struct cqspi_flash_pdata {
  46. struct spi_nor nor;
  47. struct cqspi_st *cqspi;
  48. u32 clk_rate;
  49. u32 read_delay;
  50. u32 tshsl_ns;
  51. u32 tsd2d_ns;
  52. u32 tchsh_ns;
  53. u32 tslch_ns;
  54. u8 inst_width;
  55. u8 addr_width;
  56. u8 data_width;
  57. u8 cs;
  58. bool registered;
  59. bool use_direct_mode;
  60. };
  61. struct cqspi_st {
  62. struct platform_device *pdev;
  63. struct clk *clk;
  64. unsigned int sclk;
  65. void __iomem *iobase;
  66. void __iomem *ahb_base;
  67. resource_size_t ahb_size;
  68. struct completion transfer_complete;
  69. struct mutex bus_mutex;
  70. struct dma_chan *rx_chan;
  71. struct completion rx_dma_complete;
  72. dma_addr_t mmap_phys_base;
  73. int current_cs;
  74. int current_page_size;
  75. int current_erase_size;
  76. int current_addr_width;
  77. unsigned long master_ref_clk_hz;
  78. bool is_decoded_cs;
  79. u32 fifo_depth;
  80. u32 fifo_width;
  81. bool rclk_en;
  82. u32 trigger_address;
  83. u32 wr_delay;
  84. struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  85. };
  86. /* Operation timeout value */
  87. #define CQSPI_TIMEOUT_MS 500
  88. #define CQSPI_READ_TIMEOUT_MS 10
  89. /* Instruction type */
  90. #define CQSPI_INST_TYPE_SINGLE 0
  91. #define CQSPI_INST_TYPE_DUAL 1
  92. #define CQSPI_INST_TYPE_QUAD 2
  93. #define CQSPI_DUMMY_CLKS_PER_BYTE 8
  94. #define CQSPI_DUMMY_BYTES_MAX 4
  95. #define CQSPI_DUMMY_CLKS_MAX 31
  96. #define CQSPI_STIG_DATA_LEN_MAX 8
  97. /* Register map */
  98. #define CQSPI_REG_CONFIG 0x00
  99. #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
  100. #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
  101. #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
  102. #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
  103. #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
  104. #define CQSPI_REG_CONFIG_BAUD_LSB 19
  105. #define CQSPI_REG_CONFIG_IDLE_LSB 31
  106. #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
  107. #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
  108. #define CQSPI_REG_RD_INSTR 0x04
  109. #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
  110. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
  111. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
  112. #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
  113. #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
  114. #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
  115. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
  116. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
  117. #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
  118. #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
  119. #define CQSPI_REG_WR_INSTR 0x08
  120. #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
  121. #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
  122. #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
  123. #define CQSPI_REG_DELAY 0x0C
  124. #define CQSPI_REG_DELAY_TSLCH_LSB 0
  125. #define CQSPI_REG_DELAY_TCHSH_LSB 8
  126. #define CQSPI_REG_DELAY_TSD2D_LSB 16
  127. #define CQSPI_REG_DELAY_TSHSL_LSB 24
  128. #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
  129. #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
  130. #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
  131. #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
  132. #define CQSPI_REG_READCAPTURE 0x10
  133. #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
  134. #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
  135. #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
  136. #define CQSPI_REG_SIZE 0x14
  137. #define CQSPI_REG_SIZE_ADDRESS_LSB 0
  138. #define CQSPI_REG_SIZE_PAGE_LSB 4
  139. #define CQSPI_REG_SIZE_BLOCK_LSB 16
  140. #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
  141. #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
  142. #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
  143. #define CQSPI_REG_SRAMPARTITION 0x18
  144. #define CQSPI_REG_INDIRECTTRIGGER 0x1C
  145. #define CQSPI_REG_DMA 0x20
  146. #define CQSPI_REG_DMA_SINGLE_LSB 0
  147. #define CQSPI_REG_DMA_BURST_LSB 8
  148. #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
  149. #define CQSPI_REG_DMA_BURST_MASK 0xFF
  150. #define CQSPI_REG_REMAP 0x24
  151. #define CQSPI_REG_MODE_BIT 0x28
  152. #define CQSPI_REG_SDRAMLEVEL 0x2C
  153. #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
  154. #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
  155. #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
  156. #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
  157. #define CQSPI_REG_IRQSTATUS 0x40
  158. #define CQSPI_REG_IRQMASK 0x44
  159. #define CQSPI_REG_INDIRECTRD 0x60
  160. #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
  161. #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
  162. #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
  163. #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
  164. #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
  165. #define CQSPI_REG_INDIRECTRDBYTES 0x6C
  166. #define CQSPI_REG_CMDCTRL 0x90
  167. #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
  168. #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
  169. #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
  170. #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
  171. #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
  172. #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
  173. #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
  174. #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
  175. #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
  176. #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
  177. #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
  178. #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
  179. #define CQSPI_REG_INDIRECTWR 0x70
  180. #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
  181. #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
  182. #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
  183. #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
  184. #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
  185. #define CQSPI_REG_INDIRECTWRBYTES 0x7C
  186. #define CQSPI_REG_CMDADDRESS 0x94
  187. #define CQSPI_REG_CMDREADDATALOWER 0xA0
  188. #define CQSPI_REG_CMDREADDATAUPPER 0xA4
  189. #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
  190. #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
  191. /* Interrupt status bits */
  192. #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
  193. #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
  194. #define CQSPI_REG_IRQ_IND_COMP BIT(2)
  195. #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
  196. #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
  197. #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
  198. #define CQSPI_REG_IRQ_WATERMARK BIT(6)
  199. #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
  200. #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
  201. CQSPI_REG_IRQ_IND_SRAM_FULL | \
  202. CQSPI_REG_IRQ_IND_COMP)
  203. #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
  204. CQSPI_REG_IRQ_WATERMARK | \
  205. CQSPI_REG_IRQ_UNDERFLOW)
  206. #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
  207. static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
  208. {
  209. unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  210. u32 val;
  211. while (1) {
  212. val = readl(reg);
  213. if (clear)
  214. val = ~val;
  215. val &= mask;
  216. if (val == mask)
  217. return 0;
  218. if (time_after(jiffies, end))
  219. return -ETIMEDOUT;
  220. }
  221. }
  222. static bool cqspi_is_idle(struct cqspi_st *cqspi)
  223. {
  224. u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
  225. return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
  226. }
  227. static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
  228. {
  229. u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
  230. reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
  231. return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
  232. }
  233. static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
  234. {
  235. struct cqspi_st *cqspi = dev;
  236. unsigned int irq_status;
  237. /* Read interrupt status */
  238. irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
  239. /* Clear interrupt */
  240. writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
  241. irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
  242. if (irq_status)
  243. complete(&cqspi->transfer_complete);
  244. return IRQ_HANDLED;
  245. }
  246. static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
  247. {
  248. struct cqspi_flash_pdata *f_pdata = nor->priv;
  249. u32 rdreg = 0;
  250. rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
  251. rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
  252. rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
  253. return rdreg;
  254. }
  255. static int cqspi_wait_idle(struct cqspi_st *cqspi)
  256. {
  257. const unsigned int poll_idle_retry = 3;
  258. unsigned int count = 0;
  259. unsigned long timeout;
  260. timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  261. while (1) {
  262. /*
  263. * Read few times in succession to ensure the controller
  264. * is indeed idle, that is, the bit does not transition
  265. * low again.
  266. */
  267. if (cqspi_is_idle(cqspi))
  268. count++;
  269. else
  270. count = 0;
  271. if (count >= poll_idle_retry)
  272. return 0;
  273. if (time_after(jiffies, timeout)) {
  274. /* Timeout, in busy mode. */
  275. dev_err(&cqspi->pdev->dev,
  276. "QSPI is still busy after %dms timeout.\n",
  277. CQSPI_TIMEOUT_MS);
  278. return -ETIMEDOUT;
  279. }
  280. cpu_relax();
  281. }
  282. }
  283. static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
  284. {
  285. void __iomem *reg_base = cqspi->iobase;
  286. int ret;
  287. /* Write the CMDCTRL without start execution. */
  288. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  289. /* Start execute */
  290. reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
  291. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  292. /* Polling for completion. */
  293. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
  294. CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
  295. if (ret) {
  296. dev_err(&cqspi->pdev->dev,
  297. "Flash command execution timed out.\n");
  298. return ret;
  299. }
  300. /* Polling QSPI idle status. */
  301. return cqspi_wait_idle(cqspi);
  302. }
  303. static int cqspi_command_read(struct spi_nor *nor,
  304. const u8 *txbuf, const unsigned n_tx,
  305. u8 *rxbuf, const unsigned n_rx)
  306. {
  307. struct cqspi_flash_pdata *f_pdata = nor->priv;
  308. struct cqspi_st *cqspi = f_pdata->cqspi;
  309. void __iomem *reg_base = cqspi->iobase;
  310. unsigned int rdreg;
  311. unsigned int reg;
  312. unsigned int read_len;
  313. int status;
  314. if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
  315. dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
  316. n_rx, rxbuf);
  317. return -EINVAL;
  318. }
  319. reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  320. rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
  321. writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
  322. reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
  323. /* 0 means 1 byte. */
  324. reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
  325. << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
  326. status = cqspi_exec_flash_cmd(cqspi, reg);
  327. if (status)
  328. return status;
  329. reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
  330. /* Put the read value into rx_buf */
  331. read_len = (n_rx > 4) ? 4 : n_rx;
  332. memcpy(rxbuf, &reg, read_len);
  333. rxbuf += read_len;
  334. if (n_rx > 4) {
  335. reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
  336. read_len = n_rx - read_len;
  337. memcpy(rxbuf, &reg, read_len);
  338. }
  339. return 0;
  340. }
  341. static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
  342. const u8 *txbuf, const unsigned n_tx)
  343. {
  344. struct cqspi_flash_pdata *f_pdata = nor->priv;
  345. struct cqspi_st *cqspi = f_pdata->cqspi;
  346. void __iomem *reg_base = cqspi->iobase;
  347. unsigned int reg;
  348. unsigned int data;
  349. int ret;
  350. if (n_tx > 4 || (n_tx && !txbuf)) {
  351. dev_err(nor->dev,
  352. "Invalid input argument, cmdlen %d txbuf 0x%p\n",
  353. n_tx, txbuf);
  354. return -EINVAL;
  355. }
  356. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  357. if (n_tx) {
  358. reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
  359. reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
  360. << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
  361. data = 0;
  362. memcpy(&data, txbuf, n_tx);
  363. writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
  364. }
  365. ret = cqspi_exec_flash_cmd(cqspi, reg);
  366. return ret;
  367. }
  368. static int cqspi_command_write_addr(struct spi_nor *nor,
  369. const u8 opcode, const unsigned int addr)
  370. {
  371. struct cqspi_flash_pdata *f_pdata = nor->priv;
  372. struct cqspi_st *cqspi = f_pdata->cqspi;
  373. void __iomem *reg_base = cqspi->iobase;
  374. unsigned int reg;
  375. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  376. reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
  377. reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
  378. << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
  379. writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
  380. return cqspi_exec_flash_cmd(cqspi, reg);
  381. }
  382. static int cqspi_read_setup(struct spi_nor *nor)
  383. {
  384. struct cqspi_flash_pdata *f_pdata = nor->priv;
  385. struct cqspi_st *cqspi = f_pdata->cqspi;
  386. void __iomem *reg_base = cqspi->iobase;
  387. unsigned int dummy_clk = 0;
  388. unsigned int reg;
  389. reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
  390. reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
  391. /* Setup dummy clock cycles */
  392. dummy_clk = nor->read_dummy;
  393. if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
  394. dummy_clk = CQSPI_DUMMY_CLKS_MAX;
  395. if (dummy_clk / 8) {
  396. reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
  397. /* Set mode bits high to ensure chip doesn't enter XIP */
  398. writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
  399. /* Need to subtract the mode byte (8 clocks). */
  400. if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
  401. dummy_clk -= 8;
  402. if (dummy_clk)
  403. reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
  404. << CQSPI_REG_RD_INSTR_DUMMY_LSB;
  405. }
  406. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  407. /* Set address width */
  408. reg = readl(reg_base + CQSPI_REG_SIZE);
  409. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  410. reg |= (nor->addr_width - 1);
  411. writel(reg, reg_base + CQSPI_REG_SIZE);
  412. return 0;
  413. }
  414. static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
  415. loff_t from_addr, const size_t n_rx)
  416. {
  417. struct cqspi_flash_pdata *f_pdata = nor->priv;
  418. struct cqspi_st *cqspi = f_pdata->cqspi;
  419. void __iomem *reg_base = cqspi->iobase;
  420. void __iomem *ahb_base = cqspi->ahb_base;
  421. unsigned int remaining = n_rx;
  422. unsigned int mod_bytes = n_rx % 4;
  423. unsigned int bytes_to_read = 0;
  424. u8 *rxbuf_end = rxbuf + n_rx;
  425. int ret = 0;
  426. writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
  427. writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
  428. /* Clear all interrupts. */
  429. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  430. writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
  431. reinit_completion(&cqspi->transfer_complete);
  432. writel(CQSPI_REG_INDIRECTRD_START_MASK,
  433. reg_base + CQSPI_REG_INDIRECTRD);
  434. while (remaining > 0) {
  435. ret = wait_for_completion_timeout(&cqspi->transfer_complete,
  436. msecs_to_jiffies
  437. (CQSPI_READ_TIMEOUT_MS));
  438. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  439. if (!ret && bytes_to_read == 0) {
  440. dev_err(nor->dev, "Indirect read timeout, no bytes\n");
  441. ret = -ETIMEDOUT;
  442. goto failrd;
  443. }
  444. while (bytes_to_read != 0) {
  445. unsigned int word_remain = round_down(remaining, 4);
  446. bytes_to_read *= cqspi->fifo_width;
  447. bytes_to_read = bytes_to_read > remaining ?
  448. remaining : bytes_to_read;
  449. bytes_to_read = round_down(bytes_to_read, 4);
  450. /* Read 4 byte word chunks then single bytes */
  451. if (bytes_to_read) {
  452. ioread32_rep(ahb_base, rxbuf,
  453. (bytes_to_read / 4));
  454. } else if (!word_remain && mod_bytes) {
  455. unsigned int temp = ioread32(ahb_base);
  456. bytes_to_read = mod_bytes;
  457. memcpy(rxbuf, &temp, min((unsigned int)
  458. (rxbuf_end - rxbuf),
  459. bytes_to_read));
  460. }
  461. rxbuf += bytes_to_read;
  462. remaining -= bytes_to_read;
  463. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  464. }
  465. if (remaining > 0)
  466. reinit_completion(&cqspi->transfer_complete);
  467. }
  468. /* Check indirect done status */
  469. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
  470. CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
  471. if (ret) {
  472. dev_err(nor->dev,
  473. "Indirect read completion error (%i)\n", ret);
  474. goto failrd;
  475. }
  476. /* Disable interrupt */
  477. writel(0, reg_base + CQSPI_REG_IRQMASK);
  478. /* Clear indirect completion status */
  479. writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
  480. return 0;
  481. failrd:
  482. /* Disable interrupt */
  483. writel(0, reg_base + CQSPI_REG_IRQMASK);
  484. /* Cancel the indirect read */
  485. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  486. reg_base + CQSPI_REG_INDIRECTRD);
  487. return ret;
  488. }
  489. static int cqspi_write_setup(struct spi_nor *nor)
  490. {
  491. unsigned int reg;
  492. struct cqspi_flash_pdata *f_pdata = nor->priv;
  493. struct cqspi_st *cqspi = f_pdata->cqspi;
  494. void __iomem *reg_base = cqspi->iobase;
  495. /* Set opcode. */
  496. reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
  497. writel(reg, reg_base + CQSPI_REG_WR_INSTR);
  498. reg = cqspi_calc_rdreg(nor, nor->program_opcode);
  499. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  500. reg = readl(reg_base + CQSPI_REG_SIZE);
  501. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  502. reg |= (nor->addr_width - 1);
  503. writel(reg, reg_base + CQSPI_REG_SIZE);
  504. return 0;
  505. }
  506. static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
  507. const u8 *txbuf, const size_t n_tx)
  508. {
  509. const unsigned int page_size = nor->page_size;
  510. struct cqspi_flash_pdata *f_pdata = nor->priv;
  511. struct cqspi_st *cqspi = f_pdata->cqspi;
  512. void __iomem *reg_base = cqspi->iobase;
  513. unsigned int remaining = n_tx;
  514. unsigned int write_bytes;
  515. int ret;
  516. writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
  517. writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
  518. /* Clear all interrupts. */
  519. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  520. writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
  521. reinit_completion(&cqspi->transfer_complete);
  522. writel(CQSPI_REG_INDIRECTWR_START_MASK,
  523. reg_base + CQSPI_REG_INDIRECTWR);
  524. /*
  525. * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
  526. * Controller programming sequence, couple of cycles of
  527. * QSPI_REF_CLK delay is required for the above bit to
  528. * be internally synchronized by the QSPI module. Provide 5
  529. * cycles of delay.
  530. */
  531. if (cqspi->wr_delay)
  532. ndelay(cqspi->wr_delay);
  533. while (remaining > 0) {
  534. write_bytes = remaining > page_size ? page_size : remaining;
  535. iowrite32_rep(cqspi->ahb_base, txbuf,
  536. DIV_ROUND_UP(write_bytes, 4));
  537. ret = wait_for_completion_timeout(&cqspi->transfer_complete,
  538. msecs_to_jiffies
  539. (CQSPI_TIMEOUT_MS));
  540. if (!ret) {
  541. dev_err(nor->dev, "Indirect write timeout\n");
  542. ret = -ETIMEDOUT;
  543. goto failwr;
  544. }
  545. txbuf += write_bytes;
  546. remaining -= write_bytes;
  547. if (remaining > 0)
  548. reinit_completion(&cqspi->transfer_complete);
  549. }
  550. /* Check indirect done status */
  551. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
  552. CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
  553. if (ret) {
  554. dev_err(nor->dev,
  555. "Indirect write completion error (%i)\n", ret);
  556. goto failwr;
  557. }
  558. /* Disable interrupt. */
  559. writel(0, reg_base + CQSPI_REG_IRQMASK);
  560. /* Clear indirect completion status */
  561. writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
  562. cqspi_wait_idle(cqspi);
  563. return 0;
  564. failwr:
  565. /* Disable interrupt. */
  566. writel(0, reg_base + CQSPI_REG_IRQMASK);
  567. /* Cancel the indirect write */
  568. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  569. reg_base + CQSPI_REG_INDIRECTWR);
  570. return ret;
  571. }
  572. static void cqspi_chipselect(struct spi_nor *nor)
  573. {
  574. struct cqspi_flash_pdata *f_pdata = nor->priv;
  575. struct cqspi_st *cqspi = f_pdata->cqspi;
  576. void __iomem *reg_base = cqspi->iobase;
  577. unsigned int chip_select = f_pdata->cs;
  578. unsigned int reg;
  579. reg = readl(reg_base + CQSPI_REG_CONFIG);
  580. if (cqspi->is_decoded_cs) {
  581. reg |= CQSPI_REG_CONFIG_DECODE_MASK;
  582. } else {
  583. reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
  584. /* Convert CS if without decoder.
  585. * CS0 to 4b'1110
  586. * CS1 to 4b'1101
  587. * CS2 to 4b'1011
  588. * CS3 to 4b'0111
  589. */
  590. chip_select = 0xF & ~(1 << chip_select);
  591. }
  592. reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
  593. << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
  594. reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
  595. << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
  596. writel(reg, reg_base + CQSPI_REG_CONFIG);
  597. }
  598. static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
  599. {
  600. struct cqspi_flash_pdata *f_pdata = nor->priv;
  601. struct cqspi_st *cqspi = f_pdata->cqspi;
  602. void __iomem *iobase = cqspi->iobase;
  603. unsigned int reg;
  604. /* configure page size and block size. */
  605. reg = readl(iobase + CQSPI_REG_SIZE);
  606. reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
  607. reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
  608. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  609. reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
  610. reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
  611. reg |= (nor->addr_width - 1);
  612. writel(reg, iobase + CQSPI_REG_SIZE);
  613. /* configure the chip select */
  614. cqspi_chipselect(nor);
  615. /* Store the new configuration of the controller */
  616. cqspi->current_page_size = nor->page_size;
  617. cqspi->current_erase_size = nor->mtd.erasesize;
  618. cqspi->current_addr_width = nor->addr_width;
  619. }
  620. static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
  621. const unsigned int ns_val)
  622. {
  623. unsigned int ticks;
  624. ticks = ref_clk_hz / 1000; /* kHz */
  625. ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
  626. return ticks;
  627. }
  628. static void cqspi_delay(struct spi_nor *nor)
  629. {
  630. struct cqspi_flash_pdata *f_pdata = nor->priv;
  631. struct cqspi_st *cqspi = f_pdata->cqspi;
  632. void __iomem *iobase = cqspi->iobase;
  633. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  634. unsigned int tshsl, tchsh, tslch, tsd2d;
  635. unsigned int reg;
  636. unsigned int tsclk;
  637. /* calculate the number of ref ticks for one sclk tick */
  638. tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
  639. tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
  640. /* this particular value must be at least one sclk */
  641. if (tshsl < tsclk)
  642. tshsl = tsclk;
  643. tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
  644. tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
  645. tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
  646. reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
  647. << CQSPI_REG_DELAY_TSHSL_LSB;
  648. reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
  649. << CQSPI_REG_DELAY_TCHSH_LSB;
  650. reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
  651. << CQSPI_REG_DELAY_TSLCH_LSB;
  652. reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
  653. << CQSPI_REG_DELAY_TSD2D_LSB;
  654. writel(reg, iobase + CQSPI_REG_DELAY);
  655. }
  656. static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
  657. {
  658. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  659. void __iomem *reg_base = cqspi->iobase;
  660. u32 reg, div;
  661. /* Recalculate the baudrate divisor based on QSPI specification. */
  662. div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
  663. reg = readl(reg_base + CQSPI_REG_CONFIG);
  664. reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
  665. reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
  666. writel(reg, reg_base + CQSPI_REG_CONFIG);
  667. }
  668. static void cqspi_readdata_capture(struct cqspi_st *cqspi,
  669. const bool bypass,
  670. const unsigned int delay)
  671. {
  672. void __iomem *reg_base = cqspi->iobase;
  673. unsigned int reg;
  674. reg = readl(reg_base + CQSPI_REG_READCAPTURE);
  675. if (bypass)
  676. reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  677. else
  678. reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  679. reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
  680. << CQSPI_REG_READCAPTURE_DELAY_LSB);
  681. reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
  682. << CQSPI_REG_READCAPTURE_DELAY_LSB;
  683. writel(reg, reg_base + CQSPI_REG_READCAPTURE);
  684. }
  685. static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
  686. {
  687. void __iomem *reg_base = cqspi->iobase;
  688. unsigned int reg;
  689. reg = readl(reg_base + CQSPI_REG_CONFIG);
  690. if (enable)
  691. reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
  692. else
  693. reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
  694. writel(reg, reg_base + CQSPI_REG_CONFIG);
  695. }
  696. static void cqspi_configure(struct spi_nor *nor)
  697. {
  698. struct cqspi_flash_pdata *f_pdata = nor->priv;
  699. struct cqspi_st *cqspi = f_pdata->cqspi;
  700. const unsigned int sclk = f_pdata->clk_rate;
  701. int switch_cs = (cqspi->current_cs != f_pdata->cs);
  702. int switch_ck = (cqspi->sclk != sclk);
  703. if ((cqspi->current_page_size != nor->page_size) ||
  704. (cqspi->current_erase_size != nor->mtd.erasesize) ||
  705. (cqspi->current_addr_width != nor->addr_width))
  706. switch_cs = 1;
  707. if (switch_cs || switch_ck)
  708. cqspi_controller_enable(cqspi, 0);
  709. /* Switch chip select. */
  710. if (switch_cs) {
  711. cqspi->current_cs = f_pdata->cs;
  712. cqspi_configure_cs_and_sizes(nor);
  713. }
  714. /* Setup baudrate divisor and delays */
  715. if (switch_ck) {
  716. cqspi->sclk = sclk;
  717. cqspi_config_baudrate_div(cqspi);
  718. cqspi_delay(nor);
  719. cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
  720. f_pdata->read_delay);
  721. }
  722. if (switch_cs || switch_ck)
  723. cqspi_controller_enable(cqspi, 1);
  724. }
  725. static int cqspi_set_protocol(struct spi_nor *nor, const int read)
  726. {
  727. struct cqspi_flash_pdata *f_pdata = nor->priv;
  728. f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
  729. f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
  730. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  731. if (read) {
  732. switch (nor->read_proto) {
  733. case SNOR_PROTO_1_1_1:
  734. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  735. break;
  736. case SNOR_PROTO_1_1_2:
  737. f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
  738. break;
  739. case SNOR_PROTO_1_1_4:
  740. f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
  741. break;
  742. default:
  743. return -EINVAL;
  744. }
  745. }
  746. cqspi_configure(nor);
  747. return 0;
  748. }
  749. static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
  750. size_t len, const u_char *buf)
  751. {
  752. struct cqspi_flash_pdata *f_pdata = nor->priv;
  753. struct cqspi_st *cqspi = f_pdata->cqspi;
  754. int ret;
  755. ret = cqspi_set_protocol(nor, 0);
  756. if (ret)
  757. return ret;
  758. ret = cqspi_write_setup(nor);
  759. if (ret)
  760. return ret;
  761. if (f_pdata->use_direct_mode)
  762. memcpy_toio(cqspi->ahb_base + to, buf, len);
  763. else
  764. ret = cqspi_indirect_write_execute(nor, to, buf, len);
  765. if (ret)
  766. return ret;
  767. return len;
  768. }
  769. static void cqspi_rx_dma_callback(void *param)
  770. {
  771. struct cqspi_st *cqspi = param;
  772. complete(&cqspi->rx_dma_complete);
  773. }
  774. static int cqspi_direct_read_execute(struct spi_nor *nor, u_char *buf,
  775. loff_t from, size_t len)
  776. {
  777. struct cqspi_flash_pdata *f_pdata = nor->priv;
  778. struct cqspi_st *cqspi = f_pdata->cqspi;
  779. enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  780. dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
  781. int ret = 0;
  782. struct dma_async_tx_descriptor *tx;
  783. dma_cookie_t cookie;
  784. dma_addr_t dma_dst;
  785. if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
  786. memcpy_fromio(buf, cqspi->ahb_base + from, len);
  787. return 0;
  788. }
  789. dma_dst = dma_map_single(nor->dev, buf, len, DMA_DEV_TO_MEM);
  790. if (dma_mapping_error(nor->dev, dma_dst)) {
  791. dev_err(nor->dev, "dma mapping failed\n");
  792. return -ENOMEM;
  793. }
  794. tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
  795. len, flags);
  796. if (!tx) {
  797. dev_err(nor->dev, "device_prep_dma_memcpy error\n");
  798. ret = -EIO;
  799. goto err_unmap;
  800. }
  801. tx->callback = cqspi_rx_dma_callback;
  802. tx->callback_param = cqspi;
  803. cookie = tx->tx_submit(tx);
  804. reinit_completion(&cqspi->rx_dma_complete);
  805. ret = dma_submit_error(cookie);
  806. if (ret) {
  807. dev_err(nor->dev, "dma_submit_error %d\n", cookie);
  808. ret = -EIO;
  809. goto err_unmap;
  810. }
  811. dma_async_issue_pending(cqspi->rx_chan);
  812. ret = wait_for_completion_timeout(&cqspi->rx_dma_complete,
  813. msecs_to_jiffies(len));
  814. if (ret <= 0) {
  815. dmaengine_terminate_sync(cqspi->rx_chan);
  816. dev_err(nor->dev, "DMA wait_for_completion_timeout\n");
  817. ret = -ETIMEDOUT;
  818. goto err_unmap;
  819. }
  820. err_unmap:
  821. dma_unmap_single(nor->dev, dma_dst, len, DMA_DEV_TO_MEM);
  822. return 0;
  823. }
  824. static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
  825. size_t len, u_char *buf)
  826. {
  827. struct cqspi_flash_pdata *f_pdata = nor->priv;
  828. int ret;
  829. ret = cqspi_set_protocol(nor, 1);
  830. if (ret)
  831. return ret;
  832. ret = cqspi_read_setup(nor);
  833. if (ret)
  834. return ret;
  835. if (f_pdata->use_direct_mode)
  836. ret = cqspi_direct_read_execute(nor, buf, from, len);
  837. else
  838. ret = cqspi_indirect_read_execute(nor, buf, from, len);
  839. if (ret)
  840. return ret;
  841. return len;
  842. }
  843. static int cqspi_erase(struct spi_nor *nor, loff_t offs)
  844. {
  845. int ret;
  846. ret = cqspi_set_protocol(nor, 0);
  847. if (ret)
  848. return ret;
  849. /* Send write enable, then erase commands. */
  850. ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
  851. if (ret)
  852. return ret;
  853. /* Set up command buffer. */
  854. ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
  855. if (ret)
  856. return ret;
  857. return 0;
  858. }
  859. static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  860. {
  861. struct cqspi_flash_pdata *f_pdata = nor->priv;
  862. struct cqspi_st *cqspi = f_pdata->cqspi;
  863. mutex_lock(&cqspi->bus_mutex);
  864. return 0;
  865. }
  866. static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  867. {
  868. struct cqspi_flash_pdata *f_pdata = nor->priv;
  869. struct cqspi_st *cqspi = f_pdata->cqspi;
  870. mutex_unlock(&cqspi->bus_mutex);
  871. }
  872. static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  873. {
  874. int ret;
  875. ret = cqspi_set_protocol(nor, 0);
  876. if (!ret)
  877. ret = cqspi_command_read(nor, &opcode, 1, buf, len);
  878. return ret;
  879. }
  880. static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  881. {
  882. int ret;
  883. ret = cqspi_set_protocol(nor, 0);
  884. if (!ret)
  885. ret = cqspi_command_write(nor, opcode, buf, len);
  886. return ret;
  887. }
  888. static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
  889. struct cqspi_flash_pdata *f_pdata,
  890. struct device_node *np)
  891. {
  892. if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
  893. dev_err(&pdev->dev, "couldn't determine read-delay\n");
  894. return -ENXIO;
  895. }
  896. if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
  897. dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
  898. return -ENXIO;
  899. }
  900. if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
  901. dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
  902. return -ENXIO;
  903. }
  904. if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
  905. dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
  906. return -ENXIO;
  907. }
  908. if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
  909. dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
  910. return -ENXIO;
  911. }
  912. if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
  913. dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
  914. return -ENXIO;
  915. }
  916. return 0;
  917. }
  918. static int cqspi_of_get_pdata(struct platform_device *pdev)
  919. {
  920. struct device_node *np = pdev->dev.of_node;
  921. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  922. cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
  923. if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
  924. dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
  925. return -ENXIO;
  926. }
  927. if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
  928. dev_err(&pdev->dev, "couldn't determine fifo-width\n");
  929. return -ENXIO;
  930. }
  931. if (of_property_read_u32(np, "cdns,trigger-address",
  932. &cqspi->trigger_address)) {
  933. dev_err(&pdev->dev, "couldn't determine trigger-address\n");
  934. return -ENXIO;
  935. }
  936. cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
  937. return 0;
  938. }
  939. static void cqspi_controller_init(struct cqspi_st *cqspi)
  940. {
  941. u32 reg;
  942. cqspi_controller_enable(cqspi, 0);
  943. /* Configure the remap address register, no remap */
  944. writel(0, cqspi->iobase + CQSPI_REG_REMAP);
  945. /* Disable all interrupts. */
  946. writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
  947. /* Configure the SRAM split to 1:1 . */
  948. writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
  949. /* Load indirect trigger address. */
  950. writel(cqspi->trigger_address,
  951. cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
  952. /* Program read watermark -- 1/2 of the FIFO. */
  953. writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
  954. cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
  955. /* Program write watermark -- 1/8 of the FIFO. */
  956. writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
  957. cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
  958. /* Enable Direct Access Controller */
  959. reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
  960. reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
  961. writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
  962. cqspi_controller_enable(cqspi, 1);
  963. }
  964. static void cqspi_request_mmap_dma(struct cqspi_st *cqspi)
  965. {
  966. dma_cap_mask_t mask;
  967. dma_cap_zero(mask);
  968. dma_cap_set(DMA_MEMCPY, mask);
  969. cqspi->rx_chan = dma_request_chan_by_mask(&mask);
  970. if (IS_ERR(cqspi->rx_chan)) {
  971. dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
  972. cqspi->rx_chan = NULL;
  973. }
  974. init_completion(&cqspi->rx_dma_complete);
  975. }
  976. static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
  977. {
  978. const struct spi_nor_hwcaps hwcaps = {
  979. .mask = SNOR_HWCAPS_READ |
  980. SNOR_HWCAPS_READ_FAST |
  981. SNOR_HWCAPS_READ_1_1_2 |
  982. SNOR_HWCAPS_READ_1_1_4 |
  983. SNOR_HWCAPS_PP,
  984. };
  985. struct platform_device *pdev = cqspi->pdev;
  986. struct device *dev = &pdev->dev;
  987. struct cqspi_flash_pdata *f_pdata;
  988. struct spi_nor *nor;
  989. struct mtd_info *mtd;
  990. unsigned int cs;
  991. int i, ret;
  992. /* Get flash device data */
  993. for_each_available_child_of_node(dev->of_node, np) {
  994. ret = of_property_read_u32(np, "reg", &cs);
  995. if (ret) {
  996. dev_err(dev, "Couldn't determine chip select.\n");
  997. goto err;
  998. }
  999. if (cs >= CQSPI_MAX_CHIPSELECT) {
  1000. ret = -EINVAL;
  1001. dev_err(dev, "Chip select %d out of range.\n", cs);
  1002. goto err;
  1003. }
  1004. f_pdata = &cqspi->f_pdata[cs];
  1005. f_pdata->cqspi = cqspi;
  1006. f_pdata->cs = cs;
  1007. ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
  1008. if (ret)
  1009. goto err;
  1010. nor = &f_pdata->nor;
  1011. mtd = &nor->mtd;
  1012. mtd->priv = nor;
  1013. nor->dev = dev;
  1014. spi_nor_set_flash_node(nor, np);
  1015. nor->priv = f_pdata;
  1016. nor->read_reg = cqspi_read_reg;
  1017. nor->write_reg = cqspi_write_reg;
  1018. nor->read = cqspi_read;
  1019. nor->write = cqspi_write;
  1020. nor->erase = cqspi_erase;
  1021. nor->prepare = cqspi_prep;
  1022. nor->unprepare = cqspi_unprep;
  1023. mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
  1024. dev_name(dev), cs);
  1025. if (!mtd->name) {
  1026. ret = -ENOMEM;
  1027. goto err;
  1028. }
  1029. ret = spi_nor_scan(nor, NULL, &hwcaps);
  1030. if (ret)
  1031. goto err;
  1032. ret = mtd_device_register(mtd, NULL, 0);
  1033. if (ret)
  1034. goto err;
  1035. f_pdata->registered = true;
  1036. if (mtd->size <= cqspi->ahb_size) {
  1037. f_pdata->use_direct_mode = true;
  1038. dev_dbg(nor->dev, "using direct mode for %s\n",
  1039. mtd->name);
  1040. if (!cqspi->rx_chan)
  1041. cqspi_request_mmap_dma(cqspi);
  1042. }
  1043. }
  1044. return 0;
  1045. err:
  1046. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  1047. if (cqspi->f_pdata[i].registered)
  1048. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  1049. return ret;
  1050. }
  1051. static int cqspi_probe(struct platform_device *pdev)
  1052. {
  1053. struct device_node *np = pdev->dev.of_node;
  1054. struct device *dev = &pdev->dev;
  1055. struct cqspi_st *cqspi;
  1056. struct resource *res;
  1057. struct resource *res_ahb;
  1058. unsigned long data;
  1059. int ret;
  1060. int irq;
  1061. cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
  1062. if (!cqspi)
  1063. return -ENOMEM;
  1064. mutex_init(&cqspi->bus_mutex);
  1065. cqspi->pdev = pdev;
  1066. platform_set_drvdata(pdev, cqspi);
  1067. /* Obtain configuration from OF. */
  1068. ret = cqspi_of_get_pdata(pdev);
  1069. if (ret) {
  1070. dev_err(dev, "Cannot get mandatory OF data.\n");
  1071. return -ENODEV;
  1072. }
  1073. /* Obtain QSPI clock. */
  1074. cqspi->clk = devm_clk_get(dev, NULL);
  1075. if (IS_ERR(cqspi->clk)) {
  1076. dev_err(dev, "Cannot claim QSPI clock.\n");
  1077. return PTR_ERR(cqspi->clk);
  1078. }
  1079. /* Obtain and remap controller address. */
  1080. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1081. cqspi->iobase = devm_ioremap_resource(dev, res);
  1082. if (IS_ERR(cqspi->iobase)) {
  1083. dev_err(dev, "Cannot remap controller address.\n");
  1084. return PTR_ERR(cqspi->iobase);
  1085. }
  1086. /* Obtain and remap AHB address. */
  1087. res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1088. cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
  1089. if (IS_ERR(cqspi->ahb_base)) {
  1090. dev_err(dev, "Cannot remap AHB address.\n");
  1091. return PTR_ERR(cqspi->ahb_base);
  1092. }
  1093. cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
  1094. cqspi->ahb_size = resource_size(res_ahb);
  1095. init_completion(&cqspi->transfer_complete);
  1096. /* Obtain IRQ line. */
  1097. irq = platform_get_irq(pdev, 0);
  1098. if (irq < 0) {
  1099. dev_err(dev, "Cannot obtain IRQ.\n");
  1100. return -ENXIO;
  1101. }
  1102. pm_runtime_enable(dev);
  1103. ret = pm_runtime_get_sync(dev);
  1104. if (ret < 0) {
  1105. pm_runtime_put_noidle(dev);
  1106. return ret;
  1107. }
  1108. ret = clk_prepare_enable(cqspi->clk);
  1109. if (ret) {
  1110. dev_err(dev, "Cannot enable QSPI clock.\n");
  1111. goto probe_clk_failed;
  1112. }
  1113. cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
  1114. data = (unsigned long)of_device_get_match_data(dev);
  1115. if (data & CQSPI_NEEDS_WR_DELAY)
  1116. cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
  1117. cqspi->master_ref_clk_hz);
  1118. ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
  1119. pdev->name, cqspi);
  1120. if (ret) {
  1121. dev_err(dev, "Cannot request IRQ.\n");
  1122. goto probe_irq_failed;
  1123. }
  1124. cqspi_wait_idle(cqspi);
  1125. cqspi_controller_init(cqspi);
  1126. cqspi->current_cs = -1;
  1127. cqspi->sclk = 0;
  1128. ret = cqspi_setup_flash(cqspi, np);
  1129. if (ret) {
  1130. dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
  1131. goto probe_setup_failed;
  1132. }
  1133. return ret;
  1134. probe_setup_failed:
  1135. cqspi_controller_enable(cqspi, 0);
  1136. probe_irq_failed:
  1137. clk_disable_unprepare(cqspi->clk);
  1138. probe_clk_failed:
  1139. pm_runtime_put_sync(dev);
  1140. pm_runtime_disable(dev);
  1141. return ret;
  1142. }
  1143. static int cqspi_remove(struct platform_device *pdev)
  1144. {
  1145. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  1146. int i;
  1147. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  1148. if (cqspi->f_pdata[i].registered)
  1149. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  1150. cqspi_controller_enable(cqspi, 0);
  1151. if (cqspi->rx_chan)
  1152. dma_release_channel(cqspi->rx_chan);
  1153. clk_disable_unprepare(cqspi->clk);
  1154. pm_runtime_put_sync(&pdev->dev);
  1155. pm_runtime_disable(&pdev->dev);
  1156. return 0;
  1157. }
  1158. #ifdef CONFIG_PM_SLEEP
  1159. static int cqspi_suspend(struct device *dev)
  1160. {
  1161. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1162. cqspi_controller_enable(cqspi, 0);
  1163. return 0;
  1164. }
  1165. static int cqspi_resume(struct device *dev)
  1166. {
  1167. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1168. cqspi_controller_enable(cqspi, 1);
  1169. return 0;
  1170. }
  1171. static const struct dev_pm_ops cqspi__dev_pm_ops = {
  1172. .suspend = cqspi_suspend,
  1173. .resume = cqspi_resume,
  1174. };
  1175. #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
  1176. #else
  1177. #define CQSPI_DEV_PM_OPS NULL
  1178. #endif
  1179. static const struct of_device_id cqspi_dt_ids[] = {
  1180. {
  1181. .compatible = "cdns,qspi-nor",
  1182. .data = (void *)0,
  1183. },
  1184. {
  1185. .compatible = "ti,k2g-qspi",
  1186. .data = (void *)CQSPI_NEEDS_WR_DELAY,
  1187. },
  1188. { /* end of table */ }
  1189. };
  1190. MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
  1191. static struct platform_driver cqspi_platform_driver = {
  1192. .probe = cqspi_probe,
  1193. .remove = cqspi_remove,
  1194. .driver = {
  1195. .name = CQSPI_NAME,
  1196. .pm = CQSPI_DEV_PM_OPS,
  1197. .of_match_table = cqspi_dt_ids,
  1198. },
  1199. };
  1200. module_platform_driver(cqspi_platform_driver);
  1201. MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
  1202. MODULE_LICENSE("GPL v2");
  1203. MODULE_ALIAS("platform:" CQSPI_NAME);
  1204. MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
  1205. MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");