davinci_nand.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. /*
  2. * davinci_nand.c - NAND Flash Driver for DaVinci family chips
  3. *
  4. * Copyright © 2006 Texas Instruments.
  5. *
  6. * Port to 2.6.23 Copyright © 2008 by:
  7. * Sander Huijsen <Shuijsen@optelecom-nkf.com>
  8. * Troy Kisky <troy.kisky@boundarydevices.com>
  9. * Dirk Behme <Dirk.Behme@gmail.com>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/err.h>
  29. #include <linux/io.h>
  30. #include <linux/mtd/rawnand.h>
  31. #include <linux/mtd/partitions.h>
  32. #include <linux/slab.h>
  33. #include <linux/of_device.h>
  34. #include <linux/of.h>
  35. #include <linux/platform_data/mtd-davinci.h>
  36. #include <linux/platform_data/mtd-davinci-aemif.h>
  37. /*
  38. * This is a device driver for the NAND flash controller found on the
  39. * various DaVinci family chips. It handles up to four SoC chipselects,
  40. * and some flavors of secondary chipselect (e.g. based on A12) as used
  41. * with multichip packages.
  42. *
  43. * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
  44. * available on chips like the DM355 and OMAP-L137 and needed with the
  45. * more error-prone MLC NAND chips.
  46. *
  47. * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
  48. * outputs in a "wire-AND" configuration, with no per-chip signals.
  49. */
  50. struct davinci_nand_info {
  51. struct nand_chip chip;
  52. struct device *dev;
  53. bool is_readmode;
  54. void __iomem *base;
  55. void __iomem *vaddr;
  56. uint32_t ioaddr;
  57. uint32_t current_cs;
  58. uint32_t mask_chipsel;
  59. uint32_t mask_ale;
  60. uint32_t mask_cle;
  61. uint32_t core_chipsel;
  62. struct davinci_aemif_timing *timing;
  63. };
  64. static DEFINE_SPINLOCK(davinci_nand_lock);
  65. static bool ecc4_busy;
  66. static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
  67. {
  68. return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
  69. }
  70. static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
  71. int offset)
  72. {
  73. return __raw_readl(info->base + offset);
  74. }
  75. static inline void davinci_nand_writel(struct davinci_nand_info *info,
  76. int offset, unsigned long value)
  77. {
  78. __raw_writel(value, info->base + offset);
  79. }
  80. /*----------------------------------------------------------------------*/
  81. /*
  82. * Access to hardware control lines: ALE, CLE, secondary chipselect.
  83. */
  84. static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
  85. unsigned int ctrl)
  86. {
  87. struct davinci_nand_info *info = to_davinci_nand(mtd);
  88. uint32_t addr = info->current_cs;
  89. struct nand_chip *nand = mtd_to_nand(mtd);
  90. /* Did the control lines change? */
  91. if (ctrl & NAND_CTRL_CHANGE) {
  92. if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
  93. addr |= info->mask_cle;
  94. else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
  95. addr |= info->mask_ale;
  96. nand->IO_ADDR_W = (void __iomem __force *)addr;
  97. }
  98. if (cmd != NAND_CMD_NONE)
  99. iowrite8(cmd, nand->IO_ADDR_W);
  100. }
  101. static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
  102. {
  103. struct davinci_nand_info *info = to_davinci_nand(mtd);
  104. uint32_t addr = info->ioaddr;
  105. /* maybe kick in a second chipselect */
  106. if (chip > 0)
  107. addr |= info->mask_chipsel;
  108. info->current_cs = addr;
  109. info->chip.IO_ADDR_W = (void __iomem __force *)addr;
  110. info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
  111. }
  112. /*----------------------------------------------------------------------*/
  113. /*
  114. * 1-bit hardware ECC ... context maintained for each core chipselect
  115. */
  116. static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
  117. {
  118. struct davinci_nand_info *info = to_davinci_nand(mtd);
  119. return davinci_nand_readl(info, NANDF1ECC_OFFSET
  120. + 4 * info->core_chipsel);
  121. }
  122. static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
  123. {
  124. struct davinci_nand_info *info;
  125. uint32_t nandcfr;
  126. unsigned long flags;
  127. info = to_davinci_nand(mtd);
  128. /* Reset ECC hardware */
  129. nand_davinci_readecc_1bit(mtd);
  130. spin_lock_irqsave(&davinci_nand_lock, flags);
  131. /* Restart ECC hardware */
  132. nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
  133. nandcfr |= BIT(8 + info->core_chipsel);
  134. davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
  135. spin_unlock_irqrestore(&davinci_nand_lock, flags);
  136. }
  137. /*
  138. * Read hardware ECC value and pack into three bytes
  139. */
  140. static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
  141. const u_char *dat, u_char *ecc_code)
  142. {
  143. unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
  144. unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
  145. /* invert so that erased block ecc is correct */
  146. ecc24 = ~ecc24;
  147. ecc_code[0] = (u_char)(ecc24);
  148. ecc_code[1] = (u_char)(ecc24 >> 8);
  149. ecc_code[2] = (u_char)(ecc24 >> 16);
  150. return 0;
  151. }
  152. static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
  153. u_char *read_ecc, u_char *calc_ecc)
  154. {
  155. struct nand_chip *chip = mtd_to_nand(mtd);
  156. uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
  157. (read_ecc[2] << 16);
  158. uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
  159. (calc_ecc[2] << 16);
  160. uint32_t diff = eccCalc ^ eccNand;
  161. if (diff) {
  162. if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
  163. /* Correctable error */
  164. if ((diff >> (12 + 3)) < chip->ecc.size) {
  165. dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
  166. return 1;
  167. } else {
  168. return -EBADMSG;
  169. }
  170. } else if (!(diff & (diff - 1))) {
  171. /* Single bit ECC error in the ECC itself,
  172. * nothing to fix */
  173. return 1;
  174. } else {
  175. /* Uncorrectable error */
  176. return -EBADMSG;
  177. }
  178. }
  179. return 0;
  180. }
  181. /*----------------------------------------------------------------------*/
  182. /*
  183. * 4-bit hardware ECC ... context maintained over entire AEMIF
  184. *
  185. * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
  186. * since that forces use of a problematic "infix OOB" layout.
  187. * Among other things, it trashes manufacturer bad block markers.
  188. * Also, and specific to this hardware, it ECC-protects the "prepad"
  189. * in the OOB ... while having ECC protection for parts of OOB would
  190. * seem useful, the current MTD stack sometimes wants to update the
  191. * OOB without recomputing ECC.
  192. */
  193. static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
  194. {
  195. struct davinci_nand_info *info = to_davinci_nand(mtd);
  196. unsigned long flags;
  197. u32 val;
  198. /* Reset ECC hardware */
  199. davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
  200. spin_lock_irqsave(&davinci_nand_lock, flags);
  201. /* Start 4-bit ECC calculation for read/write */
  202. val = davinci_nand_readl(info, NANDFCR_OFFSET);
  203. val &= ~(0x03 << 4);
  204. val |= (info->core_chipsel << 4) | BIT(12);
  205. davinci_nand_writel(info, NANDFCR_OFFSET, val);
  206. info->is_readmode = (mode == NAND_ECC_READ);
  207. spin_unlock_irqrestore(&davinci_nand_lock, flags);
  208. }
  209. /* Read raw ECC code after writing to NAND. */
  210. static void
  211. nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
  212. {
  213. const u32 mask = 0x03ff03ff;
  214. code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
  215. code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
  216. code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
  217. code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
  218. }
  219. /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
  220. static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
  221. const u_char *dat, u_char *ecc_code)
  222. {
  223. struct davinci_nand_info *info = to_davinci_nand(mtd);
  224. u32 raw_ecc[4], *p;
  225. unsigned i;
  226. /* After a read, terminate ECC calculation by a dummy read
  227. * of some 4-bit ECC register. ECC covers everything that
  228. * was read; correct() just uses the hardware state, so
  229. * ecc_code is not needed.
  230. */
  231. if (info->is_readmode) {
  232. davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
  233. return 0;
  234. }
  235. /* Pack eight raw 10-bit ecc values into ten bytes, making
  236. * two passes which each convert four values (in upper and
  237. * lower halves of two 32-bit words) into five bytes. The
  238. * ROM boot loader uses this same packing scheme.
  239. */
  240. nand_davinci_readecc_4bit(info, raw_ecc);
  241. for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
  242. *ecc_code++ = p[0] & 0xff;
  243. *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
  244. *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
  245. *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
  246. *ecc_code++ = (p[1] >> 18) & 0xff;
  247. }
  248. return 0;
  249. }
  250. /* Correct up to 4 bits in data we just read, using state left in the
  251. * hardware plus the ecc_code computed when it was first written.
  252. */
  253. static int nand_davinci_correct_4bit(struct mtd_info *mtd,
  254. u_char *data, u_char *ecc_code, u_char *null)
  255. {
  256. int i;
  257. struct davinci_nand_info *info = to_davinci_nand(mtd);
  258. unsigned short ecc10[8];
  259. unsigned short *ecc16;
  260. u32 syndrome[4];
  261. u32 ecc_state;
  262. unsigned num_errors, corrected;
  263. unsigned long timeo;
  264. /* Unpack ten bytes into eight 10 bit values. We know we're
  265. * little-endian, and use type punning for less shifting/masking.
  266. */
  267. if (WARN_ON(0x01 & (unsigned) ecc_code))
  268. return -EINVAL;
  269. ecc16 = (unsigned short *)ecc_code;
  270. ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
  271. ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
  272. ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
  273. ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
  274. ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
  275. ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
  276. ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
  277. ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
  278. /* Tell ECC controller about the expected ECC codes. */
  279. for (i = 7; i >= 0; i--)
  280. davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
  281. /* Allow time for syndrome calculation ... then read it.
  282. * A syndrome of all zeroes 0 means no detected errors.
  283. */
  284. davinci_nand_readl(info, NANDFSR_OFFSET);
  285. nand_davinci_readecc_4bit(info, syndrome);
  286. if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
  287. return 0;
  288. /*
  289. * Clear any previous address calculation by doing a dummy read of an
  290. * error address register.
  291. */
  292. davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
  293. /* Start address calculation, and wait for it to complete.
  294. * We _could_ start reading more data while this is working,
  295. * to speed up the overall page read.
  296. */
  297. davinci_nand_writel(info, NANDFCR_OFFSET,
  298. davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
  299. /*
  300. * ECC_STATE field reads 0x3 (Error correction complete) immediately
  301. * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
  302. * begin trying to poll for the state, you may fall right out of your
  303. * loop without any of the correction calculations having taken place.
  304. * The recommendation from the hardware team is to initially delay as
  305. * long as ECC_STATE reads less than 4. After that, ECC HW has entered
  306. * correction state.
  307. */
  308. timeo = jiffies + usecs_to_jiffies(100);
  309. do {
  310. ecc_state = (davinci_nand_readl(info,
  311. NANDFSR_OFFSET) >> 8) & 0x0f;
  312. cpu_relax();
  313. } while ((ecc_state < 4) && time_before(jiffies, timeo));
  314. for (;;) {
  315. u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
  316. switch ((fsr >> 8) & 0x0f) {
  317. case 0: /* no error, should not happen */
  318. davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
  319. return 0;
  320. case 1: /* five or more errors detected */
  321. davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
  322. return -EBADMSG;
  323. case 2: /* error addresses computed */
  324. case 3:
  325. num_errors = 1 + ((fsr >> 16) & 0x03);
  326. goto correct;
  327. default: /* still working on it */
  328. cpu_relax();
  329. continue;
  330. }
  331. }
  332. correct:
  333. /* correct each error */
  334. for (i = 0, corrected = 0; i < num_errors; i++) {
  335. int error_address, error_value;
  336. if (i > 1) {
  337. error_address = davinci_nand_readl(info,
  338. NAND_ERR_ADD2_OFFSET);
  339. error_value = davinci_nand_readl(info,
  340. NAND_ERR_ERRVAL2_OFFSET);
  341. } else {
  342. error_address = davinci_nand_readl(info,
  343. NAND_ERR_ADD1_OFFSET);
  344. error_value = davinci_nand_readl(info,
  345. NAND_ERR_ERRVAL1_OFFSET);
  346. }
  347. if (i & 1) {
  348. error_address >>= 16;
  349. error_value >>= 16;
  350. }
  351. error_address &= 0x3ff;
  352. error_address = (512 + 7) - error_address;
  353. if (error_address < 512) {
  354. data[error_address] ^= error_value;
  355. corrected++;
  356. }
  357. }
  358. return corrected;
  359. }
  360. /*----------------------------------------------------------------------*/
  361. /*
  362. * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
  363. * how these chips are normally wired. This translates to both 8 and 16
  364. * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
  365. *
  366. * For now we assume that configuration, or any other one which ignores
  367. * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
  368. * and have that transparently morphed into multiple NAND operations.
  369. */
  370. static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  371. {
  372. struct nand_chip *chip = mtd_to_nand(mtd);
  373. if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
  374. ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
  375. else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
  376. ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
  377. else
  378. ioread8_rep(chip->IO_ADDR_R, buf, len);
  379. }
  380. static void nand_davinci_write_buf(struct mtd_info *mtd,
  381. const uint8_t *buf, int len)
  382. {
  383. struct nand_chip *chip = mtd_to_nand(mtd);
  384. if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
  385. iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
  386. else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
  387. iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
  388. else
  389. iowrite8_rep(chip->IO_ADDR_R, buf, len);
  390. }
  391. /*
  392. * Check hardware register for wait status. Returns 1 if device is ready,
  393. * 0 if it is still busy.
  394. */
  395. static int nand_davinci_dev_ready(struct mtd_info *mtd)
  396. {
  397. struct davinci_nand_info *info = to_davinci_nand(mtd);
  398. return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
  399. }
  400. /*----------------------------------------------------------------------*/
  401. /* An ECC layout for using 4-bit ECC with small-page flash, storing
  402. * ten ECC bytes plus the manufacturer's bad block marker byte, and
  403. * and not overlapping the default BBT markers.
  404. */
  405. static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
  406. struct mtd_oob_region *oobregion)
  407. {
  408. if (section > 2)
  409. return -ERANGE;
  410. if (!section) {
  411. oobregion->offset = 0;
  412. oobregion->length = 5;
  413. } else if (section == 1) {
  414. oobregion->offset = 6;
  415. oobregion->length = 2;
  416. } else {
  417. oobregion->offset = 13;
  418. oobregion->length = 3;
  419. }
  420. return 0;
  421. }
  422. static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
  423. struct mtd_oob_region *oobregion)
  424. {
  425. if (section > 1)
  426. return -ERANGE;
  427. if (!section) {
  428. oobregion->offset = 8;
  429. oobregion->length = 5;
  430. } else {
  431. oobregion->offset = 16;
  432. oobregion->length = mtd->oobsize - 16;
  433. }
  434. return 0;
  435. }
  436. static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
  437. .ecc = hwecc4_ooblayout_small_ecc,
  438. .free = hwecc4_ooblayout_small_free,
  439. };
  440. #if defined(CONFIG_OF)
  441. static const struct of_device_id davinci_nand_of_match[] = {
  442. {.compatible = "ti,davinci-nand", },
  443. {.compatible = "ti,keystone-nand", },
  444. {},
  445. };
  446. MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
  447. static struct davinci_nand_pdata
  448. *nand_davinci_get_pdata(struct platform_device *pdev)
  449. {
  450. if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
  451. struct davinci_nand_pdata *pdata;
  452. const char *mode;
  453. u32 prop;
  454. pdata = devm_kzalloc(&pdev->dev,
  455. sizeof(struct davinci_nand_pdata),
  456. GFP_KERNEL);
  457. pdev->dev.platform_data = pdata;
  458. if (!pdata)
  459. return ERR_PTR(-ENOMEM);
  460. if (!of_property_read_u32(pdev->dev.of_node,
  461. "ti,davinci-chipselect", &prop))
  462. pdata->core_chipsel = prop;
  463. else
  464. return ERR_PTR(-EINVAL);
  465. if (!of_property_read_u32(pdev->dev.of_node,
  466. "ti,davinci-mask-ale", &prop))
  467. pdata->mask_ale = prop;
  468. if (!of_property_read_u32(pdev->dev.of_node,
  469. "ti,davinci-mask-cle", &prop))
  470. pdata->mask_cle = prop;
  471. if (!of_property_read_u32(pdev->dev.of_node,
  472. "ti,davinci-mask-chipsel", &prop))
  473. pdata->mask_chipsel = prop;
  474. if (!of_property_read_string(pdev->dev.of_node,
  475. "ti,davinci-ecc-mode", &mode)) {
  476. if (!strncmp("none", mode, 4))
  477. pdata->ecc_mode = NAND_ECC_NONE;
  478. if (!strncmp("soft", mode, 4))
  479. pdata->ecc_mode = NAND_ECC_SOFT;
  480. if (!strncmp("hw", mode, 2))
  481. pdata->ecc_mode = NAND_ECC_HW;
  482. }
  483. if (!of_property_read_u32(pdev->dev.of_node,
  484. "ti,davinci-ecc-bits", &prop))
  485. pdata->ecc_bits = prop;
  486. if (!of_property_read_u32(pdev->dev.of_node,
  487. "ti,davinci-nand-buswidth", &prop) && prop == 16)
  488. pdata->options |= NAND_BUSWIDTH_16;
  489. if (of_property_read_bool(pdev->dev.of_node,
  490. "ti,davinci-nand-use-bbt"))
  491. pdata->bbt_options = NAND_BBT_USE_FLASH;
  492. /*
  493. * Since kernel v4.8, this driver has been fixed to enable
  494. * use of 4-bit hardware ECC with subpages and verified on
  495. * TI's keystone EVMs (K2L, K2HK and K2E).
  496. * However, in the interest of not breaking systems using
  497. * existing UBI partitions, sub-page writes are not being
  498. * (re)enabled. If you want to use subpage writes on Keystone
  499. * platforms (i.e. do not have any existing UBI partitions),
  500. * then use "ti,davinci-nand" as the compatible in your
  501. * device-tree file.
  502. */
  503. if (of_device_is_compatible(pdev->dev.of_node,
  504. "ti,keystone-nand")) {
  505. pdata->options |= NAND_NO_SUBPAGE_WRITE;
  506. }
  507. }
  508. return dev_get_platdata(&pdev->dev);
  509. }
  510. #else
  511. static struct davinci_nand_pdata
  512. *nand_davinci_get_pdata(struct platform_device *pdev)
  513. {
  514. return dev_get_platdata(&pdev->dev);
  515. }
  516. #endif
  517. static int nand_davinci_probe(struct platform_device *pdev)
  518. {
  519. struct davinci_nand_pdata *pdata;
  520. struct davinci_nand_info *info;
  521. struct resource *res1;
  522. struct resource *res2;
  523. void __iomem *vaddr;
  524. void __iomem *base;
  525. int ret;
  526. uint32_t val;
  527. struct mtd_info *mtd;
  528. pdata = nand_davinci_get_pdata(pdev);
  529. if (IS_ERR(pdata))
  530. return PTR_ERR(pdata);
  531. /* insist on board-specific configuration */
  532. if (!pdata)
  533. return -ENODEV;
  534. /* which external chipselect will we be managing? */
  535. if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
  536. return -ENODEV;
  537. info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
  538. if (!info)
  539. return -ENOMEM;
  540. platform_set_drvdata(pdev, info);
  541. res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  542. res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  543. if (!res1 || !res2) {
  544. dev_err(&pdev->dev, "resource missing\n");
  545. return -EINVAL;
  546. }
  547. vaddr = devm_ioremap_resource(&pdev->dev, res1);
  548. if (IS_ERR(vaddr))
  549. return PTR_ERR(vaddr);
  550. /*
  551. * This registers range is used to setup NAND settings. In case with
  552. * TI AEMIF driver, the same memory address range is requested already
  553. * by AEMIF, so we cannot request it twice, just ioremap.
  554. * The AEMIF and NAND drivers not use the same registers in this range.
  555. */
  556. base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
  557. if (!base) {
  558. dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
  559. return -EADDRNOTAVAIL;
  560. }
  561. info->dev = &pdev->dev;
  562. info->base = base;
  563. info->vaddr = vaddr;
  564. mtd = nand_to_mtd(&info->chip);
  565. mtd->dev.parent = &pdev->dev;
  566. nand_set_flash_node(&info->chip, pdev->dev.of_node);
  567. info->chip.IO_ADDR_R = vaddr;
  568. info->chip.IO_ADDR_W = vaddr;
  569. info->chip.chip_delay = 0;
  570. info->chip.select_chip = nand_davinci_select_chip;
  571. /* options such as NAND_BBT_USE_FLASH */
  572. info->chip.bbt_options = pdata->bbt_options;
  573. /* options such as 16-bit widths */
  574. info->chip.options = pdata->options;
  575. info->chip.bbt_td = pdata->bbt_td;
  576. info->chip.bbt_md = pdata->bbt_md;
  577. info->timing = pdata->timing;
  578. info->ioaddr = (uint32_t __force) vaddr;
  579. info->current_cs = info->ioaddr;
  580. info->core_chipsel = pdata->core_chipsel;
  581. info->mask_chipsel = pdata->mask_chipsel;
  582. /* use nandboot-capable ALE/CLE masks by default */
  583. info->mask_ale = pdata->mask_ale ? : MASK_ALE;
  584. info->mask_cle = pdata->mask_cle ? : MASK_CLE;
  585. /* Set address of hardware control function */
  586. info->chip.cmd_ctrl = nand_davinci_hwcontrol;
  587. info->chip.dev_ready = nand_davinci_dev_ready;
  588. /* Speed up buffer I/O */
  589. info->chip.read_buf = nand_davinci_read_buf;
  590. info->chip.write_buf = nand_davinci_write_buf;
  591. /* Use board-specific ECC config */
  592. info->chip.ecc.mode = pdata->ecc_mode;
  593. spin_lock_irq(&davinci_nand_lock);
  594. /* put CSxNAND into NAND mode */
  595. val = davinci_nand_readl(info, NANDFCR_OFFSET);
  596. val |= BIT(info->core_chipsel);
  597. davinci_nand_writel(info, NANDFCR_OFFSET, val);
  598. spin_unlock_irq(&davinci_nand_lock);
  599. /* Scan to find existence of the device(s) */
  600. ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL);
  601. if (ret < 0) {
  602. dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
  603. return ret;
  604. }
  605. switch (info->chip.ecc.mode) {
  606. case NAND_ECC_NONE:
  607. pdata->ecc_bits = 0;
  608. break;
  609. case NAND_ECC_SOFT:
  610. pdata->ecc_bits = 0;
  611. /*
  612. * This driver expects Hamming based ECC when ecc_mode is set
  613. * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
  614. * avoid adding an extra ->ecc_algo field to
  615. * davinci_nand_pdata.
  616. */
  617. info->chip.ecc.algo = NAND_ECC_HAMMING;
  618. break;
  619. case NAND_ECC_HW:
  620. if (pdata->ecc_bits == 4) {
  621. /* No sanity checks: CPUs must support this,
  622. * and the chips may not use NAND_BUSWIDTH_16.
  623. */
  624. /* No sharing 4-bit hardware between chipselects yet */
  625. spin_lock_irq(&davinci_nand_lock);
  626. if (ecc4_busy)
  627. ret = -EBUSY;
  628. else
  629. ecc4_busy = true;
  630. spin_unlock_irq(&davinci_nand_lock);
  631. if (ret == -EBUSY)
  632. return ret;
  633. info->chip.ecc.calculate = nand_davinci_calculate_4bit;
  634. info->chip.ecc.correct = nand_davinci_correct_4bit;
  635. info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
  636. info->chip.ecc.bytes = 10;
  637. info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
  638. info->chip.ecc.algo = NAND_ECC_BCH;
  639. } else {
  640. /* 1bit ecc hamming */
  641. info->chip.ecc.calculate = nand_davinci_calculate_1bit;
  642. info->chip.ecc.correct = nand_davinci_correct_1bit;
  643. info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
  644. info->chip.ecc.bytes = 3;
  645. info->chip.ecc.algo = NAND_ECC_HAMMING;
  646. }
  647. info->chip.ecc.size = 512;
  648. info->chip.ecc.strength = pdata->ecc_bits;
  649. break;
  650. default:
  651. return -EINVAL;
  652. }
  653. /* Update ECC layout if needed ... for 1-bit HW ECC, the default
  654. * is OK, but it allocates 6 bytes when only 3 are needed (for
  655. * each 512 bytes). For the 4-bit HW ECC, that default is not
  656. * usable: 10 bytes are needed, not 6.
  657. */
  658. if (pdata->ecc_bits == 4) {
  659. int chunks = mtd->writesize / 512;
  660. if (!chunks || mtd->oobsize < 16) {
  661. dev_dbg(&pdev->dev, "too small\n");
  662. ret = -EINVAL;
  663. goto err;
  664. }
  665. /* For small page chips, preserve the manufacturer's
  666. * badblock marking data ... and make sure a flash BBT
  667. * table marker fits in the free bytes.
  668. */
  669. if (chunks == 1) {
  670. mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
  671. } else if (chunks == 4 || chunks == 8) {
  672. mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
  673. info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
  674. } else {
  675. ret = -EIO;
  676. goto err;
  677. }
  678. }
  679. ret = nand_scan_tail(mtd);
  680. if (ret < 0)
  681. goto err;
  682. if (pdata->parts)
  683. ret = mtd_device_parse_register(mtd, NULL, NULL,
  684. pdata->parts, pdata->nr_parts);
  685. else
  686. ret = mtd_device_register(mtd, NULL, 0);
  687. if (ret < 0)
  688. goto err_cleanup_nand;
  689. val = davinci_nand_readl(info, NRCSR_OFFSET);
  690. dev_info(&pdev->dev, "controller rev. %d.%d\n",
  691. (val >> 8) & 0xff, val & 0xff);
  692. return 0;
  693. err_cleanup_nand:
  694. nand_cleanup(&info->chip);
  695. err:
  696. spin_lock_irq(&davinci_nand_lock);
  697. if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
  698. ecc4_busy = false;
  699. spin_unlock_irq(&davinci_nand_lock);
  700. return ret;
  701. }
  702. static int nand_davinci_remove(struct platform_device *pdev)
  703. {
  704. struct davinci_nand_info *info = platform_get_drvdata(pdev);
  705. spin_lock_irq(&davinci_nand_lock);
  706. if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
  707. ecc4_busy = false;
  708. spin_unlock_irq(&davinci_nand_lock);
  709. nand_release(nand_to_mtd(&info->chip));
  710. return 0;
  711. }
  712. static struct platform_driver nand_davinci_driver = {
  713. .probe = nand_davinci_probe,
  714. .remove = nand_davinci_remove,
  715. .driver = {
  716. .name = "davinci_nand",
  717. .of_match_table = of_match_ptr(davinci_nand_of_match),
  718. },
  719. };
  720. MODULE_ALIAS("platform:davinci_nand");
  721. module_platform_driver(nand_davinci_driver);
  722. MODULE_LICENSE("GPL");
  723. MODULE_AUTHOR("Texas Instruments");
  724. MODULE_DESCRIPTION("Davinci NAND flash driver");