cafe_nand.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. /*
  2. * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3. *
  4. * The data sheet for this device can be found at:
  5. * http://wiki.laptop.org/go/Datasheets
  6. *
  7. * Copyright © 2006 Red Hat, Inc.
  8. * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  9. */
  10. #define DEBUG
  11. #include <linux/device.h>
  12. #undef DEBUG
  13. #include <linux/mtd/mtd.h>
  14. #include <linux/mtd/rawnand.h>
  15. #include <linux/mtd/partitions.h>
  16. #include <linux/rslib.h>
  17. #include <linux/pci.h>
  18. #include <linux/delay.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/slab.h>
  22. #include <linux/module.h>
  23. #include <asm/io.h>
  24. #define CAFE_NAND_CTRL1 0x00
  25. #define CAFE_NAND_CTRL2 0x04
  26. #define CAFE_NAND_CTRL3 0x08
  27. #define CAFE_NAND_STATUS 0x0c
  28. #define CAFE_NAND_IRQ 0x10
  29. #define CAFE_NAND_IRQ_MASK 0x14
  30. #define CAFE_NAND_DATA_LEN 0x18
  31. #define CAFE_NAND_ADDR1 0x1c
  32. #define CAFE_NAND_ADDR2 0x20
  33. #define CAFE_NAND_TIMING1 0x24
  34. #define CAFE_NAND_TIMING2 0x28
  35. #define CAFE_NAND_TIMING3 0x2c
  36. #define CAFE_NAND_NONMEM 0x30
  37. #define CAFE_NAND_ECC_RESULT 0x3C
  38. #define CAFE_NAND_DMA_CTRL 0x40
  39. #define CAFE_NAND_DMA_ADDR0 0x44
  40. #define CAFE_NAND_DMA_ADDR1 0x48
  41. #define CAFE_NAND_ECC_SYN01 0x50
  42. #define CAFE_NAND_ECC_SYN23 0x54
  43. #define CAFE_NAND_ECC_SYN45 0x58
  44. #define CAFE_NAND_ECC_SYN67 0x5c
  45. #define CAFE_NAND_READ_DATA 0x1000
  46. #define CAFE_NAND_WRITE_DATA 0x2000
  47. #define CAFE_GLOBAL_CTRL 0x3004
  48. #define CAFE_GLOBAL_IRQ 0x3008
  49. #define CAFE_GLOBAL_IRQ_MASK 0x300c
  50. #define CAFE_NAND_RESET 0x3034
  51. /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  52. #define CTRL1_CHIPSELECT (1<<19)
  53. struct cafe_priv {
  54. struct nand_chip nand;
  55. struct pci_dev *pdev;
  56. void __iomem *mmio;
  57. struct rs_control *rs;
  58. uint32_t ctl1;
  59. uint32_t ctl2;
  60. int datalen;
  61. int nr_data;
  62. int data_pos;
  63. int page_addr;
  64. dma_addr_t dmaaddr;
  65. unsigned char *dmabuf;
  66. };
  67. static int usedma = 1;
  68. module_param(usedma, int, 0644);
  69. static int skipbbt = 0;
  70. module_param(skipbbt, int, 0644);
  71. static int debug = 0;
  72. module_param(debug, int, 0644);
  73. static int regdebug = 0;
  74. module_param(regdebug, int, 0644);
  75. static int checkecc = 1;
  76. module_param(checkecc, int, 0644);
  77. static unsigned int numtimings;
  78. static int timing[3];
  79. module_param_array(timing, int, &numtimings, 0644);
  80. static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  81. /* Hrm. Why isn't this already conditional on something in the struct device? */
  82. #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  83. /* Make it easier to switch to PIO if we need to */
  84. #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
  85. #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
  86. static int cafe_device_ready(struct mtd_info *mtd)
  87. {
  88. struct nand_chip *chip = mtd_to_nand(mtd);
  89. struct cafe_priv *cafe = nand_get_controller_data(chip);
  90. int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
  91. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  92. cafe_writel(cafe, irqs, NAND_IRQ);
  93. cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
  94. result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
  95. cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  96. return result;
  97. }
  98. static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
  99. {
  100. struct nand_chip *chip = mtd_to_nand(mtd);
  101. struct cafe_priv *cafe = nand_get_controller_data(chip);
  102. if (usedma)
  103. memcpy(cafe->dmabuf + cafe->datalen, buf, len);
  104. else
  105. memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
  106. cafe->datalen += len;
  107. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
  108. len, cafe->datalen);
  109. }
  110. static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  111. {
  112. struct nand_chip *chip = mtd_to_nand(mtd);
  113. struct cafe_priv *cafe = nand_get_controller_data(chip);
  114. if (usedma)
  115. memcpy(buf, cafe->dmabuf + cafe->datalen, len);
  116. else
  117. memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
  118. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
  119. len, cafe->datalen);
  120. cafe->datalen += len;
  121. }
  122. static uint8_t cafe_read_byte(struct mtd_info *mtd)
  123. {
  124. struct nand_chip *chip = mtd_to_nand(mtd);
  125. struct cafe_priv *cafe = nand_get_controller_data(chip);
  126. uint8_t d;
  127. cafe_read_buf(mtd, &d, 1);
  128. cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
  129. return d;
  130. }
  131. static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
  132. int column, int page_addr)
  133. {
  134. struct nand_chip *chip = mtd_to_nand(mtd);
  135. struct cafe_priv *cafe = nand_get_controller_data(chip);
  136. int adrbytes = 0;
  137. uint32_t ctl1;
  138. uint32_t doneint = 0x80000000;
  139. cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
  140. command, column, page_addr);
  141. if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
  142. /* Second half of a command we already calculated */
  143. cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
  144. ctl1 = cafe->ctl1;
  145. cafe->ctl2 &= ~(1<<30);
  146. cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
  147. cafe->ctl1, cafe->nr_data);
  148. goto do_command;
  149. }
  150. /* Reset ECC engine */
  151. cafe_writel(cafe, 0, NAND_CTRL2);
  152. /* Emulate NAND_CMD_READOOB on large-page chips */
  153. if (mtd->writesize > 512 &&
  154. command == NAND_CMD_READOOB) {
  155. column += mtd->writesize;
  156. command = NAND_CMD_READ0;
  157. }
  158. /* FIXME: Do we need to send read command before sending data
  159. for small-page chips, to position the buffer correctly? */
  160. if (column != -1) {
  161. cafe_writel(cafe, column, NAND_ADDR1);
  162. adrbytes = 2;
  163. if (page_addr != -1)
  164. goto write_adr2;
  165. } else if (page_addr != -1) {
  166. cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
  167. page_addr >>= 16;
  168. write_adr2:
  169. cafe_writel(cafe, page_addr, NAND_ADDR2);
  170. adrbytes += 2;
  171. if (mtd->size > mtd->writesize << 16)
  172. adrbytes++;
  173. }
  174. cafe->data_pos = cafe->datalen = 0;
  175. /* Set command valid bit, mask in the chip select bit */
  176. ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
  177. /* Set RD or WR bits as appropriate */
  178. if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
  179. ctl1 |= (1<<26); /* rd */
  180. /* Always 5 bytes, for now */
  181. cafe->datalen = 4;
  182. /* And one address cycle -- even for STATUS, since the controller doesn't work without */
  183. adrbytes = 1;
  184. } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  185. command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
  186. ctl1 |= 1<<26; /* rd */
  187. /* For now, assume just read to end of page */
  188. cafe->datalen = mtd->writesize + mtd->oobsize - column;
  189. } else if (command == NAND_CMD_SEQIN)
  190. ctl1 |= 1<<25; /* wr */
  191. /* Set number of address bytes */
  192. if (adrbytes)
  193. ctl1 |= ((adrbytes-1)|8) << 27;
  194. if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
  195. /* Ignore the first command of a pair; the hardware
  196. deals with them both at once, later */
  197. cafe->ctl1 = ctl1;
  198. cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
  199. cafe->ctl1, cafe->datalen);
  200. return;
  201. }
  202. /* RNDOUT and READ0 commands need a following byte */
  203. if (command == NAND_CMD_RNDOUT)
  204. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
  205. else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
  206. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
  207. do_command:
  208. cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
  209. cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
  210. /* NB: The datasheet lies -- we really should be subtracting 1 here */
  211. cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
  212. cafe_writel(cafe, 0x90000000, NAND_IRQ);
  213. if (usedma && (ctl1 & (3<<25))) {
  214. uint32_t dmactl = 0xc0000000 + cafe->datalen;
  215. /* If WR or RD bits set, set up DMA */
  216. if (ctl1 & (1<<26)) {
  217. /* It's a read */
  218. dmactl |= (1<<29);
  219. /* ... so it's done when the DMA is done, not just
  220. the command. */
  221. doneint = 0x10000000;
  222. }
  223. cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
  224. }
  225. cafe->datalen = 0;
  226. if (unlikely(regdebug)) {
  227. int i;
  228. printk("About to write command %08x to register 0\n", ctl1);
  229. for (i=4; i< 0x5c; i+=4)
  230. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  231. }
  232. cafe_writel(cafe, ctl1, NAND_CTRL1);
  233. /* Apply this short delay always to ensure that we do wait tWB in
  234. * any case on any machine. */
  235. ndelay(100);
  236. if (1) {
  237. int c;
  238. uint32_t irqs;
  239. for (c = 500000; c != 0; c--) {
  240. irqs = cafe_readl(cafe, NAND_IRQ);
  241. if (irqs & doneint)
  242. break;
  243. udelay(1);
  244. if (!(c % 100000))
  245. cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
  246. cpu_relax();
  247. }
  248. cafe_writel(cafe, doneint, NAND_IRQ);
  249. cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
  250. command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
  251. }
  252. WARN_ON(cafe->ctl2 & (1<<30));
  253. switch (command) {
  254. case NAND_CMD_CACHEDPROG:
  255. case NAND_CMD_PAGEPROG:
  256. case NAND_CMD_ERASE1:
  257. case NAND_CMD_ERASE2:
  258. case NAND_CMD_SEQIN:
  259. case NAND_CMD_RNDIN:
  260. case NAND_CMD_STATUS:
  261. case NAND_CMD_RNDOUT:
  262. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  263. return;
  264. }
  265. nand_wait_ready(mtd);
  266. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  267. }
  268. static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
  269. {
  270. struct nand_chip *chip = mtd_to_nand(mtd);
  271. struct cafe_priv *cafe = nand_get_controller_data(chip);
  272. cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
  273. /* Mask the appropriate bit into the stored value of ctl1
  274. which will be used by cafe_nand_cmdfunc() */
  275. if (chipnr)
  276. cafe->ctl1 |= CTRL1_CHIPSELECT;
  277. else
  278. cafe->ctl1 &= ~CTRL1_CHIPSELECT;
  279. }
  280. static irqreturn_t cafe_nand_interrupt(int irq, void *id)
  281. {
  282. struct mtd_info *mtd = id;
  283. struct nand_chip *chip = mtd_to_nand(mtd);
  284. struct cafe_priv *cafe = nand_get_controller_data(chip);
  285. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  286. cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
  287. if (!irqs)
  288. return IRQ_NONE;
  289. cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
  290. return IRQ_HANDLED;
  291. }
  292. static void cafe_nand_bug(struct mtd_info *mtd)
  293. {
  294. BUG();
  295. }
  296. static int cafe_nand_write_oob(struct mtd_info *mtd,
  297. struct nand_chip *chip, int page)
  298. {
  299. return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
  300. mtd->oobsize);
  301. }
  302. /* Don't use -- use nand_read_oob_std for now */
  303. static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
  304. int page)
  305. {
  306. return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
  307. }
  308. /**
  309. * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
  310. * @mtd: mtd info structure
  311. * @chip: nand chip info structure
  312. * @buf: buffer to store read data
  313. * @oob_required: caller expects OOB data read to chip->oob_poi
  314. *
  315. * The hw generator calculates the error syndrome automatically. Therefore
  316. * we need a special oob layout and handling.
  317. */
  318. static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
  319. uint8_t *buf, int oob_required, int page)
  320. {
  321. struct cafe_priv *cafe = nand_get_controller_data(chip);
  322. unsigned int max_bitflips = 0;
  323. cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
  324. cafe_readl(cafe, NAND_ECC_RESULT),
  325. cafe_readl(cafe, NAND_ECC_SYN01));
  326. nand_read_page_op(chip, page, 0, buf, mtd->writesize);
  327. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  328. if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
  329. unsigned short syn[8], pat[4];
  330. int pos[4];
  331. u8 *oob = chip->oob_poi;
  332. int i, n;
  333. for (i=0; i<8; i+=2) {
  334. uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
  335. syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
  336. syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
  337. }
  338. n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
  339. pat);
  340. for (i = 0; i < n; i++) {
  341. int p = pos[i];
  342. /* The 12-bit symbols are mapped to bytes here */
  343. if (p > 1374) {
  344. /* out of range */
  345. n = -1374;
  346. } else if (p == 0) {
  347. /* high four bits do not correspond to data */
  348. if (pat[i] > 0xff)
  349. n = -2048;
  350. else
  351. buf[0] ^= pat[i];
  352. } else if (p == 1365) {
  353. buf[2047] ^= pat[i] >> 4;
  354. oob[0] ^= pat[i] << 4;
  355. } else if (p > 1365) {
  356. if ((p & 1) == 1) {
  357. oob[3*p/2 - 2048] ^= pat[i] >> 4;
  358. oob[3*p/2 - 2047] ^= pat[i] << 4;
  359. } else {
  360. oob[3*p/2 - 2049] ^= pat[i] >> 8;
  361. oob[3*p/2 - 2048] ^= pat[i];
  362. }
  363. } else if ((p & 1) == 1) {
  364. buf[3*p/2] ^= pat[i] >> 4;
  365. buf[3*p/2 + 1] ^= pat[i] << 4;
  366. } else {
  367. buf[3*p/2 - 1] ^= pat[i] >> 8;
  368. buf[3*p/2] ^= pat[i];
  369. }
  370. }
  371. if (n < 0) {
  372. dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
  373. cafe_readl(cafe, NAND_ADDR2) * 2048);
  374. for (i = 0; i < 0x5c; i += 4)
  375. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  376. mtd->ecc_stats.failed++;
  377. } else {
  378. dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
  379. mtd->ecc_stats.corrected += n;
  380. max_bitflips = max_t(unsigned int, max_bitflips, n);
  381. }
  382. }
  383. return max_bitflips;
  384. }
  385. static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
  386. struct mtd_oob_region *oobregion)
  387. {
  388. struct nand_chip *chip = mtd_to_nand(mtd);
  389. if (section)
  390. return -ERANGE;
  391. oobregion->offset = 0;
  392. oobregion->length = chip->ecc.total;
  393. return 0;
  394. }
  395. static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
  396. struct mtd_oob_region *oobregion)
  397. {
  398. struct nand_chip *chip = mtd_to_nand(mtd);
  399. if (section)
  400. return -ERANGE;
  401. oobregion->offset = chip->ecc.total;
  402. oobregion->length = mtd->oobsize - chip->ecc.total;
  403. return 0;
  404. }
  405. static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
  406. .ecc = cafe_ooblayout_ecc,
  407. .free = cafe_ooblayout_free,
  408. };
  409. /* Ick. The BBT code really ought to be able to work this bit out
  410. for itself from the above, at least for the 2KiB case */
  411. static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
  412. static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
  413. static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
  414. static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
  415. static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
  416. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  417. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  418. .offs = 14,
  419. .len = 4,
  420. .veroffs = 18,
  421. .maxblocks = 4,
  422. .pattern = cafe_bbt_pattern_2048
  423. };
  424. static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
  425. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  426. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  427. .offs = 14,
  428. .len = 4,
  429. .veroffs = 18,
  430. .maxblocks = 4,
  431. .pattern = cafe_mirror_pattern_2048
  432. };
  433. static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
  434. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  435. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  436. .offs = 14,
  437. .len = 1,
  438. .veroffs = 15,
  439. .maxblocks = 4,
  440. .pattern = cafe_bbt_pattern_512
  441. };
  442. static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
  443. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  444. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  445. .offs = 14,
  446. .len = 1,
  447. .veroffs = 15,
  448. .maxblocks = 4,
  449. .pattern = cafe_mirror_pattern_512
  450. };
  451. static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
  452. struct nand_chip *chip,
  453. const uint8_t *buf, int oob_required,
  454. int page)
  455. {
  456. struct cafe_priv *cafe = nand_get_controller_data(chip);
  457. nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
  458. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  459. /* Set up ECC autogeneration */
  460. cafe->ctl2 |= (1<<30);
  461. return nand_prog_page_end_op(chip);
  462. }
  463. static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
  464. {
  465. return 0;
  466. }
  467. /* F_2[X]/(X**6+X+1) */
  468. static unsigned short gf64_mul(u8 a, u8 b)
  469. {
  470. u8 c;
  471. unsigned int i;
  472. c = 0;
  473. for (i = 0; i < 6; i++) {
  474. if (a & 1)
  475. c ^= b;
  476. a >>= 1;
  477. b <<= 1;
  478. if ((b & 0x40) != 0)
  479. b ^= 0x43;
  480. }
  481. return c;
  482. }
  483. /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
  484. static u16 gf4096_mul(u16 a, u16 b)
  485. {
  486. u8 ah, al, bh, bl, ch, cl;
  487. ah = a >> 6;
  488. al = a & 0x3f;
  489. bh = b >> 6;
  490. bl = b & 0x3f;
  491. ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
  492. cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
  493. return (ch << 6) ^ cl;
  494. }
  495. static int cafe_mul(int x)
  496. {
  497. if (x == 0)
  498. return 1;
  499. return gf4096_mul(x, 0xe01);
  500. }
  501. static int cafe_nand_probe(struct pci_dev *pdev,
  502. const struct pci_device_id *ent)
  503. {
  504. struct mtd_info *mtd;
  505. struct cafe_priv *cafe;
  506. uint32_t ctrl;
  507. int err = 0;
  508. int old_dma;
  509. /* Very old versions shared the same PCI ident for all three
  510. functions on the chip. Verify the class too... */
  511. if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
  512. return -ENODEV;
  513. err = pci_enable_device(pdev);
  514. if (err)
  515. return err;
  516. pci_set_master(pdev);
  517. cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
  518. if (!cafe)
  519. return -ENOMEM;
  520. mtd = nand_to_mtd(&cafe->nand);
  521. mtd->dev.parent = &pdev->dev;
  522. nand_set_controller_data(&cafe->nand, cafe);
  523. cafe->pdev = pdev;
  524. cafe->mmio = pci_iomap(pdev, 0, 0);
  525. if (!cafe->mmio) {
  526. dev_warn(&pdev->dev, "failed to iomap\n");
  527. err = -ENOMEM;
  528. goto out_free_mtd;
  529. }
  530. cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
  531. if (!cafe->rs) {
  532. err = -ENOMEM;
  533. goto out_ior;
  534. }
  535. cafe->nand.cmdfunc = cafe_nand_cmdfunc;
  536. cafe->nand.dev_ready = cafe_device_ready;
  537. cafe->nand.read_byte = cafe_read_byte;
  538. cafe->nand.read_buf = cafe_read_buf;
  539. cafe->nand.write_buf = cafe_write_buf;
  540. cafe->nand.select_chip = cafe_select_chip;
  541. cafe->nand.set_features = nand_get_set_features_notsupp;
  542. cafe->nand.get_features = nand_get_set_features_notsupp;
  543. cafe->nand.chip_delay = 0;
  544. /* Enable the following for a flash based bad block table */
  545. cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
  546. if (skipbbt) {
  547. cafe->nand.options |= NAND_SKIP_BBTSCAN;
  548. cafe->nand.block_bad = cafe_nand_block_bad;
  549. }
  550. if (numtimings && numtimings != 3) {
  551. dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
  552. }
  553. if (numtimings == 3) {
  554. cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
  555. timing[0], timing[1], timing[2]);
  556. } else {
  557. timing[0] = cafe_readl(cafe, NAND_TIMING1);
  558. timing[1] = cafe_readl(cafe, NAND_TIMING2);
  559. timing[2] = cafe_readl(cafe, NAND_TIMING3);
  560. if (timing[0] | timing[1] | timing[2]) {
  561. cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
  562. timing[0], timing[1], timing[2]);
  563. } else {
  564. dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
  565. timing[0] = timing[1] = timing[2] = 0xffffffff;
  566. }
  567. }
  568. /* Start off by resetting the NAND controller completely */
  569. cafe_writel(cafe, 1, NAND_RESET);
  570. cafe_writel(cafe, 0, NAND_RESET);
  571. cafe_writel(cafe, timing[0], NAND_TIMING1);
  572. cafe_writel(cafe, timing[1], NAND_TIMING2);
  573. cafe_writel(cafe, timing[2], NAND_TIMING3);
  574. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  575. err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
  576. "CAFE NAND", mtd);
  577. if (err) {
  578. dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
  579. goto out_ior;
  580. }
  581. /* Disable master reset, enable NAND clock */
  582. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  583. ctrl &= 0xffffeff0;
  584. ctrl |= 0x00007000;
  585. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  586. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  587. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  588. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  589. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  590. /* Enable NAND IRQ in global IRQ mask register */
  591. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  592. cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
  593. cafe_readl(cafe, GLOBAL_CTRL),
  594. cafe_readl(cafe, GLOBAL_IRQ_MASK));
  595. /* Do not use the DMA for the nand_scan_ident() */
  596. old_dma = usedma;
  597. usedma = 0;
  598. /* Scan to find existence of the device */
  599. err = nand_scan_ident(mtd, 2, NULL);
  600. if (err)
  601. goto out_irq;
  602. cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
  603. &cafe->dmaaddr, GFP_KERNEL);
  604. if (!cafe->dmabuf) {
  605. err = -ENOMEM;
  606. goto out_irq;
  607. }
  608. /* Set up DMA address */
  609. cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
  610. cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
  611. cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
  612. cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
  613. /* Restore the DMA flag */
  614. usedma = old_dma;
  615. cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
  616. if (mtd->writesize == 2048)
  617. cafe->ctl2 |= 1<<29; /* 2KiB page size */
  618. /* Set up ECC according to the type of chip we found */
  619. mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
  620. if (mtd->writesize == 2048) {
  621. cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
  622. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
  623. } else if (mtd->writesize == 512) {
  624. cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
  625. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
  626. } else {
  627. pr_warn("Unexpected NAND flash writesize %d. Aborting\n",
  628. mtd->writesize);
  629. goto out_free_dma;
  630. }
  631. cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
  632. cafe->nand.ecc.size = mtd->writesize;
  633. cafe->nand.ecc.bytes = 14;
  634. cafe->nand.ecc.strength = 4;
  635. cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
  636. cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
  637. cafe->nand.ecc.correct = (void *)cafe_nand_bug;
  638. cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
  639. cafe->nand.ecc.write_oob = cafe_nand_write_oob;
  640. cafe->nand.ecc.read_page = cafe_nand_read_page;
  641. cafe->nand.ecc.read_oob = cafe_nand_read_oob;
  642. err = nand_scan_tail(mtd);
  643. if (err)
  644. goto out_free_dma;
  645. pci_set_drvdata(pdev, mtd);
  646. mtd->name = "cafe_nand";
  647. err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
  648. if (err)
  649. goto out_cleanup_nand;
  650. goto out;
  651. out_cleanup_nand:
  652. nand_cleanup(&cafe->nand);
  653. out_free_dma:
  654. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  655. out_irq:
  656. /* Disable NAND IRQ in global IRQ mask register */
  657. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  658. free_irq(pdev->irq, mtd);
  659. out_ior:
  660. pci_iounmap(pdev, cafe->mmio);
  661. out_free_mtd:
  662. kfree(cafe);
  663. out:
  664. return err;
  665. }
  666. static void cafe_nand_remove(struct pci_dev *pdev)
  667. {
  668. struct mtd_info *mtd = pci_get_drvdata(pdev);
  669. struct nand_chip *chip = mtd_to_nand(mtd);
  670. struct cafe_priv *cafe = nand_get_controller_data(chip);
  671. /* Disable NAND IRQ in global IRQ mask register */
  672. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  673. free_irq(pdev->irq, mtd);
  674. nand_release(mtd);
  675. free_rs(cafe->rs);
  676. pci_iounmap(pdev, cafe->mmio);
  677. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  678. kfree(cafe);
  679. }
  680. static const struct pci_device_id cafe_nand_tbl[] = {
  681. { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
  682. PCI_ANY_ID, PCI_ANY_ID },
  683. { }
  684. };
  685. MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
  686. static int cafe_nand_resume(struct pci_dev *pdev)
  687. {
  688. uint32_t ctrl;
  689. struct mtd_info *mtd = pci_get_drvdata(pdev);
  690. struct nand_chip *chip = mtd_to_nand(mtd);
  691. struct cafe_priv *cafe = nand_get_controller_data(chip);
  692. /* Start off by resetting the NAND controller completely */
  693. cafe_writel(cafe, 1, NAND_RESET);
  694. cafe_writel(cafe, 0, NAND_RESET);
  695. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  696. /* Restore timing configuration */
  697. cafe_writel(cafe, timing[0], NAND_TIMING1);
  698. cafe_writel(cafe, timing[1], NAND_TIMING2);
  699. cafe_writel(cafe, timing[2], NAND_TIMING3);
  700. /* Disable master reset, enable NAND clock */
  701. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  702. ctrl &= 0xffffeff0;
  703. ctrl |= 0x00007000;
  704. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  705. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  706. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  707. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  708. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  709. /* Set up DMA address */
  710. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  711. if (sizeof(cafe->dmaaddr) > 4)
  712. /* Shift in two parts to shut the compiler up */
  713. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  714. else
  715. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  716. /* Enable NAND IRQ in global IRQ mask register */
  717. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  718. return 0;
  719. }
  720. static struct pci_driver cafe_nand_pci_driver = {
  721. .name = "CAFÉ NAND",
  722. .id_table = cafe_nand_tbl,
  723. .probe = cafe_nand_probe,
  724. .remove = cafe_nand_remove,
  725. .resume = cafe_nand_resume,
  726. };
  727. module_pci_driver(cafe_nand_pci_driver);
  728. MODULE_LICENSE("GPL");
  729. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  730. MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");