mtdpart.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include <linux/of.h>
  33. #include "mtdcore.h"
  34. /* Our partition linked list */
  35. static LIST_HEAD(mtd_partitions);
  36. static DEFINE_MUTEX(mtd_partitions_mutex);
  37. /**
  38. * struct mtd_part - our partition node structure
  39. *
  40. * @mtd: struct holding partition details
  41. * @parent: parent mtd - flash device or another partition
  42. * @offset: partition offset relative to the *flash device*
  43. */
  44. struct mtd_part {
  45. struct mtd_info mtd;
  46. struct mtd_info *parent;
  47. uint64_t offset;
  48. struct list_head list;
  49. };
  50. /*
  51. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  52. * the pointer to that structure.
  53. */
  54. static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  55. {
  56. return container_of(mtd, struct mtd_part, mtd);
  57. }
  58. /*
  59. * MTD methods which simply translate the effective address and pass through
  60. * to the _real_ device.
  61. */
  62. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  63. size_t *retlen, u_char *buf)
  64. {
  65. struct mtd_part *part = mtd_to_part(mtd);
  66. struct mtd_ecc_stats stats;
  67. int res;
  68. stats = part->parent->ecc_stats;
  69. res = part->parent->_read(part->parent, from + part->offset, len,
  70. retlen, buf);
  71. if (unlikely(mtd_is_eccerr(res)))
  72. mtd->ecc_stats.failed +=
  73. part->parent->ecc_stats.failed - stats.failed;
  74. else
  75. mtd->ecc_stats.corrected +=
  76. part->parent->ecc_stats.corrected - stats.corrected;
  77. return res;
  78. }
  79. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  80. size_t *retlen, void **virt, resource_size_t *phys)
  81. {
  82. struct mtd_part *part = mtd_to_part(mtd);
  83. return part->parent->_point(part->parent, from + part->offset, len,
  84. retlen, virt, phys);
  85. }
  86. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  87. {
  88. struct mtd_part *part = mtd_to_part(mtd);
  89. return part->parent->_unpoint(part->parent, from + part->offset, len);
  90. }
  91. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  92. struct mtd_oob_ops *ops)
  93. {
  94. struct mtd_part *part = mtd_to_part(mtd);
  95. struct mtd_ecc_stats stats;
  96. int res;
  97. stats = part->parent->ecc_stats;
  98. res = part->parent->_read_oob(part->parent, from + part->offset, ops);
  99. if (unlikely(mtd_is_eccerr(res)))
  100. mtd->ecc_stats.failed +=
  101. part->parent->ecc_stats.failed - stats.failed;
  102. else
  103. mtd->ecc_stats.corrected +=
  104. part->parent->ecc_stats.corrected - stats.corrected;
  105. return res;
  106. }
  107. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  108. size_t len, size_t *retlen, u_char *buf)
  109. {
  110. struct mtd_part *part = mtd_to_part(mtd);
  111. return part->parent->_read_user_prot_reg(part->parent, from, len,
  112. retlen, buf);
  113. }
  114. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  115. size_t *retlen, struct otp_info *buf)
  116. {
  117. struct mtd_part *part = mtd_to_part(mtd);
  118. return part->parent->_get_user_prot_info(part->parent, len, retlen,
  119. buf);
  120. }
  121. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  122. size_t len, size_t *retlen, u_char *buf)
  123. {
  124. struct mtd_part *part = mtd_to_part(mtd);
  125. return part->parent->_read_fact_prot_reg(part->parent, from, len,
  126. retlen, buf);
  127. }
  128. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  129. size_t *retlen, struct otp_info *buf)
  130. {
  131. struct mtd_part *part = mtd_to_part(mtd);
  132. return part->parent->_get_fact_prot_info(part->parent, len, retlen,
  133. buf);
  134. }
  135. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  136. size_t *retlen, const u_char *buf)
  137. {
  138. struct mtd_part *part = mtd_to_part(mtd);
  139. return part->parent->_write(part->parent, to + part->offset, len,
  140. retlen, buf);
  141. }
  142. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  143. size_t *retlen, const u_char *buf)
  144. {
  145. struct mtd_part *part = mtd_to_part(mtd);
  146. return part->parent->_panic_write(part->parent, to + part->offset, len,
  147. retlen, buf);
  148. }
  149. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  150. struct mtd_oob_ops *ops)
  151. {
  152. struct mtd_part *part = mtd_to_part(mtd);
  153. return part->parent->_write_oob(part->parent, to + part->offset, ops);
  154. }
  155. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  156. size_t len, size_t *retlen, u_char *buf)
  157. {
  158. struct mtd_part *part = mtd_to_part(mtd);
  159. return part->parent->_write_user_prot_reg(part->parent, from, len,
  160. retlen, buf);
  161. }
  162. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  163. size_t len)
  164. {
  165. struct mtd_part *part = mtd_to_part(mtd);
  166. return part->parent->_lock_user_prot_reg(part->parent, from, len);
  167. }
  168. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  169. unsigned long count, loff_t to, size_t *retlen)
  170. {
  171. struct mtd_part *part = mtd_to_part(mtd);
  172. return part->parent->_writev(part->parent, vecs, count,
  173. to + part->offset, retlen);
  174. }
  175. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  176. {
  177. struct mtd_part *part = mtd_to_part(mtd);
  178. int ret;
  179. instr->addr += part->offset;
  180. ret = part->parent->_erase(part->parent, instr);
  181. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  182. instr->fail_addr -= part->offset;
  183. instr->addr -= part->offset;
  184. return ret;
  185. }
  186. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  187. {
  188. struct mtd_part *part = mtd_to_part(mtd);
  189. return part->parent->_lock(part->parent, ofs + part->offset, len);
  190. }
  191. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  192. {
  193. struct mtd_part *part = mtd_to_part(mtd);
  194. return part->parent->_unlock(part->parent, ofs + part->offset, len);
  195. }
  196. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  197. {
  198. struct mtd_part *part = mtd_to_part(mtd);
  199. return part->parent->_is_locked(part->parent, ofs + part->offset, len);
  200. }
  201. static void part_sync(struct mtd_info *mtd)
  202. {
  203. struct mtd_part *part = mtd_to_part(mtd);
  204. part->parent->_sync(part->parent);
  205. }
  206. static int part_suspend(struct mtd_info *mtd)
  207. {
  208. struct mtd_part *part = mtd_to_part(mtd);
  209. return part->parent->_suspend(part->parent);
  210. }
  211. static void part_resume(struct mtd_info *mtd)
  212. {
  213. struct mtd_part *part = mtd_to_part(mtd);
  214. part->parent->_resume(part->parent);
  215. }
  216. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  217. {
  218. struct mtd_part *part = mtd_to_part(mtd);
  219. ofs += part->offset;
  220. return part->parent->_block_isreserved(part->parent, ofs);
  221. }
  222. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  223. {
  224. struct mtd_part *part = mtd_to_part(mtd);
  225. ofs += part->offset;
  226. return part->parent->_block_isbad(part->parent, ofs);
  227. }
  228. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  229. {
  230. struct mtd_part *part = mtd_to_part(mtd);
  231. int res;
  232. ofs += part->offset;
  233. res = part->parent->_block_markbad(part->parent, ofs);
  234. if (!res)
  235. mtd->ecc_stats.badblocks++;
  236. return res;
  237. }
  238. static int part_get_device(struct mtd_info *mtd)
  239. {
  240. struct mtd_part *part = mtd_to_part(mtd);
  241. return part->parent->_get_device(part->parent);
  242. }
  243. static void part_put_device(struct mtd_info *mtd)
  244. {
  245. struct mtd_part *part = mtd_to_part(mtd);
  246. part->parent->_put_device(part->parent);
  247. }
  248. static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
  249. struct mtd_oob_region *oobregion)
  250. {
  251. struct mtd_part *part = mtd_to_part(mtd);
  252. return mtd_ooblayout_ecc(part->parent, section, oobregion);
  253. }
  254. static int part_ooblayout_free(struct mtd_info *mtd, int section,
  255. struct mtd_oob_region *oobregion)
  256. {
  257. struct mtd_part *part = mtd_to_part(mtd);
  258. return mtd_ooblayout_free(part->parent, section, oobregion);
  259. }
  260. static const struct mtd_ooblayout_ops part_ooblayout_ops = {
  261. .ecc = part_ooblayout_ecc,
  262. .free = part_ooblayout_free,
  263. };
  264. static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
  265. {
  266. struct mtd_part *part = mtd_to_part(mtd);
  267. return part->parent->_max_bad_blocks(part->parent,
  268. ofs + part->offset, len);
  269. }
  270. static inline void free_partition(struct mtd_part *p)
  271. {
  272. kfree(p->mtd.name);
  273. kfree(p);
  274. }
  275. /**
  276. * mtd_parse_part - parse MTD partition looking for subpartitions
  277. *
  278. * @slave: part that is supposed to be a container and should be parsed
  279. * @types: NULL-terminated array with names of partition parsers to try
  280. *
  281. * Some partitions are kind of containers with extra subpartitions (volumes).
  282. * There can be various formats of such containers. This function tries to use
  283. * specified parsers to analyze given partition and registers found
  284. * subpartitions on success.
  285. */
  286. static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
  287. {
  288. return parse_mtd_partitions(&slave->mtd, types, NULL);
  289. }
  290. static struct mtd_part *allocate_partition(struct mtd_info *parent,
  291. const struct mtd_partition *part, int partno,
  292. uint64_t cur_offset)
  293. {
  294. int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
  295. parent->erasesize;
  296. struct mtd_part *slave;
  297. u32 remainder;
  298. char *name;
  299. u64 tmp;
  300. /* allocate the partition structure */
  301. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  302. name = kstrdup(part->name, GFP_KERNEL);
  303. if (!name || !slave) {
  304. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  305. parent->name);
  306. kfree(name);
  307. kfree(slave);
  308. return ERR_PTR(-ENOMEM);
  309. }
  310. /* set up the MTD object for this partition */
  311. slave->mtd.type = parent->type;
  312. slave->mtd.flags = parent->flags & ~part->mask_flags;
  313. slave->mtd.size = part->size;
  314. slave->mtd.writesize = parent->writesize;
  315. slave->mtd.writebufsize = parent->writebufsize;
  316. slave->mtd.oobsize = parent->oobsize;
  317. slave->mtd.oobavail = parent->oobavail;
  318. slave->mtd.subpage_sft = parent->subpage_sft;
  319. slave->mtd.pairing = parent->pairing;
  320. slave->mtd.name = name;
  321. slave->mtd.owner = parent->owner;
  322. /* NOTE: Historically, we didn't arrange MTDs as a tree out of
  323. * concern for showing the same data in multiple partitions.
  324. * However, it is very useful to have the master node present,
  325. * so the MTD_PARTITIONED_MASTER option allows that. The master
  326. * will have device nodes etc only if this is set, so make the
  327. * parent conditional on that option. Note, this is a way to
  328. * distinguish between the master and the partition in sysfs.
  329. */
  330. slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
  331. &parent->dev :
  332. parent->dev.parent;
  333. slave->mtd.dev.of_node = part->of_node;
  334. if (parent->_read)
  335. slave->mtd._read = part_read;
  336. if (parent->_write)
  337. slave->mtd._write = part_write;
  338. if (parent->_panic_write)
  339. slave->mtd._panic_write = part_panic_write;
  340. if (parent->_point && parent->_unpoint) {
  341. slave->mtd._point = part_point;
  342. slave->mtd._unpoint = part_unpoint;
  343. }
  344. if (parent->_read_oob)
  345. slave->mtd._read_oob = part_read_oob;
  346. if (parent->_write_oob)
  347. slave->mtd._write_oob = part_write_oob;
  348. if (parent->_read_user_prot_reg)
  349. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  350. if (parent->_read_fact_prot_reg)
  351. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  352. if (parent->_write_user_prot_reg)
  353. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  354. if (parent->_lock_user_prot_reg)
  355. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  356. if (parent->_get_user_prot_info)
  357. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  358. if (parent->_get_fact_prot_info)
  359. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  360. if (parent->_sync)
  361. slave->mtd._sync = part_sync;
  362. if (!partno && !parent->dev.class && parent->_suspend &&
  363. parent->_resume) {
  364. slave->mtd._suspend = part_suspend;
  365. slave->mtd._resume = part_resume;
  366. }
  367. if (parent->_writev)
  368. slave->mtd._writev = part_writev;
  369. if (parent->_lock)
  370. slave->mtd._lock = part_lock;
  371. if (parent->_unlock)
  372. slave->mtd._unlock = part_unlock;
  373. if (parent->_is_locked)
  374. slave->mtd._is_locked = part_is_locked;
  375. if (parent->_block_isreserved)
  376. slave->mtd._block_isreserved = part_block_isreserved;
  377. if (parent->_block_isbad)
  378. slave->mtd._block_isbad = part_block_isbad;
  379. if (parent->_block_markbad)
  380. slave->mtd._block_markbad = part_block_markbad;
  381. if (parent->_max_bad_blocks)
  382. slave->mtd._max_bad_blocks = part_max_bad_blocks;
  383. if (parent->_get_device)
  384. slave->mtd._get_device = part_get_device;
  385. if (parent->_put_device)
  386. slave->mtd._put_device = part_put_device;
  387. slave->mtd._erase = part_erase;
  388. slave->parent = parent;
  389. slave->offset = part->offset;
  390. if (slave->offset == MTDPART_OFS_APPEND)
  391. slave->offset = cur_offset;
  392. if (slave->offset == MTDPART_OFS_NXTBLK) {
  393. tmp = cur_offset;
  394. slave->offset = cur_offset;
  395. remainder = do_div(tmp, wr_alignment);
  396. if (remainder) {
  397. slave->offset += wr_alignment - remainder;
  398. printk(KERN_NOTICE "Moving partition %d: "
  399. "0x%012llx -> 0x%012llx\n", partno,
  400. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  401. }
  402. }
  403. if (slave->offset == MTDPART_OFS_RETAIN) {
  404. slave->offset = cur_offset;
  405. if (parent->size - slave->offset >= slave->mtd.size) {
  406. slave->mtd.size = parent->size - slave->offset
  407. - slave->mtd.size;
  408. } else {
  409. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  410. part->name, parent->size - slave->offset,
  411. slave->mtd.size);
  412. /* register to preserve ordering */
  413. goto out_register;
  414. }
  415. }
  416. if (slave->mtd.size == MTDPART_SIZ_FULL)
  417. slave->mtd.size = parent->size - slave->offset;
  418. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  419. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  420. /* let's do some sanity checks */
  421. if (slave->offset >= parent->size) {
  422. /* let's register it anyway to preserve ordering */
  423. slave->offset = 0;
  424. slave->mtd.size = 0;
  425. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  426. part->name);
  427. goto out_register;
  428. }
  429. if (slave->offset + slave->mtd.size > parent->size) {
  430. slave->mtd.size = parent->size - slave->offset;
  431. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  432. part->name, parent->name, (unsigned long long)slave->mtd.size);
  433. }
  434. if (parent->numeraseregions > 1) {
  435. /* Deal with variable erase size stuff */
  436. int i, max = parent->numeraseregions;
  437. u64 end = slave->offset + slave->mtd.size;
  438. struct mtd_erase_region_info *regions = parent->eraseregions;
  439. /* Find the first erase regions which is part of this
  440. * partition. */
  441. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  442. ;
  443. /* The loop searched for the region _behind_ the first one */
  444. if (i > 0)
  445. i--;
  446. /* Pick biggest erasesize */
  447. for (; i < max && regions[i].offset < end; i++) {
  448. if (slave->mtd.erasesize < regions[i].erasesize) {
  449. slave->mtd.erasesize = regions[i].erasesize;
  450. }
  451. }
  452. BUG_ON(slave->mtd.erasesize == 0);
  453. } else {
  454. /* Single erase size */
  455. slave->mtd.erasesize = parent->erasesize;
  456. }
  457. /*
  458. * Slave erasesize might differ from the master one if the master
  459. * exposes several regions with different erasesize. Adjust
  460. * wr_alignment accordingly.
  461. */
  462. if (!(slave->mtd.flags & MTD_NO_ERASE))
  463. wr_alignment = slave->mtd.erasesize;
  464. tmp = slave->offset;
  465. remainder = do_div(tmp, wr_alignment);
  466. if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
  467. /* Doesn't start on a boundary of major erase size */
  468. /* FIXME: Let it be writable if it is on a boundary of
  469. * _minor_ erase size though */
  470. slave->mtd.flags &= ~MTD_WRITEABLE;
  471. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
  472. part->name);
  473. }
  474. tmp = slave->mtd.size;
  475. remainder = do_div(tmp, wr_alignment);
  476. if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
  477. slave->mtd.flags &= ~MTD_WRITEABLE;
  478. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
  479. part->name);
  480. }
  481. mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
  482. slave->mtd.ecc_step_size = parent->ecc_step_size;
  483. slave->mtd.ecc_strength = parent->ecc_strength;
  484. slave->mtd.bitflip_threshold = parent->bitflip_threshold;
  485. if (parent->_block_isbad) {
  486. uint64_t offs = 0;
  487. while (offs < slave->mtd.size) {
  488. if (mtd_block_isreserved(parent, offs + slave->offset))
  489. slave->mtd.ecc_stats.bbtblocks++;
  490. else if (mtd_block_isbad(parent, offs + slave->offset))
  491. slave->mtd.ecc_stats.badblocks++;
  492. offs += slave->mtd.erasesize;
  493. }
  494. }
  495. out_register:
  496. return slave;
  497. }
  498. static ssize_t mtd_partition_offset_show(struct device *dev,
  499. struct device_attribute *attr, char *buf)
  500. {
  501. struct mtd_info *mtd = dev_get_drvdata(dev);
  502. struct mtd_part *part = mtd_to_part(mtd);
  503. return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
  504. }
  505. static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
  506. static const struct attribute *mtd_partition_attrs[] = {
  507. &dev_attr_offset.attr,
  508. NULL
  509. };
  510. static int mtd_add_partition_attrs(struct mtd_part *new)
  511. {
  512. int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
  513. if (ret)
  514. printk(KERN_WARNING
  515. "mtd: failed to create partition attrs, err=%d\n", ret);
  516. return ret;
  517. }
  518. int mtd_add_partition(struct mtd_info *parent, const char *name,
  519. long long offset, long long length)
  520. {
  521. struct mtd_partition part;
  522. struct mtd_part *new;
  523. int ret = 0;
  524. /* the direct offset is expected */
  525. if (offset == MTDPART_OFS_APPEND ||
  526. offset == MTDPART_OFS_NXTBLK)
  527. return -EINVAL;
  528. if (length == MTDPART_SIZ_FULL)
  529. length = parent->size - offset;
  530. if (length <= 0)
  531. return -EINVAL;
  532. memset(&part, 0, sizeof(part));
  533. part.name = name;
  534. part.size = length;
  535. part.offset = offset;
  536. new = allocate_partition(parent, &part, -1, offset);
  537. if (IS_ERR(new))
  538. return PTR_ERR(new);
  539. mutex_lock(&mtd_partitions_mutex);
  540. list_add(&new->list, &mtd_partitions);
  541. mutex_unlock(&mtd_partitions_mutex);
  542. add_mtd_device(&new->mtd);
  543. mtd_add_partition_attrs(new);
  544. return ret;
  545. }
  546. EXPORT_SYMBOL_GPL(mtd_add_partition);
  547. /**
  548. * __mtd_del_partition - delete MTD partition
  549. *
  550. * @priv: internal MTD struct for partition to be deleted
  551. *
  552. * This function must be called with the partitions mutex locked.
  553. */
  554. static int __mtd_del_partition(struct mtd_part *priv)
  555. {
  556. struct mtd_part *child, *next;
  557. int err;
  558. list_for_each_entry_safe(child, next, &mtd_partitions, list) {
  559. if (child->parent == &priv->mtd) {
  560. err = __mtd_del_partition(child);
  561. if (err)
  562. return err;
  563. }
  564. }
  565. sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
  566. err = del_mtd_device(&priv->mtd);
  567. if (err)
  568. return err;
  569. list_del(&priv->list);
  570. free_partition(priv);
  571. return 0;
  572. }
  573. /*
  574. * This function unregisters and destroy all slave MTD objects which are
  575. * attached to the given MTD object.
  576. */
  577. int del_mtd_partitions(struct mtd_info *mtd)
  578. {
  579. struct mtd_part *slave, *next;
  580. int ret, err = 0;
  581. mutex_lock(&mtd_partitions_mutex);
  582. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  583. if (slave->parent == mtd) {
  584. ret = __mtd_del_partition(slave);
  585. if (ret < 0)
  586. err = ret;
  587. }
  588. mutex_unlock(&mtd_partitions_mutex);
  589. return err;
  590. }
  591. int mtd_del_partition(struct mtd_info *mtd, int partno)
  592. {
  593. struct mtd_part *slave, *next;
  594. int ret = -EINVAL;
  595. mutex_lock(&mtd_partitions_mutex);
  596. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  597. if ((slave->parent == mtd) &&
  598. (slave->mtd.index == partno)) {
  599. ret = __mtd_del_partition(slave);
  600. break;
  601. }
  602. mutex_unlock(&mtd_partitions_mutex);
  603. return ret;
  604. }
  605. EXPORT_SYMBOL_GPL(mtd_del_partition);
  606. /*
  607. * This function, given a master MTD object and a partition table, creates
  608. * and registers slave MTD objects which are bound to the master according to
  609. * the partition definitions.
  610. *
  611. * For historical reasons, this function's caller only registers the master
  612. * if the MTD_PARTITIONED_MASTER config option is set.
  613. */
  614. int add_mtd_partitions(struct mtd_info *master,
  615. const struct mtd_partition *parts,
  616. int nbparts)
  617. {
  618. struct mtd_part *slave;
  619. uint64_t cur_offset = 0;
  620. int i;
  621. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  622. for (i = 0; i < nbparts; i++) {
  623. slave = allocate_partition(master, parts + i, i, cur_offset);
  624. if (IS_ERR(slave)) {
  625. del_mtd_partitions(master);
  626. return PTR_ERR(slave);
  627. }
  628. mutex_lock(&mtd_partitions_mutex);
  629. list_add(&slave->list, &mtd_partitions);
  630. mutex_unlock(&mtd_partitions_mutex);
  631. add_mtd_device(&slave->mtd);
  632. mtd_add_partition_attrs(slave);
  633. if (parts[i].types)
  634. mtd_parse_part(slave, parts[i].types);
  635. cur_offset = slave->offset + slave->mtd.size;
  636. }
  637. return 0;
  638. }
  639. static DEFINE_SPINLOCK(part_parser_lock);
  640. static LIST_HEAD(part_parsers);
  641. static struct mtd_part_parser *mtd_part_parser_get(const char *name)
  642. {
  643. struct mtd_part_parser *p, *ret = NULL;
  644. spin_lock(&part_parser_lock);
  645. list_for_each_entry(p, &part_parsers, list)
  646. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  647. ret = p;
  648. break;
  649. }
  650. spin_unlock(&part_parser_lock);
  651. return ret;
  652. }
  653. static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
  654. {
  655. module_put(p->owner);
  656. }
  657. /*
  658. * Many partition parsers just expected the core to kfree() all their data in
  659. * one chunk. Do that by default.
  660. */
  661. static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
  662. int nr_parts)
  663. {
  664. kfree(pparts);
  665. }
  666. int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
  667. {
  668. p->owner = owner;
  669. if (!p->cleanup)
  670. p->cleanup = &mtd_part_parser_cleanup_default;
  671. spin_lock(&part_parser_lock);
  672. list_add(&p->list, &part_parsers);
  673. spin_unlock(&part_parser_lock);
  674. return 0;
  675. }
  676. EXPORT_SYMBOL_GPL(__register_mtd_parser);
  677. void deregister_mtd_parser(struct mtd_part_parser *p)
  678. {
  679. spin_lock(&part_parser_lock);
  680. list_del(&p->list);
  681. spin_unlock(&part_parser_lock);
  682. }
  683. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  684. /*
  685. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  686. * are changing this array!
  687. */
  688. static const char * const default_mtd_part_types[] = {
  689. "cmdlinepart",
  690. "ofpart",
  691. NULL
  692. };
  693. static int mtd_part_do_parse(struct mtd_part_parser *parser,
  694. struct mtd_info *master,
  695. struct mtd_partitions *pparts,
  696. struct mtd_part_parser_data *data)
  697. {
  698. int ret;
  699. ret = (*parser->parse_fn)(master, &pparts->parts, data);
  700. pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
  701. if (ret <= 0)
  702. return ret;
  703. pr_notice("%d %s partitions found on MTD device %s\n", ret,
  704. parser->name, master->name);
  705. pparts->nr_parts = ret;
  706. pparts->parser = parser;
  707. return ret;
  708. }
  709. /**
  710. * mtd_part_get_compatible_parser - find MTD parser by a compatible string
  711. *
  712. * @compat: compatible string describing partitions in a device tree
  713. *
  714. * MTD parsers can specify supported partitions by providing a table of
  715. * compatibility strings. This function finds a parser that advertises support
  716. * for a passed value of "compatible".
  717. */
  718. static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
  719. {
  720. struct mtd_part_parser *p, *ret = NULL;
  721. spin_lock(&part_parser_lock);
  722. list_for_each_entry(p, &part_parsers, list) {
  723. const struct of_device_id *matches;
  724. matches = p->of_match_table;
  725. if (!matches)
  726. continue;
  727. for (; matches->compatible[0]; matches++) {
  728. if (!strcmp(matches->compatible, compat) &&
  729. try_module_get(p->owner)) {
  730. ret = p;
  731. break;
  732. }
  733. }
  734. if (ret)
  735. break;
  736. }
  737. spin_unlock(&part_parser_lock);
  738. return ret;
  739. }
  740. static int mtd_part_of_parse(struct mtd_info *master,
  741. struct mtd_partitions *pparts)
  742. {
  743. struct mtd_part_parser *parser;
  744. struct device_node *np;
  745. struct property *prop;
  746. const char *compat;
  747. const char *fixed = "fixed-partitions";
  748. int ret, err = 0;
  749. np = of_get_child_by_name(mtd_get_of_node(master), "partitions");
  750. of_property_for_each_string(np, "compatible", prop, compat) {
  751. parser = mtd_part_get_compatible_parser(compat);
  752. if (!parser)
  753. continue;
  754. ret = mtd_part_do_parse(parser, master, pparts, NULL);
  755. if (ret > 0) {
  756. of_node_put(np);
  757. return ret;
  758. }
  759. mtd_part_parser_put(parser);
  760. if (ret < 0 && !err)
  761. err = ret;
  762. }
  763. of_node_put(np);
  764. /*
  765. * For backward compatibility we have to try the "fixed-partitions"
  766. * parser. It supports old DT format with partitions specified as a
  767. * direct subnodes of a flash device DT node without any compatibility
  768. * specified we could match.
  769. */
  770. parser = mtd_part_parser_get(fixed);
  771. if (!parser && !request_module("%s", fixed))
  772. parser = mtd_part_parser_get(fixed);
  773. if (parser) {
  774. ret = mtd_part_do_parse(parser, master, pparts, NULL);
  775. if (ret > 0)
  776. return ret;
  777. mtd_part_parser_put(parser);
  778. if (ret < 0 && !err)
  779. err = ret;
  780. }
  781. return err;
  782. }
  783. /**
  784. * parse_mtd_partitions - parse and register MTD partitions
  785. *
  786. * @master: the master partition (describes whole MTD device)
  787. * @types: names of partition parsers to try or %NULL
  788. * @data: MTD partition parser-specific data
  789. *
  790. * This function tries to find & register partitions on MTD device @master. It
  791. * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
  792. * then the default list of parsers is used. The default list contains only the
  793. * "cmdlinepart" and "ofpart" parsers ATM.
  794. * Note: If there are more then one parser in @types, the kernel only takes the
  795. * partitions parsed out by the first parser.
  796. *
  797. * This function may return:
  798. * o a negative error code in case of failure
  799. * o number of found partitions otherwise
  800. */
  801. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  802. struct mtd_part_parser_data *data)
  803. {
  804. struct mtd_partitions pparts = { };
  805. struct mtd_part_parser *parser;
  806. int ret, err = 0;
  807. if (!types)
  808. types = default_mtd_part_types;
  809. for ( ; *types; types++) {
  810. /*
  811. * ofpart is a special type that means OF partitioning info
  812. * should be used. It requires a bit different logic so it is
  813. * handled in a separated function.
  814. */
  815. if (!strcmp(*types, "ofpart")) {
  816. ret = mtd_part_of_parse(master, &pparts);
  817. } else {
  818. pr_debug("%s: parsing partitions %s\n", master->name,
  819. *types);
  820. parser = mtd_part_parser_get(*types);
  821. if (!parser && !request_module("%s", *types))
  822. parser = mtd_part_parser_get(*types);
  823. pr_debug("%s: got parser %s\n", master->name,
  824. parser ? parser->name : NULL);
  825. if (!parser)
  826. continue;
  827. ret = mtd_part_do_parse(parser, master, &pparts, data);
  828. if (ret <= 0)
  829. mtd_part_parser_put(parser);
  830. }
  831. /* Found partitions! */
  832. if (ret > 0) {
  833. err = add_mtd_partitions(master, pparts.parts,
  834. pparts.nr_parts);
  835. mtd_part_parser_cleanup(&pparts);
  836. return err ? err : pparts.nr_parts;
  837. }
  838. /*
  839. * Stash the first error we see; only report it if no parser
  840. * succeeds
  841. */
  842. if (ret < 0 && !err)
  843. err = ret;
  844. }
  845. return err;
  846. }
  847. void mtd_part_parser_cleanup(struct mtd_partitions *parts)
  848. {
  849. const struct mtd_part_parser *parser;
  850. if (!parts)
  851. return;
  852. parser = parts->parser;
  853. if (parser) {
  854. if (parser->cleanup)
  855. parser->cleanup(parts->parts, parts->nr_parts);
  856. mtd_part_parser_put(parser);
  857. }
  858. }
  859. int mtd_is_partition(const struct mtd_info *mtd)
  860. {
  861. struct mtd_part *part;
  862. int ispart = 0;
  863. mutex_lock(&mtd_partitions_mutex);
  864. list_for_each_entry(part, &mtd_partitions, list)
  865. if (&part->mtd == mtd) {
  866. ispart = 1;
  867. break;
  868. }
  869. mutex_unlock(&mtd_partitions_mutex);
  870. return ispart;
  871. }
  872. EXPORT_SYMBOL_GPL(mtd_is_partition);
  873. /* Returns the size of the entire flash chip */
  874. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  875. {
  876. if (!mtd_is_partition(mtd))
  877. return mtd->size;
  878. return mtd_get_device_size(mtd_to_part(mtd)->parent);
  879. }
  880. EXPORT_SYMBOL_GPL(mtd_get_device_size);