io-pgtable-arm-v7s.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928
  1. /*
  2. * CPU-agnostic ARM page table allocator.
  3. *
  4. * ARMv7 Short-descriptor format, supporting
  5. * - Basic memory attributes
  6. * - Simplified access permissions (AP[2:1] model)
  7. * - Backwards-compatible TEX remap
  8. * - Large pages/supersections (if indicated by the caller)
  9. *
  10. * Not supporting:
  11. * - Legacy access permissions (AP[2:0] model)
  12. *
  13. * Almost certainly never supporting:
  14. * - PXN
  15. * - Domains
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License version 2 as
  19. * published by the Free Software Foundation.
  20. *
  21. * This program is distributed in the hope that it will be useful,
  22. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  23. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  24. * GNU General Public License for more details.
  25. *
  26. * You should have received a copy of the GNU General Public License
  27. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  28. *
  29. * Copyright (C) 2014-2015 ARM Limited
  30. * Copyright (c) 2014-2015 MediaTek Inc.
  31. */
  32. #define pr_fmt(fmt) "arm-v7s io-pgtable: " fmt
  33. #include <linux/atomic.h>
  34. #include <linux/dma-mapping.h>
  35. #include <linux/gfp.h>
  36. #include <linux/iommu.h>
  37. #include <linux/kernel.h>
  38. #include <linux/kmemleak.h>
  39. #include <linux/sizes.h>
  40. #include <linux/slab.h>
  41. #include <linux/spinlock.h>
  42. #include <linux/types.h>
  43. #include <asm/barrier.h>
  44. #include "io-pgtable.h"
  45. /* Struct accessors */
  46. #define io_pgtable_to_data(x) \
  47. container_of((x), struct arm_v7s_io_pgtable, iop)
  48. #define io_pgtable_ops_to_data(x) \
  49. io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
  50. /*
  51. * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
  52. * and 12 bits in a page. With some carefully-chosen coefficients we can
  53. * hide the ugly inconsistencies behind these macros and at least let the
  54. * rest of the code pretend to be somewhat sane.
  55. */
  56. #define ARM_V7S_ADDR_BITS 32
  57. #define _ARM_V7S_LVL_BITS(lvl) (16 - (lvl) * 4)
  58. #define ARM_V7S_LVL_SHIFT(lvl) (ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
  59. #define ARM_V7S_TABLE_SHIFT 10
  60. #define ARM_V7S_PTES_PER_LVL(lvl) (1 << _ARM_V7S_LVL_BITS(lvl))
  61. #define ARM_V7S_TABLE_SIZE(lvl) \
  62. (ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))
  63. #define ARM_V7S_BLOCK_SIZE(lvl) (1UL << ARM_V7S_LVL_SHIFT(lvl))
  64. #define ARM_V7S_LVL_MASK(lvl) ((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
  65. #define ARM_V7S_TABLE_MASK ((u32)(~0U << ARM_V7S_TABLE_SHIFT))
  66. #define _ARM_V7S_IDX_MASK(lvl) (ARM_V7S_PTES_PER_LVL(lvl) - 1)
  67. #define ARM_V7S_LVL_IDX(addr, lvl) ({ \
  68. int _l = lvl; \
  69. ((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
  70. })
  71. /*
  72. * Large page/supersection entries are effectively a block of 16 page/section
  73. * entries, along the lines of the LPAE contiguous hint, but all with the
  74. * same output address. For want of a better common name we'll call them
  75. * "contiguous" versions of their respective page/section entries here, but
  76. * noting the distinction (WRT to TLB maintenance) that they represent *one*
  77. * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
  78. */
  79. #define ARM_V7S_CONT_PAGES 16
  80. /* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
  81. #define ARM_V7S_PTE_TYPE_TABLE 0x1
  82. #define ARM_V7S_PTE_TYPE_PAGE 0x2
  83. #define ARM_V7S_PTE_TYPE_CONT_PAGE 0x1
  84. #define ARM_V7S_PTE_IS_VALID(pte) (((pte) & 0x3) != 0)
  85. #define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
  86. ((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
  87. /* Page table bits */
  88. #define ARM_V7S_ATTR_XN(lvl) BIT(4 * (2 - (lvl)))
  89. #define ARM_V7S_ATTR_B BIT(2)
  90. #define ARM_V7S_ATTR_C BIT(3)
  91. #define ARM_V7S_ATTR_NS_TABLE BIT(3)
  92. #define ARM_V7S_ATTR_NS_SECTION BIT(19)
  93. #define ARM_V7S_CONT_SECTION BIT(18)
  94. #define ARM_V7S_CONT_PAGE_XN_SHIFT 15
  95. /*
  96. * The attribute bits are consistently ordered*, but occupy bits [17:10] of
  97. * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
  98. * fields relative to that 8-bit block, plus a total shift relative to the PTE.
  99. */
  100. #define ARM_V7S_ATTR_SHIFT(lvl) (16 - (lvl) * 6)
  101. #define ARM_V7S_ATTR_MASK 0xff
  102. #define ARM_V7S_ATTR_AP0 BIT(0)
  103. #define ARM_V7S_ATTR_AP1 BIT(1)
  104. #define ARM_V7S_ATTR_AP2 BIT(5)
  105. #define ARM_V7S_ATTR_S BIT(6)
  106. #define ARM_V7S_ATTR_NG BIT(7)
  107. #define ARM_V7S_TEX_SHIFT 2
  108. #define ARM_V7S_TEX_MASK 0x7
  109. #define ARM_V7S_ATTR_TEX(val) (((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
  110. #define ARM_V7S_ATTR_MTK_4GB BIT(9) /* MTK extend it for 4GB mode */
  111. /* *well, except for TEX on level 2 large pages, of course :( */
  112. #define ARM_V7S_CONT_PAGE_TEX_SHIFT 6
  113. #define ARM_V7S_CONT_PAGE_TEX_MASK (ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
  114. /* Simplified access permissions */
  115. #define ARM_V7S_PTE_AF ARM_V7S_ATTR_AP0
  116. #define ARM_V7S_PTE_AP_UNPRIV ARM_V7S_ATTR_AP1
  117. #define ARM_V7S_PTE_AP_RDONLY ARM_V7S_ATTR_AP2
  118. /* Register bits */
  119. #define ARM_V7S_RGN_NC 0
  120. #define ARM_V7S_RGN_WBWA 1
  121. #define ARM_V7S_RGN_WT 2
  122. #define ARM_V7S_RGN_WB 3
  123. #define ARM_V7S_PRRR_TYPE_DEVICE 1
  124. #define ARM_V7S_PRRR_TYPE_NORMAL 2
  125. #define ARM_V7S_PRRR_TR(n, type) (((type) & 0x3) << ((n) * 2))
  126. #define ARM_V7S_PRRR_DS0 BIT(16)
  127. #define ARM_V7S_PRRR_DS1 BIT(17)
  128. #define ARM_V7S_PRRR_NS0 BIT(18)
  129. #define ARM_V7S_PRRR_NS1 BIT(19)
  130. #define ARM_V7S_PRRR_NOS(n) BIT((n) + 24)
  131. #define ARM_V7S_NMRR_IR(n, attr) (((attr) & 0x3) << ((n) * 2))
  132. #define ARM_V7S_NMRR_OR(n, attr) (((attr) & 0x3) << ((n) * 2 + 16))
  133. #define ARM_V7S_TTBR_S BIT(1)
  134. #define ARM_V7S_TTBR_NOS BIT(5)
  135. #define ARM_V7S_TTBR_ORGN_ATTR(attr) (((attr) & 0x3) << 3)
  136. #define ARM_V7S_TTBR_IRGN_ATTR(attr) \
  137. ((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
  138. #define ARM_V7S_TCR_PD1 BIT(5)
  139. typedef u32 arm_v7s_iopte;
  140. static bool selftest_running;
  141. struct arm_v7s_io_pgtable {
  142. struct io_pgtable iop;
  143. arm_v7s_iopte *pgd;
  144. struct kmem_cache *l2_tables;
  145. spinlock_t split_lock;
  146. };
  147. static dma_addr_t __arm_v7s_dma_addr(void *pages)
  148. {
  149. return (dma_addr_t)virt_to_phys(pages);
  150. }
  151. static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl)
  152. {
  153. if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
  154. pte &= ARM_V7S_TABLE_MASK;
  155. else
  156. pte &= ARM_V7S_LVL_MASK(lvl);
  157. return phys_to_virt(pte);
  158. }
  159. static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
  160. struct arm_v7s_io_pgtable *data)
  161. {
  162. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  163. struct device *dev = cfg->iommu_dev;
  164. dma_addr_t dma;
  165. size_t size = ARM_V7S_TABLE_SIZE(lvl);
  166. void *table = NULL;
  167. if (lvl == 1)
  168. table = (void *)__get_dma_pages(__GFP_ZERO, get_order(size));
  169. else if (lvl == 2)
  170. table = kmem_cache_zalloc(data->l2_tables, gfp | GFP_DMA);
  171. if (table && !(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA)) {
  172. dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
  173. if (dma_mapping_error(dev, dma))
  174. goto out_free;
  175. /*
  176. * We depend on the IOMMU being able to work with any physical
  177. * address directly, so if the DMA layer suggests otherwise by
  178. * translating or truncating them, that bodes very badly...
  179. */
  180. if (dma != virt_to_phys(table))
  181. goto out_unmap;
  182. }
  183. kmemleak_ignore(table);
  184. return table;
  185. out_unmap:
  186. dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
  187. dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
  188. out_free:
  189. if (lvl == 1)
  190. free_pages((unsigned long)table, get_order(size));
  191. else
  192. kmem_cache_free(data->l2_tables, table);
  193. return NULL;
  194. }
  195. static void __arm_v7s_free_table(void *table, int lvl,
  196. struct arm_v7s_io_pgtable *data)
  197. {
  198. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  199. struct device *dev = cfg->iommu_dev;
  200. size_t size = ARM_V7S_TABLE_SIZE(lvl);
  201. if (!(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA))
  202. dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
  203. DMA_TO_DEVICE);
  204. if (lvl == 1)
  205. free_pages((unsigned long)table, get_order(size));
  206. else
  207. kmem_cache_free(data->l2_tables, table);
  208. }
  209. static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
  210. struct io_pgtable_cfg *cfg)
  211. {
  212. if (cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA)
  213. return;
  214. dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
  215. num_entries * sizeof(*ptep), DMA_TO_DEVICE);
  216. }
  217. static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
  218. int num_entries, struct io_pgtable_cfg *cfg)
  219. {
  220. int i;
  221. for (i = 0; i < num_entries; i++)
  222. ptep[i] = pte;
  223. __arm_v7s_pte_sync(ptep, num_entries, cfg);
  224. }
  225. static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
  226. struct io_pgtable_cfg *cfg)
  227. {
  228. bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
  229. arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
  230. if (!(prot & IOMMU_MMIO))
  231. pte |= ARM_V7S_ATTR_TEX(1);
  232. if (ap) {
  233. pte |= ARM_V7S_PTE_AF;
  234. if (!(prot & IOMMU_PRIV))
  235. pte |= ARM_V7S_PTE_AP_UNPRIV;
  236. if (!(prot & IOMMU_WRITE))
  237. pte |= ARM_V7S_PTE_AP_RDONLY;
  238. }
  239. pte <<= ARM_V7S_ATTR_SHIFT(lvl);
  240. if ((prot & IOMMU_NOEXEC) && ap)
  241. pte |= ARM_V7S_ATTR_XN(lvl);
  242. if (prot & IOMMU_MMIO)
  243. pte |= ARM_V7S_ATTR_B;
  244. else if (prot & IOMMU_CACHE)
  245. pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
  246. pte |= ARM_V7S_PTE_TYPE_PAGE;
  247. if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
  248. pte |= ARM_V7S_ATTR_NS_SECTION;
  249. if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB)
  250. pte |= ARM_V7S_ATTR_MTK_4GB;
  251. return pte;
  252. }
  253. static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
  254. {
  255. int prot = IOMMU_READ;
  256. arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
  257. if (!(attr & ARM_V7S_PTE_AP_RDONLY))
  258. prot |= IOMMU_WRITE;
  259. if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
  260. prot |= IOMMU_PRIV;
  261. if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
  262. prot |= IOMMU_MMIO;
  263. else if (pte & ARM_V7S_ATTR_C)
  264. prot |= IOMMU_CACHE;
  265. if (pte & ARM_V7S_ATTR_XN(lvl))
  266. prot |= IOMMU_NOEXEC;
  267. return prot;
  268. }
  269. static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
  270. {
  271. if (lvl == 1) {
  272. pte |= ARM_V7S_CONT_SECTION;
  273. } else if (lvl == 2) {
  274. arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
  275. arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
  276. pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
  277. pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
  278. (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
  279. ARM_V7S_PTE_TYPE_CONT_PAGE;
  280. }
  281. return pte;
  282. }
  283. static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
  284. {
  285. if (lvl == 1) {
  286. pte &= ~ARM_V7S_CONT_SECTION;
  287. } else if (lvl == 2) {
  288. arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
  289. arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
  290. ARM_V7S_CONT_PAGE_TEX_SHIFT);
  291. pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
  292. pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
  293. (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
  294. ARM_V7S_PTE_TYPE_PAGE;
  295. }
  296. return pte;
  297. }
  298. static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
  299. {
  300. if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
  301. return pte & ARM_V7S_CONT_SECTION;
  302. else if (lvl == 2)
  303. return !(pte & ARM_V7S_PTE_TYPE_PAGE);
  304. return false;
  305. }
  306. static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *, unsigned long,
  307. size_t, int, arm_v7s_iopte *);
  308. static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
  309. unsigned long iova, phys_addr_t paddr, int prot,
  310. int lvl, int num_entries, arm_v7s_iopte *ptep)
  311. {
  312. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  313. arm_v7s_iopte pte;
  314. int i;
  315. for (i = 0; i < num_entries; i++)
  316. if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
  317. /*
  318. * We need to unmap and free the old table before
  319. * overwriting it with a block entry.
  320. */
  321. arm_v7s_iopte *tblp;
  322. size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
  323. tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl);
  324. if (WARN_ON(__arm_v7s_unmap(data, iova + i * sz,
  325. sz, lvl, tblp) != sz))
  326. return -EINVAL;
  327. } else if (ptep[i]) {
  328. /* We require an unmap first */
  329. WARN_ON(!selftest_running);
  330. return -EEXIST;
  331. }
  332. pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
  333. if (num_entries > 1)
  334. pte = arm_v7s_pte_to_cont(pte, lvl);
  335. pte |= paddr & ARM_V7S_LVL_MASK(lvl);
  336. __arm_v7s_set_pte(ptep, pte, num_entries, cfg);
  337. return 0;
  338. }
  339. static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
  340. arm_v7s_iopte *ptep,
  341. arm_v7s_iopte curr,
  342. struct io_pgtable_cfg *cfg)
  343. {
  344. arm_v7s_iopte old, new;
  345. new = virt_to_phys(table) | ARM_V7S_PTE_TYPE_TABLE;
  346. if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
  347. new |= ARM_V7S_ATTR_NS_TABLE;
  348. /*
  349. * Ensure the table itself is visible before its PTE can be.
  350. * Whilst we could get away with cmpxchg64_release below, this
  351. * doesn't have any ordering semantics when !CONFIG_SMP.
  352. */
  353. dma_wmb();
  354. old = cmpxchg_relaxed(ptep, curr, new);
  355. __arm_v7s_pte_sync(ptep, 1, cfg);
  356. return old;
  357. }
  358. static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
  359. phys_addr_t paddr, size_t size, int prot,
  360. int lvl, arm_v7s_iopte *ptep)
  361. {
  362. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  363. arm_v7s_iopte pte, *cptep;
  364. int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
  365. /* Find our entry at the current level */
  366. ptep += ARM_V7S_LVL_IDX(iova, lvl);
  367. /* If we can install a leaf entry at this level, then do so */
  368. if (num_entries)
  369. return arm_v7s_init_pte(data, iova, paddr, prot,
  370. lvl, num_entries, ptep);
  371. /* We can't allocate tables at the final level */
  372. if (WARN_ON(lvl == 2))
  373. return -EINVAL;
  374. /* Grab a pointer to the next level */
  375. pte = READ_ONCE(*ptep);
  376. if (!pte) {
  377. cptep = __arm_v7s_alloc_table(lvl + 1, GFP_ATOMIC, data);
  378. if (!cptep)
  379. return -ENOMEM;
  380. pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
  381. if (pte)
  382. __arm_v7s_free_table(cptep, lvl + 1, data);
  383. } else {
  384. /* We've no easy way of knowing if it's synced yet, so... */
  385. __arm_v7s_pte_sync(ptep, 1, cfg);
  386. }
  387. if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
  388. cptep = iopte_deref(pte, lvl);
  389. } else if (pte) {
  390. /* We require an unmap first */
  391. WARN_ON(!selftest_running);
  392. return -EEXIST;
  393. }
  394. /* Rinse, repeat */
  395. return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep);
  396. }
  397. static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
  398. phys_addr_t paddr, size_t size, int prot)
  399. {
  400. struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
  401. struct io_pgtable *iop = &data->iop;
  402. int ret;
  403. /* If no access, then nothing to do */
  404. if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
  405. return 0;
  406. if (WARN_ON(upper_32_bits(iova) || upper_32_bits(paddr)))
  407. return -ERANGE;
  408. ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd);
  409. /*
  410. * Synchronise all PTE updates for the new mapping before there's
  411. * a chance for anything to kick off a table walk for the new iova.
  412. */
  413. if (iop->cfg.quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
  414. io_pgtable_tlb_add_flush(iop, iova, size,
  415. ARM_V7S_BLOCK_SIZE(2), false);
  416. io_pgtable_tlb_sync(iop);
  417. } else {
  418. wmb();
  419. }
  420. return ret;
  421. }
  422. static void arm_v7s_free_pgtable(struct io_pgtable *iop)
  423. {
  424. struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
  425. int i;
  426. for (i = 0; i < ARM_V7S_PTES_PER_LVL(1); i++) {
  427. arm_v7s_iopte pte = data->pgd[i];
  428. if (ARM_V7S_PTE_IS_TABLE(pte, 1))
  429. __arm_v7s_free_table(iopte_deref(pte, 1), 2, data);
  430. }
  431. __arm_v7s_free_table(data->pgd, 1, data);
  432. kmem_cache_destroy(data->l2_tables);
  433. kfree(data);
  434. }
  435. static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
  436. unsigned long iova, int idx, int lvl,
  437. arm_v7s_iopte *ptep)
  438. {
  439. struct io_pgtable *iop = &data->iop;
  440. arm_v7s_iopte pte;
  441. size_t size = ARM_V7S_BLOCK_SIZE(lvl);
  442. int i;
  443. /* Check that we didn't lose a race to get the lock */
  444. pte = *ptep;
  445. if (!arm_v7s_pte_is_cont(pte, lvl))
  446. return pte;
  447. ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
  448. pte = arm_v7s_cont_to_pte(pte, lvl);
  449. for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
  450. ptep[i] = pte + i * size;
  451. __arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
  452. size *= ARM_V7S_CONT_PAGES;
  453. io_pgtable_tlb_add_flush(iop, iova, size, size, true);
  454. io_pgtable_tlb_sync(iop);
  455. return pte;
  456. }
  457. static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
  458. unsigned long iova, size_t size,
  459. arm_v7s_iopte blk_pte,
  460. arm_v7s_iopte *ptep)
  461. {
  462. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  463. arm_v7s_iopte pte, *tablep;
  464. int i, unmap_idx, num_entries, num_ptes;
  465. tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
  466. if (!tablep)
  467. return 0; /* Bytes unmapped */
  468. num_ptes = ARM_V7S_PTES_PER_LVL(2);
  469. num_entries = size >> ARM_V7S_LVL_SHIFT(2);
  470. unmap_idx = ARM_V7S_LVL_IDX(iova, 2);
  471. pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
  472. if (num_entries > 1)
  473. pte = arm_v7s_pte_to_cont(pte, 2);
  474. for (i = 0; i < num_ptes; i += num_entries, pte += size) {
  475. /* Unmap! */
  476. if (i == unmap_idx)
  477. continue;
  478. __arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
  479. }
  480. pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
  481. if (pte != blk_pte) {
  482. __arm_v7s_free_table(tablep, 2, data);
  483. if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
  484. return 0;
  485. tablep = iopte_deref(pte, 1);
  486. return __arm_v7s_unmap(data, iova, size, 2, tablep);
  487. }
  488. io_pgtable_tlb_add_flush(&data->iop, iova, size, size, true);
  489. return size;
  490. }
  491. static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
  492. unsigned long iova, size_t size, int lvl,
  493. arm_v7s_iopte *ptep)
  494. {
  495. arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
  496. struct io_pgtable *iop = &data->iop;
  497. int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
  498. /* Something went horribly wrong and we ran out of page table */
  499. if (WARN_ON(lvl > 2))
  500. return 0;
  501. idx = ARM_V7S_LVL_IDX(iova, lvl);
  502. ptep += idx;
  503. do {
  504. pte[i] = READ_ONCE(ptep[i]);
  505. if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
  506. return 0;
  507. } while (++i < num_entries);
  508. /*
  509. * If we've hit a contiguous 'large page' entry at this level, it
  510. * needs splitting first, unless we're unmapping the whole lot.
  511. *
  512. * For splitting, we can't rewrite 16 PTEs atomically, and since we
  513. * can't necessarily assume TEX remap we don't have a software bit to
  514. * mark live entries being split. In practice (i.e. DMA API code), we
  515. * will never be splitting large pages anyway, so just wrap this edge
  516. * case in a lock for the sake of correctness and be done with it.
  517. */
  518. if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
  519. unsigned long flags;
  520. spin_lock_irqsave(&data->split_lock, flags);
  521. pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
  522. spin_unlock_irqrestore(&data->split_lock, flags);
  523. }
  524. /* If the size matches this level, we're in the right place */
  525. if (num_entries) {
  526. size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
  527. __arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
  528. for (i = 0; i < num_entries; i++) {
  529. if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
  530. /* Also flush any partial walks */
  531. io_pgtable_tlb_add_flush(iop, iova, blk_size,
  532. ARM_V7S_BLOCK_SIZE(lvl + 1), false);
  533. io_pgtable_tlb_sync(iop);
  534. ptep = iopte_deref(pte[i], lvl);
  535. __arm_v7s_free_table(ptep, lvl + 1, data);
  536. } else {
  537. io_pgtable_tlb_add_flush(iop, iova, blk_size,
  538. blk_size, true);
  539. }
  540. iova += blk_size;
  541. }
  542. return size;
  543. } else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
  544. /*
  545. * Insert a table at the next level to map the old region,
  546. * minus the part we want to unmap
  547. */
  548. return arm_v7s_split_blk_unmap(data, iova, size, pte[0], ptep);
  549. }
  550. /* Keep on walkin' */
  551. ptep = iopte_deref(pte[0], lvl);
  552. return __arm_v7s_unmap(data, iova, size, lvl + 1, ptep);
  553. }
  554. static size_t arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
  555. size_t size)
  556. {
  557. struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
  558. if (WARN_ON(upper_32_bits(iova)))
  559. return 0;
  560. return __arm_v7s_unmap(data, iova, size, 1, data->pgd);
  561. }
  562. static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
  563. unsigned long iova)
  564. {
  565. struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
  566. arm_v7s_iopte *ptep = data->pgd, pte;
  567. int lvl = 0;
  568. u32 mask;
  569. do {
  570. ptep += ARM_V7S_LVL_IDX(iova, ++lvl);
  571. pte = READ_ONCE(*ptep);
  572. ptep = iopte_deref(pte, lvl);
  573. } while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
  574. if (!ARM_V7S_PTE_IS_VALID(pte))
  575. return 0;
  576. mask = ARM_V7S_LVL_MASK(lvl);
  577. if (arm_v7s_pte_is_cont(pte, lvl))
  578. mask *= ARM_V7S_CONT_PAGES;
  579. return (pte & mask) | (iova & ~mask);
  580. }
  581. static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
  582. void *cookie)
  583. {
  584. struct arm_v7s_io_pgtable *data;
  585. #ifdef PHYS_OFFSET
  586. if (upper_32_bits(PHYS_OFFSET))
  587. return NULL;
  588. #endif
  589. if (cfg->ias > ARM_V7S_ADDR_BITS || cfg->oas > ARM_V7S_ADDR_BITS)
  590. return NULL;
  591. if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
  592. IO_PGTABLE_QUIRK_NO_PERMS |
  593. IO_PGTABLE_QUIRK_TLBI_ON_MAP |
  594. IO_PGTABLE_QUIRK_ARM_MTK_4GB |
  595. IO_PGTABLE_QUIRK_NO_DMA))
  596. return NULL;
  597. /* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
  598. if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB &&
  599. !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
  600. return NULL;
  601. data = kmalloc(sizeof(*data), GFP_KERNEL);
  602. if (!data)
  603. return NULL;
  604. spin_lock_init(&data->split_lock);
  605. data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
  606. ARM_V7S_TABLE_SIZE(2),
  607. ARM_V7S_TABLE_SIZE(2),
  608. SLAB_CACHE_DMA, NULL);
  609. if (!data->l2_tables)
  610. goto out_free_data;
  611. data->iop.ops = (struct io_pgtable_ops) {
  612. .map = arm_v7s_map,
  613. .unmap = arm_v7s_unmap,
  614. .iova_to_phys = arm_v7s_iova_to_phys,
  615. };
  616. /* We have to do this early for __arm_v7s_alloc_table to work... */
  617. data->iop.cfg = *cfg;
  618. /*
  619. * Unless the IOMMU driver indicates supersection support by
  620. * having SZ_16M set in the initial bitmap, they won't be used.
  621. */
  622. cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
  623. /* TCR: T0SZ=0, disable TTBR1 */
  624. cfg->arm_v7s_cfg.tcr = ARM_V7S_TCR_PD1;
  625. /*
  626. * TEX remap: the indices used map to the closest equivalent types
  627. * under the non-TEX-remap interpretation of those attribute bits,
  628. * excepting various implementation-defined aspects of shareability.
  629. */
  630. cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
  631. ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
  632. ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
  633. ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
  634. ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
  635. cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
  636. ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
  637. /* Looking good; allocate a pgd */
  638. data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
  639. if (!data->pgd)
  640. goto out_free_data;
  641. /* Ensure the empty pgd is visible before any actual TTBR write */
  642. wmb();
  643. /* TTBRs */
  644. cfg->arm_v7s_cfg.ttbr[0] = virt_to_phys(data->pgd) |
  645. ARM_V7S_TTBR_S | ARM_V7S_TTBR_NOS |
  646. ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
  647. ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA);
  648. cfg->arm_v7s_cfg.ttbr[1] = 0;
  649. return &data->iop;
  650. out_free_data:
  651. kmem_cache_destroy(data->l2_tables);
  652. kfree(data);
  653. return NULL;
  654. }
  655. struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
  656. .alloc = arm_v7s_alloc_pgtable,
  657. .free = arm_v7s_free_pgtable,
  658. };
  659. #ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
  660. static struct io_pgtable_cfg *cfg_cookie;
  661. static void dummy_tlb_flush_all(void *cookie)
  662. {
  663. WARN_ON(cookie != cfg_cookie);
  664. }
  665. static void dummy_tlb_add_flush(unsigned long iova, size_t size,
  666. size_t granule, bool leaf, void *cookie)
  667. {
  668. WARN_ON(cookie != cfg_cookie);
  669. WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
  670. }
  671. static void dummy_tlb_sync(void *cookie)
  672. {
  673. WARN_ON(cookie != cfg_cookie);
  674. }
  675. static const struct iommu_gather_ops dummy_tlb_ops = {
  676. .tlb_flush_all = dummy_tlb_flush_all,
  677. .tlb_add_flush = dummy_tlb_add_flush,
  678. .tlb_sync = dummy_tlb_sync,
  679. };
  680. #define __FAIL(ops) ({ \
  681. WARN(1, "selftest: test failed\n"); \
  682. selftest_running = false; \
  683. -EFAULT; \
  684. })
  685. static int __init arm_v7s_do_selftests(void)
  686. {
  687. struct io_pgtable_ops *ops;
  688. struct io_pgtable_cfg cfg = {
  689. .tlb = &dummy_tlb_ops,
  690. .oas = 32,
  691. .ias = 32,
  692. .quirks = IO_PGTABLE_QUIRK_ARM_NS | IO_PGTABLE_QUIRK_NO_DMA,
  693. .pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
  694. };
  695. unsigned int iova, size, iova_start;
  696. unsigned int i, loopnr = 0;
  697. selftest_running = true;
  698. cfg_cookie = &cfg;
  699. ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
  700. if (!ops) {
  701. pr_err("selftest: failed to allocate io pgtable ops\n");
  702. return -EINVAL;
  703. }
  704. /*
  705. * Initial sanity checks.
  706. * Empty page tables shouldn't provide any translations.
  707. */
  708. if (ops->iova_to_phys(ops, 42))
  709. return __FAIL(ops);
  710. if (ops->iova_to_phys(ops, SZ_1G + 42))
  711. return __FAIL(ops);
  712. if (ops->iova_to_phys(ops, SZ_2G + 42))
  713. return __FAIL(ops);
  714. /*
  715. * Distinct mappings of different granule sizes.
  716. */
  717. iova = 0;
  718. for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
  719. size = 1UL << i;
  720. if (ops->map(ops, iova, iova, size, IOMMU_READ |
  721. IOMMU_WRITE |
  722. IOMMU_NOEXEC |
  723. IOMMU_CACHE))
  724. return __FAIL(ops);
  725. /* Overlapping mappings */
  726. if (!ops->map(ops, iova, iova + size, size,
  727. IOMMU_READ | IOMMU_NOEXEC))
  728. return __FAIL(ops);
  729. if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
  730. return __FAIL(ops);
  731. iova += SZ_16M;
  732. loopnr++;
  733. }
  734. /* Partial unmap */
  735. i = 1;
  736. size = 1UL << __ffs(cfg.pgsize_bitmap);
  737. while (i < loopnr) {
  738. iova_start = i * SZ_16M;
  739. if (ops->unmap(ops, iova_start + size, size) != size)
  740. return __FAIL(ops);
  741. /* Remap of partial unmap */
  742. if (ops->map(ops, iova_start + size, size, size, IOMMU_READ))
  743. return __FAIL(ops);
  744. if (ops->iova_to_phys(ops, iova_start + size + 42)
  745. != (size + 42))
  746. return __FAIL(ops);
  747. i++;
  748. }
  749. /* Full unmap */
  750. iova = 0;
  751. for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
  752. size = 1UL << i;
  753. if (ops->unmap(ops, iova, size) != size)
  754. return __FAIL(ops);
  755. if (ops->iova_to_phys(ops, iova + 42))
  756. return __FAIL(ops);
  757. /* Remap full block */
  758. if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
  759. return __FAIL(ops);
  760. if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
  761. return __FAIL(ops);
  762. iova += SZ_16M;
  763. }
  764. free_io_pgtable_ops(ops);
  765. selftest_running = false;
  766. pr_info("self test ok\n");
  767. return 0;
  768. }
  769. subsys_initcall(arm_v7s_do_selftests);
  770. #endif