vc4_dsi.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721
  1. /*
  2. * Copyright (C) 2016 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /**
  17. * DOC: VC4 DSI0/DSI1 module
  18. *
  19. * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
  20. * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  21. * controller.
  22. *
  23. * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  24. * while the compute module brings both DSI0 and DSI1 out.
  25. *
  26. * This driver has been tested for DSI1 video-mode display only
  27. * currently, with most of the information necessary for DSI0
  28. * hopefully present.
  29. */
  30. #include <drm/drm_atomic_helper.h>
  31. #include <drm/drm_crtc_helper.h>
  32. #include <drm/drm_edid.h>
  33. #include <drm/drm_mipi_dsi.h>
  34. #include <drm/drm_of.h>
  35. #include <drm/drm_panel.h>
  36. #include <linux/clk.h>
  37. #include <linux/clk-provider.h>
  38. #include <linux/completion.h>
  39. #include <linux/component.h>
  40. #include <linux/dmaengine.h>
  41. #include <linux/i2c.h>
  42. #include <linux/of_address.h>
  43. #include <linux/of_platform.h>
  44. #include <linux/pm_runtime.h>
  45. #include "vc4_drv.h"
  46. #include "vc4_regs.h"
  47. #define DSI_CMD_FIFO_DEPTH 16
  48. #define DSI_PIX_FIFO_DEPTH 256
  49. #define DSI_PIX_FIFO_WIDTH 4
  50. #define DSI0_CTRL 0x00
  51. /* Command packet control. */
  52. #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
  53. #define DSI1_TXPKT1C 0x04
  54. # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
  55. # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
  56. # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
  57. # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
  58. # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
  59. # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
  60. /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  61. # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
  62. /* Primary display where cmdfifo provides part of the payload and
  63. * pixelvalve the rest.
  64. */
  65. # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
  66. /* Secondary display where cmdfifo provides part of the payload and
  67. * pixfifo the rest.
  68. */
  69. # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
  70. # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
  71. # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
  72. # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
  73. # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
  74. /* Command only. Uses TXPKT1H and DISPLAY_NO */
  75. # define DSI_TXPKT1C_CMD_CTRL_TX 0
  76. /* Command with BTA for either ack or read data. */
  77. # define DSI_TXPKT1C_CMD_CTRL_RX 1
  78. /* Trigger according to TRIG_CMD */
  79. # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
  80. /* BTA alone for getting error status after a command, or a TE trigger
  81. * without a previous command.
  82. */
  83. # define DSI_TXPKT1C_CMD_CTRL_BTA 3
  84. # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
  85. # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
  86. # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
  87. # define DSI_TXPKT1C_CMD_EN BIT(0)
  88. /* Command packet header. */
  89. #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
  90. #define DSI1_TXPKT1H 0x08
  91. # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
  92. # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
  93. # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  94. # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
  95. # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
  96. # define DSI_TXPKT1H_BC_DT_SHIFT 0
  97. #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
  98. #define DSI1_RXPKT1H 0x14
  99. # define DSI_RXPKT1H_CRC_ERR BIT(31)
  100. # define DSI_RXPKT1H_DET_ERR BIT(30)
  101. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  102. # define DSI_RXPKT1H_COR_ERR BIT(28)
  103. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  104. # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
  105. /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
  106. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  107. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  108. /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
  109. # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
  110. # define DSI_RXPKT1H_SHORT_1_SHIFT 16
  111. # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
  112. # define DSI_RXPKT1H_SHORT_0_SHIFT 8
  113. # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
  114. # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
  115. #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
  116. #define DSI1_RXPKT2H 0x18
  117. # define DSI_RXPKT1H_DET_ERR BIT(30)
  118. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  119. # define DSI_RXPKT1H_COR_ERR BIT(28)
  120. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  121. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  122. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  123. # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
  124. # define DSI_RXPKT1H_DT_SHIFT 0
  125. #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
  126. #define DSI1_TXPKT_CMD_FIFO 0x1c
  127. #define DSI0_DISP0_CTRL 0x18
  128. # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
  129. # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
  130. # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
  131. # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
  132. # define DSI_DISP0_LP_STOP_DISABLE 0
  133. # define DSI_DISP0_LP_STOP_PERLINE 1
  134. # define DSI_DISP0_LP_STOP_PERFRAME 2
  135. /* Transmit RGB pixels and null packets only during HACTIVE, instead
  136. * of going to LP-STOP.
  137. */
  138. # define DSI_DISP_HACTIVE_NULL BIT(10)
  139. /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
  140. # define DSI_DISP_VBLP_CTRL BIT(9)
  141. /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
  142. # define DSI_DISP_HFP_CTRL BIT(8)
  143. /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
  144. # define DSI_DISP_HBP_CTRL BIT(7)
  145. # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
  146. # define DSI_DISP0_CHANNEL_SHIFT 5
  147. /* Enables end events for HSYNC/VSYNC, not just start events. */
  148. # define DSI_DISP0_ST_END BIT(4)
  149. # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
  150. # define DSI_DISP0_PFORMAT_SHIFT 2
  151. # define DSI_PFORMAT_RGB565 0
  152. # define DSI_PFORMAT_RGB666_PACKED 1
  153. # define DSI_PFORMAT_RGB666 2
  154. # define DSI_PFORMAT_RGB888 3
  155. /* Default is VIDEO mode. */
  156. # define DSI_DISP0_COMMAND_MODE BIT(1)
  157. # define DSI_DISP0_ENABLE BIT(0)
  158. #define DSI0_DISP1_CTRL 0x1c
  159. #define DSI1_DISP1_CTRL 0x2c
  160. /* Format of the data written to TXPKT_PIX_FIFO. */
  161. # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
  162. # define DSI_DISP1_PFORMAT_SHIFT 1
  163. # define DSI_DISP1_PFORMAT_16BIT 0
  164. # define DSI_DISP1_PFORMAT_24BIT 1
  165. # define DSI_DISP1_PFORMAT_32BIT_LE 2
  166. # define DSI_DISP1_PFORMAT_32BIT_BE 3
  167. /* DISP1 is always command mode. */
  168. # define DSI_DISP1_ENABLE BIT(0)
  169. #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
  170. #define DSI0_INT_STAT 0x24
  171. #define DSI0_INT_EN 0x28
  172. # define DSI1_INT_PHY_D3_ULPS BIT(30)
  173. # define DSI1_INT_PHY_D3_STOP BIT(29)
  174. # define DSI1_INT_PHY_D2_ULPS BIT(28)
  175. # define DSI1_INT_PHY_D2_STOP BIT(27)
  176. # define DSI1_INT_PHY_D1_ULPS BIT(26)
  177. # define DSI1_INT_PHY_D1_STOP BIT(25)
  178. # define DSI1_INT_PHY_D0_ULPS BIT(24)
  179. # define DSI1_INT_PHY_D0_STOP BIT(23)
  180. # define DSI1_INT_FIFO_ERR BIT(22)
  181. # define DSI1_INT_PHY_DIR_RTF BIT(21)
  182. # define DSI1_INT_PHY_RXLPDT BIT(20)
  183. # define DSI1_INT_PHY_RXTRIG BIT(19)
  184. # define DSI1_INT_PHY_D0_LPDT BIT(18)
  185. # define DSI1_INT_PHY_DIR_FTR BIT(17)
  186. /* Signaled when the clock lane enters the given state. */
  187. # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
  188. # define DSI1_INT_PHY_CLOCK_HS BIT(15)
  189. # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
  190. /* Signaled on timeouts */
  191. # define DSI1_INT_PR_TO BIT(13)
  192. # define DSI1_INT_TA_TO BIT(12)
  193. # define DSI1_INT_LPRX_TO BIT(11)
  194. # define DSI1_INT_HSTX_TO BIT(10)
  195. /* Contention on a line when trying to drive the line low */
  196. # define DSI1_INT_ERR_CONT_LP1 BIT(9)
  197. # define DSI1_INT_ERR_CONT_LP0 BIT(8)
  198. /* Control error: incorrect line state sequence on data lane 0. */
  199. # define DSI1_INT_ERR_CONTROL BIT(7)
  200. /* LPDT synchronization error (bits received not a multiple of 8. */
  201. # define DSI1_INT_ERR_SYNC_ESC BIT(6)
  202. /* Signaled after receiving an error packet from the display in
  203. * response to a read.
  204. */
  205. # define DSI1_INT_RXPKT2 BIT(5)
  206. /* Signaled after receiving a packet. The header and optional short
  207. * response will be in RXPKT1H, and a long response will be in the
  208. * RXPKT_FIFO.
  209. */
  210. # define DSI1_INT_RXPKT1 BIT(4)
  211. # define DSI1_INT_TXPKT2_DONE BIT(3)
  212. # define DSI1_INT_TXPKT2_END BIT(2)
  213. /* Signaled after all repeats of TXPKT1 are transferred. */
  214. # define DSI1_INT_TXPKT1_DONE BIT(1)
  215. /* Signaled after each TXPKT1 repeat is scheduled. */
  216. # define DSI1_INT_TXPKT1_END BIT(0)
  217. #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
  218. DSI1_INT_ERR_CONTROL | \
  219. DSI1_INT_ERR_CONT_LP0 | \
  220. DSI1_INT_ERR_CONT_LP1 | \
  221. DSI1_INT_HSTX_TO | \
  222. DSI1_INT_LPRX_TO | \
  223. DSI1_INT_TA_TO | \
  224. DSI1_INT_PR_TO)
  225. #define DSI0_STAT 0x2c
  226. #define DSI0_HSTX_TO_CNT 0x30
  227. #define DSI0_LPRX_TO_CNT 0x34
  228. #define DSI0_TA_TO_CNT 0x38
  229. #define DSI0_PR_TO_CNT 0x3c
  230. #define DSI0_PHYC 0x40
  231. # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
  232. # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
  233. # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
  234. # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
  235. # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
  236. # define DSI1_PHYC_CLANE_ULPS BIT(17)
  237. # define DSI1_PHYC_CLANE_ENABLE BIT(16)
  238. # define DSI_PHYC_DLANE3_ULPS BIT(13)
  239. # define DSI_PHYC_DLANE3_ENABLE BIT(12)
  240. # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
  241. # define DSI0_PHYC_CLANE_ULPS BIT(9)
  242. # define DSI_PHYC_DLANE2_ULPS BIT(9)
  243. # define DSI0_PHYC_CLANE_ENABLE BIT(8)
  244. # define DSI_PHYC_DLANE2_ENABLE BIT(8)
  245. # define DSI_PHYC_DLANE1_ULPS BIT(5)
  246. # define DSI_PHYC_DLANE1_ENABLE BIT(4)
  247. # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
  248. # define DSI_PHYC_DLANE0_ULPS BIT(1)
  249. # define DSI_PHYC_DLANE0_ENABLE BIT(0)
  250. #define DSI0_HS_CLT0 0x44
  251. #define DSI0_HS_CLT1 0x48
  252. #define DSI0_HS_CLT2 0x4c
  253. #define DSI0_HS_DLT3 0x50
  254. #define DSI0_HS_DLT4 0x54
  255. #define DSI0_HS_DLT5 0x58
  256. #define DSI0_HS_DLT6 0x5c
  257. #define DSI0_HS_DLT7 0x60
  258. #define DSI0_PHY_AFEC0 0x64
  259. # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
  260. # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
  261. # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
  262. # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
  263. # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
  264. # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
  265. # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
  266. # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
  267. # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
  268. # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
  269. # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
  270. # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
  271. # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
  272. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
  273. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
  274. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
  275. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
  276. # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
  277. # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
  278. # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
  279. # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
  280. # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
  281. # define DSI1_PHY_AFEC0_RESET BIT(13)
  282. # define DSI1_PHY_AFEC0_PD BIT(12)
  283. # define DSI0_PHY_AFEC0_RESET BIT(11)
  284. # define DSI1_PHY_AFEC0_PD_BG BIT(11)
  285. # define DSI0_PHY_AFEC0_PD BIT(10)
  286. # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
  287. # define DSI0_PHY_AFEC0_PD_BG BIT(9)
  288. # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
  289. # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
  290. # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
  291. # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
  292. # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
  293. # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
  294. # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
  295. #define DSI0_PHY_AFEC1 0x68
  296. # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
  297. # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
  298. # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
  299. # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
  300. # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
  301. # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
  302. #define DSI0_TST_SEL 0x6c
  303. #define DSI0_TST_MON 0x70
  304. #define DSI0_ID 0x74
  305. # define DSI_ID_VALUE 0x00647369
  306. #define DSI1_CTRL 0x00
  307. # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
  308. # define DSI_CTRL_HS_CLKC_SHIFT 14
  309. # define DSI_CTRL_HS_CLKC_BYTE 0
  310. # define DSI_CTRL_HS_CLKC_DDR2 1
  311. # define DSI_CTRL_HS_CLKC_DDR 2
  312. # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
  313. # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
  314. # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
  315. # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
  316. # define DSI_CTRL_CAL_BYTE BIT(9)
  317. # define DSI_CTRL_INV_BYTE BIT(8)
  318. # define DSI_CTRL_CLR_LDF BIT(7)
  319. # define DSI0_CTRL_CLR_PBCF BIT(6)
  320. # define DSI1_CTRL_CLR_RXF BIT(6)
  321. # define DSI0_CTRL_CLR_CPBCF BIT(5)
  322. # define DSI1_CTRL_CLR_PDF BIT(5)
  323. # define DSI0_CTRL_CLR_PDF BIT(4)
  324. # define DSI1_CTRL_CLR_CDF BIT(4)
  325. # define DSI0_CTRL_CLR_CDF BIT(3)
  326. # define DSI0_CTRL_CTRL2 BIT(2)
  327. # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
  328. # define DSI0_CTRL_CTRL1 BIT(1)
  329. # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
  330. # define DSI0_CTRL_CTRL0 BIT(0)
  331. # define DSI1_CTRL_EN BIT(0)
  332. # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  333. DSI0_CTRL_CLR_PBCF | \
  334. DSI0_CTRL_CLR_CPBCF | \
  335. DSI0_CTRL_CLR_PDF | \
  336. DSI0_CTRL_CLR_CDF)
  337. # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  338. DSI1_CTRL_CLR_RXF | \
  339. DSI1_CTRL_CLR_PDF | \
  340. DSI1_CTRL_CLR_CDF)
  341. #define DSI1_TXPKT2C 0x0c
  342. #define DSI1_TXPKT2H 0x10
  343. #define DSI1_TXPKT_PIX_FIFO 0x20
  344. #define DSI1_RXPKT_FIFO 0x24
  345. #define DSI1_DISP0_CTRL 0x28
  346. #define DSI1_INT_STAT 0x30
  347. #define DSI1_INT_EN 0x34
  348. /* State reporting bits. These mostly behave like INT_STAT, where
  349. * writing a 1 clears the bit.
  350. */
  351. #define DSI1_STAT 0x38
  352. # define DSI1_STAT_PHY_D3_ULPS BIT(31)
  353. # define DSI1_STAT_PHY_D3_STOP BIT(30)
  354. # define DSI1_STAT_PHY_D2_ULPS BIT(29)
  355. # define DSI1_STAT_PHY_D2_STOP BIT(28)
  356. # define DSI1_STAT_PHY_D1_ULPS BIT(27)
  357. # define DSI1_STAT_PHY_D1_STOP BIT(26)
  358. # define DSI1_STAT_PHY_D0_ULPS BIT(25)
  359. # define DSI1_STAT_PHY_D0_STOP BIT(24)
  360. # define DSI1_STAT_FIFO_ERR BIT(23)
  361. # define DSI1_STAT_PHY_RXLPDT BIT(22)
  362. # define DSI1_STAT_PHY_RXTRIG BIT(21)
  363. # define DSI1_STAT_PHY_D0_LPDT BIT(20)
  364. /* Set when in forward direction */
  365. # define DSI1_STAT_PHY_DIR BIT(19)
  366. # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
  367. # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
  368. # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
  369. # define DSI1_STAT_PR_TO BIT(15)
  370. # define DSI1_STAT_TA_TO BIT(14)
  371. # define DSI1_STAT_LPRX_TO BIT(13)
  372. # define DSI1_STAT_HSTX_TO BIT(12)
  373. # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
  374. # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
  375. # define DSI1_STAT_ERR_CONTROL BIT(9)
  376. # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
  377. # define DSI1_STAT_RXPKT2 BIT(7)
  378. # define DSI1_STAT_RXPKT1 BIT(6)
  379. # define DSI1_STAT_TXPKT2_BUSY BIT(5)
  380. # define DSI1_STAT_TXPKT2_DONE BIT(4)
  381. # define DSI1_STAT_TXPKT2_END BIT(3)
  382. # define DSI1_STAT_TXPKT1_BUSY BIT(2)
  383. # define DSI1_STAT_TXPKT1_DONE BIT(1)
  384. # define DSI1_STAT_TXPKT1_END BIT(0)
  385. #define DSI1_HSTX_TO_CNT 0x3c
  386. #define DSI1_LPRX_TO_CNT 0x40
  387. #define DSI1_TA_TO_CNT 0x44
  388. #define DSI1_PR_TO_CNT 0x48
  389. #define DSI1_PHYC 0x4c
  390. #define DSI1_HS_CLT0 0x50
  391. # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
  392. # define DSI_HS_CLT0_CZERO_SHIFT 18
  393. # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
  394. # define DSI_HS_CLT0_CPRE_SHIFT 9
  395. # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
  396. # define DSI_HS_CLT0_CPREP_SHIFT 0
  397. #define DSI1_HS_CLT1 0x54
  398. # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
  399. # define DSI_HS_CLT1_CTRAIL_SHIFT 9
  400. # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
  401. # define DSI_HS_CLT1_CPOST_SHIFT 0
  402. #define DSI1_HS_CLT2 0x58
  403. # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
  404. # define DSI_HS_CLT2_WUP_SHIFT 0
  405. #define DSI1_HS_DLT3 0x5c
  406. # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
  407. # define DSI_HS_DLT3_EXIT_SHIFT 18
  408. # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
  409. # define DSI_HS_DLT3_ZERO_SHIFT 9
  410. # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
  411. # define DSI_HS_DLT3_PRE_SHIFT 0
  412. #define DSI1_HS_DLT4 0x60
  413. # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
  414. # define DSI_HS_DLT4_ANLAT_SHIFT 18
  415. # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
  416. # define DSI_HS_DLT4_TRAIL_SHIFT 9
  417. # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
  418. # define DSI_HS_DLT4_LPX_SHIFT 0
  419. #define DSI1_HS_DLT5 0x64
  420. # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
  421. # define DSI_HS_DLT5_INIT_SHIFT 0
  422. #define DSI1_HS_DLT6 0x68
  423. # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
  424. # define DSI_HS_DLT6_TA_GET_SHIFT 24
  425. # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
  426. # define DSI_HS_DLT6_TA_SURE_SHIFT 16
  427. # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
  428. # define DSI_HS_DLT6_TA_GO_SHIFT 8
  429. # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
  430. # define DSI_HS_DLT6_LP_LPX_SHIFT 0
  431. #define DSI1_HS_DLT7 0x6c
  432. # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
  433. # define DSI_HS_DLT7_LP_WUP_SHIFT 0
  434. #define DSI1_PHY_AFEC0 0x70
  435. #define DSI1_PHY_AFEC1 0x74
  436. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
  437. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
  438. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
  439. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
  440. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
  441. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
  442. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
  443. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
  444. # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
  445. # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
  446. #define DSI1_TST_SEL 0x78
  447. #define DSI1_TST_MON 0x7c
  448. #define DSI1_PHY_TST1 0x80
  449. #define DSI1_PHY_TST2 0x84
  450. #define DSI1_PHY_FIFO_STAT 0x88
  451. /* Actually, all registers in the range that aren't otherwise claimed
  452. * will return the ID.
  453. */
  454. #define DSI1_ID 0x8c
  455. /* General DSI hardware state. */
  456. struct vc4_dsi {
  457. struct platform_device *pdev;
  458. struct mipi_dsi_host dsi_host;
  459. struct drm_encoder *encoder;
  460. struct drm_bridge *bridge;
  461. void __iomem *regs;
  462. struct dma_chan *reg_dma_chan;
  463. dma_addr_t reg_dma_paddr;
  464. u32 *reg_dma_mem;
  465. dma_addr_t reg_paddr;
  466. /* Whether we're on bcm2835's DSI0 or DSI1. */
  467. int port;
  468. /* DSI channel for the panel we're connected to. */
  469. u32 channel;
  470. u32 lanes;
  471. u32 format;
  472. u32 divider;
  473. u32 mode_flags;
  474. /* Input clock from CPRMAN to the digital PHY, for the DSI
  475. * escape clock.
  476. */
  477. struct clk *escape_clock;
  478. /* Input clock to the analog PHY, used to generate the DSI bit
  479. * clock.
  480. */
  481. struct clk *pll_phy_clock;
  482. /* HS Clocks generated within the DSI analog PHY. */
  483. struct clk_fixed_factor phy_clocks[3];
  484. struct clk_hw_onecell_data *clk_onecell;
  485. /* Pixel clock output to the pixelvalve, generated from the HS
  486. * clock.
  487. */
  488. struct clk *pixel_clock;
  489. struct completion xfer_completion;
  490. int xfer_result;
  491. };
  492. #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
  493. static inline void
  494. dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
  495. {
  496. struct dma_chan *chan = dsi->reg_dma_chan;
  497. struct dma_async_tx_descriptor *tx;
  498. dma_cookie_t cookie;
  499. int ret;
  500. /* DSI0 should be able to write normally. */
  501. if (!chan) {
  502. writel(val, dsi->regs + offset);
  503. return;
  504. }
  505. *dsi->reg_dma_mem = val;
  506. tx = chan->device->device_prep_dma_memcpy(chan,
  507. dsi->reg_paddr + offset,
  508. dsi->reg_dma_paddr,
  509. 4, 0);
  510. if (!tx) {
  511. DRM_ERROR("Failed to set up DMA register write\n");
  512. return;
  513. }
  514. cookie = tx->tx_submit(tx);
  515. ret = dma_submit_error(cookie);
  516. if (ret) {
  517. DRM_ERROR("Failed to submit DMA: %d\n", ret);
  518. return;
  519. }
  520. ret = dma_sync_wait(chan, cookie);
  521. if (ret)
  522. DRM_ERROR("Failed to wait for DMA: %d\n", ret);
  523. }
  524. #define DSI_READ(offset) readl(dsi->regs + (offset))
  525. #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
  526. #define DSI_PORT_READ(offset) \
  527. DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
  528. #define DSI_PORT_WRITE(offset, val) \
  529. DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
  530. #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
  531. /* VC4 DSI encoder KMS struct */
  532. struct vc4_dsi_encoder {
  533. struct vc4_encoder base;
  534. struct vc4_dsi *dsi;
  535. };
  536. static inline struct vc4_dsi_encoder *
  537. to_vc4_dsi_encoder(struct drm_encoder *encoder)
  538. {
  539. return container_of(encoder, struct vc4_dsi_encoder, base.base);
  540. }
  541. #define DSI_REG(reg) { reg, #reg }
  542. static const struct {
  543. u32 reg;
  544. const char *name;
  545. } dsi0_regs[] = {
  546. DSI_REG(DSI0_CTRL),
  547. DSI_REG(DSI0_STAT),
  548. DSI_REG(DSI0_HSTX_TO_CNT),
  549. DSI_REG(DSI0_LPRX_TO_CNT),
  550. DSI_REG(DSI0_TA_TO_CNT),
  551. DSI_REG(DSI0_PR_TO_CNT),
  552. DSI_REG(DSI0_DISP0_CTRL),
  553. DSI_REG(DSI0_DISP1_CTRL),
  554. DSI_REG(DSI0_INT_STAT),
  555. DSI_REG(DSI0_INT_EN),
  556. DSI_REG(DSI0_PHYC),
  557. DSI_REG(DSI0_HS_CLT0),
  558. DSI_REG(DSI0_HS_CLT1),
  559. DSI_REG(DSI0_HS_CLT2),
  560. DSI_REG(DSI0_HS_DLT3),
  561. DSI_REG(DSI0_HS_DLT4),
  562. DSI_REG(DSI0_HS_DLT5),
  563. DSI_REG(DSI0_HS_DLT6),
  564. DSI_REG(DSI0_HS_DLT7),
  565. DSI_REG(DSI0_PHY_AFEC0),
  566. DSI_REG(DSI0_PHY_AFEC1),
  567. DSI_REG(DSI0_ID),
  568. };
  569. static const struct {
  570. u32 reg;
  571. const char *name;
  572. } dsi1_regs[] = {
  573. DSI_REG(DSI1_CTRL),
  574. DSI_REG(DSI1_STAT),
  575. DSI_REG(DSI1_HSTX_TO_CNT),
  576. DSI_REG(DSI1_LPRX_TO_CNT),
  577. DSI_REG(DSI1_TA_TO_CNT),
  578. DSI_REG(DSI1_PR_TO_CNT),
  579. DSI_REG(DSI1_DISP0_CTRL),
  580. DSI_REG(DSI1_DISP1_CTRL),
  581. DSI_REG(DSI1_INT_STAT),
  582. DSI_REG(DSI1_INT_EN),
  583. DSI_REG(DSI1_PHYC),
  584. DSI_REG(DSI1_HS_CLT0),
  585. DSI_REG(DSI1_HS_CLT1),
  586. DSI_REG(DSI1_HS_CLT2),
  587. DSI_REG(DSI1_HS_DLT3),
  588. DSI_REG(DSI1_HS_DLT4),
  589. DSI_REG(DSI1_HS_DLT5),
  590. DSI_REG(DSI1_HS_DLT6),
  591. DSI_REG(DSI1_HS_DLT7),
  592. DSI_REG(DSI1_PHY_AFEC0),
  593. DSI_REG(DSI1_PHY_AFEC1),
  594. DSI_REG(DSI1_ID),
  595. };
  596. static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
  597. {
  598. int i;
  599. if (dsi->port == 0) {
  600. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  601. DRM_INFO("0x%04x (%s): 0x%08x\n",
  602. dsi0_regs[i].reg, dsi0_regs[i].name,
  603. DSI_READ(dsi0_regs[i].reg));
  604. }
  605. } else {
  606. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  607. DRM_INFO("0x%04x (%s): 0x%08x\n",
  608. dsi1_regs[i].reg, dsi1_regs[i].name,
  609. DSI_READ(dsi1_regs[i].reg));
  610. }
  611. }
  612. }
  613. #ifdef CONFIG_DEBUG_FS
  614. int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
  615. {
  616. struct drm_info_node *node = (struct drm_info_node *)m->private;
  617. struct drm_device *drm = node->minor->dev;
  618. struct vc4_dev *vc4 = to_vc4_dev(drm);
  619. int dsi_index = (uintptr_t)node->info_ent->data;
  620. struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
  621. int i;
  622. if (!dsi)
  623. return 0;
  624. if (dsi->port == 0) {
  625. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  626. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  627. dsi0_regs[i].reg, dsi0_regs[i].name,
  628. DSI_READ(dsi0_regs[i].reg));
  629. }
  630. } else {
  631. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  632. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  633. dsi1_regs[i].reg, dsi1_regs[i].name,
  634. DSI_READ(dsi1_regs[i].reg));
  635. }
  636. }
  637. return 0;
  638. }
  639. #endif
  640. static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
  641. {
  642. drm_encoder_cleanup(encoder);
  643. }
  644. static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
  645. .destroy = vc4_dsi_encoder_destroy,
  646. };
  647. static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
  648. {
  649. u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
  650. if (latch)
  651. afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  652. else
  653. afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  654. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  655. }
  656. /* Enters or exits Ultra Low Power State. */
  657. static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
  658. {
  659. bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
  660. u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
  661. DSI_PHYC_DLANE0_ULPS |
  662. (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
  663. (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
  664. (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
  665. u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
  666. DSI1_STAT_PHY_D0_ULPS |
  667. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
  668. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
  669. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
  670. u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
  671. DSI1_STAT_PHY_D0_STOP |
  672. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
  673. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
  674. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
  675. int ret;
  676. bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
  677. DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
  678. if (ulps == ulps_currently_enabled)
  679. return;
  680. DSI_PORT_WRITE(STAT, stat_ulps);
  681. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
  682. ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
  683. if (ret) {
  684. dev_warn(&dsi->pdev->dev,
  685. "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
  686. DSI_PORT_READ(STAT));
  687. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  688. vc4_dsi_latch_ulps(dsi, false);
  689. return;
  690. }
  691. /* The DSI module can't be disabled while the module is
  692. * generating ULPS state. So, to be able to disable the
  693. * module, we have the AFE latch the ULPS state and continue
  694. * on to having the module enter STOP.
  695. */
  696. vc4_dsi_latch_ulps(dsi, ulps);
  697. DSI_PORT_WRITE(STAT, stat_stop);
  698. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  699. ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
  700. if (ret) {
  701. dev_warn(&dsi->pdev->dev,
  702. "Timeout waiting for DSI STOP entry: STAT 0x%08x",
  703. DSI_PORT_READ(STAT));
  704. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  705. return;
  706. }
  707. }
  708. static u32
  709. dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
  710. {
  711. /* The HS timings have to be rounded up to a multiple of 8
  712. * because we're using the byte clock.
  713. */
  714. return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
  715. }
  716. /* ESC always runs at 100Mhz. */
  717. #define ESC_TIME_NS 10
  718. static u32
  719. dsi_esc_timing(u32 ns)
  720. {
  721. return DIV_ROUND_UP(ns, ESC_TIME_NS);
  722. }
  723. static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
  724. {
  725. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  726. struct vc4_dsi *dsi = vc4_encoder->dsi;
  727. struct device *dev = &dsi->pdev->dev;
  728. vc4_dsi_ulps(dsi, true);
  729. clk_disable_unprepare(dsi->pll_phy_clock);
  730. clk_disable_unprepare(dsi->escape_clock);
  731. clk_disable_unprepare(dsi->pixel_clock);
  732. pm_runtime_put(dev);
  733. }
  734. /* Extends the mode's blank intervals to handle BCM2835's integer-only
  735. * DSI PLL divider.
  736. *
  737. * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
  738. * driver since most peripherals are hanging off of the PLLD_PER
  739. * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
  740. * the pixel clock), only has an integer divider off of DSI.
  741. *
  742. * To get our panel mode to refresh at the expected 60Hz, we need to
  743. * extend the horizontal blank time. This means we drive a
  744. * higher-than-expected clock rate to the panel, but that's what the
  745. * firmware does too.
  746. */
  747. static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
  748. const struct drm_display_mode *mode,
  749. struct drm_display_mode *adjusted_mode)
  750. {
  751. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  752. struct vc4_dsi *dsi = vc4_encoder->dsi;
  753. struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
  754. unsigned long parent_rate = clk_get_rate(phy_parent);
  755. unsigned long pixel_clock_hz = mode->clock * 1000;
  756. unsigned long pll_clock = pixel_clock_hz * dsi->divider;
  757. int divider;
  758. /* Find what divider gets us a faster clock than the requested
  759. * pixel clock.
  760. */
  761. for (divider = 1; divider < 8; divider++) {
  762. if (parent_rate / divider < pll_clock) {
  763. divider--;
  764. break;
  765. }
  766. }
  767. /* Now that we've picked a PLL divider, calculate back to its
  768. * pixel clock.
  769. */
  770. pll_clock = parent_rate / divider;
  771. pixel_clock_hz = pll_clock / dsi->divider;
  772. adjusted_mode->clock = pixel_clock_hz / 1000;
  773. /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
  774. adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
  775. mode->clock;
  776. adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
  777. adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
  778. return true;
  779. }
  780. static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
  781. {
  782. struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
  783. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  784. struct vc4_dsi *dsi = vc4_encoder->dsi;
  785. struct device *dev = &dsi->pdev->dev;
  786. bool debug_dump_regs = false;
  787. unsigned long hs_clock;
  788. u32 ui_ns;
  789. /* Minimum LP state duration in escape clock cycles. */
  790. u32 lpx = dsi_esc_timing(60);
  791. unsigned long pixel_clock_hz = mode->clock * 1000;
  792. unsigned long dsip_clock;
  793. unsigned long phy_clock;
  794. int ret;
  795. ret = pm_runtime_get_sync(dev);
  796. if (ret) {
  797. DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
  798. return;
  799. }
  800. if (debug_dump_regs) {
  801. DRM_INFO("DSI regs before:\n");
  802. vc4_dsi_dump_regs(dsi);
  803. }
  804. /* Round up the clk_set_rate() request slightly, since
  805. * PLLD_DSI1 is an integer divider and its rate selection will
  806. * never round up.
  807. */
  808. phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
  809. ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
  810. if (ret) {
  811. dev_err(&dsi->pdev->dev,
  812. "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
  813. }
  814. /* Reset the DSI and all its fifos. */
  815. DSI_PORT_WRITE(CTRL,
  816. DSI_CTRL_SOFT_RESET_CFG |
  817. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  818. DSI_PORT_WRITE(CTRL,
  819. DSI_CTRL_HSDT_EOT_DISABLE |
  820. DSI_CTRL_RX_LPDT_EOT_DISABLE);
  821. /* Clear all stat bits so we see what has happened during enable. */
  822. DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
  823. /* Set AFE CTR00/CTR1 to release powerdown of analog. */
  824. if (dsi->port == 0) {
  825. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  826. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
  827. if (dsi->lanes < 2)
  828. afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
  829. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
  830. afec0 |= DSI0_PHY_AFEC0_RESET;
  831. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  832. DSI_PORT_WRITE(PHY_AFEC1,
  833. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
  834. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
  835. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
  836. } else {
  837. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  838. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
  839. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
  840. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
  841. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
  842. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
  843. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
  844. if (dsi->lanes < 4)
  845. afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
  846. if (dsi->lanes < 3)
  847. afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
  848. if (dsi->lanes < 2)
  849. afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
  850. afec0 |= DSI1_PHY_AFEC0_RESET;
  851. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  852. DSI_PORT_WRITE(PHY_AFEC1, 0);
  853. /* AFEC reset hold time */
  854. mdelay(1);
  855. }
  856. ret = clk_prepare_enable(dsi->escape_clock);
  857. if (ret) {
  858. DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
  859. return;
  860. }
  861. ret = clk_prepare_enable(dsi->pll_phy_clock);
  862. if (ret) {
  863. DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
  864. return;
  865. }
  866. hs_clock = clk_get_rate(dsi->pll_phy_clock);
  867. /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
  868. * not the pixel clock rate. DSIxP take from the APHY's byte,
  869. * DDR2, or DDR4 clock (we use byte) and feed into the PV at
  870. * that rate. Separately, a value derived from PIX_CLK_DIV
  871. * and HS_CLKC is fed into the PV to divide down to the actual
  872. * pixel clock for pushing pixels into DSI.
  873. */
  874. dsip_clock = phy_clock / 8;
  875. ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
  876. if (ret) {
  877. dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
  878. dsip_clock, ret);
  879. }
  880. ret = clk_prepare_enable(dsi->pixel_clock);
  881. if (ret) {
  882. DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
  883. return;
  884. }
  885. /* How many ns one DSI unit interval is. Note that the clock
  886. * is DDR, so there's an extra divide by 2.
  887. */
  888. ui_ns = DIV_ROUND_UP(500000000, hs_clock);
  889. DSI_PORT_WRITE(HS_CLT0,
  890. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
  891. DSI_HS_CLT0_CZERO) |
  892. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
  893. DSI_HS_CLT0_CPRE) |
  894. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
  895. DSI_HS_CLT0_CPREP));
  896. DSI_PORT_WRITE(HS_CLT1,
  897. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
  898. DSI_HS_CLT1_CTRAIL) |
  899. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
  900. DSI_HS_CLT1_CPOST));
  901. DSI_PORT_WRITE(HS_CLT2,
  902. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
  903. DSI_HS_CLT2_WUP));
  904. DSI_PORT_WRITE(HS_DLT3,
  905. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
  906. DSI_HS_DLT3_EXIT) |
  907. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
  908. DSI_HS_DLT3_ZERO) |
  909. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
  910. DSI_HS_DLT3_PRE));
  911. DSI_PORT_WRITE(HS_DLT4,
  912. VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
  913. DSI_HS_DLT4_LPX) |
  914. VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
  915. dsi_hs_timing(ui_ns, 60, 4)),
  916. DSI_HS_DLT4_TRAIL) |
  917. VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
  918. /* T_INIT is how long STOP is driven after power-up to
  919. * indicate to the slave (also coming out of power-up) that
  920. * master init is complete, and should be greater than the
  921. * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
  922. * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
  923. * T_INIT,SLAVE, while allowing protocols on top of it to give
  924. * greater minimums. The vc4 firmware uses an extremely
  925. * conservative 5ms, and we maintain that here.
  926. */
  927. DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
  928. 5 * 1000 * 1000, 0),
  929. DSI_HS_DLT5_INIT));
  930. DSI_PORT_WRITE(HS_DLT6,
  931. VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
  932. VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
  933. VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
  934. VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
  935. DSI_PORT_WRITE(HS_DLT7,
  936. VC4_SET_FIELD(dsi_esc_timing(1000000),
  937. DSI_HS_DLT7_LP_WUP));
  938. DSI_PORT_WRITE(PHYC,
  939. DSI_PHYC_DLANE0_ENABLE |
  940. (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
  941. (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
  942. (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
  943. DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
  944. ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
  945. 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
  946. (dsi->port == 0 ?
  947. VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
  948. VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
  949. DSI_PORT_WRITE(CTRL,
  950. DSI_PORT_READ(CTRL) |
  951. DSI_CTRL_CAL_BYTE);
  952. /* HS timeout in HS clock cycles: disabled. */
  953. DSI_PORT_WRITE(HSTX_TO_CNT, 0);
  954. /* LP receive timeout in HS clocks. */
  955. DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
  956. /* Bus turnaround timeout */
  957. DSI_PORT_WRITE(TA_TO_CNT, 100000);
  958. /* Display reset sequence timeout */
  959. DSI_PORT_WRITE(PR_TO_CNT, 100000);
  960. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
  961. DSI_PORT_WRITE(DISP0_CTRL,
  962. VC4_SET_FIELD(dsi->divider,
  963. DSI_DISP0_PIX_CLK_DIV) |
  964. VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
  965. VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
  966. DSI_DISP0_LP_STOP_CTRL) |
  967. DSI_DISP0_ST_END |
  968. DSI_DISP0_ENABLE);
  969. } else {
  970. DSI_PORT_WRITE(DISP0_CTRL,
  971. DSI_DISP0_COMMAND_MODE |
  972. DSI_DISP0_ENABLE);
  973. }
  974. /* Set up DISP1 for transferring long command payloads through
  975. * the pixfifo.
  976. */
  977. DSI_PORT_WRITE(DISP1_CTRL,
  978. VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
  979. DSI_DISP1_PFORMAT) |
  980. DSI_DISP1_ENABLE);
  981. /* Ungate the block. */
  982. if (dsi->port == 0)
  983. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
  984. else
  985. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
  986. /* Bring AFE out of reset. */
  987. if (dsi->port == 0) {
  988. } else {
  989. DSI_PORT_WRITE(PHY_AFEC0,
  990. DSI_PORT_READ(PHY_AFEC0) &
  991. ~DSI1_PHY_AFEC0_RESET);
  992. }
  993. vc4_dsi_ulps(dsi, false);
  994. if (debug_dump_regs) {
  995. DRM_INFO("DSI regs after:\n");
  996. vc4_dsi_dump_regs(dsi);
  997. }
  998. }
  999. static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
  1000. const struct mipi_dsi_msg *msg)
  1001. {
  1002. struct vc4_dsi *dsi = host_to_dsi(host);
  1003. struct mipi_dsi_packet packet;
  1004. u32 pkth = 0, pktc = 0;
  1005. int i, ret;
  1006. bool is_long = mipi_dsi_packet_format_is_long(msg->type);
  1007. u32 cmd_fifo_len = 0, pix_fifo_len = 0;
  1008. mipi_dsi_create_packet(&packet, msg);
  1009. pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
  1010. pkth |= VC4_SET_FIELD(packet.header[1] |
  1011. (packet.header[2] << 8),
  1012. DSI_TXPKT1H_BC_PARAM);
  1013. if (is_long) {
  1014. /* Divide data across the various FIFOs we have available.
  1015. * The command FIFO takes byte-oriented data, but is of
  1016. * limited size. The pixel FIFO (never actually used for
  1017. * pixel data in reality) is word oriented, and substantially
  1018. * larger. So, we use the pixel FIFO for most of the data,
  1019. * sending the residual bytes in the command FIFO at the start.
  1020. *
  1021. * With this arrangement, the command FIFO will never get full.
  1022. */
  1023. if (packet.payload_length <= 16) {
  1024. cmd_fifo_len = packet.payload_length;
  1025. pix_fifo_len = 0;
  1026. } else {
  1027. cmd_fifo_len = (packet.payload_length %
  1028. DSI_PIX_FIFO_WIDTH);
  1029. pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
  1030. DSI_PIX_FIFO_WIDTH);
  1031. }
  1032. WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
  1033. pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
  1034. }
  1035. if (msg->rx_len) {
  1036. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
  1037. DSI_TXPKT1C_CMD_CTRL);
  1038. } else {
  1039. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
  1040. DSI_TXPKT1C_CMD_CTRL);
  1041. }
  1042. for (i = 0; i < cmd_fifo_len; i++)
  1043. DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
  1044. for (i = 0; i < pix_fifo_len; i++) {
  1045. const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
  1046. DSI_PORT_WRITE(TXPKT_PIX_FIFO,
  1047. pix[0] |
  1048. pix[1] << 8 |
  1049. pix[2] << 16 |
  1050. pix[3] << 24);
  1051. }
  1052. if (msg->flags & MIPI_DSI_MSG_USE_LPM)
  1053. pktc |= DSI_TXPKT1C_CMD_MODE_LP;
  1054. if (is_long)
  1055. pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
  1056. /* Send one copy of the packet. Larger repeats are used for pixel
  1057. * data in command mode.
  1058. */
  1059. pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
  1060. pktc |= DSI_TXPKT1C_CMD_EN;
  1061. if (pix_fifo_len) {
  1062. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
  1063. DSI_TXPKT1C_DISPLAY_NO);
  1064. } else {
  1065. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
  1066. DSI_TXPKT1C_DISPLAY_NO);
  1067. }
  1068. /* Enable the appropriate interrupt for the transfer completion. */
  1069. dsi->xfer_result = 0;
  1070. reinit_completion(&dsi->xfer_completion);
  1071. DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
  1072. if (msg->rx_len) {
  1073. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1074. DSI1_INT_PHY_DIR_RTF));
  1075. } else {
  1076. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1077. DSI1_INT_TXPKT1_DONE));
  1078. }
  1079. /* Send the packet. */
  1080. DSI_PORT_WRITE(TXPKT1H, pkth);
  1081. DSI_PORT_WRITE(TXPKT1C, pktc);
  1082. if (!wait_for_completion_timeout(&dsi->xfer_completion,
  1083. msecs_to_jiffies(1000))) {
  1084. dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
  1085. dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
  1086. DSI_PORT_READ(INT_STAT));
  1087. ret = -ETIMEDOUT;
  1088. } else {
  1089. ret = dsi->xfer_result;
  1090. }
  1091. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1092. if (ret)
  1093. goto reset_fifo_and_return;
  1094. if (ret == 0 && msg->rx_len) {
  1095. u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
  1096. u8 *msg_rx = msg->rx_buf;
  1097. if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
  1098. u32 rxlen = VC4_GET_FIELD(rxpkt1h,
  1099. DSI_RXPKT1H_BC_PARAM);
  1100. if (rxlen != msg->rx_len) {
  1101. DRM_ERROR("DSI returned %db, expecting %db\n",
  1102. rxlen, (int)msg->rx_len);
  1103. ret = -ENXIO;
  1104. goto reset_fifo_and_return;
  1105. }
  1106. for (i = 0; i < msg->rx_len; i++)
  1107. msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
  1108. } else {
  1109. /* FINISHME: Handle AWER */
  1110. msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
  1111. DSI_RXPKT1H_SHORT_0);
  1112. if (msg->rx_len > 1) {
  1113. msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
  1114. DSI_RXPKT1H_SHORT_1);
  1115. }
  1116. }
  1117. }
  1118. return ret;
  1119. reset_fifo_and_return:
  1120. DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
  1121. DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
  1122. udelay(1);
  1123. DSI_PORT_WRITE(CTRL,
  1124. DSI_PORT_READ(CTRL) |
  1125. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  1126. DSI_PORT_WRITE(TXPKT1C, 0);
  1127. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1128. return ret;
  1129. }
  1130. static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
  1131. struct mipi_dsi_device *device)
  1132. {
  1133. struct vc4_dsi *dsi = host_to_dsi(host);
  1134. dsi->lanes = device->lanes;
  1135. dsi->channel = device->channel;
  1136. dsi->mode_flags = device->mode_flags;
  1137. switch (device->format) {
  1138. case MIPI_DSI_FMT_RGB888:
  1139. dsi->format = DSI_PFORMAT_RGB888;
  1140. dsi->divider = 24 / dsi->lanes;
  1141. break;
  1142. case MIPI_DSI_FMT_RGB666:
  1143. dsi->format = DSI_PFORMAT_RGB666;
  1144. dsi->divider = 24 / dsi->lanes;
  1145. break;
  1146. case MIPI_DSI_FMT_RGB666_PACKED:
  1147. dsi->format = DSI_PFORMAT_RGB666_PACKED;
  1148. dsi->divider = 18 / dsi->lanes;
  1149. break;
  1150. case MIPI_DSI_FMT_RGB565:
  1151. dsi->format = DSI_PFORMAT_RGB565;
  1152. dsi->divider = 16 / dsi->lanes;
  1153. break;
  1154. default:
  1155. dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
  1156. dsi->format);
  1157. return 0;
  1158. }
  1159. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
  1160. dev_err(&dsi->pdev->dev,
  1161. "Only VIDEO mode panels supported currently.\n");
  1162. return 0;
  1163. }
  1164. return 0;
  1165. }
  1166. static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
  1167. struct mipi_dsi_device *device)
  1168. {
  1169. return 0;
  1170. }
  1171. static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
  1172. .attach = vc4_dsi_host_attach,
  1173. .detach = vc4_dsi_host_detach,
  1174. .transfer = vc4_dsi_host_transfer,
  1175. };
  1176. static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
  1177. .disable = vc4_dsi_encoder_disable,
  1178. .enable = vc4_dsi_encoder_enable,
  1179. .mode_fixup = vc4_dsi_encoder_mode_fixup,
  1180. };
  1181. static const struct of_device_id vc4_dsi_dt_match[] = {
  1182. { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
  1183. {}
  1184. };
  1185. static void dsi_handle_error(struct vc4_dsi *dsi,
  1186. irqreturn_t *ret, u32 stat, u32 bit,
  1187. const char *type)
  1188. {
  1189. if (!(stat & bit))
  1190. return;
  1191. DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
  1192. *ret = IRQ_HANDLED;
  1193. }
  1194. /*
  1195. * Initial handler for port 1 where we need the reg_dma workaround.
  1196. * The register DMA writes sleep, so we can't do it in the top half.
  1197. * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
  1198. * parent interrupt contrller until our interrupt thread is done.
  1199. */
  1200. static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
  1201. {
  1202. struct vc4_dsi *dsi = data;
  1203. u32 stat = DSI_PORT_READ(INT_STAT);
  1204. if (!stat)
  1205. return IRQ_NONE;
  1206. return IRQ_WAKE_THREAD;
  1207. }
  1208. /*
  1209. * Normal IRQ handler for port 0, or the threaded IRQ handler for port
  1210. * 1 where we need the reg_dma workaround.
  1211. */
  1212. static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
  1213. {
  1214. struct vc4_dsi *dsi = data;
  1215. u32 stat = DSI_PORT_READ(INT_STAT);
  1216. irqreturn_t ret = IRQ_NONE;
  1217. DSI_PORT_WRITE(INT_STAT, stat);
  1218. dsi_handle_error(dsi, &ret, stat,
  1219. DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
  1220. dsi_handle_error(dsi, &ret, stat,
  1221. DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
  1222. dsi_handle_error(dsi, &ret, stat,
  1223. DSI1_INT_ERR_CONT_LP0, "LP0 contention");
  1224. dsi_handle_error(dsi, &ret, stat,
  1225. DSI1_INT_ERR_CONT_LP1, "LP1 contention");
  1226. dsi_handle_error(dsi, &ret, stat,
  1227. DSI1_INT_HSTX_TO, "HSTX timeout");
  1228. dsi_handle_error(dsi, &ret, stat,
  1229. DSI1_INT_LPRX_TO, "LPRX timeout");
  1230. dsi_handle_error(dsi, &ret, stat,
  1231. DSI1_INT_TA_TO, "turnaround timeout");
  1232. dsi_handle_error(dsi, &ret, stat,
  1233. DSI1_INT_PR_TO, "peripheral reset timeout");
  1234. if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
  1235. complete(&dsi->xfer_completion);
  1236. ret = IRQ_HANDLED;
  1237. } else if (stat & DSI1_INT_HSTX_TO) {
  1238. complete(&dsi->xfer_completion);
  1239. dsi->xfer_result = -ETIMEDOUT;
  1240. ret = IRQ_HANDLED;
  1241. }
  1242. return ret;
  1243. }
  1244. /**
  1245. * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
  1246. * PHY that are consumed by CPRMAN (clk-bcm2835.c).
  1247. * @dsi: DSI encoder
  1248. */
  1249. static int
  1250. vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
  1251. {
  1252. struct device *dev = &dsi->pdev->dev;
  1253. const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
  1254. static const struct {
  1255. const char *dsi0_name, *dsi1_name;
  1256. int div;
  1257. } phy_clocks[] = {
  1258. { "dsi0_byte", "dsi1_byte", 8 },
  1259. { "dsi0_ddr2", "dsi1_ddr2", 4 },
  1260. { "dsi0_ddr", "dsi1_ddr", 2 },
  1261. };
  1262. int i;
  1263. dsi->clk_onecell = devm_kzalloc(dev,
  1264. sizeof(*dsi->clk_onecell) +
  1265. ARRAY_SIZE(phy_clocks) *
  1266. sizeof(struct clk_hw *),
  1267. GFP_KERNEL);
  1268. if (!dsi->clk_onecell)
  1269. return -ENOMEM;
  1270. dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
  1271. for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
  1272. struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
  1273. struct clk_init_data init;
  1274. int ret;
  1275. /* We just use core fixed factor clock ops for the PHY
  1276. * clocks. The clocks are actually gated by the
  1277. * PHY_AFEC0_DDRCLK_EN bits, which we should be
  1278. * setting if we use the DDR/DDR2 clocks. However,
  1279. * vc4_dsi_encoder_enable() is setting up both AFEC0,
  1280. * setting both our parent DSI PLL's rate and this
  1281. * clock's rate, so it knows if DDR/DDR2 are going to
  1282. * be used and could enable the gates itself.
  1283. */
  1284. fix->mult = 1;
  1285. fix->div = phy_clocks[i].div;
  1286. fix->hw.init = &init;
  1287. memset(&init, 0, sizeof(init));
  1288. init.parent_names = &parent_name;
  1289. init.num_parents = 1;
  1290. if (dsi->port == 1)
  1291. init.name = phy_clocks[i].dsi1_name;
  1292. else
  1293. init.name = phy_clocks[i].dsi0_name;
  1294. init.ops = &clk_fixed_factor_ops;
  1295. ret = devm_clk_hw_register(dev, &fix->hw);
  1296. if (ret)
  1297. return ret;
  1298. dsi->clk_onecell->hws[i] = &fix->hw;
  1299. }
  1300. return of_clk_add_hw_provider(dev->of_node,
  1301. of_clk_hw_onecell_get,
  1302. dsi->clk_onecell);
  1303. }
  1304. static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
  1305. {
  1306. struct platform_device *pdev = to_platform_device(dev);
  1307. struct drm_device *drm = dev_get_drvdata(master);
  1308. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1309. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1310. struct vc4_dsi_encoder *vc4_dsi_encoder;
  1311. struct drm_panel *panel;
  1312. const struct of_device_id *match;
  1313. dma_cap_mask_t dma_mask;
  1314. int ret;
  1315. match = of_match_device(vc4_dsi_dt_match, dev);
  1316. if (!match)
  1317. return -ENODEV;
  1318. dsi->port = (uintptr_t)match->data;
  1319. vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
  1320. GFP_KERNEL);
  1321. if (!vc4_dsi_encoder)
  1322. return -ENOMEM;
  1323. vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
  1324. vc4_dsi_encoder->dsi = dsi;
  1325. dsi->encoder = &vc4_dsi_encoder->base.base;
  1326. dsi->regs = vc4_ioremap_regs(pdev, 0);
  1327. if (IS_ERR(dsi->regs))
  1328. return PTR_ERR(dsi->regs);
  1329. if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
  1330. dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
  1331. DSI_PORT_READ(ID), DSI_ID_VALUE);
  1332. return -ENODEV;
  1333. }
  1334. /* DSI1 has a broken AXI slave that doesn't respond to writes
  1335. * from the ARM. It does handle writes from the DMA engine,
  1336. * so set up a channel for talking to it.
  1337. */
  1338. if (dsi->port == 1) {
  1339. dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
  1340. &dsi->reg_dma_paddr,
  1341. GFP_KERNEL);
  1342. if (!dsi->reg_dma_mem) {
  1343. DRM_ERROR("Failed to get DMA memory\n");
  1344. return -ENOMEM;
  1345. }
  1346. dma_cap_zero(dma_mask);
  1347. dma_cap_set(DMA_MEMCPY, dma_mask);
  1348. dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
  1349. if (IS_ERR(dsi->reg_dma_chan)) {
  1350. ret = PTR_ERR(dsi->reg_dma_chan);
  1351. if (ret != -EPROBE_DEFER)
  1352. DRM_ERROR("Failed to get DMA channel: %d\n",
  1353. ret);
  1354. return ret;
  1355. }
  1356. /* Get the physical address of the device's registers. The
  1357. * struct resource for the regs gives us the bus address
  1358. * instead.
  1359. */
  1360. dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
  1361. 0, NULL, NULL));
  1362. }
  1363. init_completion(&dsi->xfer_completion);
  1364. /* At startup enable error-reporting interrupts and nothing else. */
  1365. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1366. /* Clear any existing interrupt state. */
  1367. DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
  1368. if (dsi->reg_dma_mem)
  1369. ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
  1370. vc4_dsi_irq_defer_to_thread_handler,
  1371. vc4_dsi_irq_handler,
  1372. IRQF_ONESHOT,
  1373. "vc4 dsi", dsi);
  1374. else
  1375. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  1376. vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
  1377. if (ret) {
  1378. if (ret != -EPROBE_DEFER)
  1379. dev_err(dev, "Failed to get interrupt: %d\n", ret);
  1380. return ret;
  1381. }
  1382. dsi->escape_clock = devm_clk_get(dev, "escape");
  1383. if (IS_ERR(dsi->escape_clock)) {
  1384. ret = PTR_ERR(dsi->escape_clock);
  1385. if (ret != -EPROBE_DEFER)
  1386. dev_err(dev, "Failed to get escape clock: %d\n", ret);
  1387. return ret;
  1388. }
  1389. dsi->pll_phy_clock = devm_clk_get(dev, "phy");
  1390. if (IS_ERR(dsi->pll_phy_clock)) {
  1391. ret = PTR_ERR(dsi->pll_phy_clock);
  1392. if (ret != -EPROBE_DEFER)
  1393. dev_err(dev, "Failed to get phy clock: %d\n", ret);
  1394. return ret;
  1395. }
  1396. dsi->pixel_clock = devm_clk_get(dev, "pixel");
  1397. if (IS_ERR(dsi->pixel_clock)) {
  1398. ret = PTR_ERR(dsi->pixel_clock);
  1399. if (ret != -EPROBE_DEFER)
  1400. dev_err(dev, "Failed to get pixel clock: %d\n", ret);
  1401. return ret;
  1402. }
  1403. ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
  1404. &panel, &dsi->bridge);
  1405. if (ret)
  1406. return ret;
  1407. if (panel) {
  1408. dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
  1409. DRM_MODE_CONNECTOR_DSI);
  1410. if (IS_ERR(dsi->bridge))
  1411. return PTR_ERR(dsi->bridge);
  1412. }
  1413. /* The esc clock rate is supposed to always be 100Mhz. */
  1414. ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
  1415. if (ret) {
  1416. dev_err(dev, "Failed to set esc clock: %d\n", ret);
  1417. return ret;
  1418. }
  1419. ret = vc4_dsi_init_phy_clocks(dsi);
  1420. if (ret)
  1421. return ret;
  1422. if (dsi->port == 1)
  1423. vc4->dsi1 = dsi;
  1424. drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
  1425. DRM_MODE_ENCODER_DSI, NULL);
  1426. drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
  1427. ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
  1428. if (ret) {
  1429. dev_err(dev, "bridge attach failed: %d\n", ret);
  1430. return ret;
  1431. }
  1432. pm_runtime_enable(dev);
  1433. return 0;
  1434. }
  1435. static void vc4_dsi_unbind(struct device *dev, struct device *master,
  1436. void *data)
  1437. {
  1438. struct drm_device *drm = dev_get_drvdata(master);
  1439. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1440. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1441. pm_runtime_disable(dev);
  1442. vc4_dsi_encoder_destroy(dsi->encoder);
  1443. if (dsi->port == 1)
  1444. vc4->dsi1 = NULL;
  1445. }
  1446. static const struct component_ops vc4_dsi_ops = {
  1447. .bind = vc4_dsi_bind,
  1448. .unbind = vc4_dsi_unbind,
  1449. };
  1450. static int vc4_dsi_dev_probe(struct platform_device *pdev)
  1451. {
  1452. struct device *dev = &pdev->dev;
  1453. struct vc4_dsi *dsi;
  1454. int ret;
  1455. dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
  1456. if (!dsi)
  1457. return -ENOMEM;
  1458. dev_set_drvdata(dev, dsi);
  1459. dsi->pdev = pdev;
  1460. /* Note, the initialization sequence for DSI and panels is
  1461. * tricky. The component bind above won't get past its
  1462. * -EPROBE_DEFER until the panel/bridge probes. The
  1463. * panel/bridge will return -EPROBE_DEFER until it has a
  1464. * mipi_dsi_host to register its device to. So, we register
  1465. * the host during pdev probe time, so vc4 as a whole can then
  1466. * -EPROBE_DEFER its component bind process until the panel
  1467. * successfully attaches.
  1468. */
  1469. dsi->dsi_host.ops = &vc4_dsi_host_ops;
  1470. dsi->dsi_host.dev = dev;
  1471. mipi_dsi_host_register(&dsi->dsi_host);
  1472. ret = component_add(&pdev->dev, &vc4_dsi_ops);
  1473. if (ret) {
  1474. mipi_dsi_host_unregister(&dsi->dsi_host);
  1475. return ret;
  1476. }
  1477. return 0;
  1478. }
  1479. static int vc4_dsi_dev_remove(struct platform_device *pdev)
  1480. {
  1481. struct device *dev = &pdev->dev;
  1482. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1483. component_del(&pdev->dev, &vc4_dsi_ops);
  1484. mipi_dsi_host_unregister(&dsi->dsi_host);
  1485. return 0;
  1486. }
  1487. struct platform_driver vc4_dsi_driver = {
  1488. .probe = vc4_dsi_dev_probe,
  1489. .remove = vc4_dsi_dev_remove,
  1490. .driver = {
  1491. .name = "vc4_dsi",
  1492. .of_match_table = vc4_dsi_dt_match,
  1493. },
  1494. };