vc4_crtc.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * encoder's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, the CRTC is also
  18. * responsible for writing the display list for the HVS channel that
  19. * the CRTC will use.
  20. *
  21. * The 2835 has 3 different pixel valves. pv0 in the audio power
  22. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  23. * image domain can feed either HDMI or the SDTV controller. The
  24. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  25. * SDTV, etc.) according to which output type is chosen in the mux.
  26. *
  27. * For power management, the pixel valve's registers are all clocked
  28. * by the AXI clock, while the timings and FIFOs make use of the
  29. * output-specific clock. Since the encoders also directly consume
  30. * the CPRMAN clocks, and know what timings they need, they are the
  31. * ones that set the clock.
  32. */
  33. #include <drm/drm_atomic.h>
  34. #include <drm/drm_atomic_helper.h>
  35. #include <drm/drm_crtc_helper.h>
  36. #include <linux/clk.h>
  37. #include <drm/drm_fb_cma_helper.h>
  38. #include <linux/component.h>
  39. #include <linux/of_device.h>
  40. #include "vc4_drv.h"
  41. #include "vc4_regs.h"
  42. struct vc4_crtc_state {
  43. struct drm_crtc_state base;
  44. /* Dlist area for this CRTC configuration. */
  45. struct drm_mm_node mm;
  46. };
  47. static inline struct vc4_crtc_state *
  48. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  49. {
  50. return (struct vc4_crtc_state *)crtc_state;
  51. }
  52. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  53. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  54. #define CRTC_REG(reg) { reg, #reg }
  55. static const struct {
  56. u32 reg;
  57. const char *name;
  58. } crtc_regs[] = {
  59. CRTC_REG(PV_CONTROL),
  60. CRTC_REG(PV_V_CONTROL),
  61. CRTC_REG(PV_VSYNCD_EVEN),
  62. CRTC_REG(PV_HORZA),
  63. CRTC_REG(PV_HORZB),
  64. CRTC_REG(PV_VERTA),
  65. CRTC_REG(PV_VERTB),
  66. CRTC_REG(PV_VERTA_EVEN),
  67. CRTC_REG(PV_VERTB_EVEN),
  68. CRTC_REG(PV_INTEN),
  69. CRTC_REG(PV_INTSTAT),
  70. CRTC_REG(PV_STAT),
  71. CRTC_REG(PV_HACT_ACT),
  72. };
  73. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  74. {
  75. int i;
  76. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  77. DRM_INFO("0x%04x (%s): 0x%08x\n",
  78. crtc_regs[i].reg, crtc_regs[i].name,
  79. CRTC_READ(crtc_regs[i].reg));
  80. }
  81. }
  82. #ifdef CONFIG_DEBUG_FS
  83. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  84. {
  85. struct drm_info_node *node = (struct drm_info_node *)m->private;
  86. struct drm_device *dev = node->minor->dev;
  87. int crtc_index = (uintptr_t)node->info_ent->data;
  88. struct drm_crtc *crtc;
  89. struct vc4_crtc *vc4_crtc;
  90. int i;
  91. i = 0;
  92. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  93. if (i == crtc_index)
  94. break;
  95. i++;
  96. }
  97. if (!crtc)
  98. return 0;
  99. vc4_crtc = to_vc4_crtc(crtc);
  100. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  101. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  102. crtc_regs[i].name, crtc_regs[i].reg,
  103. CRTC_READ(crtc_regs[i].reg));
  104. }
  105. return 0;
  106. }
  107. #endif
  108. bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  109. bool in_vblank_irq, int *vpos, int *hpos,
  110. ktime_t *stime, ktime_t *etime,
  111. const struct drm_display_mode *mode)
  112. {
  113. struct vc4_dev *vc4 = to_vc4_dev(dev);
  114. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  115. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  116. u32 val;
  117. int fifo_lines;
  118. int vblank_lines;
  119. bool ret = false;
  120. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  121. /* Get optional system timestamp before query. */
  122. if (stime)
  123. *stime = ktime_get();
  124. /*
  125. * Read vertical scanline which is currently composed for our
  126. * pixelvalve by the HVS, and also the scaler status.
  127. */
  128. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  129. /* Get optional system timestamp after query. */
  130. if (etime)
  131. *etime = ktime_get();
  132. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  133. /* Vertical position of hvs composed scanline. */
  134. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  135. *hpos = 0;
  136. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  137. *vpos /= 2;
  138. /* Use hpos to correct for field offset in interlaced mode. */
  139. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  140. *hpos += mode->crtc_htotal / 2;
  141. }
  142. /* This is the offset we need for translating hvs -> pv scanout pos. */
  143. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  144. if (fifo_lines > 0)
  145. ret = true;
  146. /* HVS more than fifo_lines into frame for compositing? */
  147. if (*vpos > fifo_lines) {
  148. /*
  149. * We are in active scanout and can get some meaningful results
  150. * from HVS. The actual PV scanout can not trail behind more
  151. * than fifo_lines as that is the fifo's capacity. Assume that
  152. * in active scanout the HVS and PV work in lockstep wrt. HVS
  153. * refilling the fifo and PV consuming from the fifo, ie.
  154. * whenever the PV consumes and frees up a scanline in the
  155. * fifo, the HVS will immediately refill it, therefore
  156. * incrementing vpos. Therefore we choose HVS read position -
  157. * fifo size in scanlines as a estimate of the real scanout
  158. * position of the PV.
  159. */
  160. *vpos -= fifo_lines + 1;
  161. return ret;
  162. }
  163. /*
  164. * Less: This happens when we are in vblank and the HVS, after getting
  165. * the VSTART restart signal from the PV, just started refilling its
  166. * fifo with new lines from the top-most lines of the new framebuffers.
  167. * The PV does not scan out in vblank, so does not remove lines from
  168. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  169. * We can't get meaningful readings wrt. scanline position of the PV
  170. * and need to make things up in a approximative but consistent way.
  171. */
  172. vblank_lines = mode->vtotal - mode->vdisplay;
  173. if (in_vblank_irq) {
  174. /*
  175. * Assume the irq handler got called close to first
  176. * line of vblank, so PV has about a full vblank
  177. * scanlines to go, and as a base timestamp use the
  178. * one taken at entry into vblank irq handler, so it
  179. * is not affected by random delays due to lock
  180. * contention on event_lock or vblank_time lock in
  181. * the core.
  182. */
  183. *vpos = -vblank_lines;
  184. if (stime)
  185. *stime = vc4_crtc->t_vblank;
  186. if (etime)
  187. *etime = vc4_crtc->t_vblank;
  188. /*
  189. * If the HVS fifo is not yet full then we know for certain
  190. * we are at the very beginning of vblank, as the hvs just
  191. * started refilling, and the stime and etime timestamps
  192. * truly correspond to start of vblank.
  193. *
  194. * Unfortunately there's no way to report this to upper levels
  195. * and make it more useful.
  196. */
  197. } else {
  198. /*
  199. * No clue where we are inside vblank. Return a vpos of zero,
  200. * which will cause calling code to just return the etime
  201. * timestamp uncorrected. At least this is no worse than the
  202. * standard fallback.
  203. */
  204. *vpos = 0;
  205. }
  206. return ret;
  207. }
  208. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  209. {
  210. drm_crtc_cleanup(crtc);
  211. }
  212. static void
  213. vc4_crtc_lut_load(struct drm_crtc *crtc)
  214. {
  215. struct drm_device *dev = crtc->dev;
  216. struct vc4_dev *vc4 = to_vc4_dev(dev);
  217. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  218. u32 i;
  219. /* The LUT memory is laid out with each HVS channel in order,
  220. * each of which takes 256 writes for R, 256 for G, then 256
  221. * for B.
  222. */
  223. HVS_WRITE(SCALER_GAMADDR,
  224. SCALER_GAMADDR_AUTOINC |
  225. (vc4_crtc->channel * 3 * crtc->gamma_size));
  226. for (i = 0; i < crtc->gamma_size; i++)
  227. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  228. for (i = 0; i < crtc->gamma_size; i++)
  229. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  230. for (i = 0; i < crtc->gamma_size; i++)
  231. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  232. }
  233. static void
  234. vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
  235. {
  236. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  237. struct drm_color_lut *lut = crtc->state->gamma_lut->data;
  238. u32 length = drm_color_lut_size(crtc->state->gamma_lut);
  239. u32 i;
  240. for (i = 0; i < length; i++) {
  241. vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
  242. vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
  243. vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
  244. }
  245. vc4_crtc_lut_load(crtc);
  246. }
  247. static u32 vc4_get_fifo_full_level(u32 format)
  248. {
  249. static const u32 fifo_len_bytes = 64;
  250. static const u32 hvs_latency_pix = 6;
  251. switch (format) {
  252. case PV_CONTROL_FORMAT_DSIV_16:
  253. case PV_CONTROL_FORMAT_DSIC_16:
  254. return fifo_len_bytes - 2 * hvs_latency_pix;
  255. case PV_CONTROL_FORMAT_DSIV_18:
  256. return fifo_len_bytes - 14;
  257. case PV_CONTROL_FORMAT_24:
  258. case PV_CONTROL_FORMAT_DSIV_24:
  259. default:
  260. return fifo_len_bytes - 3 * hvs_latency_pix;
  261. }
  262. }
  263. /*
  264. * Returns the encoder attached to the CRTC.
  265. *
  266. * VC4 can only scan out to one encoder at a time, while the DRM core
  267. * allows drivers to push pixels to more than one encoder from the
  268. * same CRTC.
  269. */
  270. static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
  271. {
  272. struct drm_connector *connector;
  273. struct drm_connector_list_iter conn_iter;
  274. drm_connector_list_iter_begin(crtc->dev, &conn_iter);
  275. drm_for_each_connector_iter(connector, &conn_iter) {
  276. if (connector->state->crtc == crtc) {
  277. drm_connector_list_iter_end(&conn_iter);
  278. return connector->encoder;
  279. }
  280. }
  281. drm_connector_list_iter_end(&conn_iter);
  282. return NULL;
  283. }
  284. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  285. {
  286. struct drm_device *dev = crtc->dev;
  287. struct vc4_dev *vc4 = to_vc4_dev(dev);
  288. struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
  289. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  290. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  291. struct drm_crtc_state *state = crtc->state;
  292. struct drm_display_mode *mode = &state->adjusted_mode;
  293. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  294. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  295. bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
  296. vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
  297. u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
  298. bool debug_dump_regs = false;
  299. if (debug_dump_regs) {
  300. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  301. vc4_crtc_dump_regs(vc4_crtc);
  302. }
  303. /* Reset the PV fifo. */
  304. CRTC_WRITE(PV_CONTROL, 0);
  305. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  306. CRTC_WRITE(PV_CONTROL, 0);
  307. CRTC_WRITE(PV_HORZA,
  308. VC4_SET_FIELD((mode->htotal -
  309. mode->hsync_end) * pixel_rep,
  310. PV_HORZA_HBP) |
  311. VC4_SET_FIELD((mode->hsync_end -
  312. mode->hsync_start) * pixel_rep,
  313. PV_HORZA_HSYNC));
  314. CRTC_WRITE(PV_HORZB,
  315. VC4_SET_FIELD((mode->hsync_start -
  316. mode->hdisplay) * pixel_rep,
  317. PV_HORZB_HFP) |
  318. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  319. CRTC_WRITE(PV_VERTA,
  320. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  321. PV_VERTA_VBP) |
  322. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  323. PV_VERTA_VSYNC));
  324. CRTC_WRITE(PV_VERTB,
  325. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  326. PV_VERTB_VFP) |
  327. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  328. if (interlace) {
  329. CRTC_WRITE(PV_VERTA_EVEN,
  330. VC4_SET_FIELD(mode->crtc_vtotal -
  331. mode->crtc_vsync_end - 1,
  332. PV_VERTA_VBP) |
  333. VC4_SET_FIELD(mode->crtc_vsync_end -
  334. mode->crtc_vsync_start,
  335. PV_VERTA_VSYNC));
  336. CRTC_WRITE(PV_VERTB_EVEN,
  337. VC4_SET_FIELD(mode->crtc_vsync_start -
  338. mode->crtc_vdisplay,
  339. PV_VERTB_VFP) |
  340. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  341. /* We set up first field even mode for HDMI. VEC's
  342. * NTSC mode would want first field odd instead, once
  343. * we support it (to do so, set ODD_FIRST and put the
  344. * delay in VSYNCD_EVEN instead).
  345. */
  346. CRTC_WRITE(PV_V_CONTROL,
  347. PV_VCONTROL_CONTINUOUS |
  348. (is_dsi ? PV_VCONTROL_DSI : 0) |
  349. PV_VCONTROL_INTERLACE |
  350. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  351. PV_VCONTROL_ODD_DELAY));
  352. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  353. } else {
  354. CRTC_WRITE(PV_V_CONTROL,
  355. PV_VCONTROL_CONTINUOUS |
  356. (is_dsi ? PV_VCONTROL_DSI : 0));
  357. }
  358. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  359. CRTC_WRITE(PV_CONTROL,
  360. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  361. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  362. PV_CONTROL_FIFO_LEVEL) |
  363. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  364. PV_CONTROL_CLR_AT_START |
  365. PV_CONTROL_TRIGGER_UNDERFLOW |
  366. PV_CONTROL_WAIT_HSTART |
  367. VC4_SET_FIELD(vc4_encoder->clock_select,
  368. PV_CONTROL_CLK_SELECT) |
  369. PV_CONTROL_FIFO_CLR |
  370. PV_CONTROL_EN);
  371. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  372. SCALER_DISPBKGND_AUTOHS |
  373. SCALER_DISPBKGND_GAMMA |
  374. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  375. /* Reload the LUT, since the SRAMs would have been disabled if
  376. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  377. */
  378. vc4_crtc_lut_load(crtc);
  379. if (debug_dump_regs) {
  380. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  381. vc4_crtc_dump_regs(vc4_crtc);
  382. }
  383. }
  384. static void require_hvs_enabled(struct drm_device *dev)
  385. {
  386. struct vc4_dev *vc4 = to_vc4_dev(dev);
  387. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  388. SCALER_DISPCTRL_ENABLE);
  389. }
  390. static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
  391. struct drm_crtc_state *old_state)
  392. {
  393. struct drm_device *dev = crtc->dev;
  394. struct vc4_dev *vc4 = to_vc4_dev(dev);
  395. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  396. u32 chan = vc4_crtc->channel;
  397. int ret;
  398. require_hvs_enabled(dev);
  399. /* Disable vblank irq handling before crtc is disabled. */
  400. drm_crtc_vblank_off(crtc);
  401. CRTC_WRITE(PV_V_CONTROL,
  402. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  403. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  404. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  405. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  406. SCALER_DISPCTRLX_ENABLE) {
  407. HVS_WRITE(SCALER_DISPCTRLX(chan),
  408. SCALER_DISPCTRLX_RESET);
  409. /* While the docs say that reset is self-clearing, it
  410. * seems it doesn't actually.
  411. */
  412. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  413. }
  414. /* Once we leave, the scaler should be disabled and its fifo empty. */
  415. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  416. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  417. SCALER_DISPSTATX_MODE) !=
  418. SCALER_DISPSTATX_MODE_DISABLED);
  419. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  420. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  421. SCALER_DISPSTATX_EMPTY);
  422. /*
  423. * Make sure we issue a vblank event after disabling the CRTC if
  424. * someone was waiting it.
  425. */
  426. if (crtc->state->event) {
  427. unsigned long flags;
  428. spin_lock_irqsave(&dev->event_lock, flags);
  429. drm_crtc_send_vblank_event(crtc, crtc->state->event);
  430. crtc->state->event = NULL;
  431. spin_unlock_irqrestore(&dev->event_lock, flags);
  432. }
  433. }
  434. static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
  435. {
  436. struct drm_device *dev = crtc->dev;
  437. struct vc4_dev *vc4 = to_vc4_dev(dev);
  438. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  439. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  440. if (crtc->state->event) {
  441. unsigned long flags;
  442. crtc->state->event->pipe = drm_crtc_index(crtc);
  443. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  444. spin_lock_irqsave(&dev->event_lock, flags);
  445. vc4_crtc->event = crtc->state->event;
  446. crtc->state->event = NULL;
  447. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  448. vc4_state->mm.start);
  449. spin_unlock_irqrestore(&dev->event_lock, flags);
  450. } else {
  451. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  452. vc4_state->mm.start);
  453. }
  454. }
  455. static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
  456. struct drm_crtc_state *old_state)
  457. {
  458. struct drm_device *dev = crtc->dev;
  459. struct vc4_dev *vc4 = to_vc4_dev(dev);
  460. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  461. struct drm_crtc_state *state = crtc->state;
  462. struct drm_display_mode *mode = &state->adjusted_mode;
  463. require_hvs_enabled(dev);
  464. /* Enable vblank irq handling before crtc is started otherwise
  465. * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
  466. */
  467. drm_crtc_vblank_on(crtc);
  468. vc4_crtc_update_dlist(crtc);
  469. /* Turn on the scaler, which will wait for vstart to start
  470. * compositing.
  471. */
  472. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  473. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  474. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  475. SCALER_DISPCTRLX_ENABLE);
  476. /* Turn on the pixel valve, which will emit the vstart signal. */
  477. CRTC_WRITE(PV_V_CONTROL,
  478. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  479. }
  480. static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
  481. const struct drm_display_mode *mode)
  482. {
  483. /* Do not allow doublescan modes from user space */
  484. if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  485. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  486. crtc->base.id);
  487. return MODE_NO_DBLESCAN;
  488. }
  489. return MODE_OK;
  490. }
  491. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  492. struct drm_crtc_state *state)
  493. {
  494. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  495. struct drm_device *dev = crtc->dev;
  496. struct vc4_dev *vc4 = to_vc4_dev(dev);
  497. struct drm_plane *plane;
  498. unsigned long flags;
  499. const struct drm_plane_state *plane_state;
  500. u32 dlist_count = 0;
  501. int ret;
  502. /* The pixelvalve can only feed one encoder (and encoders are
  503. * 1:1 with connectors.)
  504. */
  505. if (hweight32(state->connector_mask) > 1)
  506. return -EINVAL;
  507. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  508. dlist_count += vc4_plane_dlist_size(plane_state);
  509. dlist_count++; /* Account for SCALER_CTL0_END. */
  510. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  511. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  512. dlist_count);
  513. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  514. if (ret)
  515. return ret;
  516. return 0;
  517. }
  518. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  519. struct drm_crtc_state *old_state)
  520. {
  521. struct drm_device *dev = crtc->dev;
  522. struct vc4_dev *vc4 = to_vc4_dev(dev);
  523. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  524. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  525. struct drm_plane *plane;
  526. struct vc4_plane_state *vc4_plane_state;
  527. bool debug_dump_regs = false;
  528. bool enable_bg_fill = false;
  529. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  530. u32 __iomem *dlist_next = dlist_start;
  531. if (debug_dump_regs) {
  532. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  533. vc4_hvs_dump_state(dev);
  534. }
  535. /* Copy all the active planes' dlist contents to the hardware dlist. */
  536. drm_atomic_crtc_for_each_plane(plane, crtc) {
  537. /* Is this the first active plane? */
  538. if (dlist_next == dlist_start) {
  539. /* We need to enable background fill when a plane
  540. * could be alpha blending from the background, i.e.
  541. * where no other plane is underneath. It suffices to
  542. * consider the first active plane here since we set
  543. * needs_bg_fill such that either the first plane
  544. * already needs it or all planes on top blend from
  545. * the first or a lower plane.
  546. */
  547. vc4_plane_state = to_vc4_plane_state(plane->state);
  548. enable_bg_fill = vc4_plane_state->needs_bg_fill;
  549. }
  550. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  551. }
  552. writel(SCALER_CTL0_END, dlist_next);
  553. dlist_next++;
  554. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  555. if (enable_bg_fill)
  556. /* This sets a black background color fill, as is the case
  557. * with other DRM drivers.
  558. */
  559. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  560. HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
  561. SCALER_DISPBKGND_FILL);
  562. /* Only update DISPLIST if the CRTC was already running and is not
  563. * being disabled.
  564. * vc4_crtc_enable() takes care of updating the dlist just after
  565. * re-enabling VBLANK interrupts and before enabling the engine.
  566. * If the CRTC is being disabled, there's no point in updating this
  567. * information.
  568. */
  569. if (crtc->state->active && old_state->active)
  570. vc4_crtc_update_dlist(crtc);
  571. if (crtc->state->color_mgmt_changed) {
  572. u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
  573. if (crtc->state->gamma_lut) {
  574. vc4_crtc_update_gamma_lut(crtc);
  575. dispbkgndx |= SCALER_DISPBKGND_GAMMA;
  576. } else {
  577. /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
  578. * in hardware, which is the same as a linear lut that
  579. * DRM expects us to use in absence of a user lut.
  580. */
  581. dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
  582. }
  583. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
  584. }
  585. if (debug_dump_regs) {
  586. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  587. vc4_hvs_dump_state(dev);
  588. }
  589. }
  590. static int vc4_enable_vblank(struct drm_crtc *crtc)
  591. {
  592. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  593. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  594. return 0;
  595. }
  596. static void vc4_disable_vblank(struct drm_crtc *crtc)
  597. {
  598. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  599. CRTC_WRITE(PV_INTEN, 0);
  600. }
  601. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  602. {
  603. struct drm_crtc *crtc = &vc4_crtc->base;
  604. struct drm_device *dev = crtc->dev;
  605. struct vc4_dev *vc4 = to_vc4_dev(dev);
  606. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  607. u32 chan = vc4_crtc->channel;
  608. unsigned long flags;
  609. spin_lock_irqsave(&dev->event_lock, flags);
  610. if (vc4_crtc->event &&
  611. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
  612. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  613. vc4_crtc->event = NULL;
  614. drm_crtc_vblank_put(crtc);
  615. }
  616. spin_unlock_irqrestore(&dev->event_lock, flags);
  617. }
  618. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  619. {
  620. struct vc4_crtc *vc4_crtc = data;
  621. u32 stat = CRTC_READ(PV_INTSTAT);
  622. irqreturn_t ret = IRQ_NONE;
  623. if (stat & PV_INT_VFP_START) {
  624. vc4_crtc->t_vblank = ktime_get();
  625. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  626. drm_crtc_handle_vblank(&vc4_crtc->base);
  627. vc4_crtc_handle_page_flip(vc4_crtc);
  628. ret = IRQ_HANDLED;
  629. }
  630. return ret;
  631. }
  632. struct vc4_async_flip_state {
  633. struct drm_crtc *crtc;
  634. struct drm_framebuffer *fb;
  635. struct drm_framebuffer *old_fb;
  636. struct drm_pending_vblank_event *event;
  637. struct vc4_seqno_cb cb;
  638. };
  639. /* Called when the V3D execution for the BO being flipped to is done, so that
  640. * we can actually update the plane's address to point to it.
  641. */
  642. static void
  643. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  644. {
  645. struct vc4_async_flip_state *flip_state =
  646. container_of(cb, struct vc4_async_flip_state, cb);
  647. struct drm_crtc *crtc = flip_state->crtc;
  648. struct drm_device *dev = crtc->dev;
  649. struct vc4_dev *vc4 = to_vc4_dev(dev);
  650. struct drm_plane *plane = crtc->primary;
  651. vc4_plane_async_set_fb(plane, flip_state->fb);
  652. if (flip_state->event) {
  653. unsigned long flags;
  654. spin_lock_irqsave(&dev->event_lock, flags);
  655. drm_crtc_send_vblank_event(crtc, flip_state->event);
  656. spin_unlock_irqrestore(&dev->event_lock, flags);
  657. }
  658. drm_crtc_vblank_put(crtc);
  659. drm_framebuffer_put(flip_state->fb);
  660. /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
  661. * when the planes are updated through the async update path.
  662. * FIXME: we should move to generic async-page-flip when it's
  663. * available, so that we can get rid of this hand-made cleanup_fb()
  664. * logic.
  665. */
  666. if (flip_state->old_fb) {
  667. struct drm_gem_cma_object *cma_bo;
  668. struct vc4_bo *bo;
  669. cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
  670. bo = to_vc4_bo(&cma_bo->base);
  671. vc4_bo_dec_usecnt(bo);
  672. drm_framebuffer_put(flip_state->old_fb);
  673. }
  674. kfree(flip_state);
  675. up(&vc4->async_modeset);
  676. }
  677. /* Implements async (non-vblank-synced) page flips.
  678. *
  679. * The page flip ioctl needs to return immediately, so we grab the
  680. * modeset semaphore on the pipe, and queue the address update for
  681. * when V3D is done with the BO being flipped to.
  682. */
  683. static int vc4_async_page_flip(struct drm_crtc *crtc,
  684. struct drm_framebuffer *fb,
  685. struct drm_pending_vblank_event *event,
  686. uint32_t flags)
  687. {
  688. struct drm_device *dev = crtc->dev;
  689. struct vc4_dev *vc4 = to_vc4_dev(dev);
  690. struct drm_plane *plane = crtc->primary;
  691. int ret = 0;
  692. struct vc4_async_flip_state *flip_state;
  693. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  694. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  695. /* Increment the BO usecnt here, so that we never end up with an
  696. * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
  697. * plane is later updated through the non-async path.
  698. * FIXME: we should move to generic async-page-flip when it's
  699. * available, so that we can get rid of this hand-made prepare_fb()
  700. * logic.
  701. */
  702. ret = vc4_bo_inc_usecnt(bo);
  703. if (ret)
  704. return ret;
  705. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  706. if (!flip_state) {
  707. vc4_bo_dec_usecnt(bo);
  708. return -ENOMEM;
  709. }
  710. drm_framebuffer_get(fb);
  711. flip_state->fb = fb;
  712. flip_state->crtc = crtc;
  713. flip_state->event = event;
  714. /* Make sure all other async modesetes have landed. */
  715. ret = down_interruptible(&vc4->async_modeset);
  716. if (ret) {
  717. drm_framebuffer_put(fb);
  718. vc4_bo_dec_usecnt(bo);
  719. kfree(flip_state);
  720. return ret;
  721. }
  722. /* Save the current FB before it's replaced by the new one in
  723. * drm_atomic_set_fb_for_plane(). We'll need the old FB in
  724. * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
  725. * it consistent.
  726. * FIXME: we should move to generic async-page-flip when it's
  727. * available, so that we can get rid of this hand-made cleanup_fb()
  728. * logic.
  729. */
  730. flip_state->old_fb = plane->state->fb;
  731. if (flip_state->old_fb)
  732. drm_framebuffer_get(flip_state->old_fb);
  733. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  734. /* Immediately update the plane's legacy fb pointer, so that later
  735. * modeset prep sees the state that will be present when the semaphore
  736. * is released.
  737. */
  738. drm_atomic_set_fb_for_plane(plane->state, fb);
  739. plane->fb = fb;
  740. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  741. vc4_async_page_flip_complete);
  742. /* Driver takes ownership of state on successful async commit. */
  743. return 0;
  744. }
  745. static int vc4_page_flip(struct drm_crtc *crtc,
  746. struct drm_framebuffer *fb,
  747. struct drm_pending_vblank_event *event,
  748. uint32_t flags,
  749. struct drm_modeset_acquire_ctx *ctx)
  750. {
  751. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  752. return vc4_async_page_flip(crtc, fb, event, flags);
  753. else
  754. return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
  755. }
  756. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  757. {
  758. struct vc4_crtc_state *vc4_state;
  759. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  760. if (!vc4_state)
  761. return NULL;
  762. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  763. return &vc4_state->base;
  764. }
  765. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  766. struct drm_crtc_state *state)
  767. {
  768. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  769. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  770. if (vc4_state->mm.allocated) {
  771. unsigned long flags;
  772. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  773. drm_mm_remove_node(&vc4_state->mm);
  774. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  775. }
  776. drm_atomic_helper_crtc_destroy_state(crtc, state);
  777. }
  778. static void
  779. vc4_crtc_reset(struct drm_crtc *crtc)
  780. {
  781. if (crtc->state)
  782. __drm_atomic_helper_crtc_destroy_state(crtc->state);
  783. crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
  784. if (crtc->state)
  785. crtc->state->crtc = crtc;
  786. }
  787. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  788. .set_config = drm_atomic_helper_set_config,
  789. .destroy = vc4_crtc_destroy,
  790. .page_flip = vc4_page_flip,
  791. .set_property = NULL,
  792. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  793. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  794. .reset = vc4_crtc_reset,
  795. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  796. .atomic_destroy_state = vc4_crtc_destroy_state,
  797. .gamma_set = drm_atomic_helper_legacy_gamma_set,
  798. .enable_vblank = vc4_enable_vblank,
  799. .disable_vblank = vc4_disable_vblank,
  800. };
  801. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  802. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  803. .mode_valid = vc4_crtc_mode_valid,
  804. .atomic_check = vc4_crtc_atomic_check,
  805. .atomic_flush = vc4_crtc_atomic_flush,
  806. .atomic_enable = vc4_crtc_atomic_enable,
  807. .atomic_disable = vc4_crtc_atomic_disable,
  808. };
  809. static const struct vc4_crtc_data pv0_data = {
  810. .hvs_channel = 0,
  811. .encoder_types = {
  812. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
  813. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
  814. },
  815. };
  816. static const struct vc4_crtc_data pv1_data = {
  817. .hvs_channel = 2,
  818. .encoder_types = {
  819. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
  820. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
  821. },
  822. };
  823. static const struct vc4_crtc_data pv2_data = {
  824. .hvs_channel = 1,
  825. .encoder_types = {
  826. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
  827. [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
  828. },
  829. };
  830. static const struct of_device_id vc4_crtc_dt_match[] = {
  831. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  832. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  833. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  834. {}
  835. };
  836. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  837. struct drm_crtc *crtc)
  838. {
  839. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  840. const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
  841. const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
  842. struct drm_encoder *encoder;
  843. drm_for_each_encoder(encoder, drm) {
  844. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  845. int i;
  846. for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
  847. if (vc4_encoder->type == encoder_types[i]) {
  848. vc4_encoder->clock_select = i;
  849. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  850. break;
  851. }
  852. }
  853. }
  854. }
  855. static void
  856. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  857. {
  858. struct drm_device *drm = vc4_crtc->base.dev;
  859. struct vc4_dev *vc4 = to_vc4_dev(drm);
  860. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  861. /* Top/base are supposed to be 4-pixel aligned, but the
  862. * Raspberry Pi firmware fills the low bits (which are
  863. * presumably ignored).
  864. */
  865. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  866. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  867. vc4_crtc->cob_size = top - base + 4;
  868. }
  869. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  870. {
  871. struct platform_device *pdev = to_platform_device(dev);
  872. struct drm_device *drm = dev_get_drvdata(master);
  873. struct vc4_crtc *vc4_crtc;
  874. struct drm_crtc *crtc;
  875. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  876. const struct of_device_id *match;
  877. int ret, i;
  878. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  879. if (!vc4_crtc)
  880. return -ENOMEM;
  881. crtc = &vc4_crtc->base;
  882. match = of_match_device(vc4_crtc_dt_match, dev);
  883. if (!match)
  884. return -ENODEV;
  885. vc4_crtc->data = match->data;
  886. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  887. if (IS_ERR(vc4_crtc->regs))
  888. return PTR_ERR(vc4_crtc->regs);
  889. /* For now, we create just the primary and the legacy cursor
  890. * planes. We should be able to stack more planes on easily,
  891. * but to do that we would need to compute the bandwidth
  892. * requirement of the plane configuration, and reject ones
  893. * that will take too much.
  894. */
  895. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  896. if (IS_ERR(primary_plane)) {
  897. dev_err(dev, "failed to construct primary plane\n");
  898. ret = PTR_ERR(primary_plane);
  899. goto err;
  900. }
  901. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  902. &vc4_crtc_funcs, NULL);
  903. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  904. primary_plane->crtc = crtc;
  905. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  906. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  907. drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
  908. /* We support CTM, but only for one CRTC at a time. It's therefore
  909. * implemented as private driver state in vc4_kms, not here.
  910. */
  911. drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
  912. /* Set up some arbitrary number of planes. We're not limited
  913. * by a set number of physical registers, just the space in
  914. * the HVS (16k) and how small an plane can be (28 bytes).
  915. * However, each plane we set up takes up some memory, and
  916. * increases the cost of looping over planes, which atomic
  917. * modesetting does quite a bit. As a result, we pick a
  918. * modest number of planes to expose, that should hopefully
  919. * still cover any sane usecase.
  920. */
  921. for (i = 0; i < 8; i++) {
  922. struct drm_plane *plane =
  923. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  924. if (IS_ERR(plane))
  925. continue;
  926. plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  927. }
  928. /* Set up the legacy cursor after overlay initialization,
  929. * since we overlay planes on the CRTC in the order they were
  930. * initialized.
  931. */
  932. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  933. if (!IS_ERR(cursor_plane)) {
  934. cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  935. cursor_plane->crtc = crtc;
  936. crtc->cursor = cursor_plane;
  937. }
  938. vc4_crtc_get_cob_allocation(vc4_crtc);
  939. CRTC_WRITE(PV_INTEN, 0);
  940. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  941. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  942. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  943. if (ret)
  944. goto err_destroy_planes;
  945. vc4_set_crtc_possible_masks(drm, crtc);
  946. for (i = 0; i < crtc->gamma_size; i++) {
  947. vc4_crtc->lut_r[i] = i;
  948. vc4_crtc->lut_g[i] = i;
  949. vc4_crtc->lut_b[i] = i;
  950. }
  951. platform_set_drvdata(pdev, vc4_crtc);
  952. return 0;
  953. err_destroy_planes:
  954. list_for_each_entry_safe(destroy_plane, temp,
  955. &drm->mode_config.plane_list, head) {
  956. if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
  957. destroy_plane->funcs->destroy(destroy_plane);
  958. }
  959. err:
  960. return ret;
  961. }
  962. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  963. void *data)
  964. {
  965. struct platform_device *pdev = to_platform_device(dev);
  966. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  967. vc4_crtc_destroy(&vc4_crtc->base);
  968. CRTC_WRITE(PV_INTEN, 0);
  969. platform_set_drvdata(pdev, NULL);
  970. }
  971. static const struct component_ops vc4_crtc_ops = {
  972. .bind = vc4_crtc_bind,
  973. .unbind = vc4_crtc_unbind,
  974. };
  975. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  976. {
  977. return component_add(&pdev->dev, &vc4_crtc_ops);
  978. }
  979. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  980. {
  981. component_del(&pdev->dev, &vc4_crtc_ops);
  982. return 0;
  983. }
  984. struct platform_driver vc4_crtc_driver = {
  985. .probe = vc4_crtc_dev_probe,
  986. .remove = vc4_crtc_dev_remove,
  987. .driver = {
  988. .name = "vc4_crtc",
  989. .of_match_table = vc4_crtc_dt_match,
  990. },
  991. };