intel_hdmi.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2009 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Eric Anholt <eric@anholt.net>
  26. * Jesse Barnes <jesse.barnes@intel.com>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/slab.h>
  30. #include <linux/delay.h>
  31. #include <linux/hdmi.h>
  32. #include <drm/drmP.h>
  33. #include <drm/drm_atomic_helper.h>
  34. #include <drm/drm_crtc.h>
  35. #include <drm/drm_edid.h>
  36. #include <drm/drm_hdcp.h>
  37. #include <drm/drm_scdc_helper.h>
  38. #include "intel_drv.h"
  39. #include <drm/i915_drm.h>
  40. #include <drm/intel_lpe_audio.h>
  41. #include "i915_drv.h"
  42. static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  43. {
  44. return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  45. }
  46. static void
  47. assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  48. {
  49. struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  50. struct drm_i915_private *dev_priv = to_i915(dev);
  51. uint32_t enabled_bits;
  52. enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  53. WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
  54. "HDMI port enabled, expecting disabled\n");
  55. }
  56. struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
  57. {
  58. struct intel_digital_port *intel_dig_port =
  59. container_of(encoder, struct intel_digital_port, base.base);
  60. return &intel_dig_port->hdmi;
  61. }
  62. static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
  63. {
  64. return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
  65. }
  66. static u32 g4x_infoframe_index(unsigned int type)
  67. {
  68. switch (type) {
  69. case HDMI_INFOFRAME_TYPE_AVI:
  70. return VIDEO_DIP_SELECT_AVI;
  71. case HDMI_INFOFRAME_TYPE_SPD:
  72. return VIDEO_DIP_SELECT_SPD;
  73. case HDMI_INFOFRAME_TYPE_VENDOR:
  74. return VIDEO_DIP_SELECT_VENDOR;
  75. default:
  76. MISSING_CASE(type);
  77. return 0;
  78. }
  79. }
  80. static u32 g4x_infoframe_enable(unsigned int type)
  81. {
  82. switch (type) {
  83. case HDMI_INFOFRAME_TYPE_AVI:
  84. return VIDEO_DIP_ENABLE_AVI;
  85. case HDMI_INFOFRAME_TYPE_SPD:
  86. return VIDEO_DIP_ENABLE_SPD;
  87. case HDMI_INFOFRAME_TYPE_VENDOR:
  88. return VIDEO_DIP_ENABLE_VENDOR;
  89. default:
  90. MISSING_CASE(type);
  91. return 0;
  92. }
  93. }
  94. static u32 hsw_infoframe_enable(unsigned int type)
  95. {
  96. switch (type) {
  97. case DP_SDP_VSC:
  98. return VIDEO_DIP_ENABLE_VSC_HSW;
  99. case HDMI_INFOFRAME_TYPE_AVI:
  100. return VIDEO_DIP_ENABLE_AVI_HSW;
  101. case HDMI_INFOFRAME_TYPE_SPD:
  102. return VIDEO_DIP_ENABLE_SPD_HSW;
  103. case HDMI_INFOFRAME_TYPE_VENDOR:
  104. return VIDEO_DIP_ENABLE_VS_HSW;
  105. default:
  106. MISSING_CASE(type);
  107. return 0;
  108. }
  109. }
  110. static i915_reg_t
  111. hsw_dip_data_reg(struct drm_i915_private *dev_priv,
  112. enum transcoder cpu_transcoder,
  113. unsigned int type,
  114. int i)
  115. {
  116. switch (type) {
  117. case DP_SDP_VSC:
  118. return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
  119. case HDMI_INFOFRAME_TYPE_AVI:
  120. return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
  121. case HDMI_INFOFRAME_TYPE_SPD:
  122. return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
  123. case HDMI_INFOFRAME_TYPE_VENDOR:
  124. return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
  125. default:
  126. MISSING_CASE(type);
  127. return INVALID_MMIO_REG;
  128. }
  129. }
  130. static void g4x_write_infoframe(struct drm_encoder *encoder,
  131. const struct intel_crtc_state *crtc_state,
  132. unsigned int type,
  133. const void *frame, ssize_t len)
  134. {
  135. const uint32_t *data = frame;
  136. struct drm_device *dev = encoder->dev;
  137. struct drm_i915_private *dev_priv = to_i915(dev);
  138. u32 val = I915_READ(VIDEO_DIP_CTL);
  139. int i;
  140. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  141. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  142. val |= g4x_infoframe_index(type);
  143. val &= ~g4x_infoframe_enable(type);
  144. I915_WRITE(VIDEO_DIP_CTL, val);
  145. mmiowb();
  146. for (i = 0; i < len; i += 4) {
  147. I915_WRITE(VIDEO_DIP_DATA, *data);
  148. data++;
  149. }
  150. /* Write every possible data byte to force correct ECC calculation. */
  151. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  152. I915_WRITE(VIDEO_DIP_DATA, 0);
  153. mmiowb();
  154. val |= g4x_infoframe_enable(type);
  155. val &= ~VIDEO_DIP_FREQ_MASK;
  156. val |= VIDEO_DIP_FREQ_VSYNC;
  157. I915_WRITE(VIDEO_DIP_CTL, val);
  158. POSTING_READ(VIDEO_DIP_CTL);
  159. }
  160. static bool g4x_infoframe_enabled(struct drm_encoder *encoder,
  161. const struct intel_crtc_state *pipe_config)
  162. {
  163. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  164. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  165. u32 val = I915_READ(VIDEO_DIP_CTL);
  166. if ((val & VIDEO_DIP_ENABLE) == 0)
  167. return false;
  168. if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port))
  169. return false;
  170. return val & (VIDEO_DIP_ENABLE_AVI |
  171. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
  172. }
  173. static void ibx_write_infoframe(struct drm_encoder *encoder,
  174. const struct intel_crtc_state *crtc_state,
  175. unsigned int type,
  176. const void *frame, ssize_t len)
  177. {
  178. const uint32_t *data = frame;
  179. struct drm_device *dev = encoder->dev;
  180. struct drm_i915_private *dev_priv = to_i915(dev);
  181. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  182. i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  183. u32 val = I915_READ(reg);
  184. int i;
  185. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  186. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  187. val |= g4x_infoframe_index(type);
  188. val &= ~g4x_infoframe_enable(type);
  189. I915_WRITE(reg, val);
  190. mmiowb();
  191. for (i = 0; i < len; i += 4) {
  192. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  193. data++;
  194. }
  195. /* Write every possible data byte to force correct ECC calculation. */
  196. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  197. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  198. mmiowb();
  199. val |= g4x_infoframe_enable(type);
  200. val &= ~VIDEO_DIP_FREQ_MASK;
  201. val |= VIDEO_DIP_FREQ_VSYNC;
  202. I915_WRITE(reg, val);
  203. POSTING_READ(reg);
  204. }
  205. static bool ibx_infoframe_enabled(struct drm_encoder *encoder,
  206. const struct intel_crtc_state *pipe_config)
  207. {
  208. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  209. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  210. enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
  211. i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
  212. u32 val = I915_READ(reg);
  213. if ((val & VIDEO_DIP_ENABLE) == 0)
  214. return false;
  215. if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port))
  216. return false;
  217. return val & (VIDEO_DIP_ENABLE_AVI |
  218. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  219. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  220. }
  221. static void cpt_write_infoframe(struct drm_encoder *encoder,
  222. const struct intel_crtc_state *crtc_state,
  223. unsigned int type,
  224. const void *frame, ssize_t len)
  225. {
  226. const uint32_t *data = frame;
  227. struct drm_device *dev = encoder->dev;
  228. struct drm_i915_private *dev_priv = to_i915(dev);
  229. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  230. i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  231. u32 val = I915_READ(reg);
  232. int i;
  233. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  234. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  235. val |= g4x_infoframe_index(type);
  236. /* The DIP control register spec says that we need to update the AVI
  237. * infoframe without clearing its enable bit */
  238. if (type != HDMI_INFOFRAME_TYPE_AVI)
  239. val &= ~g4x_infoframe_enable(type);
  240. I915_WRITE(reg, val);
  241. mmiowb();
  242. for (i = 0; i < len; i += 4) {
  243. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  244. data++;
  245. }
  246. /* Write every possible data byte to force correct ECC calculation. */
  247. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  248. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  249. mmiowb();
  250. val |= g4x_infoframe_enable(type);
  251. val &= ~VIDEO_DIP_FREQ_MASK;
  252. val |= VIDEO_DIP_FREQ_VSYNC;
  253. I915_WRITE(reg, val);
  254. POSTING_READ(reg);
  255. }
  256. static bool cpt_infoframe_enabled(struct drm_encoder *encoder,
  257. const struct intel_crtc_state *pipe_config)
  258. {
  259. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  260. enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
  261. u32 val = I915_READ(TVIDEO_DIP_CTL(pipe));
  262. if ((val & VIDEO_DIP_ENABLE) == 0)
  263. return false;
  264. return val & (VIDEO_DIP_ENABLE_AVI |
  265. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  266. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  267. }
  268. static void vlv_write_infoframe(struct drm_encoder *encoder,
  269. const struct intel_crtc_state *crtc_state,
  270. unsigned int type,
  271. const void *frame, ssize_t len)
  272. {
  273. const uint32_t *data = frame;
  274. struct drm_device *dev = encoder->dev;
  275. struct drm_i915_private *dev_priv = to_i915(dev);
  276. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  277. i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  278. u32 val = I915_READ(reg);
  279. int i;
  280. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  281. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  282. val |= g4x_infoframe_index(type);
  283. val &= ~g4x_infoframe_enable(type);
  284. I915_WRITE(reg, val);
  285. mmiowb();
  286. for (i = 0; i < len; i += 4) {
  287. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  288. data++;
  289. }
  290. /* Write every possible data byte to force correct ECC calculation. */
  291. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  292. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  293. mmiowb();
  294. val |= g4x_infoframe_enable(type);
  295. val &= ~VIDEO_DIP_FREQ_MASK;
  296. val |= VIDEO_DIP_FREQ_VSYNC;
  297. I915_WRITE(reg, val);
  298. POSTING_READ(reg);
  299. }
  300. static bool vlv_infoframe_enabled(struct drm_encoder *encoder,
  301. const struct intel_crtc_state *pipe_config)
  302. {
  303. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  304. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  305. enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
  306. u32 val = I915_READ(VLV_TVIDEO_DIP_CTL(pipe));
  307. if ((val & VIDEO_DIP_ENABLE) == 0)
  308. return false;
  309. if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port))
  310. return false;
  311. return val & (VIDEO_DIP_ENABLE_AVI |
  312. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  313. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  314. }
  315. static void hsw_write_infoframe(struct drm_encoder *encoder,
  316. const struct intel_crtc_state *crtc_state,
  317. unsigned int type,
  318. const void *frame, ssize_t len)
  319. {
  320. const uint32_t *data = frame;
  321. struct drm_device *dev = encoder->dev;
  322. struct drm_i915_private *dev_priv = to_i915(dev);
  323. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  324. i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
  325. i915_reg_t data_reg;
  326. int data_size = type == DP_SDP_VSC ?
  327. VIDEO_DIP_VSC_DATA_SIZE : VIDEO_DIP_DATA_SIZE;
  328. int i;
  329. u32 val = I915_READ(ctl_reg);
  330. data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
  331. val &= ~hsw_infoframe_enable(type);
  332. I915_WRITE(ctl_reg, val);
  333. mmiowb();
  334. for (i = 0; i < len; i += 4) {
  335. I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
  336. type, i >> 2), *data);
  337. data++;
  338. }
  339. /* Write every possible data byte to force correct ECC calculation. */
  340. for (; i < data_size; i += 4)
  341. I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
  342. type, i >> 2), 0);
  343. mmiowb();
  344. val |= hsw_infoframe_enable(type);
  345. I915_WRITE(ctl_reg, val);
  346. POSTING_READ(ctl_reg);
  347. }
  348. static bool hsw_infoframe_enabled(struct drm_encoder *encoder,
  349. const struct intel_crtc_state *pipe_config)
  350. {
  351. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  352. u32 val = I915_READ(HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
  353. return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
  354. VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
  355. VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
  356. }
  357. /*
  358. * The data we write to the DIP data buffer registers is 1 byte bigger than the
  359. * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
  360. * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
  361. * used for both technologies.
  362. *
  363. * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
  364. * DW1: DB3 | DB2 | DB1 | DB0
  365. * DW2: DB7 | DB6 | DB5 | DB4
  366. * DW3: ...
  367. *
  368. * (HB is Header Byte, DB is Data Byte)
  369. *
  370. * The hdmi pack() functions don't know about that hardware specific hole so we
  371. * trick them by giving an offset into the buffer and moving back the header
  372. * bytes by one.
  373. */
  374. static void intel_write_infoframe(struct drm_encoder *encoder,
  375. const struct intel_crtc_state *crtc_state,
  376. union hdmi_infoframe *frame)
  377. {
  378. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  379. uint8_t buffer[VIDEO_DIP_DATA_SIZE];
  380. ssize_t len;
  381. /* see comment above for the reason for this offset */
  382. len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
  383. if (len < 0)
  384. return;
  385. /* Insert the 'hole' (see big comment above) at position 3 */
  386. buffer[0] = buffer[1];
  387. buffer[1] = buffer[2];
  388. buffer[2] = buffer[3];
  389. buffer[3] = 0;
  390. len++;
  391. intel_dig_port->write_infoframe(encoder, crtc_state, frame->any.type, buffer, len);
  392. }
  393. static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
  394. const struct intel_crtc_state *crtc_state)
  395. {
  396. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  397. const struct drm_display_mode *adjusted_mode =
  398. &crtc_state->base.adjusted_mode;
  399. struct drm_connector *connector = &intel_hdmi->attached_connector->base;
  400. bool is_hdmi2_sink = connector->display_info.hdmi.scdc.supported;
  401. union hdmi_infoframe frame;
  402. int ret;
  403. ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
  404. adjusted_mode,
  405. is_hdmi2_sink);
  406. if (ret < 0) {
  407. DRM_ERROR("couldn't fill AVI infoframe\n");
  408. return;
  409. }
  410. if (crtc_state->ycbcr420)
  411. frame.avi.colorspace = HDMI_COLORSPACE_YUV420;
  412. else
  413. frame.avi.colorspace = HDMI_COLORSPACE_RGB;
  414. drm_hdmi_avi_infoframe_quant_range(&frame.avi, adjusted_mode,
  415. crtc_state->limited_color_range ?
  416. HDMI_QUANTIZATION_RANGE_LIMITED :
  417. HDMI_QUANTIZATION_RANGE_FULL,
  418. intel_hdmi->rgb_quant_range_selectable,
  419. is_hdmi2_sink);
  420. /* TODO: handle pixel repetition for YCBCR420 outputs */
  421. intel_write_infoframe(encoder, crtc_state, &frame);
  422. }
  423. static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder,
  424. const struct intel_crtc_state *crtc_state)
  425. {
  426. union hdmi_infoframe frame;
  427. int ret;
  428. ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
  429. if (ret < 0) {
  430. DRM_ERROR("couldn't fill SPD infoframe\n");
  431. return;
  432. }
  433. frame.spd.sdi = HDMI_SPD_SDI_PC;
  434. intel_write_infoframe(encoder, crtc_state, &frame);
  435. }
  436. static void
  437. intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
  438. const struct intel_crtc_state *crtc_state,
  439. const struct drm_connector_state *conn_state)
  440. {
  441. union hdmi_infoframe frame;
  442. int ret;
  443. ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
  444. conn_state->connector,
  445. &crtc_state->base.adjusted_mode);
  446. if (ret < 0)
  447. return;
  448. intel_write_infoframe(encoder, crtc_state, &frame);
  449. }
  450. static void g4x_set_infoframes(struct drm_encoder *encoder,
  451. bool enable,
  452. const struct intel_crtc_state *crtc_state,
  453. const struct drm_connector_state *conn_state)
  454. {
  455. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  456. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  457. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  458. i915_reg_t reg = VIDEO_DIP_CTL;
  459. u32 val = I915_READ(reg);
  460. u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port);
  461. assert_hdmi_port_disabled(intel_hdmi);
  462. /* If the registers were not initialized yet, they might be zeroes,
  463. * which means we're selecting the AVI DIP and we're setting its
  464. * frequency to once. This seems to really confuse the HW and make
  465. * things stop working (the register spec says the AVI always needs to
  466. * be sent every VSync). So here we avoid writing to the register more
  467. * than we need and also explicitly select the AVI DIP and explicitly
  468. * set its frequency to every VSync. Avoiding to write it twice seems to
  469. * be enough to solve the problem, but being defensive shouldn't hurt us
  470. * either. */
  471. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  472. if (!enable) {
  473. if (!(val & VIDEO_DIP_ENABLE))
  474. return;
  475. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  476. DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
  477. (val & VIDEO_DIP_PORT_MASK) >> 29);
  478. return;
  479. }
  480. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
  481. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
  482. I915_WRITE(reg, val);
  483. POSTING_READ(reg);
  484. return;
  485. }
  486. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  487. if (val & VIDEO_DIP_ENABLE) {
  488. DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
  489. (val & VIDEO_DIP_PORT_MASK) >> 29);
  490. return;
  491. }
  492. val &= ~VIDEO_DIP_PORT_MASK;
  493. val |= port;
  494. }
  495. val |= VIDEO_DIP_ENABLE;
  496. val &= ~(VIDEO_DIP_ENABLE_AVI |
  497. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
  498. I915_WRITE(reg, val);
  499. POSTING_READ(reg);
  500. intel_hdmi_set_avi_infoframe(encoder, crtc_state);
  501. intel_hdmi_set_spd_infoframe(encoder, crtc_state);
  502. intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
  503. }
  504. static bool hdmi_sink_is_deep_color(const struct drm_connector_state *conn_state)
  505. {
  506. struct drm_connector *connector = conn_state->connector;
  507. /*
  508. * HDMI cloning is only supported on g4x which doesn't
  509. * support deep color or GCP infoframes anyway so no
  510. * need to worry about multiple HDMI sinks here.
  511. */
  512. return connector->display_info.bpc > 8;
  513. }
  514. /*
  515. * Determine if default_phase=1 can be indicated in the GCP infoframe.
  516. *
  517. * From HDMI specification 1.4a:
  518. * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
  519. * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
  520. * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
  521. * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
  522. * phase of 0
  523. */
  524. static bool gcp_default_phase_possible(int pipe_bpp,
  525. const struct drm_display_mode *mode)
  526. {
  527. unsigned int pixels_per_group;
  528. switch (pipe_bpp) {
  529. case 30:
  530. /* 4 pixels in 5 clocks */
  531. pixels_per_group = 4;
  532. break;
  533. case 36:
  534. /* 2 pixels in 3 clocks */
  535. pixels_per_group = 2;
  536. break;
  537. case 48:
  538. /* 1 pixel in 2 clocks */
  539. pixels_per_group = 1;
  540. break;
  541. default:
  542. /* phase information not relevant for 8bpc */
  543. return false;
  544. }
  545. return mode->crtc_hdisplay % pixels_per_group == 0 &&
  546. mode->crtc_htotal % pixels_per_group == 0 &&
  547. mode->crtc_hblank_start % pixels_per_group == 0 &&
  548. mode->crtc_hblank_end % pixels_per_group == 0 &&
  549. mode->crtc_hsync_start % pixels_per_group == 0 &&
  550. mode->crtc_hsync_end % pixels_per_group == 0 &&
  551. ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
  552. mode->crtc_htotal/2 % pixels_per_group == 0);
  553. }
  554. static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder,
  555. const struct intel_crtc_state *crtc_state,
  556. const struct drm_connector_state *conn_state)
  557. {
  558. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  559. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  560. i915_reg_t reg;
  561. u32 val = 0;
  562. if (HAS_DDI(dev_priv))
  563. reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
  564. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  565. reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
  566. else if (HAS_PCH_SPLIT(dev_priv))
  567. reg = TVIDEO_DIP_GCP(crtc->pipe);
  568. else
  569. return false;
  570. /* Indicate color depth whenever the sink supports deep color */
  571. if (hdmi_sink_is_deep_color(conn_state))
  572. val |= GCP_COLOR_INDICATION;
  573. /* Enable default_phase whenever the display mode is suitably aligned */
  574. if (gcp_default_phase_possible(crtc_state->pipe_bpp,
  575. &crtc_state->base.adjusted_mode))
  576. val |= GCP_DEFAULT_PHASE_ENABLE;
  577. I915_WRITE(reg, val);
  578. return val != 0;
  579. }
  580. static void ibx_set_infoframes(struct drm_encoder *encoder,
  581. bool enable,
  582. const struct intel_crtc_state *crtc_state,
  583. const struct drm_connector_state *conn_state)
  584. {
  585. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  587. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  588. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  589. i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  590. u32 val = I915_READ(reg);
  591. u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port);
  592. assert_hdmi_port_disabled(intel_hdmi);
  593. /* See the big comment in g4x_set_infoframes() */
  594. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  595. if (!enable) {
  596. if (!(val & VIDEO_DIP_ENABLE))
  597. return;
  598. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
  599. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  600. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  601. I915_WRITE(reg, val);
  602. POSTING_READ(reg);
  603. return;
  604. }
  605. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  606. WARN(val & VIDEO_DIP_ENABLE,
  607. "DIP already enabled on port %c\n",
  608. (val & VIDEO_DIP_PORT_MASK) >> 29);
  609. val &= ~VIDEO_DIP_PORT_MASK;
  610. val |= port;
  611. }
  612. val |= VIDEO_DIP_ENABLE;
  613. val &= ~(VIDEO_DIP_ENABLE_AVI |
  614. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  615. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  616. if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
  617. val |= VIDEO_DIP_ENABLE_GCP;
  618. I915_WRITE(reg, val);
  619. POSTING_READ(reg);
  620. intel_hdmi_set_avi_infoframe(encoder, crtc_state);
  621. intel_hdmi_set_spd_infoframe(encoder, crtc_state);
  622. intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
  623. }
  624. static void cpt_set_infoframes(struct drm_encoder *encoder,
  625. bool enable,
  626. const struct intel_crtc_state *crtc_state,
  627. const struct drm_connector_state *conn_state)
  628. {
  629. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  630. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  631. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  632. i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  633. u32 val = I915_READ(reg);
  634. assert_hdmi_port_disabled(intel_hdmi);
  635. /* See the big comment in g4x_set_infoframes() */
  636. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  637. if (!enable) {
  638. if (!(val & VIDEO_DIP_ENABLE))
  639. return;
  640. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
  641. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  642. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  643. I915_WRITE(reg, val);
  644. POSTING_READ(reg);
  645. return;
  646. }
  647. /* Set both together, unset both together: see the spec. */
  648. val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
  649. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  650. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  651. if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
  652. val |= VIDEO_DIP_ENABLE_GCP;
  653. I915_WRITE(reg, val);
  654. POSTING_READ(reg);
  655. intel_hdmi_set_avi_infoframe(encoder, crtc_state);
  656. intel_hdmi_set_spd_infoframe(encoder, crtc_state);
  657. intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
  658. }
  659. static void vlv_set_infoframes(struct drm_encoder *encoder,
  660. bool enable,
  661. const struct intel_crtc_state *crtc_state,
  662. const struct drm_connector_state *conn_state)
  663. {
  664. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  665. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  667. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  668. i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  669. u32 val = I915_READ(reg);
  670. u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port);
  671. assert_hdmi_port_disabled(intel_hdmi);
  672. /* See the big comment in g4x_set_infoframes() */
  673. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  674. if (!enable) {
  675. if (!(val & VIDEO_DIP_ENABLE))
  676. return;
  677. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
  678. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  679. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  680. I915_WRITE(reg, val);
  681. POSTING_READ(reg);
  682. return;
  683. }
  684. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  685. WARN(val & VIDEO_DIP_ENABLE,
  686. "DIP already enabled on port %c\n",
  687. (val & VIDEO_DIP_PORT_MASK) >> 29);
  688. val &= ~VIDEO_DIP_PORT_MASK;
  689. val |= port;
  690. }
  691. val |= VIDEO_DIP_ENABLE;
  692. val &= ~(VIDEO_DIP_ENABLE_AVI |
  693. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  694. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  695. if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
  696. val |= VIDEO_DIP_ENABLE_GCP;
  697. I915_WRITE(reg, val);
  698. POSTING_READ(reg);
  699. intel_hdmi_set_avi_infoframe(encoder, crtc_state);
  700. intel_hdmi_set_spd_infoframe(encoder, crtc_state);
  701. intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
  702. }
  703. static void hsw_set_infoframes(struct drm_encoder *encoder,
  704. bool enable,
  705. const struct intel_crtc_state *crtc_state,
  706. const struct drm_connector_state *conn_state)
  707. {
  708. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  709. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  710. i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
  711. u32 val = I915_READ(reg);
  712. assert_hdmi_port_disabled(intel_hdmi);
  713. val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
  714. VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
  715. VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
  716. if (!enable) {
  717. I915_WRITE(reg, val);
  718. POSTING_READ(reg);
  719. return;
  720. }
  721. if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
  722. val |= VIDEO_DIP_ENABLE_GCP_HSW;
  723. I915_WRITE(reg, val);
  724. POSTING_READ(reg);
  725. intel_hdmi_set_avi_infoframe(encoder, crtc_state);
  726. intel_hdmi_set_spd_infoframe(encoder, crtc_state);
  727. intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state);
  728. }
  729. void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
  730. {
  731. struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
  732. struct i2c_adapter *adapter =
  733. intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
  734. if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
  735. return;
  736. DRM_DEBUG_KMS("%s DP dual mode adaptor TMDS output\n",
  737. enable ? "Enabling" : "Disabling");
  738. drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type,
  739. adapter, enable);
  740. }
  741. static int intel_hdmi_hdcp_read(struct intel_digital_port *intel_dig_port,
  742. unsigned int offset, void *buffer, size_t size)
  743. {
  744. struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
  745. struct drm_i915_private *dev_priv =
  746. intel_dig_port->base.base.dev->dev_private;
  747. struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
  748. hdmi->ddc_bus);
  749. int ret;
  750. u8 start = offset & 0xff;
  751. struct i2c_msg msgs[] = {
  752. {
  753. .addr = DRM_HDCP_DDC_ADDR,
  754. .flags = 0,
  755. .len = 1,
  756. .buf = &start,
  757. },
  758. {
  759. .addr = DRM_HDCP_DDC_ADDR,
  760. .flags = I2C_M_RD,
  761. .len = size,
  762. .buf = buffer
  763. }
  764. };
  765. ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
  766. if (ret == ARRAY_SIZE(msgs))
  767. return 0;
  768. return ret >= 0 ? -EIO : ret;
  769. }
  770. static int intel_hdmi_hdcp_write(struct intel_digital_port *intel_dig_port,
  771. unsigned int offset, void *buffer, size_t size)
  772. {
  773. struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
  774. struct drm_i915_private *dev_priv =
  775. intel_dig_port->base.base.dev->dev_private;
  776. struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
  777. hdmi->ddc_bus);
  778. int ret;
  779. u8 *write_buf;
  780. struct i2c_msg msg;
  781. write_buf = kzalloc(size + 1, GFP_KERNEL);
  782. if (!write_buf)
  783. return -ENOMEM;
  784. write_buf[0] = offset & 0xff;
  785. memcpy(&write_buf[1], buffer, size);
  786. msg.addr = DRM_HDCP_DDC_ADDR;
  787. msg.flags = 0,
  788. msg.len = size + 1,
  789. msg.buf = write_buf;
  790. ret = i2c_transfer(adapter, &msg, 1);
  791. if (ret == 1)
  792. return 0;
  793. return ret >= 0 ? -EIO : ret;
  794. }
  795. static
  796. int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
  797. u8 *an)
  798. {
  799. struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
  800. struct drm_i915_private *dev_priv =
  801. intel_dig_port->base.base.dev->dev_private;
  802. struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv,
  803. hdmi->ddc_bus);
  804. int ret;
  805. ret = intel_hdmi_hdcp_write(intel_dig_port, DRM_HDCP_DDC_AN, an,
  806. DRM_HDCP_AN_LEN);
  807. if (ret) {
  808. DRM_ERROR("Write An over DDC failed (%d)\n", ret);
  809. return ret;
  810. }
  811. ret = intel_gmbus_output_aksv(adapter);
  812. if (ret < 0) {
  813. DRM_ERROR("Failed to output aksv (%d)\n", ret);
  814. return ret;
  815. }
  816. return 0;
  817. }
  818. static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
  819. u8 *bksv)
  820. {
  821. int ret;
  822. ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BKSV, bksv,
  823. DRM_HDCP_KSV_LEN);
  824. if (ret)
  825. DRM_ERROR("Read Bksv over DDC failed (%d)\n", ret);
  826. return ret;
  827. }
  828. static
  829. int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
  830. u8 *bstatus)
  831. {
  832. int ret;
  833. ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BSTATUS,
  834. bstatus, DRM_HDCP_BSTATUS_LEN);
  835. if (ret)
  836. DRM_ERROR("Read bstatus over DDC failed (%d)\n", ret);
  837. return ret;
  838. }
  839. static
  840. int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
  841. bool *repeater_present)
  842. {
  843. int ret;
  844. u8 val;
  845. ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
  846. if (ret) {
  847. DRM_ERROR("Read bcaps over DDC failed (%d)\n", ret);
  848. return ret;
  849. }
  850. *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
  851. return 0;
  852. }
  853. static
  854. int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
  855. u8 *ri_prime)
  856. {
  857. int ret;
  858. ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_RI_PRIME,
  859. ri_prime, DRM_HDCP_RI_LEN);
  860. if (ret)
  861. DRM_ERROR("Read Ri' over DDC failed (%d)\n", ret);
  862. return ret;
  863. }
  864. static
  865. int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
  866. bool *ksv_ready)
  867. {
  868. int ret;
  869. u8 val;
  870. ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
  871. if (ret) {
  872. DRM_ERROR("Read bcaps over DDC failed (%d)\n", ret);
  873. return ret;
  874. }
  875. *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
  876. return 0;
  877. }
  878. static
  879. int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
  880. int num_downstream, u8 *ksv_fifo)
  881. {
  882. int ret;
  883. ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_KSV_FIFO,
  884. ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
  885. if (ret) {
  886. DRM_ERROR("Read ksv fifo over DDC failed (%d)\n", ret);
  887. return ret;
  888. }
  889. return 0;
  890. }
  891. static
  892. int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
  893. int i, u32 *part)
  894. {
  895. int ret;
  896. if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
  897. return -EINVAL;
  898. ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_V_PRIME(i),
  899. part, DRM_HDCP_V_PRIME_PART_LEN);
  900. if (ret)
  901. DRM_ERROR("Read V'[%d] over DDC failed (%d)\n", i, ret);
  902. return ret;
  903. }
  904. static
  905. int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
  906. bool enable)
  907. {
  908. int ret;
  909. if (!enable)
  910. usleep_range(6, 60); /* Bspec says >= 6us */
  911. ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, enable);
  912. if (ret) {
  913. DRM_ERROR("%s HDCP signalling failed (%d)\n",
  914. enable ? "Enable" : "Disable", ret);
  915. return ret;
  916. }
  917. return 0;
  918. }
  919. static
  920. bool intel_hdmi_hdcp_check_link(struct intel_digital_port *intel_dig_port)
  921. {
  922. struct drm_i915_private *dev_priv =
  923. intel_dig_port->base.base.dev->dev_private;
  924. enum port port = intel_dig_port->base.port;
  925. int ret;
  926. union {
  927. u32 reg;
  928. u8 shim[DRM_HDCP_RI_LEN];
  929. } ri;
  930. ret = intel_hdmi_hdcp_read_ri_prime(intel_dig_port, ri.shim);
  931. if (ret)
  932. return false;
  933. I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
  934. /* Wait for Ri prime match */
  935. if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
  936. (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
  937. DRM_ERROR("Ri' mismatch detected, link check failed (%x)\n",
  938. I915_READ(PORT_HDCP_STATUS(port)));
  939. return false;
  940. }
  941. return true;
  942. }
  943. static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
  944. .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
  945. .read_bksv = intel_hdmi_hdcp_read_bksv,
  946. .read_bstatus = intel_hdmi_hdcp_read_bstatus,
  947. .repeater_present = intel_hdmi_hdcp_repeater_present,
  948. .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
  949. .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
  950. .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
  951. .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
  952. .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
  953. .check_link = intel_hdmi_hdcp_check_link,
  954. };
  955. static void intel_hdmi_prepare(struct intel_encoder *encoder,
  956. const struct intel_crtc_state *crtc_state)
  957. {
  958. struct drm_device *dev = encoder->base.dev;
  959. struct drm_i915_private *dev_priv = to_i915(dev);
  960. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  961. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  962. const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
  963. u32 hdmi_val;
  964. intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
  965. hdmi_val = SDVO_ENCODING_HDMI;
  966. if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range)
  967. hdmi_val |= HDMI_COLOR_RANGE_16_235;
  968. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  969. hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
  970. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  971. hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
  972. if (crtc_state->pipe_bpp > 24)
  973. hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
  974. else
  975. hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
  976. if (crtc_state->has_hdmi_sink)
  977. hdmi_val |= HDMI_MODE_SELECT_HDMI;
  978. if (HAS_PCH_CPT(dev_priv))
  979. hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
  980. else if (IS_CHERRYVIEW(dev_priv))
  981. hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
  982. else
  983. hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
  984. I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
  985. POSTING_READ(intel_hdmi->hdmi_reg);
  986. }
  987. static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
  988. enum pipe *pipe)
  989. {
  990. struct drm_device *dev = encoder->base.dev;
  991. struct drm_i915_private *dev_priv = to_i915(dev);
  992. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  993. u32 tmp;
  994. bool ret;
  995. if (!intel_display_power_get_if_enabled(dev_priv,
  996. encoder->power_domain))
  997. return false;
  998. ret = false;
  999. tmp = I915_READ(intel_hdmi->hdmi_reg);
  1000. if (!(tmp & SDVO_ENABLE))
  1001. goto out;
  1002. if (HAS_PCH_CPT(dev_priv))
  1003. *pipe = PORT_TO_PIPE_CPT(tmp);
  1004. else if (IS_CHERRYVIEW(dev_priv))
  1005. *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
  1006. else
  1007. *pipe = PORT_TO_PIPE(tmp);
  1008. ret = true;
  1009. out:
  1010. intel_display_power_put(dev_priv, encoder->power_domain);
  1011. return ret;
  1012. }
  1013. static void intel_hdmi_get_config(struct intel_encoder *encoder,
  1014. struct intel_crtc_state *pipe_config)
  1015. {
  1016. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1017. struct intel_digital_port *intel_dig_port = hdmi_to_dig_port(intel_hdmi);
  1018. struct drm_device *dev = encoder->base.dev;
  1019. struct drm_i915_private *dev_priv = to_i915(dev);
  1020. u32 tmp, flags = 0;
  1021. int dotclock;
  1022. pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
  1023. tmp = I915_READ(intel_hdmi->hdmi_reg);
  1024. if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
  1025. flags |= DRM_MODE_FLAG_PHSYNC;
  1026. else
  1027. flags |= DRM_MODE_FLAG_NHSYNC;
  1028. if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
  1029. flags |= DRM_MODE_FLAG_PVSYNC;
  1030. else
  1031. flags |= DRM_MODE_FLAG_NVSYNC;
  1032. if (tmp & HDMI_MODE_SELECT_HDMI)
  1033. pipe_config->has_hdmi_sink = true;
  1034. if (intel_dig_port->infoframe_enabled(&encoder->base, pipe_config))
  1035. pipe_config->has_infoframe = true;
  1036. if (tmp & SDVO_AUDIO_ENABLE)
  1037. pipe_config->has_audio = true;
  1038. if (!HAS_PCH_SPLIT(dev_priv) &&
  1039. tmp & HDMI_COLOR_RANGE_16_235)
  1040. pipe_config->limited_color_range = true;
  1041. pipe_config->base.adjusted_mode.flags |= flags;
  1042. if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
  1043. dotclock = pipe_config->port_clock * 2 / 3;
  1044. else
  1045. dotclock = pipe_config->port_clock;
  1046. if (pipe_config->pixel_multiplier)
  1047. dotclock /= pipe_config->pixel_multiplier;
  1048. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  1049. pipe_config->lane_count = 4;
  1050. }
  1051. static void intel_enable_hdmi_audio(struct intel_encoder *encoder,
  1052. const struct intel_crtc_state *pipe_config,
  1053. const struct drm_connector_state *conn_state)
  1054. {
  1055. struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
  1056. WARN_ON(!pipe_config->has_hdmi_sink);
  1057. DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
  1058. pipe_name(crtc->pipe));
  1059. intel_audio_codec_enable(encoder, pipe_config, conn_state);
  1060. }
  1061. static void g4x_enable_hdmi(struct intel_encoder *encoder,
  1062. const struct intel_crtc_state *pipe_config,
  1063. const struct drm_connector_state *conn_state)
  1064. {
  1065. struct drm_device *dev = encoder->base.dev;
  1066. struct drm_i915_private *dev_priv = to_i915(dev);
  1067. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1068. u32 temp;
  1069. temp = I915_READ(intel_hdmi->hdmi_reg);
  1070. temp |= SDVO_ENABLE;
  1071. if (pipe_config->has_audio)
  1072. temp |= SDVO_AUDIO_ENABLE;
  1073. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1074. POSTING_READ(intel_hdmi->hdmi_reg);
  1075. if (pipe_config->has_audio)
  1076. intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
  1077. }
  1078. static void ibx_enable_hdmi(struct intel_encoder *encoder,
  1079. const struct intel_crtc_state *pipe_config,
  1080. const struct drm_connector_state *conn_state)
  1081. {
  1082. struct drm_device *dev = encoder->base.dev;
  1083. struct drm_i915_private *dev_priv = to_i915(dev);
  1084. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1085. u32 temp;
  1086. temp = I915_READ(intel_hdmi->hdmi_reg);
  1087. temp |= SDVO_ENABLE;
  1088. if (pipe_config->has_audio)
  1089. temp |= SDVO_AUDIO_ENABLE;
  1090. /*
  1091. * HW workaround, need to write this twice for issue
  1092. * that may result in first write getting masked.
  1093. */
  1094. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1095. POSTING_READ(intel_hdmi->hdmi_reg);
  1096. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1097. POSTING_READ(intel_hdmi->hdmi_reg);
  1098. /*
  1099. * HW workaround, need to toggle enable bit off and on
  1100. * for 12bpc with pixel repeat.
  1101. *
  1102. * FIXME: BSpec says this should be done at the end of
  1103. * of the modeset sequence, so not sure if this isn't too soon.
  1104. */
  1105. if (pipe_config->pipe_bpp > 24 &&
  1106. pipe_config->pixel_multiplier > 1) {
  1107. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  1108. POSTING_READ(intel_hdmi->hdmi_reg);
  1109. /*
  1110. * HW workaround, need to write this twice for issue
  1111. * that may result in first write getting masked.
  1112. */
  1113. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1114. POSTING_READ(intel_hdmi->hdmi_reg);
  1115. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1116. POSTING_READ(intel_hdmi->hdmi_reg);
  1117. }
  1118. if (pipe_config->has_audio)
  1119. intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
  1120. }
  1121. static void cpt_enable_hdmi(struct intel_encoder *encoder,
  1122. const struct intel_crtc_state *pipe_config,
  1123. const struct drm_connector_state *conn_state)
  1124. {
  1125. struct drm_device *dev = encoder->base.dev;
  1126. struct drm_i915_private *dev_priv = to_i915(dev);
  1127. struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
  1128. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1129. enum pipe pipe = crtc->pipe;
  1130. u32 temp;
  1131. temp = I915_READ(intel_hdmi->hdmi_reg);
  1132. temp |= SDVO_ENABLE;
  1133. if (pipe_config->has_audio)
  1134. temp |= SDVO_AUDIO_ENABLE;
  1135. /*
  1136. * WaEnableHDMI8bpcBefore12bpc:snb,ivb
  1137. *
  1138. * The procedure for 12bpc is as follows:
  1139. * 1. disable HDMI clock gating
  1140. * 2. enable HDMI with 8bpc
  1141. * 3. enable HDMI with 12bpc
  1142. * 4. enable HDMI clock gating
  1143. */
  1144. if (pipe_config->pipe_bpp > 24) {
  1145. I915_WRITE(TRANS_CHICKEN1(pipe),
  1146. I915_READ(TRANS_CHICKEN1(pipe)) |
  1147. TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
  1148. temp &= ~SDVO_COLOR_FORMAT_MASK;
  1149. temp |= SDVO_COLOR_FORMAT_8bpc;
  1150. }
  1151. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1152. POSTING_READ(intel_hdmi->hdmi_reg);
  1153. if (pipe_config->pipe_bpp > 24) {
  1154. temp &= ~SDVO_COLOR_FORMAT_MASK;
  1155. temp |= HDMI_COLOR_FORMAT_12bpc;
  1156. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1157. POSTING_READ(intel_hdmi->hdmi_reg);
  1158. I915_WRITE(TRANS_CHICKEN1(pipe),
  1159. I915_READ(TRANS_CHICKEN1(pipe)) &
  1160. ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
  1161. }
  1162. if (pipe_config->has_audio)
  1163. intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
  1164. }
  1165. static void vlv_enable_hdmi(struct intel_encoder *encoder,
  1166. const struct intel_crtc_state *pipe_config,
  1167. const struct drm_connector_state *conn_state)
  1168. {
  1169. }
  1170. static void intel_disable_hdmi(struct intel_encoder *encoder,
  1171. const struct intel_crtc_state *old_crtc_state,
  1172. const struct drm_connector_state *old_conn_state)
  1173. {
  1174. struct drm_device *dev = encoder->base.dev;
  1175. struct drm_i915_private *dev_priv = to_i915(dev);
  1176. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1177. struct intel_digital_port *intel_dig_port =
  1178. hdmi_to_dig_port(intel_hdmi);
  1179. struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
  1180. u32 temp;
  1181. temp = I915_READ(intel_hdmi->hdmi_reg);
  1182. temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
  1183. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1184. POSTING_READ(intel_hdmi->hdmi_reg);
  1185. /*
  1186. * HW workaround for IBX, we need to move the port
  1187. * to transcoder A after disabling it to allow the
  1188. * matching DP port to be enabled on transcoder A.
  1189. */
  1190. if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) {
  1191. /*
  1192. * We get CPU/PCH FIFO underruns on the other pipe when
  1193. * doing the workaround. Sweep them under the rug.
  1194. */
  1195. intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
  1196. intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
  1197. temp &= ~SDVO_PIPE_B_SELECT;
  1198. temp |= SDVO_ENABLE;
  1199. /*
  1200. * HW workaround, need to write this twice for issue
  1201. * that may result in first write getting masked.
  1202. */
  1203. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1204. POSTING_READ(intel_hdmi->hdmi_reg);
  1205. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1206. POSTING_READ(intel_hdmi->hdmi_reg);
  1207. temp &= ~SDVO_ENABLE;
  1208. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  1209. POSTING_READ(intel_hdmi->hdmi_reg);
  1210. intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
  1211. intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
  1212. intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
  1213. }
  1214. intel_dig_port->set_infoframes(&encoder->base, false,
  1215. old_crtc_state, old_conn_state);
  1216. intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
  1217. }
  1218. static void g4x_disable_hdmi(struct intel_encoder *encoder,
  1219. const struct intel_crtc_state *old_crtc_state,
  1220. const struct drm_connector_state *old_conn_state)
  1221. {
  1222. if (old_crtc_state->has_audio)
  1223. intel_audio_codec_disable(encoder,
  1224. old_crtc_state, old_conn_state);
  1225. intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
  1226. }
  1227. static void pch_disable_hdmi(struct intel_encoder *encoder,
  1228. const struct intel_crtc_state *old_crtc_state,
  1229. const struct drm_connector_state *old_conn_state)
  1230. {
  1231. if (old_crtc_state->has_audio)
  1232. intel_audio_codec_disable(encoder,
  1233. old_crtc_state, old_conn_state);
  1234. }
  1235. static void pch_post_disable_hdmi(struct intel_encoder *encoder,
  1236. const struct intel_crtc_state *old_crtc_state,
  1237. const struct drm_connector_state *old_conn_state)
  1238. {
  1239. intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
  1240. }
  1241. static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
  1242. {
  1243. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1244. const struct ddi_vbt_port_info *info =
  1245. &dev_priv->vbt.ddi_port_info[encoder->port];
  1246. int max_tmds_clock;
  1247. if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
  1248. max_tmds_clock = 594000;
  1249. else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv))
  1250. max_tmds_clock = 300000;
  1251. else if (INTEL_GEN(dev_priv) >= 5)
  1252. max_tmds_clock = 225000;
  1253. else
  1254. max_tmds_clock = 165000;
  1255. if (info->max_tmds_clock)
  1256. max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock);
  1257. return max_tmds_clock;
  1258. }
  1259. static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
  1260. bool respect_downstream_limits,
  1261. bool force_dvi)
  1262. {
  1263. struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
  1264. int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
  1265. if (respect_downstream_limits) {
  1266. struct intel_connector *connector = hdmi->attached_connector;
  1267. const struct drm_display_info *info = &connector->base.display_info;
  1268. if (hdmi->dp_dual_mode.max_tmds_clock)
  1269. max_tmds_clock = min(max_tmds_clock,
  1270. hdmi->dp_dual_mode.max_tmds_clock);
  1271. if (info->max_tmds_clock)
  1272. max_tmds_clock = min(max_tmds_clock,
  1273. info->max_tmds_clock);
  1274. else if (!hdmi->has_hdmi_sink || force_dvi)
  1275. max_tmds_clock = min(max_tmds_clock, 165000);
  1276. }
  1277. return max_tmds_clock;
  1278. }
  1279. static enum drm_mode_status
  1280. hdmi_port_clock_valid(struct intel_hdmi *hdmi,
  1281. int clock, bool respect_downstream_limits,
  1282. bool force_dvi)
  1283. {
  1284. struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
  1285. if (clock < 25000)
  1286. return MODE_CLOCK_LOW;
  1287. if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, force_dvi))
  1288. return MODE_CLOCK_HIGH;
  1289. /* BXT DPLL can't generate 223-240 MHz */
  1290. if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000)
  1291. return MODE_CLOCK_RANGE;
  1292. /* CHV DPLL can't generate 216-240 MHz */
  1293. if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
  1294. return MODE_CLOCK_RANGE;
  1295. return MODE_OK;
  1296. }
  1297. static enum drm_mode_status
  1298. intel_hdmi_mode_valid(struct drm_connector *connector,
  1299. struct drm_display_mode *mode)
  1300. {
  1301. struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
  1302. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  1303. struct drm_i915_private *dev_priv = to_i915(dev);
  1304. enum drm_mode_status status;
  1305. int clock;
  1306. int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
  1307. bool force_dvi =
  1308. READ_ONCE(to_intel_digital_connector_state(connector->state)->force_audio) == HDMI_AUDIO_OFF_DVI;
  1309. clock = mode->clock;
  1310. if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
  1311. clock *= 2;
  1312. if (clock > max_dotclk)
  1313. return MODE_CLOCK_HIGH;
  1314. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  1315. clock *= 2;
  1316. if (drm_mode_is_420_only(&connector->display_info, mode))
  1317. clock /= 2;
  1318. /* check if we can do 8bpc */
  1319. status = hdmi_port_clock_valid(hdmi, clock, true, force_dvi);
  1320. /* if we can't do 8bpc we may still be able to do 12bpc */
  1321. if (!HAS_GMCH_DISPLAY(dev_priv) && status != MODE_OK && hdmi->has_hdmi_sink && !force_dvi)
  1322. status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true, force_dvi);
  1323. return status;
  1324. }
  1325. static bool hdmi_12bpc_possible(const struct intel_crtc_state *crtc_state)
  1326. {
  1327. struct drm_i915_private *dev_priv =
  1328. to_i915(crtc_state->base.crtc->dev);
  1329. struct drm_atomic_state *state = crtc_state->base.state;
  1330. struct drm_connector_state *connector_state;
  1331. struct drm_connector *connector;
  1332. int i;
  1333. if (HAS_GMCH_DISPLAY(dev_priv))
  1334. return false;
  1335. if (crtc_state->pipe_bpp <= 8*3)
  1336. return false;
  1337. if (!crtc_state->has_hdmi_sink)
  1338. return false;
  1339. /*
  1340. * HDMI 12bpc affects the clocks, so it's only possible
  1341. * when not cloning with other encoder types.
  1342. */
  1343. if (crtc_state->output_types != 1 << INTEL_OUTPUT_HDMI)
  1344. return false;
  1345. for_each_new_connector_in_state(state, connector, connector_state, i) {
  1346. const struct drm_display_info *info = &connector->display_info;
  1347. if (connector_state->crtc != crtc_state->base.crtc)
  1348. continue;
  1349. if (crtc_state->ycbcr420) {
  1350. const struct drm_hdmi_info *hdmi = &info->hdmi;
  1351. if (!(hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36))
  1352. return false;
  1353. } else {
  1354. if (!(info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36))
  1355. return false;
  1356. }
  1357. }
  1358. /* Display WA #1139: glk */
  1359. if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1) &&
  1360. crtc_state->base.adjusted_mode.htotal > 5460)
  1361. return false;
  1362. return true;
  1363. }
  1364. static bool
  1365. intel_hdmi_ycbcr420_config(struct drm_connector *connector,
  1366. struct intel_crtc_state *config,
  1367. int *clock_12bpc, int *clock_8bpc)
  1368. {
  1369. struct intel_crtc *intel_crtc = to_intel_crtc(config->base.crtc);
  1370. if (!connector->ycbcr_420_allowed) {
  1371. DRM_ERROR("Platform doesn't support YCBCR420 output\n");
  1372. return false;
  1373. }
  1374. /* YCBCR420 TMDS rate requirement is half the pixel clock */
  1375. config->port_clock /= 2;
  1376. *clock_12bpc /= 2;
  1377. *clock_8bpc /= 2;
  1378. config->ycbcr420 = true;
  1379. /* YCBCR 420 output conversion needs a scaler */
  1380. if (skl_update_scaler_crtc(config)) {
  1381. DRM_DEBUG_KMS("Scaler allocation for output failed\n");
  1382. return false;
  1383. }
  1384. intel_pch_panel_fitting(intel_crtc, config,
  1385. DRM_MODE_SCALE_FULLSCREEN);
  1386. return true;
  1387. }
  1388. bool intel_hdmi_compute_config(struct intel_encoder *encoder,
  1389. struct intel_crtc_state *pipe_config,
  1390. struct drm_connector_state *conn_state)
  1391. {
  1392. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1393. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1394. struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  1395. struct drm_connector *connector = conn_state->connector;
  1396. struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
  1397. struct intel_digital_connector_state *intel_conn_state =
  1398. to_intel_digital_connector_state(conn_state);
  1399. int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
  1400. int clock_12bpc = clock_8bpc * 3 / 2;
  1401. int desired_bpp;
  1402. bool force_dvi = intel_conn_state->force_audio == HDMI_AUDIO_OFF_DVI;
  1403. pipe_config->has_hdmi_sink = !force_dvi && intel_hdmi->has_hdmi_sink;
  1404. if (pipe_config->has_hdmi_sink)
  1405. pipe_config->has_infoframe = true;
  1406. if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
  1407. /* See CEA-861-E - 5.1 Default Encoding Parameters */
  1408. pipe_config->limited_color_range =
  1409. pipe_config->has_hdmi_sink &&
  1410. drm_default_rgb_quant_range(adjusted_mode) ==
  1411. HDMI_QUANTIZATION_RANGE_LIMITED;
  1412. } else {
  1413. pipe_config->limited_color_range =
  1414. intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
  1415. }
  1416. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
  1417. pipe_config->pixel_multiplier = 2;
  1418. clock_8bpc *= 2;
  1419. clock_12bpc *= 2;
  1420. }
  1421. if (drm_mode_is_420_only(&connector->display_info, adjusted_mode)) {
  1422. if (!intel_hdmi_ycbcr420_config(connector, pipe_config,
  1423. &clock_12bpc, &clock_8bpc)) {
  1424. DRM_ERROR("Can't support YCBCR420 output\n");
  1425. return false;
  1426. }
  1427. }
  1428. if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
  1429. pipe_config->has_pch_encoder = true;
  1430. if (pipe_config->has_hdmi_sink) {
  1431. if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
  1432. pipe_config->has_audio = intel_hdmi->has_audio;
  1433. else
  1434. pipe_config->has_audio =
  1435. intel_conn_state->force_audio == HDMI_AUDIO_ON;
  1436. }
  1437. /*
  1438. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  1439. * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
  1440. * outputs. We also need to check that the higher clock still fits
  1441. * within limits.
  1442. */
  1443. if (hdmi_12bpc_possible(pipe_config) &&
  1444. hdmi_port_clock_valid(intel_hdmi, clock_12bpc, true, force_dvi) == MODE_OK) {
  1445. DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
  1446. desired_bpp = 12*3;
  1447. /* Need to adjust the port link by 1.5x for 12bpc. */
  1448. pipe_config->port_clock = clock_12bpc;
  1449. } else {
  1450. DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
  1451. desired_bpp = 8*3;
  1452. pipe_config->port_clock = clock_8bpc;
  1453. }
  1454. if (!pipe_config->bw_constrained) {
  1455. DRM_DEBUG_KMS("forcing pipe bpp to %i for HDMI\n", desired_bpp);
  1456. pipe_config->pipe_bpp = desired_bpp;
  1457. }
  1458. if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
  1459. false, force_dvi) != MODE_OK) {
  1460. DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
  1461. return false;
  1462. }
  1463. /* Set user selected PAR to incoming mode's member */
  1464. adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio;
  1465. pipe_config->lane_count = 4;
  1466. if (scdc->scrambling.supported && (INTEL_GEN(dev_priv) >= 10 ||
  1467. IS_GEMINILAKE(dev_priv))) {
  1468. if (scdc->scrambling.low_rates)
  1469. pipe_config->hdmi_scrambling = true;
  1470. if (pipe_config->port_clock > 340000) {
  1471. pipe_config->hdmi_scrambling = true;
  1472. pipe_config->hdmi_high_tmds_clock_ratio = true;
  1473. }
  1474. }
  1475. return true;
  1476. }
  1477. static void
  1478. intel_hdmi_unset_edid(struct drm_connector *connector)
  1479. {
  1480. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1481. intel_hdmi->has_hdmi_sink = false;
  1482. intel_hdmi->has_audio = false;
  1483. intel_hdmi->rgb_quant_range_selectable = false;
  1484. intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
  1485. intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
  1486. kfree(to_intel_connector(connector)->detect_edid);
  1487. to_intel_connector(connector)->detect_edid = NULL;
  1488. }
  1489. static void
  1490. intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
  1491. {
  1492. struct drm_i915_private *dev_priv = to_i915(connector->dev);
  1493. struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
  1494. enum port port = hdmi_to_dig_port(hdmi)->base.port;
  1495. struct i2c_adapter *adapter =
  1496. intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
  1497. enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter);
  1498. /*
  1499. * Type 1 DVI adaptors are not required to implement any
  1500. * registers, so we can't always detect their presence.
  1501. * Ideally we should be able to check the state of the
  1502. * CONFIG1 pin, but no such luck on our hardware.
  1503. *
  1504. * The only method left to us is to check the VBT to see
  1505. * if the port is a dual mode capable DP port. But let's
  1506. * only do that when we sucesfully read the EDID, to avoid
  1507. * confusing log messages about DP dual mode adaptors when
  1508. * there's nothing connected to the port.
  1509. */
  1510. if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
  1511. /* An overridden EDID imply that we want this port for testing.
  1512. * Make sure not to set limits for that port.
  1513. */
  1514. if (has_edid && !connector->override_edid &&
  1515. intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
  1516. DRM_DEBUG_KMS("Assuming DP dual mode adaptor presence based on VBT\n");
  1517. type = DRM_DP_DUAL_MODE_TYPE1_DVI;
  1518. } else {
  1519. type = DRM_DP_DUAL_MODE_NONE;
  1520. }
  1521. }
  1522. if (type == DRM_DP_DUAL_MODE_NONE)
  1523. return;
  1524. hdmi->dp_dual_mode.type = type;
  1525. hdmi->dp_dual_mode.max_tmds_clock =
  1526. drm_dp_dual_mode_max_tmds_clock(type, adapter);
  1527. DRM_DEBUG_KMS("DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
  1528. drm_dp_get_dual_mode_type_name(type),
  1529. hdmi->dp_dual_mode.max_tmds_clock);
  1530. }
  1531. static bool
  1532. intel_hdmi_set_edid(struct drm_connector *connector)
  1533. {
  1534. struct drm_i915_private *dev_priv = to_i915(connector->dev);
  1535. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1536. struct edid *edid;
  1537. bool connected = false;
  1538. struct i2c_adapter *i2c;
  1539. intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
  1540. i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
  1541. edid = drm_get_edid(connector, i2c);
  1542. if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
  1543. DRM_DEBUG_KMS("HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
  1544. intel_gmbus_force_bit(i2c, true);
  1545. edid = drm_get_edid(connector, i2c);
  1546. intel_gmbus_force_bit(i2c, false);
  1547. }
  1548. intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
  1549. intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
  1550. to_intel_connector(connector)->detect_edid = edid;
  1551. if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
  1552. intel_hdmi->rgb_quant_range_selectable =
  1553. drm_rgb_quant_range_selectable(edid);
  1554. intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
  1555. intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
  1556. connected = true;
  1557. }
  1558. return connected;
  1559. }
  1560. static enum drm_connector_status
  1561. intel_hdmi_detect(struct drm_connector *connector, bool force)
  1562. {
  1563. enum drm_connector_status status;
  1564. struct drm_i915_private *dev_priv = to_i915(connector->dev);
  1565. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  1566. connector->base.id, connector->name);
  1567. intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
  1568. intel_hdmi_unset_edid(connector);
  1569. if (intel_hdmi_set_edid(connector))
  1570. status = connector_status_connected;
  1571. else
  1572. status = connector_status_disconnected;
  1573. intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
  1574. return status;
  1575. }
  1576. static void
  1577. intel_hdmi_force(struct drm_connector *connector)
  1578. {
  1579. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  1580. connector->base.id, connector->name);
  1581. intel_hdmi_unset_edid(connector);
  1582. if (connector->status != connector_status_connected)
  1583. return;
  1584. intel_hdmi_set_edid(connector);
  1585. }
  1586. static int intel_hdmi_get_modes(struct drm_connector *connector)
  1587. {
  1588. struct edid *edid;
  1589. edid = to_intel_connector(connector)->detect_edid;
  1590. if (edid == NULL)
  1591. return 0;
  1592. return intel_connector_update_modes(connector, edid);
  1593. }
  1594. static void intel_hdmi_pre_enable(struct intel_encoder *encoder,
  1595. const struct intel_crtc_state *pipe_config,
  1596. const struct drm_connector_state *conn_state)
  1597. {
  1598. struct intel_digital_port *intel_dig_port =
  1599. enc_to_dig_port(&encoder->base);
  1600. intel_hdmi_prepare(encoder, pipe_config);
  1601. intel_dig_port->set_infoframes(&encoder->base,
  1602. pipe_config->has_infoframe,
  1603. pipe_config, conn_state);
  1604. }
  1605. static void vlv_hdmi_pre_enable(struct intel_encoder *encoder,
  1606. const struct intel_crtc_state *pipe_config,
  1607. const struct drm_connector_state *conn_state)
  1608. {
  1609. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1610. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1611. vlv_phy_pre_encoder_enable(encoder, pipe_config);
  1612. /* HDMI 1.0V-2dB */
  1613. vlv_set_phy_signal_level(encoder, 0x2b245f5f, 0x00002000, 0x5578b83a,
  1614. 0x2b247878);
  1615. dport->set_infoframes(&encoder->base,
  1616. pipe_config->has_infoframe,
  1617. pipe_config, conn_state);
  1618. g4x_enable_hdmi(encoder, pipe_config, conn_state);
  1619. vlv_wait_port_ready(dev_priv, dport, 0x0);
  1620. }
  1621. static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
  1622. const struct intel_crtc_state *pipe_config,
  1623. const struct drm_connector_state *conn_state)
  1624. {
  1625. intel_hdmi_prepare(encoder, pipe_config);
  1626. vlv_phy_pre_pll_enable(encoder, pipe_config);
  1627. }
  1628. static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
  1629. const struct intel_crtc_state *pipe_config,
  1630. const struct drm_connector_state *conn_state)
  1631. {
  1632. intel_hdmi_prepare(encoder, pipe_config);
  1633. chv_phy_pre_pll_enable(encoder, pipe_config);
  1634. }
  1635. static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder,
  1636. const struct intel_crtc_state *old_crtc_state,
  1637. const struct drm_connector_state *old_conn_state)
  1638. {
  1639. chv_phy_post_pll_disable(encoder, old_crtc_state);
  1640. }
  1641. static void vlv_hdmi_post_disable(struct intel_encoder *encoder,
  1642. const struct intel_crtc_state *old_crtc_state,
  1643. const struct drm_connector_state *old_conn_state)
  1644. {
  1645. /* Reset lanes to avoid HDMI flicker (VLV w/a) */
  1646. vlv_phy_reset_lanes(encoder, old_crtc_state);
  1647. }
  1648. static void chv_hdmi_post_disable(struct intel_encoder *encoder,
  1649. const struct intel_crtc_state *old_crtc_state,
  1650. const struct drm_connector_state *old_conn_state)
  1651. {
  1652. struct drm_device *dev = encoder->base.dev;
  1653. struct drm_i915_private *dev_priv = to_i915(dev);
  1654. mutex_lock(&dev_priv->sb_lock);
  1655. /* Assert data lane reset */
  1656. chv_data_lane_soft_reset(encoder, old_crtc_state, true);
  1657. mutex_unlock(&dev_priv->sb_lock);
  1658. }
  1659. static void chv_hdmi_pre_enable(struct intel_encoder *encoder,
  1660. const struct intel_crtc_state *pipe_config,
  1661. const struct drm_connector_state *conn_state)
  1662. {
  1663. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1664. struct drm_device *dev = encoder->base.dev;
  1665. struct drm_i915_private *dev_priv = to_i915(dev);
  1666. chv_phy_pre_encoder_enable(encoder, pipe_config);
  1667. /* FIXME: Program the support xxx V-dB */
  1668. /* Use 800mV-0dB */
  1669. chv_set_phy_signal_level(encoder, 128, 102, false);
  1670. dport->set_infoframes(&encoder->base,
  1671. pipe_config->has_infoframe,
  1672. pipe_config, conn_state);
  1673. g4x_enable_hdmi(encoder, pipe_config, conn_state);
  1674. vlv_wait_port_ready(dev_priv, dport, 0x0);
  1675. /* Second common lane will stay alive on its own now */
  1676. chv_phy_release_cl2_override(encoder);
  1677. }
  1678. static void intel_hdmi_destroy(struct drm_connector *connector)
  1679. {
  1680. kfree(to_intel_connector(connector)->detect_edid);
  1681. drm_connector_cleanup(connector);
  1682. kfree(connector);
  1683. }
  1684. static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
  1685. .detect = intel_hdmi_detect,
  1686. .force = intel_hdmi_force,
  1687. .fill_modes = drm_helper_probe_single_connector_modes,
  1688. .atomic_get_property = intel_digital_connector_atomic_get_property,
  1689. .atomic_set_property = intel_digital_connector_atomic_set_property,
  1690. .late_register = intel_connector_register,
  1691. .early_unregister = intel_connector_unregister,
  1692. .destroy = intel_hdmi_destroy,
  1693. .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
  1694. .atomic_duplicate_state = intel_digital_connector_duplicate_state,
  1695. };
  1696. static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
  1697. .get_modes = intel_hdmi_get_modes,
  1698. .mode_valid = intel_hdmi_mode_valid,
  1699. .atomic_check = intel_digital_connector_atomic_check,
  1700. };
  1701. static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
  1702. .destroy = intel_encoder_destroy,
  1703. };
  1704. static void
  1705. intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
  1706. {
  1707. intel_attach_force_audio_property(connector);
  1708. intel_attach_broadcast_rgb_property(connector);
  1709. intel_attach_aspect_ratio_property(connector);
  1710. connector->state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  1711. }
  1712. /*
  1713. * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
  1714. * @encoder: intel_encoder
  1715. * @connector: drm_connector
  1716. * @high_tmds_clock_ratio = bool to indicate if the function needs to set
  1717. * or reset the high tmds clock ratio for scrambling
  1718. * @scrambling: bool to Indicate if the function needs to set or reset
  1719. * sink scrambling
  1720. *
  1721. * This function handles scrambling on HDMI 2.0 capable sinks.
  1722. * If required clock rate is > 340 Mhz && scrambling is supported by sink
  1723. * it enables scrambling. This should be called before enabling the HDMI
  1724. * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
  1725. * detect a scrambled clock within 100 ms.
  1726. *
  1727. * Returns:
  1728. * True on success, false on failure.
  1729. */
  1730. bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
  1731. struct drm_connector *connector,
  1732. bool high_tmds_clock_ratio,
  1733. bool scrambling)
  1734. {
  1735. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1736. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1737. struct drm_scrambling *sink_scrambling =
  1738. &connector->display_info.hdmi.scdc.scrambling;
  1739. struct i2c_adapter *adapter =
  1740. intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
  1741. if (!sink_scrambling->supported)
  1742. return true;
  1743. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
  1744. connector->base.id, connector->name,
  1745. yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
  1746. /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
  1747. return drm_scdc_set_high_tmds_clock_ratio(adapter,
  1748. high_tmds_clock_ratio) &&
  1749. drm_scdc_set_scrambling(adapter, scrambling);
  1750. }
  1751. static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
  1752. {
  1753. u8 ddc_pin;
  1754. switch (port) {
  1755. case PORT_B:
  1756. ddc_pin = GMBUS_PIN_DPB;
  1757. break;
  1758. case PORT_C:
  1759. ddc_pin = GMBUS_PIN_DPC;
  1760. break;
  1761. case PORT_D:
  1762. ddc_pin = GMBUS_PIN_DPD_CHV;
  1763. break;
  1764. default:
  1765. MISSING_CASE(port);
  1766. ddc_pin = GMBUS_PIN_DPB;
  1767. break;
  1768. }
  1769. return ddc_pin;
  1770. }
  1771. static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
  1772. {
  1773. u8 ddc_pin;
  1774. switch (port) {
  1775. case PORT_B:
  1776. ddc_pin = GMBUS_PIN_1_BXT;
  1777. break;
  1778. case PORT_C:
  1779. ddc_pin = GMBUS_PIN_2_BXT;
  1780. break;
  1781. default:
  1782. MISSING_CASE(port);
  1783. ddc_pin = GMBUS_PIN_1_BXT;
  1784. break;
  1785. }
  1786. return ddc_pin;
  1787. }
  1788. static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
  1789. enum port port)
  1790. {
  1791. u8 ddc_pin;
  1792. switch (port) {
  1793. case PORT_B:
  1794. ddc_pin = GMBUS_PIN_1_BXT;
  1795. break;
  1796. case PORT_C:
  1797. ddc_pin = GMBUS_PIN_2_BXT;
  1798. break;
  1799. case PORT_D:
  1800. ddc_pin = GMBUS_PIN_4_CNP;
  1801. break;
  1802. case PORT_F:
  1803. ddc_pin = GMBUS_PIN_3_BXT;
  1804. break;
  1805. default:
  1806. MISSING_CASE(port);
  1807. ddc_pin = GMBUS_PIN_1_BXT;
  1808. break;
  1809. }
  1810. return ddc_pin;
  1811. }
  1812. static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
  1813. {
  1814. u8 ddc_pin;
  1815. switch (port) {
  1816. case PORT_A:
  1817. ddc_pin = GMBUS_PIN_1_BXT;
  1818. break;
  1819. case PORT_B:
  1820. ddc_pin = GMBUS_PIN_2_BXT;
  1821. break;
  1822. case PORT_C:
  1823. ddc_pin = GMBUS_PIN_9_TC1_ICP;
  1824. break;
  1825. case PORT_D:
  1826. ddc_pin = GMBUS_PIN_10_TC2_ICP;
  1827. break;
  1828. case PORT_E:
  1829. ddc_pin = GMBUS_PIN_11_TC3_ICP;
  1830. break;
  1831. case PORT_F:
  1832. ddc_pin = GMBUS_PIN_12_TC4_ICP;
  1833. break;
  1834. default:
  1835. MISSING_CASE(port);
  1836. ddc_pin = GMBUS_PIN_2_BXT;
  1837. break;
  1838. }
  1839. return ddc_pin;
  1840. }
  1841. static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
  1842. enum port port)
  1843. {
  1844. u8 ddc_pin;
  1845. switch (port) {
  1846. case PORT_B:
  1847. ddc_pin = GMBUS_PIN_DPB;
  1848. break;
  1849. case PORT_C:
  1850. ddc_pin = GMBUS_PIN_DPC;
  1851. break;
  1852. case PORT_D:
  1853. ddc_pin = GMBUS_PIN_DPD;
  1854. break;
  1855. default:
  1856. MISSING_CASE(port);
  1857. ddc_pin = GMBUS_PIN_DPB;
  1858. break;
  1859. }
  1860. return ddc_pin;
  1861. }
  1862. static u8 intel_hdmi_ddc_pin(struct drm_i915_private *dev_priv,
  1863. enum port port)
  1864. {
  1865. const struct ddi_vbt_port_info *info =
  1866. &dev_priv->vbt.ddi_port_info[port];
  1867. u8 ddc_pin;
  1868. if (info->alternate_ddc_pin) {
  1869. DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (VBT)\n",
  1870. info->alternate_ddc_pin, port_name(port));
  1871. return info->alternate_ddc_pin;
  1872. }
  1873. if (IS_CHERRYVIEW(dev_priv))
  1874. ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
  1875. else if (IS_GEN9_LP(dev_priv))
  1876. ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
  1877. else if (HAS_PCH_CNP(dev_priv))
  1878. ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
  1879. else if (IS_ICELAKE(dev_priv))
  1880. ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
  1881. else
  1882. ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
  1883. DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (platform default)\n",
  1884. ddc_pin, port_name(port));
  1885. return ddc_pin;
  1886. }
  1887. void intel_infoframe_init(struct intel_digital_port *intel_dig_port)
  1888. {
  1889. struct drm_i915_private *dev_priv =
  1890. to_i915(intel_dig_port->base.base.dev);
  1891. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  1892. intel_dig_port->write_infoframe = vlv_write_infoframe;
  1893. intel_dig_port->set_infoframes = vlv_set_infoframes;
  1894. intel_dig_port->infoframe_enabled = vlv_infoframe_enabled;
  1895. } else if (IS_G4X(dev_priv)) {
  1896. intel_dig_port->write_infoframe = g4x_write_infoframe;
  1897. intel_dig_port->set_infoframes = g4x_set_infoframes;
  1898. intel_dig_port->infoframe_enabled = g4x_infoframe_enabled;
  1899. } else if (HAS_DDI(dev_priv)) {
  1900. intel_dig_port->write_infoframe = hsw_write_infoframe;
  1901. intel_dig_port->set_infoframes = hsw_set_infoframes;
  1902. intel_dig_port->infoframe_enabled = hsw_infoframe_enabled;
  1903. } else if (HAS_PCH_IBX(dev_priv)) {
  1904. intel_dig_port->write_infoframe = ibx_write_infoframe;
  1905. intel_dig_port->set_infoframes = ibx_set_infoframes;
  1906. intel_dig_port->infoframe_enabled = ibx_infoframe_enabled;
  1907. } else {
  1908. intel_dig_port->write_infoframe = cpt_write_infoframe;
  1909. intel_dig_port->set_infoframes = cpt_set_infoframes;
  1910. intel_dig_port->infoframe_enabled = cpt_infoframe_enabled;
  1911. }
  1912. }
  1913. void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
  1914. struct intel_connector *intel_connector)
  1915. {
  1916. struct drm_connector *connector = &intel_connector->base;
  1917. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1918. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1919. struct drm_device *dev = intel_encoder->base.dev;
  1920. struct drm_i915_private *dev_priv = to_i915(dev);
  1921. enum port port = intel_encoder->port;
  1922. DRM_DEBUG_KMS("Adding HDMI connector on port %c\n",
  1923. port_name(port));
  1924. if (WARN(intel_dig_port->max_lanes < 4,
  1925. "Not enough lanes (%d) for HDMI on port %c\n",
  1926. intel_dig_port->max_lanes, port_name(port)))
  1927. return;
  1928. drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
  1929. DRM_MODE_CONNECTOR_HDMIA);
  1930. drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
  1931. connector->interlace_allowed = 1;
  1932. connector->doublescan_allowed = 0;
  1933. connector->stereo_allowed = 1;
  1934. if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
  1935. connector->ycbcr_420_allowed = true;
  1936. intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(dev_priv, port);
  1937. if (WARN_ON(port == PORT_A))
  1938. return;
  1939. intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
  1940. if (HAS_DDI(dev_priv))
  1941. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  1942. else
  1943. intel_connector->get_hw_state = intel_connector_get_hw_state;
  1944. intel_hdmi_add_properties(intel_hdmi, connector);
  1945. if (is_hdcp_supported(dev_priv, port)) {
  1946. int ret = intel_hdcp_init(intel_connector,
  1947. &intel_hdmi_hdcp_shim);
  1948. if (ret)
  1949. DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
  1950. }
  1951. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1952. intel_hdmi->attached_connector = intel_connector;
  1953. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1954. * 0xd. Failure to do so will result in spurious interrupts being
  1955. * generated on the port when a cable is not attached.
  1956. */
  1957. if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
  1958. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1959. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1960. }
  1961. }
  1962. void intel_hdmi_init(struct drm_i915_private *dev_priv,
  1963. i915_reg_t hdmi_reg, enum port port)
  1964. {
  1965. struct intel_digital_port *intel_dig_port;
  1966. struct intel_encoder *intel_encoder;
  1967. struct intel_connector *intel_connector;
  1968. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1969. if (!intel_dig_port)
  1970. return;
  1971. intel_connector = intel_connector_alloc();
  1972. if (!intel_connector) {
  1973. kfree(intel_dig_port);
  1974. return;
  1975. }
  1976. intel_encoder = &intel_dig_port->base;
  1977. drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
  1978. &intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS,
  1979. "HDMI %c", port_name(port));
  1980. intel_encoder->hotplug = intel_encoder_hotplug;
  1981. intel_encoder->compute_config = intel_hdmi_compute_config;
  1982. if (HAS_PCH_SPLIT(dev_priv)) {
  1983. intel_encoder->disable = pch_disable_hdmi;
  1984. intel_encoder->post_disable = pch_post_disable_hdmi;
  1985. } else {
  1986. intel_encoder->disable = g4x_disable_hdmi;
  1987. }
  1988. intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
  1989. intel_encoder->get_config = intel_hdmi_get_config;
  1990. if (IS_CHERRYVIEW(dev_priv)) {
  1991. intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
  1992. intel_encoder->pre_enable = chv_hdmi_pre_enable;
  1993. intel_encoder->enable = vlv_enable_hdmi;
  1994. intel_encoder->post_disable = chv_hdmi_post_disable;
  1995. intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
  1996. } else if (IS_VALLEYVIEW(dev_priv)) {
  1997. intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
  1998. intel_encoder->pre_enable = vlv_hdmi_pre_enable;
  1999. intel_encoder->enable = vlv_enable_hdmi;
  2000. intel_encoder->post_disable = vlv_hdmi_post_disable;
  2001. } else {
  2002. intel_encoder->pre_enable = intel_hdmi_pre_enable;
  2003. if (HAS_PCH_CPT(dev_priv))
  2004. intel_encoder->enable = cpt_enable_hdmi;
  2005. else if (HAS_PCH_IBX(dev_priv))
  2006. intel_encoder->enable = ibx_enable_hdmi;
  2007. else
  2008. intel_encoder->enable = g4x_enable_hdmi;
  2009. }
  2010. intel_encoder->type = INTEL_OUTPUT_HDMI;
  2011. intel_encoder->power_domain = intel_port_to_power_domain(port);
  2012. intel_encoder->port = port;
  2013. if (IS_CHERRYVIEW(dev_priv)) {
  2014. if (port == PORT_D)
  2015. intel_encoder->crtc_mask = 1 << 2;
  2016. else
  2017. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  2018. } else {
  2019. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2020. }
  2021. intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
  2022. /*
  2023. * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
  2024. * to work on real hardware. And since g4x can send infoframes to
  2025. * only one port anyway, nothing is lost by allowing it.
  2026. */
  2027. if (IS_G4X(dev_priv))
  2028. intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
  2029. intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
  2030. intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
  2031. intel_dig_port->max_lanes = 4;
  2032. intel_infoframe_init(intel_dig_port);
  2033. intel_hdmi_init_connector(intel_dig_port, intel_connector);
  2034. }