intel_dpll_mgr.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. /**
  25. * DOC: Display PLLs
  26. *
  27. * Display PLLs used for driving outputs vary by platform. While some have
  28. * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
  29. * from a pool. In the latter scenario, it is possible that multiple pipes
  30. * share a PLL if their configurations match.
  31. *
  32. * This file provides an abstraction over display PLLs. The function
  33. * intel_shared_dpll_init() initializes the PLLs for the given platform. The
  34. * users of a PLL are tracked and that tracking is integrated with the atomic
  35. * modest interface. During an atomic operation, a PLL can be requested for a
  36. * given CRTC and encoder configuration by calling intel_get_shared_dpll() and
  37. * a previously used PLL can be released with intel_release_shared_dpll().
  38. * Changes to the users are first staged in the atomic state, and then made
  39. * effective by calling intel_shared_dpll_swap_state() during the atomic
  40. * commit phase.
  41. */
  42. static void
  43. intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
  44. struct intel_shared_dpll_state *shared_dpll)
  45. {
  46. enum intel_dpll_id i;
  47. /* Copy shared dpll state */
  48. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  49. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  50. shared_dpll[i] = pll->state;
  51. }
  52. }
  53. static struct intel_shared_dpll_state *
  54. intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
  55. {
  56. struct intel_atomic_state *state = to_intel_atomic_state(s);
  57. WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));
  58. if (!state->dpll_set) {
  59. state->dpll_set = true;
  60. intel_atomic_duplicate_dpll_state(to_i915(s->dev),
  61. state->shared_dpll);
  62. }
  63. return state->shared_dpll;
  64. }
  65. /**
  66. * intel_get_shared_dpll_by_id - get a DPLL given its id
  67. * @dev_priv: i915 device instance
  68. * @id: pll id
  69. *
  70. * Returns:
  71. * A pointer to the DPLL with @id
  72. */
  73. struct intel_shared_dpll *
  74. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  75. enum intel_dpll_id id)
  76. {
  77. return &dev_priv->shared_dplls[id];
  78. }
  79. /**
  80. * intel_get_shared_dpll_id - get the id of a DPLL
  81. * @dev_priv: i915 device instance
  82. * @pll: the DPLL
  83. *
  84. * Returns:
  85. * The id of @pll
  86. */
  87. enum intel_dpll_id
  88. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  89. struct intel_shared_dpll *pll)
  90. {
  91. if (WARN_ON(pll < dev_priv->shared_dplls||
  92. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  93. return -1;
  94. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  95. }
  96. /* For ILK+ */
  97. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  98. struct intel_shared_dpll *pll,
  99. bool state)
  100. {
  101. bool cur_state;
  102. struct intel_dpll_hw_state hw_state;
  103. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  104. return;
  105. cur_state = pll->info->funcs->get_hw_state(dev_priv, pll, &hw_state);
  106. I915_STATE_WARN(cur_state != state,
  107. "%s assertion failure (expected %s, current %s)\n",
  108. pll->info->name, onoff(state), onoff(cur_state));
  109. }
  110. /**
  111. * intel_prepare_shared_dpll - call a dpll's prepare hook
  112. * @crtc: CRTC which has a shared dpll
  113. *
  114. * This calls the PLL's prepare hook if it has one and if the PLL is not
  115. * already enabled. The prepare hook is platform specific.
  116. */
  117. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  118. {
  119. struct drm_device *dev = crtc->base.dev;
  120. struct drm_i915_private *dev_priv = to_i915(dev);
  121. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  122. if (WARN_ON(pll == NULL))
  123. return;
  124. mutex_lock(&dev_priv->dpll_lock);
  125. WARN_ON(!pll->state.crtc_mask);
  126. if (!pll->active_mask) {
  127. DRM_DEBUG_DRIVER("setting up %s\n", pll->info->name);
  128. WARN_ON(pll->on);
  129. assert_shared_dpll_disabled(dev_priv, pll);
  130. pll->info->funcs->prepare(dev_priv, pll);
  131. }
  132. mutex_unlock(&dev_priv->dpll_lock);
  133. }
  134. /**
  135. * intel_enable_shared_dpll - enable a CRTC's shared DPLL
  136. * @crtc: CRTC which has a shared DPLL
  137. *
  138. * Enable the shared DPLL used by @crtc.
  139. */
  140. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  141. {
  142. struct drm_device *dev = crtc->base.dev;
  143. struct drm_i915_private *dev_priv = to_i915(dev);
  144. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  145. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  146. unsigned old_mask;
  147. if (WARN_ON(pll == NULL))
  148. return;
  149. mutex_lock(&dev_priv->dpll_lock);
  150. old_mask = pll->active_mask;
  151. if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
  152. WARN_ON(pll->active_mask & crtc_mask))
  153. goto out;
  154. pll->active_mask |= crtc_mask;
  155. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  156. pll->info->name, pll->active_mask, pll->on,
  157. crtc->base.base.id);
  158. if (old_mask) {
  159. WARN_ON(!pll->on);
  160. assert_shared_dpll_enabled(dev_priv, pll);
  161. goto out;
  162. }
  163. WARN_ON(pll->on);
  164. DRM_DEBUG_KMS("enabling %s\n", pll->info->name);
  165. pll->info->funcs->enable(dev_priv, pll);
  166. pll->on = true;
  167. out:
  168. mutex_unlock(&dev_priv->dpll_lock);
  169. }
  170. /**
  171. * intel_disable_shared_dpll - disable a CRTC's shared DPLL
  172. * @crtc: CRTC which has a shared DPLL
  173. *
  174. * Disable the shared DPLL used by @crtc.
  175. */
  176. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  177. {
  178. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  179. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  180. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  181. /* PCH only available on ILK+ */
  182. if (INTEL_GEN(dev_priv) < 5)
  183. return;
  184. if (pll == NULL)
  185. return;
  186. mutex_lock(&dev_priv->dpll_lock);
  187. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  188. goto out;
  189. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  190. pll->info->name, pll->active_mask, pll->on,
  191. crtc->base.base.id);
  192. assert_shared_dpll_enabled(dev_priv, pll);
  193. WARN_ON(!pll->on);
  194. pll->active_mask &= ~crtc_mask;
  195. if (pll->active_mask)
  196. goto out;
  197. DRM_DEBUG_KMS("disabling %s\n", pll->info->name);
  198. pll->info->funcs->disable(dev_priv, pll);
  199. pll->on = false;
  200. out:
  201. mutex_unlock(&dev_priv->dpll_lock);
  202. }
  203. static struct intel_shared_dpll *
  204. intel_find_shared_dpll(struct intel_crtc *crtc,
  205. struct intel_crtc_state *crtc_state,
  206. enum intel_dpll_id range_min,
  207. enum intel_dpll_id range_max)
  208. {
  209. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  210. struct intel_shared_dpll *pll;
  211. struct intel_shared_dpll_state *shared_dpll;
  212. enum intel_dpll_id i;
  213. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  214. for (i = range_min; i <= range_max; i++) {
  215. pll = &dev_priv->shared_dplls[i];
  216. /* Only want to check enabled timings first */
  217. if (shared_dpll[i].crtc_mask == 0)
  218. continue;
  219. if (memcmp(&crtc_state->dpll_hw_state,
  220. &shared_dpll[i].hw_state,
  221. sizeof(crtc_state->dpll_hw_state)) == 0) {
  222. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  223. crtc->base.base.id, crtc->base.name,
  224. pll->info->name,
  225. shared_dpll[i].crtc_mask,
  226. pll->active_mask);
  227. return pll;
  228. }
  229. }
  230. /* Ok no matching timings, maybe there's a free one? */
  231. for (i = range_min; i <= range_max; i++) {
  232. pll = &dev_priv->shared_dplls[i];
  233. if (shared_dpll[i].crtc_mask == 0) {
  234. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  235. crtc->base.base.id, crtc->base.name,
  236. pll->info->name);
  237. return pll;
  238. }
  239. }
  240. return NULL;
  241. }
  242. static void
  243. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  244. struct intel_crtc_state *crtc_state)
  245. {
  246. struct intel_shared_dpll_state *shared_dpll;
  247. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  248. const enum intel_dpll_id id = pll->info->id;
  249. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  250. if (shared_dpll[id].crtc_mask == 0)
  251. shared_dpll[id].hw_state =
  252. crtc_state->dpll_hw_state;
  253. crtc_state->shared_dpll = pll;
  254. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->info->name,
  255. pipe_name(crtc->pipe));
  256. shared_dpll[id].crtc_mask |= 1 << crtc->pipe;
  257. }
  258. /**
  259. * intel_shared_dpll_swap_state - make atomic DPLL configuration effective
  260. * @state: atomic state
  261. *
  262. * This is the dpll version of drm_atomic_helper_swap_state() since the
  263. * helper does not handle driver-specific global state.
  264. *
  265. * For consistency with atomic helpers this function does a complete swap,
  266. * i.e. it also puts the current state into @state, even though there is no
  267. * need for that at this moment.
  268. */
  269. void intel_shared_dpll_swap_state(struct drm_atomic_state *state)
  270. {
  271. struct drm_i915_private *dev_priv = to_i915(state->dev);
  272. struct intel_shared_dpll_state *shared_dpll;
  273. struct intel_shared_dpll *pll;
  274. enum intel_dpll_id i;
  275. if (!to_intel_atomic_state(state)->dpll_set)
  276. return;
  277. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  278. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  279. struct intel_shared_dpll_state tmp;
  280. pll = &dev_priv->shared_dplls[i];
  281. tmp = pll->state;
  282. pll->state = shared_dpll[i];
  283. shared_dpll[i] = tmp;
  284. }
  285. }
  286. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  287. struct intel_shared_dpll *pll,
  288. struct intel_dpll_hw_state *hw_state)
  289. {
  290. const enum intel_dpll_id id = pll->info->id;
  291. uint32_t val;
  292. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  293. return false;
  294. val = I915_READ(PCH_DPLL(id));
  295. hw_state->dpll = val;
  296. hw_state->fp0 = I915_READ(PCH_FP0(id));
  297. hw_state->fp1 = I915_READ(PCH_FP1(id));
  298. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  299. return val & DPLL_VCO_ENABLE;
  300. }
  301. static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
  302. struct intel_shared_dpll *pll)
  303. {
  304. const enum intel_dpll_id id = pll->info->id;
  305. I915_WRITE(PCH_FP0(id), pll->state.hw_state.fp0);
  306. I915_WRITE(PCH_FP1(id), pll->state.hw_state.fp1);
  307. }
  308. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  309. {
  310. u32 val;
  311. bool enabled;
  312. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  313. val = I915_READ(PCH_DREF_CONTROL);
  314. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  315. DREF_SUPERSPREAD_SOURCE_MASK));
  316. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  317. }
  318. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  319. struct intel_shared_dpll *pll)
  320. {
  321. const enum intel_dpll_id id = pll->info->id;
  322. /* PCH refclock must be enabled first */
  323. ibx_assert_pch_refclk_enabled(dev_priv);
  324. I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
  325. /* Wait for the clocks to stabilize. */
  326. POSTING_READ(PCH_DPLL(id));
  327. udelay(150);
  328. /* The pixel multiplier can only be updated once the
  329. * DPLL is enabled and the clocks are stable.
  330. *
  331. * So write it again.
  332. */
  333. I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
  334. POSTING_READ(PCH_DPLL(id));
  335. udelay(200);
  336. }
  337. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  338. struct intel_shared_dpll *pll)
  339. {
  340. const enum intel_dpll_id id = pll->info->id;
  341. struct drm_device *dev = &dev_priv->drm;
  342. struct intel_crtc *crtc;
  343. /* Make sure no transcoder isn't still depending on us. */
  344. for_each_intel_crtc(dev, crtc) {
  345. if (crtc->config->shared_dpll == pll)
  346. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  347. }
  348. I915_WRITE(PCH_DPLL(id), 0);
  349. POSTING_READ(PCH_DPLL(id));
  350. udelay(200);
  351. }
  352. static struct intel_shared_dpll *
  353. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  354. struct intel_encoder *encoder)
  355. {
  356. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  357. struct intel_shared_dpll *pll;
  358. enum intel_dpll_id i;
  359. if (HAS_PCH_IBX(dev_priv)) {
  360. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  361. i = (enum intel_dpll_id) crtc->pipe;
  362. pll = &dev_priv->shared_dplls[i];
  363. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  364. crtc->base.base.id, crtc->base.name,
  365. pll->info->name);
  366. } else {
  367. pll = intel_find_shared_dpll(crtc, crtc_state,
  368. DPLL_ID_PCH_PLL_A,
  369. DPLL_ID_PCH_PLL_B);
  370. }
  371. if (!pll)
  372. return NULL;
  373. /* reference the pll */
  374. intel_reference_shared_dpll(pll, crtc_state);
  375. return pll;
  376. }
  377. static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
  378. struct intel_dpll_hw_state *hw_state)
  379. {
  380. DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
  381. "fp0: 0x%x, fp1: 0x%x\n",
  382. hw_state->dpll,
  383. hw_state->dpll_md,
  384. hw_state->fp0,
  385. hw_state->fp1);
  386. }
  387. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  388. .prepare = ibx_pch_dpll_prepare,
  389. .enable = ibx_pch_dpll_enable,
  390. .disable = ibx_pch_dpll_disable,
  391. .get_hw_state = ibx_pch_dpll_get_hw_state,
  392. };
  393. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  394. struct intel_shared_dpll *pll)
  395. {
  396. const enum intel_dpll_id id = pll->info->id;
  397. I915_WRITE(WRPLL_CTL(id), pll->state.hw_state.wrpll);
  398. POSTING_READ(WRPLL_CTL(id));
  399. udelay(20);
  400. }
  401. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  402. struct intel_shared_dpll *pll)
  403. {
  404. I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
  405. POSTING_READ(SPLL_CTL);
  406. udelay(20);
  407. }
  408. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  409. struct intel_shared_dpll *pll)
  410. {
  411. const enum intel_dpll_id id = pll->info->id;
  412. uint32_t val;
  413. val = I915_READ(WRPLL_CTL(id));
  414. I915_WRITE(WRPLL_CTL(id), val & ~WRPLL_PLL_ENABLE);
  415. POSTING_READ(WRPLL_CTL(id));
  416. }
  417. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  418. struct intel_shared_dpll *pll)
  419. {
  420. uint32_t val;
  421. val = I915_READ(SPLL_CTL);
  422. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  423. POSTING_READ(SPLL_CTL);
  424. }
  425. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  426. struct intel_shared_dpll *pll,
  427. struct intel_dpll_hw_state *hw_state)
  428. {
  429. const enum intel_dpll_id id = pll->info->id;
  430. uint32_t val;
  431. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  432. return false;
  433. val = I915_READ(WRPLL_CTL(id));
  434. hw_state->wrpll = val;
  435. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  436. return val & WRPLL_PLL_ENABLE;
  437. }
  438. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  439. struct intel_shared_dpll *pll,
  440. struct intel_dpll_hw_state *hw_state)
  441. {
  442. uint32_t val;
  443. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  444. return false;
  445. val = I915_READ(SPLL_CTL);
  446. hw_state->spll = val;
  447. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  448. return val & SPLL_PLL_ENABLE;
  449. }
  450. #define LC_FREQ 2700
  451. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  452. #define P_MIN 2
  453. #define P_MAX 64
  454. #define P_INC 2
  455. /* Constraints for PLL good behavior */
  456. #define REF_MIN 48
  457. #define REF_MAX 400
  458. #define VCO_MIN 2400
  459. #define VCO_MAX 4800
  460. struct hsw_wrpll_rnp {
  461. unsigned p, n2, r2;
  462. };
  463. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  464. {
  465. unsigned budget;
  466. switch (clock) {
  467. case 25175000:
  468. case 25200000:
  469. case 27000000:
  470. case 27027000:
  471. case 37762500:
  472. case 37800000:
  473. case 40500000:
  474. case 40541000:
  475. case 54000000:
  476. case 54054000:
  477. case 59341000:
  478. case 59400000:
  479. case 72000000:
  480. case 74176000:
  481. case 74250000:
  482. case 81000000:
  483. case 81081000:
  484. case 89012000:
  485. case 89100000:
  486. case 108000000:
  487. case 108108000:
  488. case 111264000:
  489. case 111375000:
  490. case 148352000:
  491. case 148500000:
  492. case 162000000:
  493. case 162162000:
  494. case 222525000:
  495. case 222750000:
  496. case 296703000:
  497. case 297000000:
  498. budget = 0;
  499. break;
  500. case 233500000:
  501. case 245250000:
  502. case 247750000:
  503. case 253250000:
  504. case 298000000:
  505. budget = 1500;
  506. break;
  507. case 169128000:
  508. case 169500000:
  509. case 179500000:
  510. case 202000000:
  511. budget = 2000;
  512. break;
  513. case 256250000:
  514. case 262500000:
  515. case 270000000:
  516. case 272500000:
  517. case 273750000:
  518. case 280750000:
  519. case 281250000:
  520. case 286000000:
  521. case 291750000:
  522. budget = 4000;
  523. break;
  524. case 267250000:
  525. case 268500000:
  526. budget = 5000;
  527. break;
  528. default:
  529. budget = 1000;
  530. break;
  531. }
  532. return budget;
  533. }
  534. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  535. unsigned r2, unsigned n2, unsigned p,
  536. struct hsw_wrpll_rnp *best)
  537. {
  538. uint64_t a, b, c, d, diff, diff_best;
  539. /* No best (r,n,p) yet */
  540. if (best->p == 0) {
  541. best->p = p;
  542. best->n2 = n2;
  543. best->r2 = r2;
  544. return;
  545. }
  546. /*
  547. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  548. * freq2k.
  549. *
  550. * delta = 1e6 *
  551. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  552. * freq2k;
  553. *
  554. * and we would like delta <= budget.
  555. *
  556. * If the discrepancy is above the PPM-based budget, always prefer to
  557. * improve upon the previous solution. However, if you're within the
  558. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  559. */
  560. a = freq2k * budget * p * r2;
  561. b = freq2k * budget * best->p * best->r2;
  562. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  563. diff_best = abs_diff(freq2k * best->p * best->r2,
  564. LC_FREQ_2K * best->n2);
  565. c = 1000000 * diff;
  566. d = 1000000 * diff_best;
  567. if (a < c && b < d) {
  568. /* If both are above the budget, pick the closer */
  569. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  570. best->p = p;
  571. best->n2 = n2;
  572. best->r2 = r2;
  573. }
  574. } else if (a >= c && b < d) {
  575. /* If A is below the threshold but B is above it? Update. */
  576. best->p = p;
  577. best->n2 = n2;
  578. best->r2 = r2;
  579. } else if (a >= c && b >= d) {
  580. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  581. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  582. best->p = p;
  583. best->n2 = n2;
  584. best->r2 = r2;
  585. }
  586. }
  587. /* Otherwise a < c && b >= d, do nothing */
  588. }
  589. static void
  590. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  591. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  592. {
  593. uint64_t freq2k;
  594. unsigned p, n2, r2;
  595. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  596. unsigned budget;
  597. freq2k = clock / 100;
  598. budget = hsw_wrpll_get_budget_for_freq(clock);
  599. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  600. * and directly pass the LC PLL to it. */
  601. if (freq2k == 5400000) {
  602. *n2_out = 2;
  603. *p_out = 1;
  604. *r2_out = 2;
  605. return;
  606. }
  607. /*
  608. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  609. * the WR PLL.
  610. *
  611. * We want R so that REF_MIN <= Ref <= REF_MAX.
  612. * Injecting R2 = 2 * R gives:
  613. * REF_MAX * r2 > LC_FREQ * 2 and
  614. * REF_MIN * r2 < LC_FREQ * 2
  615. *
  616. * Which means the desired boundaries for r2 are:
  617. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  618. *
  619. */
  620. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  621. r2 <= LC_FREQ * 2 / REF_MIN;
  622. r2++) {
  623. /*
  624. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  625. *
  626. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  627. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  628. * VCO_MAX * r2 > n2 * LC_FREQ and
  629. * VCO_MIN * r2 < n2 * LC_FREQ)
  630. *
  631. * Which means the desired boundaries for n2 are:
  632. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  633. */
  634. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  635. n2 <= VCO_MAX * r2 / LC_FREQ;
  636. n2++) {
  637. for (p = P_MIN; p <= P_MAX; p += P_INC)
  638. hsw_wrpll_update_rnp(freq2k, budget,
  639. r2, n2, p, &best);
  640. }
  641. }
  642. *n2_out = best.n2;
  643. *p_out = best.p;
  644. *r2_out = best.r2;
  645. }
  646. static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
  647. struct intel_crtc *crtc,
  648. struct intel_crtc_state *crtc_state)
  649. {
  650. struct intel_shared_dpll *pll;
  651. uint32_t val;
  652. unsigned int p, n2, r2;
  653. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  654. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  655. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  656. WRPLL_DIVIDER_POST(p);
  657. crtc_state->dpll_hw_state.wrpll = val;
  658. pll = intel_find_shared_dpll(crtc, crtc_state,
  659. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  660. if (!pll)
  661. return NULL;
  662. return pll;
  663. }
  664. static struct intel_shared_dpll *
  665. hsw_ddi_dp_get_dpll(struct intel_encoder *encoder, int clock)
  666. {
  667. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  668. struct intel_shared_dpll *pll;
  669. enum intel_dpll_id pll_id;
  670. switch (clock / 2) {
  671. case 81000:
  672. pll_id = DPLL_ID_LCPLL_810;
  673. break;
  674. case 135000:
  675. pll_id = DPLL_ID_LCPLL_1350;
  676. break;
  677. case 270000:
  678. pll_id = DPLL_ID_LCPLL_2700;
  679. break;
  680. default:
  681. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  682. return NULL;
  683. }
  684. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  685. if (!pll)
  686. return NULL;
  687. return pll;
  688. }
  689. static struct intel_shared_dpll *
  690. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  691. struct intel_encoder *encoder)
  692. {
  693. struct intel_shared_dpll *pll;
  694. int clock = crtc_state->port_clock;
  695. memset(&crtc_state->dpll_hw_state, 0,
  696. sizeof(crtc_state->dpll_hw_state));
  697. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  698. pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
  699. } else if (intel_crtc_has_dp_encoder(crtc_state)) {
  700. pll = hsw_ddi_dp_get_dpll(encoder, clock);
  701. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  702. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  703. return NULL;
  704. crtc_state->dpll_hw_state.spll =
  705. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  706. pll = intel_find_shared_dpll(crtc, crtc_state,
  707. DPLL_ID_SPLL, DPLL_ID_SPLL);
  708. } else {
  709. return NULL;
  710. }
  711. if (!pll)
  712. return NULL;
  713. intel_reference_shared_dpll(pll, crtc_state);
  714. return pll;
  715. }
  716. static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
  717. struct intel_dpll_hw_state *hw_state)
  718. {
  719. DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
  720. hw_state->wrpll, hw_state->spll);
  721. }
  722. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  723. .enable = hsw_ddi_wrpll_enable,
  724. .disable = hsw_ddi_wrpll_disable,
  725. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  726. };
  727. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  728. .enable = hsw_ddi_spll_enable,
  729. .disable = hsw_ddi_spll_disable,
  730. .get_hw_state = hsw_ddi_spll_get_hw_state,
  731. };
  732. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  733. struct intel_shared_dpll *pll)
  734. {
  735. }
  736. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  737. struct intel_shared_dpll *pll)
  738. {
  739. }
  740. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  741. struct intel_shared_dpll *pll,
  742. struct intel_dpll_hw_state *hw_state)
  743. {
  744. return true;
  745. }
  746. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  747. .enable = hsw_ddi_lcpll_enable,
  748. .disable = hsw_ddi_lcpll_disable,
  749. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  750. };
  751. struct skl_dpll_regs {
  752. i915_reg_t ctl, cfgcr1, cfgcr2;
  753. };
  754. /* this array is indexed by the *shared* pll id */
  755. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  756. {
  757. /* DPLL 0 */
  758. .ctl = LCPLL1_CTL,
  759. /* DPLL 0 doesn't support HDMI mode */
  760. },
  761. {
  762. /* DPLL 1 */
  763. .ctl = LCPLL2_CTL,
  764. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  765. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  766. },
  767. {
  768. /* DPLL 2 */
  769. .ctl = WRPLL_CTL(0),
  770. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  771. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  772. },
  773. {
  774. /* DPLL 3 */
  775. .ctl = WRPLL_CTL(1),
  776. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  777. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  778. },
  779. };
  780. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  781. struct intel_shared_dpll *pll)
  782. {
  783. const enum intel_dpll_id id = pll->info->id;
  784. uint32_t val;
  785. val = I915_READ(DPLL_CTRL1);
  786. val &= ~(DPLL_CTRL1_HDMI_MODE(id) |
  787. DPLL_CTRL1_SSC(id) |
  788. DPLL_CTRL1_LINK_RATE_MASK(id));
  789. val |= pll->state.hw_state.ctrl1 << (id * 6);
  790. I915_WRITE(DPLL_CTRL1, val);
  791. POSTING_READ(DPLL_CTRL1);
  792. }
  793. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  794. struct intel_shared_dpll *pll)
  795. {
  796. const struct skl_dpll_regs *regs = skl_dpll_regs;
  797. const enum intel_dpll_id id = pll->info->id;
  798. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  799. I915_WRITE(regs[id].cfgcr1, pll->state.hw_state.cfgcr1);
  800. I915_WRITE(regs[id].cfgcr2, pll->state.hw_state.cfgcr2);
  801. POSTING_READ(regs[id].cfgcr1);
  802. POSTING_READ(regs[id].cfgcr2);
  803. /* the enable bit is always bit 31 */
  804. I915_WRITE(regs[id].ctl,
  805. I915_READ(regs[id].ctl) | LCPLL_PLL_ENABLE);
  806. if (intel_wait_for_register(dev_priv,
  807. DPLL_STATUS,
  808. DPLL_LOCK(id),
  809. DPLL_LOCK(id),
  810. 5))
  811. DRM_ERROR("DPLL %d not locked\n", id);
  812. }
  813. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  814. struct intel_shared_dpll *pll)
  815. {
  816. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  817. }
  818. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  819. struct intel_shared_dpll *pll)
  820. {
  821. const struct skl_dpll_regs *regs = skl_dpll_regs;
  822. const enum intel_dpll_id id = pll->info->id;
  823. /* the enable bit is always bit 31 */
  824. I915_WRITE(regs[id].ctl,
  825. I915_READ(regs[id].ctl) & ~LCPLL_PLL_ENABLE);
  826. POSTING_READ(regs[id].ctl);
  827. }
  828. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  829. struct intel_shared_dpll *pll)
  830. {
  831. }
  832. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  833. struct intel_shared_dpll *pll,
  834. struct intel_dpll_hw_state *hw_state)
  835. {
  836. uint32_t val;
  837. const struct skl_dpll_regs *regs = skl_dpll_regs;
  838. const enum intel_dpll_id id = pll->info->id;
  839. bool ret;
  840. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  841. return false;
  842. ret = false;
  843. val = I915_READ(regs[id].ctl);
  844. if (!(val & LCPLL_PLL_ENABLE))
  845. goto out;
  846. val = I915_READ(DPLL_CTRL1);
  847. hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
  848. /* avoid reading back stale values if HDMI mode is not enabled */
  849. if (val & DPLL_CTRL1_HDMI_MODE(id)) {
  850. hw_state->cfgcr1 = I915_READ(regs[id].cfgcr1);
  851. hw_state->cfgcr2 = I915_READ(regs[id].cfgcr2);
  852. }
  853. ret = true;
  854. out:
  855. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  856. return ret;
  857. }
  858. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  859. struct intel_shared_dpll *pll,
  860. struct intel_dpll_hw_state *hw_state)
  861. {
  862. uint32_t val;
  863. const struct skl_dpll_regs *regs = skl_dpll_regs;
  864. const enum intel_dpll_id id = pll->info->id;
  865. bool ret;
  866. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  867. return false;
  868. ret = false;
  869. /* DPLL0 is always enabled since it drives CDCLK */
  870. val = I915_READ(regs[id].ctl);
  871. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  872. goto out;
  873. val = I915_READ(DPLL_CTRL1);
  874. hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
  875. ret = true;
  876. out:
  877. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  878. return ret;
  879. }
  880. struct skl_wrpll_context {
  881. uint64_t min_deviation; /* current minimal deviation */
  882. uint64_t central_freq; /* chosen central freq */
  883. uint64_t dco_freq; /* chosen dco freq */
  884. unsigned int p; /* chosen divider */
  885. };
  886. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  887. {
  888. memset(ctx, 0, sizeof(*ctx));
  889. ctx->min_deviation = U64_MAX;
  890. }
  891. /* DCO freq must be within +1%/-6% of the DCO central freq */
  892. #define SKL_DCO_MAX_PDEVIATION 100
  893. #define SKL_DCO_MAX_NDEVIATION 600
  894. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  895. uint64_t central_freq,
  896. uint64_t dco_freq,
  897. unsigned int divider)
  898. {
  899. uint64_t deviation;
  900. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  901. central_freq);
  902. /* positive deviation */
  903. if (dco_freq >= central_freq) {
  904. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  905. deviation < ctx->min_deviation) {
  906. ctx->min_deviation = deviation;
  907. ctx->central_freq = central_freq;
  908. ctx->dco_freq = dco_freq;
  909. ctx->p = divider;
  910. }
  911. /* negative deviation */
  912. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  913. deviation < ctx->min_deviation) {
  914. ctx->min_deviation = deviation;
  915. ctx->central_freq = central_freq;
  916. ctx->dco_freq = dco_freq;
  917. ctx->p = divider;
  918. }
  919. }
  920. static void skl_wrpll_get_multipliers(unsigned int p,
  921. unsigned int *p0 /* out */,
  922. unsigned int *p1 /* out */,
  923. unsigned int *p2 /* out */)
  924. {
  925. /* even dividers */
  926. if (p % 2 == 0) {
  927. unsigned int half = p / 2;
  928. if (half == 1 || half == 2 || half == 3 || half == 5) {
  929. *p0 = 2;
  930. *p1 = 1;
  931. *p2 = half;
  932. } else if (half % 2 == 0) {
  933. *p0 = 2;
  934. *p1 = half / 2;
  935. *p2 = 2;
  936. } else if (half % 3 == 0) {
  937. *p0 = 3;
  938. *p1 = half / 3;
  939. *p2 = 2;
  940. } else if (half % 7 == 0) {
  941. *p0 = 7;
  942. *p1 = half / 7;
  943. *p2 = 2;
  944. }
  945. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  946. *p0 = 3;
  947. *p1 = 1;
  948. *p2 = p / 3;
  949. } else if (p == 5 || p == 7) {
  950. *p0 = p;
  951. *p1 = 1;
  952. *p2 = 1;
  953. } else if (p == 15) {
  954. *p0 = 3;
  955. *p1 = 1;
  956. *p2 = 5;
  957. } else if (p == 21) {
  958. *p0 = 7;
  959. *p1 = 1;
  960. *p2 = 3;
  961. } else if (p == 35) {
  962. *p0 = 7;
  963. *p1 = 1;
  964. *p2 = 5;
  965. }
  966. }
  967. struct skl_wrpll_params {
  968. uint32_t dco_fraction;
  969. uint32_t dco_integer;
  970. uint32_t qdiv_ratio;
  971. uint32_t qdiv_mode;
  972. uint32_t kdiv;
  973. uint32_t pdiv;
  974. uint32_t central_freq;
  975. };
  976. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  977. uint64_t afe_clock,
  978. uint64_t central_freq,
  979. uint32_t p0, uint32_t p1, uint32_t p2)
  980. {
  981. uint64_t dco_freq;
  982. switch (central_freq) {
  983. case 9600000000ULL:
  984. params->central_freq = 0;
  985. break;
  986. case 9000000000ULL:
  987. params->central_freq = 1;
  988. break;
  989. case 8400000000ULL:
  990. params->central_freq = 3;
  991. }
  992. switch (p0) {
  993. case 1:
  994. params->pdiv = 0;
  995. break;
  996. case 2:
  997. params->pdiv = 1;
  998. break;
  999. case 3:
  1000. params->pdiv = 2;
  1001. break;
  1002. case 7:
  1003. params->pdiv = 4;
  1004. break;
  1005. default:
  1006. WARN(1, "Incorrect PDiv\n");
  1007. }
  1008. switch (p2) {
  1009. case 5:
  1010. params->kdiv = 0;
  1011. break;
  1012. case 2:
  1013. params->kdiv = 1;
  1014. break;
  1015. case 3:
  1016. params->kdiv = 2;
  1017. break;
  1018. case 1:
  1019. params->kdiv = 3;
  1020. break;
  1021. default:
  1022. WARN(1, "Incorrect KDiv\n");
  1023. }
  1024. params->qdiv_ratio = p1;
  1025. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  1026. dco_freq = p0 * p1 * p2 * afe_clock;
  1027. /*
  1028. * Intermediate values are in Hz.
  1029. * Divide by MHz to match bsepc
  1030. */
  1031. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  1032. params->dco_fraction =
  1033. div_u64((div_u64(dco_freq, 24) -
  1034. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  1035. }
  1036. static bool
  1037. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  1038. struct skl_wrpll_params *wrpll_params)
  1039. {
  1040. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  1041. uint64_t dco_central_freq[3] = {8400000000ULL,
  1042. 9000000000ULL,
  1043. 9600000000ULL};
  1044. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  1045. 24, 28, 30, 32, 36, 40, 42, 44,
  1046. 48, 52, 54, 56, 60, 64, 66, 68,
  1047. 70, 72, 76, 78, 80, 84, 88, 90,
  1048. 92, 96, 98 };
  1049. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  1050. static const struct {
  1051. const int *list;
  1052. int n_dividers;
  1053. } dividers[] = {
  1054. { even_dividers, ARRAY_SIZE(even_dividers) },
  1055. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  1056. };
  1057. struct skl_wrpll_context ctx;
  1058. unsigned int dco, d, i;
  1059. unsigned int p0, p1, p2;
  1060. skl_wrpll_context_init(&ctx);
  1061. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1062. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1063. for (i = 0; i < dividers[d].n_dividers; i++) {
  1064. unsigned int p = dividers[d].list[i];
  1065. uint64_t dco_freq = p * afe_clock;
  1066. skl_wrpll_try_divider(&ctx,
  1067. dco_central_freq[dco],
  1068. dco_freq,
  1069. p);
  1070. /*
  1071. * Skip the remaining dividers if we're sure to
  1072. * have found the definitive divider, we can't
  1073. * improve a 0 deviation.
  1074. */
  1075. if (ctx.min_deviation == 0)
  1076. goto skip_remaining_dividers;
  1077. }
  1078. }
  1079. skip_remaining_dividers:
  1080. /*
  1081. * If a solution is found with an even divider, prefer
  1082. * this one.
  1083. */
  1084. if (d == 0 && ctx.p)
  1085. break;
  1086. }
  1087. if (!ctx.p) {
  1088. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1089. return false;
  1090. }
  1091. /*
  1092. * gcc incorrectly analyses that these can be used without being
  1093. * initialized. To be fair, it's hard to guess.
  1094. */
  1095. p0 = p1 = p2 = 0;
  1096. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1097. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1098. p0, p1, p2);
  1099. return true;
  1100. }
  1101. static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
  1102. struct intel_crtc_state *crtc_state,
  1103. int clock)
  1104. {
  1105. uint32_t ctrl1, cfgcr1, cfgcr2;
  1106. struct skl_wrpll_params wrpll_params = { 0, };
  1107. /*
  1108. * See comment in intel_dpll_hw_state to understand why we always use 0
  1109. * as the DPLL id in this function.
  1110. */
  1111. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1112. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1113. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1114. return false;
  1115. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1116. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1117. wrpll_params.dco_integer;
  1118. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1119. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1120. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1121. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1122. wrpll_params.central_freq;
  1123. memset(&crtc_state->dpll_hw_state, 0,
  1124. sizeof(crtc_state->dpll_hw_state));
  1125. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1126. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1127. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1128. return true;
  1129. }
  1130. static bool
  1131. skl_ddi_dp_set_dpll_hw_state(int clock,
  1132. struct intel_dpll_hw_state *dpll_hw_state)
  1133. {
  1134. uint32_t ctrl1;
  1135. /*
  1136. * See comment in intel_dpll_hw_state to understand why we always use 0
  1137. * as the DPLL id in this function.
  1138. */
  1139. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1140. switch (clock / 2) {
  1141. case 81000:
  1142. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1143. break;
  1144. case 135000:
  1145. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1146. break;
  1147. case 270000:
  1148. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1149. break;
  1150. /* eDP 1.4 rates */
  1151. case 162000:
  1152. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1153. break;
  1154. case 108000:
  1155. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1156. break;
  1157. case 216000:
  1158. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1159. break;
  1160. }
  1161. dpll_hw_state->ctrl1 = ctrl1;
  1162. return true;
  1163. }
  1164. static struct intel_shared_dpll *
  1165. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1166. struct intel_encoder *encoder)
  1167. {
  1168. struct intel_shared_dpll *pll;
  1169. int clock = crtc_state->port_clock;
  1170. bool bret;
  1171. struct intel_dpll_hw_state dpll_hw_state;
  1172. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  1173. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  1174. bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
  1175. if (!bret) {
  1176. DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
  1177. return NULL;
  1178. }
  1179. } else if (intel_crtc_has_dp_encoder(crtc_state)) {
  1180. bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
  1181. if (!bret) {
  1182. DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
  1183. return NULL;
  1184. }
  1185. crtc_state->dpll_hw_state = dpll_hw_state;
  1186. } else {
  1187. return NULL;
  1188. }
  1189. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
  1190. pll = intel_find_shared_dpll(crtc, crtc_state,
  1191. DPLL_ID_SKL_DPLL0,
  1192. DPLL_ID_SKL_DPLL0);
  1193. else
  1194. pll = intel_find_shared_dpll(crtc, crtc_state,
  1195. DPLL_ID_SKL_DPLL1,
  1196. DPLL_ID_SKL_DPLL3);
  1197. if (!pll)
  1198. return NULL;
  1199. intel_reference_shared_dpll(pll, crtc_state);
  1200. return pll;
  1201. }
  1202. static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
  1203. struct intel_dpll_hw_state *hw_state)
  1204. {
  1205. DRM_DEBUG_KMS("dpll_hw_state: "
  1206. "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
  1207. hw_state->ctrl1,
  1208. hw_state->cfgcr1,
  1209. hw_state->cfgcr2);
  1210. }
  1211. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1212. .enable = skl_ddi_pll_enable,
  1213. .disable = skl_ddi_pll_disable,
  1214. .get_hw_state = skl_ddi_pll_get_hw_state,
  1215. };
  1216. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1217. .enable = skl_ddi_dpll0_enable,
  1218. .disable = skl_ddi_dpll0_disable,
  1219. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1220. };
  1221. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1222. struct intel_shared_dpll *pll)
  1223. {
  1224. uint32_t temp;
  1225. enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
  1226. enum dpio_phy phy;
  1227. enum dpio_channel ch;
  1228. bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
  1229. /* Non-SSC reference */
  1230. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1231. temp |= PORT_PLL_REF_SEL;
  1232. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1233. if (IS_GEMINILAKE(dev_priv)) {
  1234. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1235. temp |= PORT_PLL_POWER_ENABLE;
  1236. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1237. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  1238. PORT_PLL_POWER_STATE), 200))
  1239. DRM_ERROR("Power state not set for PLL:%d\n", port);
  1240. }
  1241. /* Disable 10 bit clock */
  1242. temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1243. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1244. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1245. /* Write P1 & P2 */
  1246. temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
  1247. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1248. temp |= pll->state.hw_state.ebb0;
  1249. I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
  1250. /* Write M2 integer */
  1251. temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
  1252. temp &= ~PORT_PLL_M2_MASK;
  1253. temp |= pll->state.hw_state.pll0;
  1254. I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
  1255. /* Write N */
  1256. temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
  1257. temp &= ~PORT_PLL_N_MASK;
  1258. temp |= pll->state.hw_state.pll1;
  1259. I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
  1260. /* Write M2 fraction */
  1261. temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
  1262. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1263. temp |= pll->state.hw_state.pll2;
  1264. I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
  1265. /* Write M2 fraction enable */
  1266. temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
  1267. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1268. temp |= pll->state.hw_state.pll3;
  1269. I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
  1270. /* Write coeff */
  1271. temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
  1272. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1273. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1274. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1275. temp |= pll->state.hw_state.pll6;
  1276. I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
  1277. /* Write calibration val */
  1278. temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
  1279. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1280. temp |= pll->state.hw_state.pll8;
  1281. I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
  1282. temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
  1283. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1284. temp |= pll->state.hw_state.pll9;
  1285. I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
  1286. temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
  1287. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1288. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1289. temp |= pll->state.hw_state.pll10;
  1290. I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
  1291. /* Recalibrate with new settings */
  1292. temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1293. temp |= PORT_PLL_RECALIBRATE;
  1294. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1295. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1296. temp |= pll->state.hw_state.ebb4;
  1297. I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
  1298. /* Enable PLL */
  1299. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1300. temp |= PORT_PLL_ENABLE;
  1301. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1302. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1303. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
  1304. 200))
  1305. DRM_ERROR("PLL %d not locked\n", port);
  1306. if (IS_GEMINILAKE(dev_priv)) {
  1307. temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
  1308. temp |= DCC_DELAY_RANGE_2;
  1309. I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
  1310. }
  1311. /*
  1312. * While we write to the group register to program all lanes at once we
  1313. * can read only lane registers and we pick lanes 0/1 for that.
  1314. */
  1315. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
  1316. temp &= ~LANE_STAGGER_MASK;
  1317. temp &= ~LANESTAGGER_STRAP_OVRD;
  1318. temp |= pll->state.hw_state.pcsdw12;
  1319. I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
  1320. }
  1321. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1322. struct intel_shared_dpll *pll)
  1323. {
  1324. enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
  1325. uint32_t temp;
  1326. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1327. temp &= ~PORT_PLL_ENABLE;
  1328. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1329. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1330. if (IS_GEMINILAKE(dev_priv)) {
  1331. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1332. temp &= ~PORT_PLL_POWER_ENABLE;
  1333. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1334. if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  1335. PORT_PLL_POWER_STATE), 200))
  1336. DRM_ERROR("Power state not reset for PLL:%d\n", port);
  1337. }
  1338. }
  1339. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1340. struct intel_shared_dpll *pll,
  1341. struct intel_dpll_hw_state *hw_state)
  1342. {
  1343. enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
  1344. uint32_t val;
  1345. bool ret;
  1346. enum dpio_phy phy;
  1347. enum dpio_channel ch;
  1348. bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
  1349. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1350. return false;
  1351. ret = false;
  1352. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1353. if (!(val & PORT_PLL_ENABLE))
  1354. goto out;
  1355. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
  1356. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1357. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
  1358. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1359. hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
  1360. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1361. hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
  1362. hw_state->pll1 &= PORT_PLL_N_MASK;
  1363. hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
  1364. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1365. hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
  1366. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1367. hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
  1368. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1369. PORT_PLL_INT_COEFF_MASK |
  1370. PORT_PLL_GAIN_CTL_MASK;
  1371. hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
  1372. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1373. hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
  1374. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1375. hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
  1376. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1377. PORT_PLL_DCO_AMP_MASK;
  1378. /*
  1379. * While we write to the group register to program all lanes at once we
  1380. * can read only lane registers. We configure all lanes the same way, so
  1381. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1382. */
  1383. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
  1384. if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
  1385. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1386. hw_state->pcsdw12,
  1387. I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
  1388. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1389. ret = true;
  1390. out:
  1391. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1392. return ret;
  1393. }
  1394. /* bxt clock parameters */
  1395. struct bxt_clk_div {
  1396. int clock;
  1397. uint32_t p1;
  1398. uint32_t p2;
  1399. uint32_t m2_int;
  1400. uint32_t m2_frac;
  1401. bool m2_frac_en;
  1402. uint32_t n;
  1403. int vco;
  1404. };
  1405. /* pre-calculated values for DP linkrates */
  1406. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1407. {162000, 4, 2, 32, 1677722, 1, 1},
  1408. {270000, 4, 1, 27, 0, 0, 1},
  1409. {540000, 2, 1, 27, 0, 0, 1},
  1410. {216000, 3, 2, 32, 1677722, 1, 1},
  1411. {243000, 4, 1, 24, 1258291, 1, 1},
  1412. {324000, 4, 1, 32, 1677722, 1, 1},
  1413. {432000, 3, 1, 32, 1677722, 1, 1}
  1414. };
  1415. static bool
  1416. bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
  1417. struct intel_crtc_state *crtc_state, int clock,
  1418. struct bxt_clk_div *clk_div)
  1419. {
  1420. struct dpll best_clock;
  1421. /* Calculate HDMI div */
  1422. /*
  1423. * FIXME: tie the following calculation into
  1424. * i9xx_crtc_compute_clock
  1425. */
  1426. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1427. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1428. clock, pipe_name(intel_crtc->pipe));
  1429. return false;
  1430. }
  1431. clk_div->p1 = best_clock.p1;
  1432. clk_div->p2 = best_clock.p2;
  1433. WARN_ON(best_clock.m1 != 2);
  1434. clk_div->n = best_clock.n;
  1435. clk_div->m2_int = best_clock.m2 >> 22;
  1436. clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1437. clk_div->m2_frac_en = clk_div->m2_frac != 0;
  1438. clk_div->vco = best_clock.vco;
  1439. return true;
  1440. }
  1441. static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
  1442. {
  1443. int i;
  1444. *clk_div = bxt_dp_clk_val[0];
  1445. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1446. if (bxt_dp_clk_val[i].clock == clock) {
  1447. *clk_div = bxt_dp_clk_val[i];
  1448. break;
  1449. }
  1450. }
  1451. clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
  1452. }
  1453. static bool bxt_ddi_set_dpll_hw_state(int clock,
  1454. struct bxt_clk_div *clk_div,
  1455. struct intel_dpll_hw_state *dpll_hw_state)
  1456. {
  1457. int vco = clk_div->vco;
  1458. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1459. uint32_t lanestagger;
  1460. if (vco >= 6200000 && vco <= 6700000) {
  1461. prop_coef = 4;
  1462. int_coef = 9;
  1463. gain_ctl = 3;
  1464. targ_cnt = 8;
  1465. } else if ((vco > 5400000 && vco < 6200000) ||
  1466. (vco >= 4800000 && vco < 5400000)) {
  1467. prop_coef = 5;
  1468. int_coef = 11;
  1469. gain_ctl = 3;
  1470. targ_cnt = 9;
  1471. } else if (vco == 5400000) {
  1472. prop_coef = 3;
  1473. int_coef = 8;
  1474. gain_ctl = 1;
  1475. targ_cnt = 9;
  1476. } else {
  1477. DRM_ERROR("Invalid VCO\n");
  1478. return false;
  1479. }
  1480. if (clock > 270000)
  1481. lanestagger = 0x18;
  1482. else if (clock > 135000)
  1483. lanestagger = 0x0d;
  1484. else if (clock > 67000)
  1485. lanestagger = 0x07;
  1486. else if (clock > 33000)
  1487. lanestagger = 0x04;
  1488. else
  1489. lanestagger = 0x02;
  1490. dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
  1491. dpll_hw_state->pll0 = clk_div->m2_int;
  1492. dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
  1493. dpll_hw_state->pll2 = clk_div->m2_frac;
  1494. if (clk_div->m2_frac_en)
  1495. dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
  1496. dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1497. dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
  1498. dpll_hw_state->pll8 = targ_cnt;
  1499. dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1500. dpll_hw_state->pll10 =
  1501. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1502. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1503. dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1504. dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
  1505. return true;
  1506. }
  1507. static bool
  1508. bxt_ddi_dp_set_dpll_hw_state(int clock,
  1509. struct intel_dpll_hw_state *dpll_hw_state)
  1510. {
  1511. struct bxt_clk_div clk_div = {0};
  1512. bxt_ddi_dp_pll_dividers(clock, &clk_div);
  1513. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1514. }
  1515. static bool
  1516. bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
  1517. struct intel_crtc_state *crtc_state, int clock,
  1518. struct intel_dpll_hw_state *dpll_hw_state)
  1519. {
  1520. struct bxt_clk_div clk_div = { };
  1521. bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);
  1522. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1523. }
  1524. static struct intel_shared_dpll *
  1525. bxt_get_dpll(struct intel_crtc *crtc,
  1526. struct intel_crtc_state *crtc_state,
  1527. struct intel_encoder *encoder)
  1528. {
  1529. struct intel_dpll_hw_state dpll_hw_state = { };
  1530. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1531. struct intel_shared_dpll *pll;
  1532. int i, clock = crtc_state->port_clock;
  1533. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
  1534. !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
  1535. &dpll_hw_state))
  1536. return NULL;
  1537. if (intel_crtc_has_dp_encoder(crtc_state) &&
  1538. !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  1539. return NULL;
  1540. memset(&crtc_state->dpll_hw_state, 0,
  1541. sizeof(crtc_state->dpll_hw_state));
  1542. crtc_state->dpll_hw_state = dpll_hw_state;
  1543. /* 1:1 mapping between ports and PLLs */
  1544. i = (enum intel_dpll_id) encoder->port;
  1545. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1546. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1547. crtc->base.base.id, crtc->base.name, pll->info->name);
  1548. intel_reference_shared_dpll(pll, crtc_state);
  1549. return pll;
  1550. }
  1551. static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
  1552. struct intel_dpll_hw_state *hw_state)
  1553. {
  1554. DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
  1555. "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
  1556. "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
  1557. hw_state->ebb0,
  1558. hw_state->ebb4,
  1559. hw_state->pll0,
  1560. hw_state->pll1,
  1561. hw_state->pll2,
  1562. hw_state->pll3,
  1563. hw_state->pll6,
  1564. hw_state->pll8,
  1565. hw_state->pll9,
  1566. hw_state->pll10,
  1567. hw_state->pcsdw12);
  1568. }
  1569. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1570. .enable = bxt_ddi_pll_enable,
  1571. .disable = bxt_ddi_pll_disable,
  1572. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1573. };
  1574. static void intel_ddi_pll_init(struct drm_device *dev)
  1575. {
  1576. struct drm_i915_private *dev_priv = to_i915(dev);
  1577. if (INTEL_GEN(dev_priv) < 9) {
  1578. uint32_t val = I915_READ(LCPLL_CTL);
  1579. /*
  1580. * The LCPLL register should be turned on by the BIOS. For now
  1581. * let's just check its state and print errors in case
  1582. * something is wrong. Don't even try to turn it on.
  1583. */
  1584. if (val & LCPLL_CD_SOURCE_FCLK)
  1585. DRM_ERROR("CDCLK source is not LCPLL\n");
  1586. if (val & LCPLL_PLL_DISABLE)
  1587. DRM_ERROR("LCPLL is disabled\n");
  1588. }
  1589. }
  1590. struct intel_dpll_mgr {
  1591. const struct dpll_info *dpll_info;
  1592. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1593. struct intel_crtc_state *crtc_state,
  1594. struct intel_encoder *encoder);
  1595. void (*dump_hw_state)(struct drm_i915_private *dev_priv,
  1596. struct intel_dpll_hw_state *hw_state);
  1597. };
  1598. static const struct dpll_info pch_plls[] = {
  1599. { "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 },
  1600. { "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 },
  1601. { },
  1602. };
  1603. static const struct intel_dpll_mgr pch_pll_mgr = {
  1604. .dpll_info = pch_plls,
  1605. .get_dpll = ibx_get_dpll,
  1606. .dump_hw_state = ibx_dump_hw_state,
  1607. };
  1608. static const struct dpll_info hsw_plls[] = {
  1609. { "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 },
  1610. { "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 },
  1611. { "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 },
  1612. { "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON },
  1613. { "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON },
  1614. { "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON },
  1615. { },
  1616. };
  1617. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1618. .dpll_info = hsw_plls,
  1619. .get_dpll = hsw_get_dpll,
  1620. .dump_hw_state = hsw_dump_hw_state,
  1621. };
  1622. static const struct dpll_info skl_plls[] = {
  1623. { "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON },
  1624. { "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
  1625. { "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
  1626. { "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 },
  1627. { },
  1628. };
  1629. static const struct intel_dpll_mgr skl_pll_mgr = {
  1630. .dpll_info = skl_plls,
  1631. .get_dpll = skl_get_dpll,
  1632. .dump_hw_state = skl_dump_hw_state,
  1633. };
  1634. static const struct dpll_info bxt_plls[] = {
  1635. { "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
  1636. { "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
  1637. { "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
  1638. { },
  1639. };
  1640. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1641. .dpll_info = bxt_plls,
  1642. .get_dpll = bxt_get_dpll,
  1643. .dump_hw_state = bxt_dump_hw_state,
  1644. };
  1645. static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1646. struct intel_shared_dpll *pll)
  1647. {
  1648. const enum intel_dpll_id id = pll->info->id;
  1649. uint32_t val;
  1650. /* 1. Enable DPLL power in DPLL_ENABLE. */
  1651. val = I915_READ(CNL_DPLL_ENABLE(id));
  1652. val |= PLL_POWER_ENABLE;
  1653. I915_WRITE(CNL_DPLL_ENABLE(id), val);
  1654. /* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */
  1655. if (intel_wait_for_register(dev_priv,
  1656. CNL_DPLL_ENABLE(id),
  1657. PLL_POWER_STATE,
  1658. PLL_POWER_STATE,
  1659. 5))
  1660. DRM_ERROR("PLL %d Power not enabled\n", id);
  1661. /*
  1662. * 3. Configure DPLL_CFGCR0 to set SSC enable/disable,
  1663. * select DP mode, and set DP link rate.
  1664. */
  1665. val = pll->state.hw_state.cfgcr0;
  1666. I915_WRITE(CNL_DPLL_CFGCR0(id), val);
  1667. /* 4. Reab back to ensure writes completed */
  1668. POSTING_READ(CNL_DPLL_CFGCR0(id));
  1669. /* 3. Configure DPLL_CFGCR0 */
  1670. /* Avoid touch CFGCR1 if HDMI mode is not enabled */
  1671. if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
  1672. val = pll->state.hw_state.cfgcr1;
  1673. I915_WRITE(CNL_DPLL_CFGCR1(id), val);
  1674. /* 4. Reab back to ensure writes completed */
  1675. POSTING_READ(CNL_DPLL_CFGCR1(id));
  1676. }
  1677. /*
  1678. * 5. If the frequency will result in a change to the voltage
  1679. * requirement, follow the Display Voltage Frequency Switching
  1680. * Sequence Before Frequency Change
  1681. *
  1682. * Note: DVFS is actually handled via the cdclk code paths,
  1683. * hence we do nothing here.
  1684. */
  1685. /* 6. Enable DPLL in DPLL_ENABLE. */
  1686. val = I915_READ(CNL_DPLL_ENABLE(id));
  1687. val |= PLL_ENABLE;
  1688. I915_WRITE(CNL_DPLL_ENABLE(id), val);
  1689. /* 7. Wait for PLL lock status in DPLL_ENABLE. */
  1690. if (intel_wait_for_register(dev_priv,
  1691. CNL_DPLL_ENABLE(id),
  1692. PLL_LOCK,
  1693. PLL_LOCK,
  1694. 5))
  1695. DRM_ERROR("PLL %d not locked\n", id);
  1696. /*
  1697. * 8. If the frequency will result in a change to the voltage
  1698. * requirement, follow the Display Voltage Frequency Switching
  1699. * Sequence After Frequency Change
  1700. *
  1701. * Note: DVFS is actually handled via the cdclk code paths,
  1702. * hence we do nothing here.
  1703. */
  1704. /*
  1705. * 9. turn on the clock for the DDI and map the DPLL to the DDI
  1706. * Done at intel_ddi_clk_select
  1707. */
  1708. }
  1709. static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1710. struct intel_shared_dpll *pll)
  1711. {
  1712. const enum intel_dpll_id id = pll->info->id;
  1713. uint32_t val;
  1714. /*
  1715. * 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI.
  1716. * Done at intel_ddi_post_disable
  1717. */
  1718. /*
  1719. * 2. If the frequency will result in a change to the voltage
  1720. * requirement, follow the Display Voltage Frequency Switching
  1721. * Sequence Before Frequency Change
  1722. *
  1723. * Note: DVFS is actually handled via the cdclk code paths,
  1724. * hence we do nothing here.
  1725. */
  1726. /* 3. Disable DPLL through DPLL_ENABLE. */
  1727. val = I915_READ(CNL_DPLL_ENABLE(id));
  1728. val &= ~PLL_ENABLE;
  1729. I915_WRITE(CNL_DPLL_ENABLE(id), val);
  1730. /* 4. Wait for PLL not locked status in DPLL_ENABLE. */
  1731. if (intel_wait_for_register(dev_priv,
  1732. CNL_DPLL_ENABLE(id),
  1733. PLL_LOCK,
  1734. 0,
  1735. 5))
  1736. DRM_ERROR("PLL %d locked\n", id);
  1737. /*
  1738. * 5. If the frequency will result in a change to the voltage
  1739. * requirement, follow the Display Voltage Frequency Switching
  1740. * Sequence After Frequency Change
  1741. *
  1742. * Note: DVFS is actually handled via the cdclk code paths,
  1743. * hence we do nothing here.
  1744. */
  1745. /* 6. Disable DPLL power in DPLL_ENABLE. */
  1746. val = I915_READ(CNL_DPLL_ENABLE(id));
  1747. val &= ~PLL_POWER_ENABLE;
  1748. I915_WRITE(CNL_DPLL_ENABLE(id), val);
  1749. /* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */
  1750. if (intel_wait_for_register(dev_priv,
  1751. CNL_DPLL_ENABLE(id),
  1752. PLL_POWER_STATE,
  1753. 0,
  1754. 5))
  1755. DRM_ERROR("PLL %d Power not disabled\n", id);
  1756. }
  1757. static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1758. struct intel_shared_dpll *pll,
  1759. struct intel_dpll_hw_state *hw_state)
  1760. {
  1761. const enum intel_dpll_id id = pll->info->id;
  1762. uint32_t val;
  1763. bool ret;
  1764. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1765. return false;
  1766. ret = false;
  1767. val = I915_READ(CNL_DPLL_ENABLE(id));
  1768. if (!(val & PLL_ENABLE))
  1769. goto out;
  1770. val = I915_READ(CNL_DPLL_CFGCR0(id));
  1771. hw_state->cfgcr0 = val;
  1772. /* avoid reading back stale values if HDMI mode is not enabled */
  1773. if (val & DPLL_CFGCR0_HDMI_MODE) {
  1774. hw_state->cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(id));
  1775. }
  1776. ret = true;
  1777. out:
  1778. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1779. return ret;
  1780. }
  1781. static void cnl_wrpll_get_multipliers(int bestdiv, int *pdiv,
  1782. int *qdiv, int *kdiv)
  1783. {
  1784. /* even dividers */
  1785. if (bestdiv % 2 == 0) {
  1786. if (bestdiv == 2) {
  1787. *pdiv = 2;
  1788. *qdiv = 1;
  1789. *kdiv = 1;
  1790. } else if (bestdiv % 4 == 0) {
  1791. *pdiv = 2;
  1792. *qdiv = bestdiv / 4;
  1793. *kdiv = 2;
  1794. } else if (bestdiv % 6 == 0) {
  1795. *pdiv = 3;
  1796. *qdiv = bestdiv / 6;
  1797. *kdiv = 2;
  1798. } else if (bestdiv % 5 == 0) {
  1799. *pdiv = 5;
  1800. *qdiv = bestdiv / 10;
  1801. *kdiv = 2;
  1802. } else if (bestdiv % 14 == 0) {
  1803. *pdiv = 7;
  1804. *qdiv = bestdiv / 14;
  1805. *kdiv = 2;
  1806. }
  1807. } else {
  1808. if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) {
  1809. *pdiv = bestdiv;
  1810. *qdiv = 1;
  1811. *kdiv = 1;
  1812. } else { /* 9, 15, 21 */
  1813. *pdiv = bestdiv / 3;
  1814. *qdiv = 1;
  1815. *kdiv = 3;
  1816. }
  1817. }
  1818. }
  1819. static void cnl_wrpll_params_populate(struct skl_wrpll_params *params,
  1820. u32 dco_freq, u32 ref_freq,
  1821. int pdiv, int qdiv, int kdiv)
  1822. {
  1823. u32 dco;
  1824. switch (kdiv) {
  1825. case 1:
  1826. params->kdiv = 1;
  1827. break;
  1828. case 2:
  1829. params->kdiv = 2;
  1830. break;
  1831. case 3:
  1832. params->kdiv = 4;
  1833. break;
  1834. default:
  1835. WARN(1, "Incorrect KDiv\n");
  1836. }
  1837. switch (pdiv) {
  1838. case 2:
  1839. params->pdiv = 1;
  1840. break;
  1841. case 3:
  1842. params->pdiv = 2;
  1843. break;
  1844. case 5:
  1845. params->pdiv = 4;
  1846. break;
  1847. case 7:
  1848. params->pdiv = 8;
  1849. break;
  1850. default:
  1851. WARN(1, "Incorrect PDiv\n");
  1852. }
  1853. WARN_ON(kdiv != 2 && qdiv != 1);
  1854. params->qdiv_ratio = qdiv;
  1855. params->qdiv_mode = (qdiv == 1) ? 0 : 1;
  1856. dco = div_u64((u64)dco_freq << 15, ref_freq);
  1857. params->dco_integer = dco >> 15;
  1858. params->dco_fraction = dco & 0x7fff;
  1859. }
  1860. static bool
  1861. cnl_ddi_calculate_wrpll(int clock,
  1862. struct drm_i915_private *dev_priv,
  1863. struct skl_wrpll_params *wrpll_params)
  1864. {
  1865. u32 afe_clock = clock * 5;
  1866. uint32_t ref_clock;
  1867. u32 dco_min = 7998000;
  1868. u32 dco_max = 10000000;
  1869. u32 dco_mid = (dco_min + dco_max) / 2;
  1870. static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16,
  1871. 18, 20, 24, 28, 30, 32, 36, 40,
  1872. 42, 44, 48, 50, 52, 54, 56, 60,
  1873. 64, 66, 68, 70, 72, 76, 78, 80,
  1874. 84, 88, 90, 92, 96, 98, 100, 102,
  1875. 3, 5, 7, 9, 15, 21 };
  1876. u32 dco, best_dco = 0, dco_centrality = 0;
  1877. u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */
  1878. int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0;
  1879. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1880. dco = afe_clock * dividers[d];
  1881. if ((dco <= dco_max) && (dco >= dco_min)) {
  1882. dco_centrality = abs(dco - dco_mid);
  1883. if (dco_centrality < best_dco_centrality) {
  1884. best_dco_centrality = dco_centrality;
  1885. best_div = dividers[d];
  1886. best_dco = dco;
  1887. }
  1888. }
  1889. }
  1890. if (best_div == 0)
  1891. return false;
  1892. cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv);
  1893. ref_clock = dev_priv->cdclk.hw.ref;
  1894. /*
  1895. * For ICL, the spec states: if reference frequency is 38.4, use 19.2
  1896. * because the DPLL automatically divides that by 2.
  1897. */
  1898. if (IS_ICELAKE(dev_priv) && ref_clock == 38400)
  1899. ref_clock = 19200;
  1900. cnl_wrpll_params_populate(wrpll_params, best_dco, ref_clock, pdiv, qdiv,
  1901. kdiv);
  1902. return true;
  1903. }
  1904. static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
  1905. struct intel_crtc_state *crtc_state,
  1906. int clock)
  1907. {
  1908. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1909. uint32_t cfgcr0, cfgcr1;
  1910. struct skl_wrpll_params wrpll_params = { 0, };
  1911. cfgcr0 = DPLL_CFGCR0_HDMI_MODE;
  1912. if (!cnl_ddi_calculate_wrpll(clock, dev_priv, &wrpll_params))
  1913. return false;
  1914. cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) |
  1915. wrpll_params.dco_integer;
  1916. cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1917. DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) |
  1918. DPLL_CFGCR1_KDIV(wrpll_params.kdiv) |
  1919. DPLL_CFGCR1_PDIV(wrpll_params.pdiv) |
  1920. DPLL_CFGCR1_CENTRAL_FREQ;
  1921. memset(&crtc_state->dpll_hw_state, 0,
  1922. sizeof(crtc_state->dpll_hw_state));
  1923. crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
  1924. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1925. return true;
  1926. }
  1927. static bool
  1928. cnl_ddi_dp_set_dpll_hw_state(int clock,
  1929. struct intel_dpll_hw_state *dpll_hw_state)
  1930. {
  1931. uint32_t cfgcr0;
  1932. cfgcr0 = DPLL_CFGCR0_SSC_ENABLE;
  1933. switch (clock / 2) {
  1934. case 81000:
  1935. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810;
  1936. break;
  1937. case 135000:
  1938. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350;
  1939. break;
  1940. case 270000:
  1941. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700;
  1942. break;
  1943. /* eDP 1.4 rates */
  1944. case 162000:
  1945. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620;
  1946. break;
  1947. case 108000:
  1948. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080;
  1949. break;
  1950. case 216000:
  1951. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160;
  1952. break;
  1953. case 324000:
  1954. /* Some SKUs may require elevated I/O voltage to support this */
  1955. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240;
  1956. break;
  1957. case 405000:
  1958. /* Some SKUs may require elevated I/O voltage to support this */
  1959. cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050;
  1960. break;
  1961. }
  1962. dpll_hw_state->cfgcr0 = cfgcr0;
  1963. return true;
  1964. }
  1965. static struct intel_shared_dpll *
  1966. cnl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1967. struct intel_encoder *encoder)
  1968. {
  1969. struct intel_shared_dpll *pll;
  1970. int clock = crtc_state->port_clock;
  1971. bool bret;
  1972. struct intel_dpll_hw_state dpll_hw_state;
  1973. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  1974. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  1975. bret = cnl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
  1976. if (!bret) {
  1977. DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
  1978. return NULL;
  1979. }
  1980. } else if (intel_crtc_has_dp_encoder(crtc_state)) {
  1981. bret = cnl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
  1982. if (!bret) {
  1983. DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
  1984. return NULL;
  1985. }
  1986. crtc_state->dpll_hw_state = dpll_hw_state;
  1987. } else {
  1988. DRM_DEBUG_KMS("Skip DPLL setup for output_types 0x%x\n",
  1989. crtc_state->output_types);
  1990. return NULL;
  1991. }
  1992. pll = intel_find_shared_dpll(crtc, crtc_state,
  1993. DPLL_ID_SKL_DPLL0,
  1994. DPLL_ID_SKL_DPLL2);
  1995. if (!pll) {
  1996. DRM_DEBUG_KMS("No PLL selected\n");
  1997. return NULL;
  1998. }
  1999. intel_reference_shared_dpll(pll, crtc_state);
  2000. return pll;
  2001. }
  2002. static void cnl_dump_hw_state(struct drm_i915_private *dev_priv,
  2003. struct intel_dpll_hw_state *hw_state)
  2004. {
  2005. DRM_DEBUG_KMS("dpll_hw_state: "
  2006. "cfgcr0: 0x%x, cfgcr1: 0x%x\n",
  2007. hw_state->cfgcr0,
  2008. hw_state->cfgcr1);
  2009. }
  2010. static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = {
  2011. .enable = cnl_ddi_pll_enable,
  2012. .disable = cnl_ddi_pll_disable,
  2013. .get_hw_state = cnl_ddi_pll_get_hw_state,
  2014. };
  2015. static const struct dpll_info cnl_plls[] = {
  2016. { "DPLL 0", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
  2017. { "DPLL 1", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
  2018. { "DPLL 2", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
  2019. { },
  2020. };
  2021. static const struct intel_dpll_mgr cnl_pll_mgr = {
  2022. .dpll_info = cnl_plls,
  2023. .get_dpll = cnl_get_dpll,
  2024. .dump_hw_state = cnl_dump_hw_state,
  2025. };
  2026. /*
  2027. * These values alrea already adjusted: they're the bits we write to the
  2028. * registers, not the logical values.
  2029. */
  2030. static const struct skl_wrpll_params icl_dp_combo_pll_24MHz_values[] = {
  2031. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */
  2032. .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2033. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */
  2034. .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2035. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */
  2036. .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2037. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */
  2038. .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2039. { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */
  2040. .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2},
  2041. { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */
  2042. .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2043. { .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */
  2044. .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2045. { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */
  2046. .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2047. };
  2048. /* Also used for 38.4 MHz values. */
  2049. static const struct skl_wrpll_params icl_dp_combo_pll_19_2MHz_values[] = {
  2050. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */
  2051. .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2052. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */
  2053. .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2054. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */
  2055. .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2056. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */
  2057. .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2058. { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */
  2059. .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2},
  2060. { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */
  2061. .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
  2062. { .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */
  2063. .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2064. { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */
  2065. .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
  2066. };
  2067. static bool icl_calc_dp_combo_pll(struct drm_i915_private *dev_priv, int clock,
  2068. struct skl_wrpll_params *pll_params)
  2069. {
  2070. const struct skl_wrpll_params *params;
  2071. params = dev_priv->cdclk.hw.ref == 24000 ?
  2072. icl_dp_combo_pll_24MHz_values :
  2073. icl_dp_combo_pll_19_2MHz_values;
  2074. switch (clock) {
  2075. case 540000:
  2076. *pll_params = params[0];
  2077. break;
  2078. case 270000:
  2079. *pll_params = params[1];
  2080. break;
  2081. case 162000:
  2082. *pll_params = params[2];
  2083. break;
  2084. case 324000:
  2085. *pll_params = params[3];
  2086. break;
  2087. case 216000:
  2088. *pll_params = params[4];
  2089. break;
  2090. case 432000:
  2091. *pll_params = params[5];
  2092. break;
  2093. case 648000:
  2094. *pll_params = params[6];
  2095. break;
  2096. case 810000:
  2097. *pll_params = params[7];
  2098. break;
  2099. default:
  2100. MISSING_CASE(clock);
  2101. return false;
  2102. }
  2103. return true;
  2104. }
  2105. static bool icl_calc_dpll_state(struct intel_crtc_state *crtc_state,
  2106. struct intel_encoder *encoder, int clock,
  2107. struct intel_dpll_hw_state *pll_state)
  2108. {
  2109. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2110. uint32_t cfgcr0, cfgcr1;
  2111. struct skl_wrpll_params pll_params = { 0 };
  2112. bool ret;
  2113. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  2114. ret = cnl_ddi_calculate_wrpll(clock, dev_priv, &pll_params);
  2115. else
  2116. ret = icl_calc_dp_combo_pll(dev_priv, clock, &pll_params);
  2117. if (!ret)
  2118. return false;
  2119. cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(pll_params.dco_fraction) |
  2120. pll_params.dco_integer;
  2121. cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params.qdiv_ratio) |
  2122. DPLL_CFGCR1_QDIV_MODE(pll_params.qdiv_mode) |
  2123. DPLL_CFGCR1_KDIV(pll_params.kdiv) |
  2124. DPLL_CFGCR1_PDIV(pll_params.pdiv) |
  2125. DPLL_CFGCR1_CENTRAL_FREQ_8400;
  2126. pll_state->cfgcr0 = cfgcr0;
  2127. pll_state->cfgcr1 = cfgcr1;
  2128. return true;
  2129. }
  2130. static enum port icl_mg_pll_id_to_port(enum intel_dpll_id id)
  2131. {
  2132. return id - DPLL_ID_ICL_MGPLL1 + PORT_C;
  2133. }
  2134. static enum intel_dpll_id icl_port_to_mg_pll_id(enum port port)
  2135. {
  2136. return port - PORT_C + DPLL_ID_ICL_MGPLL1;
  2137. }
  2138. static bool icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc,
  2139. uint32_t *target_dco_khz,
  2140. struct intel_dpll_hw_state *state)
  2141. {
  2142. uint32_t dco_min_freq, dco_max_freq;
  2143. int div1_vals[] = {7, 5, 3, 2};
  2144. unsigned int i;
  2145. int div2;
  2146. dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000;
  2147. dco_max_freq = is_dp ? 8100000 : 10000000;
  2148. for (i = 0; i < ARRAY_SIZE(div1_vals); i++) {
  2149. int div1 = div1_vals[i];
  2150. for (div2 = 10; div2 > 0; div2--) {
  2151. int dco = div1 * div2 * clock_khz * 5;
  2152. int a_divratio, tlinedrv, inputsel, hsdiv;
  2153. if (dco < dco_min_freq || dco > dco_max_freq)
  2154. continue;
  2155. if (div2 >= 2) {
  2156. a_divratio = is_dp ? 10 : 5;
  2157. tlinedrv = 2;
  2158. } else {
  2159. a_divratio = 5;
  2160. tlinedrv = 0;
  2161. }
  2162. inputsel = is_dp ? 0 : 1;
  2163. switch (div1) {
  2164. default:
  2165. MISSING_CASE(div1);
  2166. case 2:
  2167. hsdiv = 0;
  2168. break;
  2169. case 3:
  2170. hsdiv = 1;
  2171. break;
  2172. case 5:
  2173. hsdiv = 2;
  2174. break;
  2175. case 7:
  2176. hsdiv = 3;
  2177. break;
  2178. }
  2179. *target_dco_khz = dco;
  2180. state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1);
  2181. state->mg_clktop2_coreclkctl1 =
  2182. MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio);
  2183. state->mg_clktop2_hsclkctl =
  2184. MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) |
  2185. MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) |
  2186. MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO(hsdiv) |
  2187. MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2);
  2188. return true;
  2189. }
  2190. }
  2191. return false;
  2192. }
  2193. /*
  2194. * The specification for this function uses real numbers, so the math had to be
  2195. * adapted to integer-only calculation, that's why it looks so different.
  2196. */
  2197. static bool icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state,
  2198. struct intel_encoder *encoder, int clock,
  2199. struct intel_dpll_hw_state *pll_state)
  2200. {
  2201. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2202. int refclk_khz = dev_priv->cdclk.hw.ref;
  2203. uint32_t dco_khz, m1div, m2div_int, m2div_rem, m2div_frac;
  2204. uint32_t iref_ndiv, iref_trim, iref_pulse_w;
  2205. uint32_t prop_coeff, int_coeff;
  2206. uint32_t tdc_targetcnt, feedfwgain;
  2207. uint64_t ssc_stepsize, ssc_steplen, ssc_steplog;
  2208. uint64_t tmp;
  2209. bool use_ssc = false;
  2210. bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI);
  2211. if (!icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz,
  2212. pll_state)) {
  2213. DRM_DEBUG_KMS("Failed to find divisors for clock %d\n", clock);
  2214. return false;
  2215. }
  2216. m1div = 2;
  2217. m2div_int = dco_khz / (refclk_khz * m1div);
  2218. if (m2div_int > 255) {
  2219. m1div = 4;
  2220. m2div_int = dco_khz / (refclk_khz * m1div);
  2221. if (m2div_int > 255) {
  2222. DRM_DEBUG_KMS("Failed to find mdiv for clock %d\n",
  2223. clock);
  2224. return false;
  2225. }
  2226. }
  2227. m2div_rem = dco_khz % (refclk_khz * m1div);
  2228. tmp = (uint64_t)m2div_rem * (1 << 22);
  2229. do_div(tmp, refclk_khz * m1div);
  2230. m2div_frac = tmp;
  2231. switch (refclk_khz) {
  2232. case 19200:
  2233. iref_ndiv = 1;
  2234. iref_trim = 28;
  2235. iref_pulse_w = 1;
  2236. break;
  2237. case 24000:
  2238. iref_ndiv = 1;
  2239. iref_trim = 25;
  2240. iref_pulse_w = 2;
  2241. break;
  2242. case 38400:
  2243. iref_ndiv = 2;
  2244. iref_trim = 28;
  2245. iref_pulse_w = 1;
  2246. break;
  2247. default:
  2248. MISSING_CASE(refclk_khz);
  2249. return false;
  2250. }
  2251. /*
  2252. * tdc_res = 0.000003
  2253. * tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5)
  2254. *
  2255. * The multiplication by 1000 is due to refclk MHz to KHz conversion. It
  2256. * was supposed to be a division, but we rearranged the operations of
  2257. * the formula to avoid early divisions so we don't multiply the
  2258. * rounding errors.
  2259. *
  2260. * 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which
  2261. * we also rearrange to work with integers.
  2262. *
  2263. * The 0.5 transformed to 5 results in a multiplication by 10 and the
  2264. * last division by 10.
  2265. */
  2266. tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10;
  2267. /*
  2268. * Here we divide dco_khz by 10 in order to allow the dividend to fit in
  2269. * 32 bits. That's not a problem since we round the division down
  2270. * anyway.
  2271. */
  2272. feedfwgain = (use_ssc || m2div_rem > 0) ?
  2273. m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0;
  2274. if (dco_khz >= 9000000) {
  2275. prop_coeff = 5;
  2276. int_coeff = 10;
  2277. } else {
  2278. prop_coeff = 4;
  2279. int_coeff = 8;
  2280. }
  2281. if (use_ssc) {
  2282. tmp = (uint64_t)dco_khz * 47 * 32;
  2283. do_div(tmp, refclk_khz * m1div * 10000);
  2284. ssc_stepsize = tmp;
  2285. tmp = (uint64_t)dco_khz * 1000;
  2286. ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32);
  2287. } else {
  2288. ssc_stepsize = 0;
  2289. ssc_steplen = 0;
  2290. }
  2291. ssc_steplog = 4;
  2292. pll_state->mg_pll_div0 = (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) |
  2293. MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) |
  2294. MG_PLL_DIV0_FBDIV_INT(m2div_int);
  2295. pll_state->mg_pll_div1 = MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) |
  2296. MG_PLL_DIV1_DITHER_DIV_2 |
  2297. MG_PLL_DIV1_NDIVRATIO(1) |
  2298. MG_PLL_DIV1_FBPREDIV(m1div);
  2299. pll_state->mg_pll_lf = MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) |
  2300. MG_PLL_LF_AFCCNTSEL_512 |
  2301. MG_PLL_LF_GAINCTRL(1) |
  2302. MG_PLL_LF_INT_COEFF(int_coeff) |
  2303. MG_PLL_LF_PROP_COEFF(prop_coeff);
  2304. pll_state->mg_pll_frac_lock = MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 |
  2305. MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 |
  2306. MG_PLL_FRAC_LOCK_LOCKTHRESH(10) |
  2307. MG_PLL_FRAC_LOCK_DCODITHEREN |
  2308. MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain);
  2309. if (use_ssc || m2div_rem > 0)
  2310. pll_state->mg_pll_frac_lock |= MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN;
  2311. pll_state->mg_pll_ssc = (use_ssc ? MG_PLL_SSC_EN : 0) |
  2312. MG_PLL_SSC_TYPE(2) |
  2313. MG_PLL_SSC_STEPLENGTH(ssc_steplen) |
  2314. MG_PLL_SSC_STEPNUM(ssc_steplog) |
  2315. MG_PLL_SSC_FLLEN |
  2316. MG_PLL_SSC_STEPSIZE(ssc_stepsize);
  2317. pll_state->mg_pll_tdc_coldst_bias = MG_PLL_TDC_COLDST_COLDSTART;
  2318. if (refclk_khz != 38400) {
  2319. pll_state->mg_pll_tdc_coldst_bias |=
  2320. MG_PLL_TDC_COLDST_IREFINT_EN |
  2321. MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) |
  2322. MG_PLL_TDC_COLDST_COLDSTART |
  2323. MG_PLL_TDC_TDCOVCCORR_EN |
  2324. MG_PLL_TDC_TDCSEL(3);
  2325. pll_state->mg_pll_bias = MG_PLL_BIAS_BIAS_GB_SEL(3) |
  2326. MG_PLL_BIAS_INIT_DCOAMP(0x3F) |
  2327. MG_PLL_BIAS_BIAS_BONUS(10) |
  2328. MG_PLL_BIAS_BIASCAL_EN |
  2329. MG_PLL_BIAS_CTRIM(12) |
  2330. MG_PLL_BIAS_VREF_RDAC(4) |
  2331. MG_PLL_BIAS_IREFTRIM(iref_trim);
  2332. }
  2333. return true;
  2334. }
  2335. static struct intel_shared_dpll *
  2336. icl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  2337. struct intel_encoder *encoder)
  2338. {
  2339. struct intel_shared_dpll *pll;
  2340. struct intel_dpll_hw_state pll_state = {};
  2341. enum port port = encoder->port;
  2342. enum intel_dpll_id min, max;
  2343. int clock = crtc_state->port_clock;
  2344. bool ret;
  2345. switch (port) {
  2346. case PORT_A:
  2347. case PORT_B:
  2348. min = DPLL_ID_ICL_DPLL0;
  2349. max = DPLL_ID_ICL_DPLL1;
  2350. ret = icl_calc_dpll_state(crtc_state, encoder, clock,
  2351. &pll_state);
  2352. break;
  2353. case PORT_C:
  2354. case PORT_D:
  2355. case PORT_E:
  2356. case PORT_F:
  2357. min = icl_port_to_mg_pll_id(port);
  2358. max = min;
  2359. ret = icl_calc_mg_pll_state(crtc_state, encoder, clock,
  2360. &pll_state);
  2361. break;
  2362. default:
  2363. MISSING_CASE(port);
  2364. return NULL;
  2365. }
  2366. if (!ret) {
  2367. DRM_DEBUG_KMS("Could not calculate PLL state.\n");
  2368. return NULL;
  2369. }
  2370. crtc_state->dpll_hw_state = pll_state;
  2371. pll = intel_find_shared_dpll(crtc, crtc_state, min, max);
  2372. if (!pll) {
  2373. DRM_DEBUG_KMS("No PLL selected\n");
  2374. return NULL;
  2375. }
  2376. intel_reference_shared_dpll(pll, crtc_state);
  2377. return pll;
  2378. }
  2379. static i915_reg_t icl_pll_id_to_enable_reg(enum intel_dpll_id id)
  2380. {
  2381. switch (id) {
  2382. default:
  2383. MISSING_CASE(id);
  2384. case DPLL_ID_ICL_DPLL0:
  2385. case DPLL_ID_ICL_DPLL1:
  2386. return CNL_DPLL_ENABLE(id);
  2387. case DPLL_ID_ICL_MGPLL1:
  2388. case DPLL_ID_ICL_MGPLL2:
  2389. case DPLL_ID_ICL_MGPLL3:
  2390. case DPLL_ID_ICL_MGPLL4:
  2391. return MG_PLL_ENABLE(icl_mg_pll_id_to_port(id));
  2392. }
  2393. }
  2394. static bool icl_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2395. struct intel_shared_dpll *pll,
  2396. struct intel_dpll_hw_state *hw_state)
  2397. {
  2398. const enum intel_dpll_id id = pll->info->id;
  2399. uint32_t val;
  2400. enum port port;
  2401. bool ret = false;
  2402. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2403. return false;
  2404. val = I915_READ(icl_pll_id_to_enable_reg(id));
  2405. if (!(val & PLL_ENABLE))
  2406. goto out;
  2407. switch (id) {
  2408. case DPLL_ID_ICL_DPLL0:
  2409. case DPLL_ID_ICL_DPLL1:
  2410. hw_state->cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(id));
  2411. hw_state->cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(id));
  2412. break;
  2413. case DPLL_ID_ICL_MGPLL1:
  2414. case DPLL_ID_ICL_MGPLL2:
  2415. case DPLL_ID_ICL_MGPLL3:
  2416. case DPLL_ID_ICL_MGPLL4:
  2417. port = icl_mg_pll_id_to_port(id);
  2418. hw_state->mg_refclkin_ctl = I915_READ(MG_REFCLKIN_CTL(port));
  2419. hw_state->mg_clktop2_coreclkctl1 =
  2420. I915_READ(MG_CLKTOP2_CORECLKCTL1(port));
  2421. hw_state->mg_clktop2_hsclkctl =
  2422. I915_READ(MG_CLKTOP2_HSCLKCTL(port));
  2423. hw_state->mg_pll_div0 = I915_READ(MG_PLL_DIV0(port));
  2424. hw_state->mg_pll_div1 = I915_READ(MG_PLL_DIV1(port));
  2425. hw_state->mg_pll_lf = I915_READ(MG_PLL_LF(port));
  2426. hw_state->mg_pll_frac_lock = I915_READ(MG_PLL_FRAC_LOCK(port));
  2427. hw_state->mg_pll_ssc = I915_READ(MG_PLL_SSC(port));
  2428. hw_state->mg_pll_bias = I915_READ(MG_PLL_BIAS(port));
  2429. hw_state->mg_pll_tdc_coldst_bias =
  2430. I915_READ(MG_PLL_TDC_COLDST_BIAS(port));
  2431. break;
  2432. default:
  2433. MISSING_CASE(id);
  2434. }
  2435. ret = true;
  2436. out:
  2437. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2438. return ret;
  2439. }
  2440. static void icl_dpll_write(struct drm_i915_private *dev_priv,
  2441. struct intel_shared_dpll *pll)
  2442. {
  2443. struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
  2444. const enum intel_dpll_id id = pll->info->id;
  2445. I915_WRITE(ICL_DPLL_CFGCR0(id), hw_state->cfgcr0);
  2446. I915_WRITE(ICL_DPLL_CFGCR1(id), hw_state->cfgcr1);
  2447. POSTING_READ(ICL_DPLL_CFGCR1(id));
  2448. }
  2449. static void icl_mg_pll_write(struct drm_i915_private *dev_priv,
  2450. struct intel_shared_dpll *pll)
  2451. {
  2452. struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
  2453. enum port port = icl_mg_pll_id_to_port(pll->info->id);
  2454. I915_WRITE(MG_REFCLKIN_CTL(port), hw_state->mg_refclkin_ctl);
  2455. I915_WRITE(MG_CLKTOP2_CORECLKCTL1(port),
  2456. hw_state->mg_clktop2_coreclkctl1);
  2457. I915_WRITE(MG_CLKTOP2_HSCLKCTL(port), hw_state->mg_clktop2_hsclkctl);
  2458. I915_WRITE(MG_PLL_DIV0(port), hw_state->mg_pll_div0);
  2459. I915_WRITE(MG_PLL_DIV1(port), hw_state->mg_pll_div1);
  2460. I915_WRITE(MG_PLL_LF(port), hw_state->mg_pll_lf);
  2461. I915_WRITE(MG_PLL_FRAC_LOCK(port), hw_state->mg_pll_frac_lock);
  2462. I915_WRITE(MG_PLL_SSC(port), hw_state->mg_pll_ssc);
  2463. I915_WRITE(MG_PLL_BIAS(port), hw_state->mg_pll_bias);
  2464. I915_WRITE(MG_PLL_TDC_COLDST_BIAS(port),
  2465. hw_state->mg_pll_tdc_coldst_bias);
  2466. POSTING_READ(MG_PLL_TDC_COLDST_BIAS(port));
  2467. }
  2468. static void icl_pll_enable(struct drm_i915_private *dev_priv,
  2469. struct intel_shared_dpll *pll)
  2470. {
  2471. const enum intel_dpll_id id = pll->info->id;
  2472. i915_reg_t enable_reg = icl_pll_id_to_enable_reg(id);
  2473. uint32_t val;
  2474. val = I915_READ(enable_reg);
  2475. val |= PLL_POWER_ENABLE;
  2476. I915_WRITE(enable_reg, val);
  2477. /*
  2478. * The spec says we need to "wait" but it also says it should be
  2479. * immediate.
  2480. */
  2481. if (intel_wait_for_register(dev_priv, enable_reg, PLL_POWER_STATE,
  2482. PLL_POWER_STATE, 1))
  2483. DRM_ERROR("PLL %d Power not enabled\n", id);
  2484. switch (id) {
  2485. case DPLL_ID_ICL_DPLL0:
  2486. case DPLL_ID_ICL_DPLL1:
  2487. icl_dpll_write(dev_priv, pll);
  2488. break;
  2489. case DPLL_ID_ICL_MGPLL1:
  2490. case DPLL_ID_ICL_MGPLL2:
  2491. case DPLL_ID_ICL_MGPLL3:
  2492. case DPLL_ID_ICL_MGPLL4:
  2493. icl_mg_pll_write(dev_priv, pll);
  2494. break;
  2495. default:
  2496. MISSING_CASE(id);
  2497. }
  2498. /*
  2499. * DVFS pre sequence would be here, but in our driver the cdclk code
  2500. * paths should already be setting the appropriate voltage, hence we do
  2501. * nothign here.
  2502. */
  2503. val = I915_READ(enable_reg);
  2504. val |= PLL_ENABLE;
  2505. I915_WRITE(enable_reg, val);
  2506. if (intel_wait_for_register(dev_priv, enable_reg, PLL_LOCK, PLL_LOCK,
  2507. 1)) /* 600us actually. */
  2508. DRM_ERROR("PLL %d not locked\n", id);
  2509. /* DVFS post sequence would be here. See the comment above. */
  2510. }
  2511. static void icl_pll_disable(struct drm_i915_private *dev_priv,
  2512. struct intel_shared_dpll *pll)
  2513. {
  2514. const enum intel_dpll_id id = pll->info->id;
  2515. i915_reg_t enable_reg = icl_pll_id_to_enable_reg(id);
  2516. uint32_t val;
  2517. /* The first steps are done by intel_ddi_post_disable(). */
  2518. /*
  2519. * DVFS pre sequence would be here, but in our driver the cdclk code
  2520. * paths should already be setting the appropriate voltage, hence we do
  2521. * nothign here.
  2522. */
  2523. val = I915_READ(enable_reg);
  2524. val &= ~PLL_ENABLE;
  2525. I915_WRITE(enable_reg, val);
  2526. /* Timeout is actually 1us. */
  2527. if (intel_wait_for_register(dev_priv, enable_reg, PLL_LOCK, 0, 1))
  2528. DRM_ERROR("PLL %d locked\n", id);
  2529. /* DVFS post sequence would be here. See the comment above. */
  2530. val = I915_READ(enable_reg);
  2531. val &= ~PLL_POWER_ENABLE;
  2532. I915_WRITE(enable_reg, val);
  2533. /*
  2534. * The spec says we need to "wait" but it also says it should be
  2535. * immediate.
  2536. */
  2537. if (intel_wait_for_register(dev_priv, enable_reg, PLL_POWER_STATE, 0,
  2538. 1))
  2539. DRM_ERROR("PLL %d Power not disabled\n", id);
  2540. }
  2541. static void icl_dump_hw_state(struct drm_i915_private *dev_priv,
  2542. struct intel_dpll_hw_state *hw_state)
  2543. {
  2544. DRM_DEBUG_KMS("dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, "
  2545. "mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, "
  2546. "mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, "
  2547. "mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, "
  2548. "mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, "
  2549. "mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n",
  2550. hw_state->cfgcr0, hw_state->cfgcr1,
  2551. hw_state->mg_refclkin_ctl,
  2552. hw_state->mg_clktop2_coreclkctl1,
  2553. hw_state->mg_clktop2_hsclkctl,
  2554. hw_state->mg_pll_div0,
  2555. hw_state->mg_pll_div1,
  2556. hw_state->mg_pll_lf,
  2557. hw_state->mg_pll_frac_lock,
  2558. hw_state->mg_pll_ssc,
  2559. hw_state->mg_pll_bias,
  2560. hw_state->mg_pll_tdc_coldst_bias);
  2561. }
  2562. static const struct intel_shared_dpll_funcs icl_pll_funcs = {
  2563. .enable = icl_pll_enable,
  2564. .disable = icl_pll_disable,
  2565. .get_hw_state = icl_pll_get_hw_state,
  2566. };
  2567. static const struct dpll_info icl_plls[] = {
  2568. { "DPLL 0", &icl_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
  2569. { "DPLL 1", &icl_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
  2570. { "MG PLL 1", &icl_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 },
  2571. { "MG PLL 2", &icl_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 },
  2572. { "MG PLL 3", &icl_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 },
  2573. { "MG PLL 4", &icl_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 },
  2574. { },
  2575. };
  2576. static const struct intel_dpll_mgr icl_pll_mgr = {
  2577. .dpll_info = icl_plls,
  2578. .get_dpll = icl_get_dpll,
  2579. .dump_hw_state = icl_dump_hw_state,
  2580. };
  2581. /**
  2582. * intel_shared_dpll_init - Initialize shared DPLLs
  2583. * @dev: drm device
  2584. *
  2585. * Initialize shared DPLLs for @dev.
  2586. */
  2587. void intel_shared_dpll_init(struct drm_device *dev)
  2588. {
  2589. struct drm_i915_private *dev_priv = to_i915(dev);
  2590. const struct intel_dpll_mgr *dpll_mgr = NULL;
  2591. const struct dpll_info *dpll_info;
  2592. int i;
  2593. if (IS_ICELAKE(dev_priv))
  2594. dpll_mgr = &icl_pll_mgr;
  2595. else if (IS_CANNONLAKE(dev_priv))
  2596. dpll_mgr = &cnl_pll_mgr;
  2597. else if (IS_GEN9_BC(dev_priv))
  2598. dpll_mgr = &skl_pll_mgr;
  2599. else if (IS_GEN9_LP(dev_priv))
  2600. dpll_mgr = &bxt_pll_mgr;
  2601. else if (HAS_DDI(dev_priv))
  2602. dpll_mgr = &hsw_pll_mgr;
  2603. else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
  2604. dpll_mgr = &pch_pll_mgr;
  2605. if (!dpll_mgr) {
  2606. dev_priv->num_shared_dpll = 0;
  2607. return;
  2608. }
  2609. dpll_info = dpll_mgr->dpll_info;
  2610. for (i = 0; dpll_info[i].name; i++) {
  2611. WARN_ON(i != dpll_info[i].id);
  2612. dev_priv->shared_dplls[i].info = &dpll_info[i];
  2613. }
  2614. dev_priv->dpll_mgr = dpll_mgr;
  2615. dev_priv->num_shared_dpll = i;
  2616. mutex_init(&dev_priv->dpll_lock);
  2617. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  2618. /* FIXME: Move this to a more suitable place */
  2619. if (HAS_DDI(dev_priv))
  2620. intel_ddi_pll_init(dev);
  2621. }
  2622. /**
  2623. * intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination
  2624. * @crtc: CRTC
  2625. * @crtc_state: atomic state for @crtc
  2626. * @encoder: encoder
  2627. *
  2628. * Find an appropriate DPLL for the given CRTC and encoder combination. A
  2629. * reference from the @crtc to the returned pll is registered in the atomic
  2630. * state. That configuration is made effective by calling
  2631. * intel_shared_dpll_swap_state(). The reference should be released by calling
  2632. * intel_release_shared_dpll().
  2633. *
  2634. * Returns:
  2635. * A shared DPLL to be used by @crtc and @encoder with the given @crtc_state.
  2636. */
  2637. struct intel_shared_dpll *
  2638. intel_get_shared_dpll(struct intel_crtc *crtc,
  2639. struct intel_crtc_state *crtc_state,
  2640. struct intel_encoder *encoder)
  2641. {
  2642. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  2643. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  2644. if (WARN_ON(!dpll_mgr))
  2645. return NULL;
  2646. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  2647. }
  2648. /**
  2649. * intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
  2650. * @dpll: dpll in use by @crtc
  2651. * @crtc: crtc
  2652. * @state: atomic state
  2653. *
  2654. * This function releases the reference from @crtc to @dpll from the
  2655. * atomic @state. The new configuration is made effective by calling
  2656. * intel_shared_dpll_swap_state().
  2657. */
  2658. void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
  2659. struct intel_crtc *crtc,
  2660. struct drm_atomic_state *state)
  2661. {
  2662. struct intel_shared_dpll_state *shared_dpll_state;
  2663. shared_dpll_state = intel_atomic_get_shared_dpll_state(state);
  2664. shared_dpll_state[dpll->info->id].crtc_mask &= ~(1 << crtc->pipe);
  2665. }
  2666. /**
  2667. * intel_shared_dpll_dump_hw_state - write hw_state to dmesg
  2668. * @dev_priv: i915 drm device
  2669. * @hw_state: hw state to be written to the log
  2670. *
  2671. * Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS.
  2672. */
  2673. void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
  2674. struct intel_dpll_hw_state *hw_state)
  2675. {
  2676. if (dev_priv->dpll_mgr) {
  2677. dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state);
  2678. } else {
  2679. /* fallback for platforms that don't use the shared dpll
  2680. * infrastructure
  2681. */
  2682. DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
  2683. "fp0: 0x%x, fp1: 0x%x\n",
  2684. hw_state->dpll,
  2685. hw_state->dpll_md,
  2686. hw_state->fp0,
  2687. hw_state->fp1);
  2688. }
  2689. }