intel_ddi.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <drm/drm_scdc_helper.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. struct ddi_buf_trans {
  31. u32 trans1; /* balance leg enable, de-emph level */
  32. u32 trans2; /* vref sel, vswing */
  33. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  34. };
  35. static const u8 index_to_dp_signal_levels[] = {
  36. [0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  37. [1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  38. [2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2,
  39. [3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3,
  40. [4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  41. [5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  42. [6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2,
  43. [7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  44. [8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  45. [9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  46. };
  47. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  48. * them for both DP and FDI transports, allowing those ports to
  49. * automatically adapt to HDMI connections as well
  50. */
  51. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  52. { 0x00FFFFFF, 0x0006000E, 0x0 },
  53. { 0x00D75FFF, 0x0005000A, 0x0 },
  54. { 0x00C30FFF, 0x00040006, 0x0 },
  55. { 0x80AAAFFF, 0x000B0000, 0x0 },
  56. { 0x00FFFFFF, 0x0005000A, 0x0 },
  57. { 0x00D75FFF, 0x000C0004, 0x0 },
  58. { 0x80C30FFF, 0x000B0000, 0x0 },
  59. { 0x00FFFFFF, 0x00040006, 0x0 },
  60. { 0x80D75FFF, 0x000B0000, 0x0 },
  61. };
  62. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  63. { 0x00FFFFFF, 0x0007000E, 0x0 },
  64. { 0x00D75FFF, 0x000F000A, 0x0 },
  65. { 0x00C30FFF, 0x00060006, 0x0 },
  66. { 0x00AAAFFF, 0x001E0000, 0x0 },
  67. { 0x00FFFFFF, 0x000F000A, 0x0 },
  68. { 0x00D75FFF, 0x00160004, 0x0 },
  69. { 0x00C30FFF, 0x001E0000, 0x0 },
  70. { 0x00FFFFFF, 0x00060006, 0x0 },
  71. { 0x00D75FFF, 0x001E0000, 0x0 },
  72. };
  73. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  74. /* Idx NT mV d T mV d db */
  75. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  76. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  77. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  78. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  79. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  80. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  81. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  82. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  83. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  84. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  85. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  86. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  87. };
  88. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  89. { 0x00FFFFFF, 0x00000012, 0x0 },
  90. { 0x00EBAFFF, 0x00020011, 0x0 },
  91. { 0x00C71FFF, 0x0006000F, 0x0 },
  92. { 0x00AAAFFF, 0x000E000A, 0x0 },
  93. { 0x00FFFFFF, 0x00020011, 0x0 },
  94. { 0x00DB6FFF, 0x0005000F, 0x0 },
  95. { 0x00BEEFFF, 0x000A000C, 0x0 },
  96. { 0x00FFFFFF, 0x0005000F, 0x0 },
  97. { 0x00DB6FFF, 0x000A000C, 0x0 },
  98. };
  99. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  100. { 0x00FFFFFF, 0x0007000E, 0x0 },
  101. { 0x00D75FFF, 0x000E000A, 0x0 },
  102. { 0x00BEFFFF, 0x00140006, 0x0 },
  103. { 0x80B2CFFF, 0x001B0002, 0x0 },
  104. { 0x00FFFFFF, 0x000E000A, 0x0 },
  105. { 0x00DB6FFF, 0x00160005, 0x0 },
  106. { 0x80C71FFF, 0x001A0002, 0x0 },
  107. { 0x00F7DFFF, 0x00180004, 0x0 },
  108. { 0x80D75FFF, 0x001B0002, 0x0 },
  109. };
  110. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  111. { 0x00FFFFFF, 0x0001000E, 0x0 },
  112. { 0x00D75FFF, 0x0004000A, 0x0 },
  113. { 0x00C30FFF, 0x00070006, 0x0 },
  114. { 0x00AAAFFF, 0x000C0000, 0x0 },
  115. { 0x00FFFFFF, 0x0004000A, 0x0 },
  116. { 0x00D75FFF, 0x00090004, 0x0 },
  117. { 0x00C30FFF, 0x000C0000, 0x0 },
  118. { 0x00FFFFFF, 0x00070006, 0x0 },
  119. { 0x00D75FFF, 0x000C0000, 0x0 },
  120. };
  121. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  122. /* Idx NT mV d T mV df db */
  123. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  124. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  125. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  126. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  127. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  128. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  129. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  130. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  131. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  132. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  133. };
  134. /* Skylake H and S */
  135. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  136. { 0x00002016, 0x000000A0, 0x0 },
  137. { 0x00005012, 0x0000009B, 0x0 },
  138. { 0x00007011, 0x00000088, 0x0 },
  139. { 0x80009010, 0x000000C0, 0x1 },
  140. { 0x00002016, 0x0000009B, 0x0 },
  141. { 0x00005012, 0x00000088, 0x0 },
  142. { 0x80007011, 0x000000C0, 0x1 },
  143. { 0x00002016, 0x000000DF, 0x0 },
  144. { 0x80005012, 0x000000C0, 0x1 },
  145. };
  146. /* Skylake U */
  147. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  148. { 0x0000201B, 0x000000A2, 0x0 },
  149. { 0x00005012, 0x00000088, 0x0 },
  150. { 0x80007011, 0x000000CD, 0x1 },
  151. { 0x80009010, 0x000000C0, 0x1 },
  152. { 0x0000201B, 0x0000009D, 0x0 },
  153. { 0x80005012, 0x000000C0, 0x1 },
  154. { 0x80007011, 0x000000C0, 0x1 },
  155. { 0x00002016, 0x00000088, 0x0 },
  156. { 0x80005012, 0x000000C0, 0x1 },
  157. };
  158. /* Skylake Y */
  159. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  160. { 0x00000018, 0x000000A2, 0x0 },
  161. { 0x00005012, 0x00000088, 0x0 },
  162. { 0x80007011, 0x000000CD, 0x3 },
  163. { 0x80009010, 0x000000C0, 0x3 },
  164. { 0x00000018, 0x0000009D, 0x0 },
  165. { 0x80005012, 0x000000C0, 0x3 },
  166. { 0x80007011, 0x000000C0, 0x3 },
  167. { 0x00000018, 0x00000088, 0x0 },
  168. { 0x80005012, 0x000000C0, 0x3 },
  169. };
  170. /* Kabylake H and S */
  171. static const struct ddi_buf_trans kbl_ddi_translations_dp[] = {
  172. { 0x00002016, 0x000000A0, 0x0 },
  173. { 0x00005012, 0x0000009B, 0x0 },
  174. { 0x00007011, 0x00000088, 0x0 },
  175. { 0x80009010, 0x000000C0, 0x1 },
  176. { 0x00002016, 0x0000009B, 0x0 },
  177. { 0x00005012, 0x00000088, 0x0 },
  178. { 0x80007011, 0x000000C0, 0x1 },
  179. { 0x00002016, 0x00000097, 0x0 },
  180. { 0x80005012, 0x000000C0, 0x1 },
  181. };
  182. /* Kabylake U */
  183. static const struct ddi_buf_trans kbl_u_ddi_translations_dp[] = {
  184. { 0x0000201B, 0x000000A1, 0x0 },
  185. { 0x00005012, 0x00000088, 0x0 },
  186. { 0x80007011, 0x000000CD, 0x3 },
  187. { 0x80009010, 0x000000C0, 0x3 },
  188. { 0x0000201B, 0x0000009D, 0x0 },
  189. { 0x80005012, 0x000000C0, 0x3 },
  190. { 0x80007011, 0x000000C0, 0x3 },
  191. { 0x00002016, 0x0000004F, 0x0 },
  192. { 0x80005012, 0x000000C0, 0x3 },
  193. };
  194. /* Kabylake Y */
  195. static const struct ddi_buf_trans kbl_y_ddi_translations_dp[] = {
  196. { 0x00001017, 0x000000A1, 0x0 },
  197. { 0x00005012, 0x00000088, 0x0 },
  198. { 0x80007011, 0x000000CD, 0x3 },
  199. { 0x8000800F, 0x000000C0, 0x3 },
  200. { 0x00001017, 0x0000009D, 0x0 },
  201. { 0x80005012, 0x000000C0, 0x3 },
  202. { 0x80007011, 0x000000C0, 0x3 },
  203. { 0x00001017, 0x0000004C, 0x0 },
  204. { 0x80005012, 0x000000C0, 0x3 },
  205. };
  206. /*
  207. * Skylake/Kabylake H and S
  208. * eDP 1.4 low vswing translation parameters
  209. */
  210. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  211. { 0x00000018, 0x000000A8, 0x0 },
  212. { 0x00004013, 0x000000A9, 0x0 },
  213. { 0x00007011, 0x000000A2, 0x0 },
  214. { 0x00009010, 0x0000009C, 0x0 },
  215. { 0x00000018, 0x000000A9, 0x0 },
  216. { 0x00006013, 0x000000A2, 0x0 },
  217. { 0x00007011, 0x000000A6, 0x0 },
  218. { 0x00000018, 0x000000AB, 0x0 },
  219. { 0x00007013, 0x0000009F, 0x0 },
  220. { 0x00000018, 0x000000DF, 0x0 },
  221. };
  222. /*
  223. * Skylake/Kabylake U
  224. * eDP 1.4 low vswing translation parameters
  225. */
  226. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  227. { 0x00000018, 0x000000A8, 0x0 },
  228. { 0x00004013, 0x000000A9, 0x0 },
  229. { 0x00007011, 0x000000A2, 0x0 },
  230. { 0x00009010, 0x0000009C, 0x0 },
  231. { 0x00000018, 0x000000A9, 0x0 },
  232. { 0x00006013, 0x000000A2, 0x0 },
  233. { 0x00007011, 0x000000A6, 0x0 },
  234. { 0x00002016, 0x000000AB, 0x0 },
  235. { 0x00005013, 0x0000009F, 0x0 },
  236. { 0x00000018, 0x000000DF, 0x0 },
  237. };
  238. /*
  239. * Skylake/Kabylake Y
  240. * eDP 1.4 low vswing translation parameters
  241. */
  242. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  243. { 0x00000018, 0x000000A8, 0x0 },
  244. { 0x00004013, 0x000000AB, 0x0 },
  245. { 0x00007011, 0x000000A4, 0x0 },
  246. { 0x00009010, 0x000000DF, 0x0 },
  247. { 0x00000018, 0x000000AA, 0x0 },
  248. { 0x00006013, 0x000000A4, 0x0 },
  249. { 0x00007011, 0x0000009D, 0x0 },
  250. { 0x00000018, 0x000000A0, 0x0 },
  251. { 0x00006012, 0x000000DF, 0x0 },
  252. { 0x00000018, 0x0000008A, 0x0 },
  253. };
  254. /* Skylake/Kabylake U, H and S */
  255. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  256. { 0x00000018, 0x000000AC, 0x0 },
  257. { 0x00005012, 0x0000009D, 0x0 },
  258. { 0x00007011, 0x00000088, 0x0 },
  259. { 0x00000018, 0x000000A1, 0x0 },
  260. { 0x00000018, 0x00000098, 0x0 },
  261. { 0x00004013, 0x00000088, 0x0 },
  262. { 0x80006012, 0x000000CD, 0x1 },
  263. { 0x00000018, 0x000000DF, 0x0 },
  264. { 0x80003015, 0x000000CD, 0x1 }, /* Default */
  265. { 0x80003015, 0x000000C0, 0x1 },
  266. { 0x80000018, 0x000000C0, 0x1 },
  267. };
  268. /* Skylake/Kabylake Y */
  269. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  270. { 0x00000018, 0x000000A1, 0x0 },
  271. { 0x00005012, 0x000000DF, 0x0 },
  272. { 0x80007011, 0x000000CB, 0x3 },
  273. { 0x00000018, 0x000000A4, 0x0 },
  274. { 0x00000018, 0x0000009D, 0x0 },
  275. { 0x00004013, 0x00000080, 0x0 },
  276. { 0x80006013, 0x000000C0, 0x3 },
  277. { 0x00000018, 0x0000008A, 0x0 },
  278. { 0x80003015, 0x000000C0, 0x3 }, /* Default */
  279. { 0x80003015, 0x000000C0, 0x3 },
  280. { 0x80000018, 0x000000C0, 0x3 },
  281. };
  282. struct bxt_ddi_buf_trans {
  283. u8 margin; /* swing value */
  284. u8 scale; /* scale value */
  285. u8 enable; /* scale enable */
  286. u8 deemphasis;
  287. };
  288. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  289. /* Idx NT mV diff db */
  290. { 52, 0x9A, 0, 128, }, /* 0: 400 0 */
  291. { 78, 0x9A, 0, 85, }, /* 1: 400 3.5 */
  292. { 104, 0x9A, 0, 64, }, /* 2: 400 6 */
  293. { 154, 0x9A, 0, 43, }, /* 3: 400 9.5 */
  294. { 77, 0x9A, 0, 128, }, /* 4: 600 0 */
  295. { 116, 0x9A, 0, 85, }, /* 5: 600 3.5 */
  296. { 154, 0x9A, 0, 64, }, /* 6: 600 6 */
  297. { 102, 0x9A, 0, 128, }, /* 7: 800 0 */
  298. { 154, 0x9A, 0, 85, }, /* 8: 800 3.5 */
  299. { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
  300. };
  301. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  302. /* Idx NT mV diff db */
  303. { 26, 0, 0, 128, }, /* 0: 200 0 */
  304. { 38, 0, 0, 112, }, /* 1: 200 1.5 */
  305. { 48, 0, 0, 96, }, /* 2: 200 4 */
  306. { 54, 0, 0, 69, }, /* 3: 200 6 */
  307. { 32, 0, 0, 128, }, /* 4: 250 0 */
  308. { 48, 0, 0, 104, }, /* 5: 250 1.5 */
  309. { 54, 0, 0, 85, }, /* 6: 250 4 */
  310. { 43, 0, 0, 128, }, /* 7: 300 0 */
  311. { 54, 0, 0, 101, }, /* 8: 300 1.5 */
  312. { 48, 0, 0, 128, }, /* 9: 300 0 */
  313. };
  314. /* BSpec has 2 recommended values - entries 0 and 8.
  315. * Using the entry with higher vswing.
  316. */
  317. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  318. /* Idx NT mV diff db */
  319. { 52, 0x9A, 0, 128, }, /* 0: 400 0 */
  320. { 52, 0x9A, 0, 85, }, /* 1: 400 3.5 */
  321. { 52, 0x9A, 0, 64, }, /* 2: 400 6 */
  322. { 42, 0x9A, 0, 43, }, /* 3: 400 9.5 */
  323. { 77, 0x9A, 0, 128, }, /* 4: 600 0 */
  324. { 77, 0x9A, 0, 85, }, /* 5: 600 3.5 */
  325. { 77, 0x9A, 0, 64, }, /* 6: 600 6 */
  326. { 102, 0x9A, 0, 128, }, /* 7: 800 0 */
  327. { 102, 0x9A, 0, 85, }, /* 8: 800 3.5 */
  328. { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
  329. };
  330. struct cnl_ddi_buf_trans {
  331. u8 dw2_swing_sel;
  332. u8 dw7_n_scalar;
  333. u8 dw4_cursor_coeff;
  334. u8 dw4_post_cursor_2;
  335. u8 dw4_post_cursor_1;
  336. };
  337. /* Voltage Swing Programming for VccIO 0.85V for DP */
  338. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_85V[] = {
  339. /* NT mV Trans mV db */
  340. { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
  341. { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
  342. { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
  343. { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
  344. { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
  345. { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
  346. { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
  347. { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
  348. { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
  349. { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
  350. };
  351. /* Voltage Swing Programming for VccIO 0.85V for HDMI */
  352. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_85V[] = {
  353. /* NT mV Trans mV db */
  354. { 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  355. { 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */
  356. { 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */
  357. { 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 */
  358. { 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */
  359. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */
  360. { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  361. };
  362. /* Voltage Swing Programming for VccIO 0.85V for eDP */
  363. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_85V[] = {
  364. /* NT mV Trans mV db */
  365. { 0xA, 0x66, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  366. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  367. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  368. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  369. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  370. { 0xA, 0x66, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  371. { 0xB, 0x70, 0x3C, 0x00, 0x03 }, /* 460 600 2.3 */
  372. { 0xC, 0x75, 0x3C, 0x00, 0x03 }, /* 537 700 2.3 */
  373. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  374. };
  375. /* Voltage Swing Programming for VccIO 0.95V for DP */
  376. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_95V[] = {
  377. /* NT mV Trans mV db */
  378. { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
  379. { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
  380. { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
  381. { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
  382. { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
  383. { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
  384. { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
  385. { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
  386. { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
  387. { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
  388. };
  389. /* Voltage Swing Programming for VccIO 0.95V for HDMI */
  390. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_95V[] = {
  391. /* NT mV Trans mV db */
  392. { 0xA, 0x5C, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  393. { 0xB, 0x69, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  394. { 0x5, 0x76, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  395. { 0xA, 0x5E, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  396. { 0xB, 0x69, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  397. { 0xB, 0x79, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  398. { 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
  399. { 0x5, 0x76, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
  400. { 0x6, 0x7D, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
  401. { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
  402. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  403. };
  404. /* Voltage Swing Programming for VccIO 0.95V for eDP */
  405. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_95V[] = {
  406. /* NT mV Trans mV db */
  407. { 0xA, 0x61, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  408. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  409. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  410. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  411. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  412. { 0xA, 0x61, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  413. { 0xB, 0x68, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
  414. { 0xC, 0x6E, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
  415. { 0x4, 0x7F, 0x3A, 0x00, 0x05 }, /* 460 600 2.3 */
  416. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  417. };
  418. /* Voltage Swing Programming for VccIO 1.05V for DP */
  419. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_1_05V[] = {
  420. /* NT mV Trans mV db */
  421. { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  422. { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  423. { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  424. { 0x6, 0x7F, 0x2C, 0x00, 0x13 }, /* 400 1050 8.4 */
  425. { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  426. { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  427. { 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 550 1050 5.6 */
  428. { 0x5, 0x76, 0x3E, 0x00, 0x01 }, /* 850 900 0.5 */
  429. { 0x6, 0x7F, 0x36, 0x00, 0x09 }, /* 750 1050 2.9 */
  430. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  431. };
  432. /* Voltage Swing Programming for VccIO 1.05V for HDMI */
  433. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_1_05V[] = {
  434. /* NT mV Trans mV db */
  435. { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  436. { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  437. { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  438. { 0xA, 0x5B, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  439. { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  440. { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  441. { 0x6, 0x7C, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
  442. { 0x5, 0x70, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
  443. { 0x6, 0x7C, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
  444. { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
  445. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  446. };
  447. /* Voltage Swing Programming for VccIO 1.05V for eDP */
  448. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_1_05V[] = {
  449. /* NT mV Trans mV db */
  450. { 0xA, 0x5E, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  451. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  452. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  453. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  454. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  455. { 0xA, 0x5E, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  456. { 0xB, 0x64, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
  457. { 0xE, 0x6A, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
  458. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  459. };
  460. struct icl_combo_phy_ddi_buf_trans {
  461. u32 dw2_swing_select;
  462. u32 dw2_swing_scalar;
  463. u32 dw4_scaling;
  464. };
  465. /* Voltage Swing Programming for VccIO 0.85V for DP */
  466. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_0_85V[] = {
  467. /* Voltage mV db */
  468. { 0x2, 0x98, 0x0018 }, /* 400 0.0 */
  469. { 0x2, 0x98, 0x3015 }, /* 400 3.5 */
  470. { 0x2, 0x98, 0x6012 }, /* 400 6.0 */
  471. { 0x2, 0x98, 0x900F }, /* 400 9.5 */
  472. { 0xB, 0x70, 0x0018 }, /* 600 0.0 */
  473. { 0xB, 0x70, 0x3015 }, /* 600 3.5 */
  474. { 0xB, 0x70, 0x6012 }, /* 600 6.0 */
  475. { 0x5, 0x00, 0x0018 }, /* 800 0.0 */
  476. { 0x5, 0x00, 0x3015 }, /* 800 3.5 */
  477. { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */
  478. };
  479. /* FIXME - After table is updated in Bspec */
  480. /* Voltage Swing Programming for VccIO 0.85V for eDP */
  481. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_0_85V[] = {
  482. /* Voltage mV db */
  483. { 0x0, 0x00, 0x00 }, /* 200 0.0 */
  484. { 0x0, 0x00, 0x00 }, /* 200 1.5 */
  485. { 0x0, 0x00, 0x00 }, /* 200 4.0 */
  486. { 0x0, 0x00, 0x00 }, /* 200 6.0 */
  487. { 0x0, 0x00, 0x00 }, /* 250 0.0 */
  488. { 0x0, 0x00, 0x00 }, /* 250 1.5 */
  489. { 0x0, 0x00, 0x00 }, /* 250 4.0 */
  490. { 0x0, 0x00, 0x00 }, /* 300 0.0 */
  491. { 0x0, 0x00, 0x00 }, /* 300 1.5 */
  492. { 0x0, 0x00, 0x00 }, /* 350 0.0 */
  493. };
  494. /* Voltage Swing Programming for VccIO 0.95V for DP */
  495. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_0_95V[] = {
  496. /* Voltage mV db */
  497. { 0x2, 0x98, 0x0018 }, /* 400 0.0 */
  498. { 0x2, 0x98, 0x3015 }, /* 400 3.5 */
  499. { 0x2, 0x98, 0x6012 }, /* 400 6.0 */
  500. { 0x2, 0x98, 0x900F }, /* 400 9.5 */
  501. { 0x4, 0x98, 0x0018 }, /* 600 0.0 */
  502. { 0x4, 0x98, 0x3015 }, /* 600 3.5 */
  503. { 0x4, 0x98, 0x6012 }, /* 600 6.0 */
  504. { 0x5, 0x76, 0x0018 }, /* 800 0.0 */
  505. { 0x5, 0x76, 0x3015 }, /* 800 3.5 */
  506. { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */
  507. };
  508. /* FIXME - After table is updated in Bspec */
  509. /* Voltage Swing Programming for VccIO 0.95V for eDP */
  510. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_0_95V[] = {
  511. /* Voltage mV db */
  512. { 0x0, 0x00, 0x00 }, /* 200 0.0 */
  513. { 0x0, 0x00, 0x00 }, /* 200 1.5 */
  514. { 0x0, 0x00, 0x00 }, /* 200 4.0 */
  515. { 0x0, 0x00, 0x00 }, /* 200 6.0 */
  516. { 0x0, 0x00, 0x00 }, /* 250 0.0 */
  517. { 0x0, 0x00, 0x00 }, /* 250 1.5 */
  518. { 0x0, 0x00, 0x00 }, /* 250 4.0 */
  519. { 0x0, 0x00, 0x00 }, /* 300 0.0 */
  520. { 0x0, 0x00, 0x00 }, /* 300 1.5 */
  521. { 0x0, 0x00, 0x00 }, /* 350 0.0 */
  522. };
  523. /* Voltage Swing Programming for VccIO 1.05V for DP */
  524. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_1_05V[] = {
  525. /* Voltage mV db */
  526. { 0x2, 0x98, 0x0018 }, /* 400 0.0 */
  527. { 0x2, 0x98, 0x3015 }, /* 400 3.5 */
  528. { 0x2, 0x98, 0x6012 }, /* 400 6.0 */
  529. { 0x2, 0x98, 0x900F }, /* 400 9.5 */
  530. { 0x4, 0x98, 0x0018 }, /* 600 0.0 */
  531. { 0x4, 0x98, 0x3015 }, /* 600 3.5 */
  532. { 0x4, 0x98, 0x6012 }, /* 600 6.0 */
  533. { 0x5, 0x71, 0x0018 }, /* 800 0.0 */
  534. { 0x5, 0x71, 0x3015 }, /* 800 3.5 */
  535. { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */
  536. };
  537. /* FIXME - After table is updated in Bspec */
  538. /* Voltage Swing Programming for VccIO 1.05V for eDP */
  539. static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_1_05V[] = {
  540. /* Voltage mV db */
  541. { 0x0, 0x00, 0x00 }, /* 200 0.0 */
  542. { 0x0, 0x00, 0x00 }, /* 200 1.5 */
  543. { 0x0, 0x00, 0x00 }, /* 200 4.0 */
  544. { 0x0, 0x00, 0x00 }, /* 200 6.0 */
  545. { 0x0, 0x00, 0x00 }, /* 250 0.0 */
  546. { 0x0, 0x00, 0x00 }, /* 250 1.5 */
  547. { 0x0, 0x00, 0x00 }, /* 250 4.0 */
  548. { 0x0, 0x00, 0x00 }, /* 300 0.0 */
  549. { 0x0, 0x00, 0x00 }, /* 300 1.5 */
  550. { 0x0, 0x00, 0x00 }, /* 350 0.0 */
  551. };
  552. struct icl_mg_phy_ddi_buf_trans {
  553. u32 cri_txdeemph_override_5_0;
  554. u32 cri_txdeemph_override_11_6;
  555. u32 cri_txdeemph_override_17_12;
  556. };
  557. static const struct icl_mg_phy_ddi_buf_trans icl_mg_phy_ddi_translations[] = {
  558. /* Voltage swing pre-emphasis */
  559. { 0x0, 0x1B, 0x00 }, /* 0 0 */
  560. { 0x0, 0x23, 0x08 }, /* 0 1 */
  561. { 0x0, 0x2D, 0x12 }, /* 0 2 */
  562. { 0x0, 0x00, 0x00 }, /* 0 3 */
  563. { 0x0, 0x23, 0x00 }, /* 1 0 */
  564. { 0x0, 0x2B, 0x09 }, /* 1 1 */
  565. { 0x0, 0x2E, 0x11 }, /* 1 2 */
  566. { 0x0, 0x2F, 0x00 }, /* 2 0 */
  567. { 0x0, 0x33, 0x0C }, /* 2 1 */
  568. { 0x0, 0x00, 0x00 }, /* 3 0 */
  569. };
  570. static const struct ddi_buf_trans *
  571. bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  572. {
  573. if (dev_priv->vbt.edp.low_vswing) {
  574. *n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  575. return bdw_ddi_translations_edp;
  576. } else {
  577. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  578. return bdw_ddi_translations_dp;
  579. }
  580. }
  581. static const struct ddi_buf_trans *
  582. skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  583. {
  584. if (IS_SKL_ULX(dev_priv)) {
  585. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  586. return skl_y_ddi_translations_dp;
  587. } else if (IS_SKL_ULT(dev_priv)) {
  588. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  589. return skl_u_ddi_translations_dp;
  590. } else {
  591. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  592. return skl_ddi_translations_dp;
  593. }
  594. }
  595. static const struct ddi_buf_trans *
  596. kbl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  597. {
  598. if (IS_KBL_ULX(dev_priv)) {
  599. *n_entries = ARRAY_SIZE(kbl_y_ddi_translations_dp);
  600. return kbl_y_ddi_translations_dp;
  601. } else if (IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv)) {
  602. *n_entries = ARRAY_SIZE(kbl_u_ddi_translations_dp);
  603. return kbl_u_ddi_translations_dp;
  604. } else {
  605. *n_entries = ARRAY_SIZE(kbl_ddi_translations_dp);
  606. return kbl_ddi_translations_dp;
  607. }
  608. }
  609. static const struct ddi_buf_trans *
  610. skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  611. {
  612. if (dev_priv->vbt.edp.low_vswing) {
  613. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  614. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  615. return skl_y_ddi_translations_edp;
  616. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv) ||
  617. IS_CFL_ULT(dev_priv)) {
  618. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  619. return skl_u_ddi_translations_edp;
  620. } else {
  621. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  622. return skl_ddi_translations_edp;
  623. }
  624. }
  625. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
  626. return kbl_get_buf_trans_dp(dev_priv, n_entries);
  627. else
  628. return skl_get_buf_trans_dp(dev_priv, n_entries);
  629. }
  630. static const struct ddi_buf_trans *
  631. skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  632. {
  633. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  634. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  635. return skl_y_ddi_translations_hdmi;
  636. } else {
  637. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  638. return skl_ddi_translations_hdmi;
  639. }
  640. }
  641. static int skl_buf_trans_num_entries(enum port port, int n_entries)
  642. {
  643. /* Only DDIA and DDIE can select the 10th register with DP */
  644. if (port == PORT_A || port == PORT_E)
  645. return min(n_entries, 10);
  646. else
  647. return min(n_entries, 9);
  648. }
  649. static const struct ddi_buf_trans *
  650. intel_ddi_get_buf_trans_dp(struct drm_i915_private *dev_priv,
  651. enum port port, int *n_entries)
  652. {
  653. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) {
  654. const struct ddi_buf_trans *ddi_translations =
  655. kbl_get_buf_trans_dp(dev_priv, n_entries);
  656. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  657. return ddi_translations;
  658. } else if (IS_SKYLAKE(dev_priv)) {
  659. const struct ddi_buf_trans *ddi_translations =
  660. skl_get_buf_trans_dp(dev_priv, n_entries);
  661. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  662. return ddi_translations;
  663. } else if (IS_BROADWELL(dev_priv)) {
  664. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  665. return bdw_ddi_translations_dp;
  666. } else if (IS_HASWELL(dev_priv)) {
  667. *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  668. return hsw_ddi_translations_dp;
  669. }
  670. *n_entries = 0;
  671. return NULL;
  672. }
  673. static const struct ddi_buf_trans *
  674. intel_ddi_get_buf_trans_edp(struct drm_i915_private *dev_priv,
  675. enum port port, int *n_entries)
  676. {
  677. if (IS_GEN9_BC(dev_priv)) {
  678. const struct ddi_buf_trans *ddi_translations =
  679. skl_get_buf_trans_edp(dev_priv, n_entries);
  680. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  681. return ddi_translations;
  682. } else if (IS_BROADWELL(dev_priv)) {
  683. return bdw_get_buf_trans_edp(dev_priv, n_entries);
  684. } else if (IS_HASWELL(dev_priv)) {
  685. *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  686. return hsw_ddi_translations_dp;
  687. }
  688. *n_entries = 0;
  689. return NULL;
  690. }
  691. static const struct ddi_buf_trans *
  692. intel_ddi_get_buf_trans_fdi(struct drm_i915_private *dev_priv,
  693. int *n_entries)
  694. {
  695. if (IS_BROADWELL(dev_priv)) {
  696. *n_entries = ARRAY_SIZE(bdw_ddi_translations_fdi);
  697. return bdw_ddi_translations_fdi;
  698. } else if (IS_HASWELL(dev_priv)) {
  699. *n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi);
  700. return hsw_ddi_translations_fdi;
  701. }
  702. *n_entries = 0;
  703. return NULL;
  704. }
  705. static const struct ddi_buf_trans *
  706. intel_ddi_get_buf_trans_hdmi(struct drm_i915_private *dev_priv,
  707. int *n_entries)
  708. {
  709. if (IS_GEN9_BC(dev_priv)) {
  710. return skl_get_buf_trans_hdmi(dev_priv, n_entries);
  711. } else if (IS_BROADWELL(dev_priv)) {
  712. *n_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  713. return bdw_ddi_translations_hdmi;
  714. } else if (IS_HASWELL(dev_priv)) {
  715. *n_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  716. return hsw_ddi_translations_hdmi;
  717. }
  718. *n_entries = 0;
  719. return NULL;
  720. }
  721. static const struct bxt_ddi_buf_trans *
  722. bxt_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  723. {
  724. *n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  725. return bxt_ddi_translations_dp;
  726. }
  727. static const struct bxt_ddi_buf_trans *
  728. bxt_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  729. {
  730. if (dev_priv->vbt.edp.low_vswing) {
  731. *n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  732. return bxt_ddi_translations_edp;
  733. }
  734. return bxt_get_buf_trans_dp(dev_priv, n_entries);
  735. }
  736. static const struct bxt_ddi_buf_trans *
  737. bxt_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  738. {
  739. *n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  740. return bxt_ddi_translations_hdmi;
  741. }
  742. static const struct cnl_ddi_buf_trans *
  743. cnl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  744. {
  745. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  746. if (voltage == VOLTAGE_INFO_0_85V) {
  747. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_85V);
  748. return cnl_ddi_translations_hdmi_0_85V;
  749. } else if (voltage == VOLTAGE_INFO_0_95V) {
  750. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_95V);
  751. return cnl_ddi_translations_hdmi_0_95V;
  752. } else if (voltage == VOLTAGE_INFO_1_05V) {
  753. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_1_05V);
  754. return cnl_ddi_translations_hdmi_1_05V;
  755. } else {
  756. *n_entries = 1; /* shut up gcc */
  757. MISSING_CASE(voltage);
  758. }
  759. return NULL;
  760. }
  761. static const struct cnl_ddi_buf_trans *
  762. cnl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  763. {
  764. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  765. if (voltage == VOLTAGE_INFO_0_85V) {
  766. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_85V);
  767. return cnl_ddi_translations_dp_0_85V;
  768. } else if (voltage == VOLTAGE_INFO_0_95V) {
  769. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_95V);
  770. return cnl_ddi_translations_dp_0_95V;
  771. } else if (voltage == VOLTAGE_INFO_1_05V) {
  772. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_1_05V);
  773. return cnl_ddi_translations_dp_1_05V;
  774. } else {
  775. *n_entries = 1; /* shut up gcc */
  776. MISSING_CASE(voltage);
  777. }
  778. return NULL;
  779. }
  780. static const struct cnl_ddi_buf_trans *
  781. cnl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  782. {
  783. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  784. if (dev_priv->vbt.edp.low_vswing) {
  785. if (voltage == VOLTAGE_INFO_0_85V) {
  786. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_85V);
  787. return cnl_ddi_translations_edp_0_85V;
  788. } else if (voltage == VOLTAGE_INFO_0_95V) {
  789. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_95V);
  790. return cnl_ddi_translations_edp_0_95V;
  791. } else if (voltage == VOLTAGE_INFO_1_05V) {
  792. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_1_05V);
  793. return cnl_ddi_translations_edp_1_05V;
  794. } else {
  795. *n_entries = 1; /* shut up gcc */
  796. MISSING_CASE(voltage);
  797. }
  798. return NULL;
  799. } else {
  800. return cnl_get_buf_trans_dp(dev_priv, n_entries);
  801. }
  802. }
  803. static const struct icl_combo_phy_ddi_buf_trans *
  804. icl_get_combo_buf_trans(struct drm_i915_private *dev_priv, enum port port,
  805. int type, int *n_entries)
  806. {
  807. u32 voltage = I915_READ(ICL_PORT_COMP_DW3(port)) & VOLTAGE_INFO_MASK;
  808. if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
  809. switch (voltage) {
  810. case VOLTAGE_INFO_0_85V:
  811. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_0_85V);
  812. return icl_combo_phy_ddi_translations_edp_0_85V;
  813. case VOLTAGE_INFO_0_95V:
  814. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_0_95V);
  815. return icl_combo_phy_ddi_translations_edp_0_95V;
  816. case VOLTAGE_INFO_1_05V:
  817. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_edp_1_05V);
  818. return icl_combo_phy_ddi_translations_edp_1_05V;
  819. default:
  820. MISSING_CASE(voltage);
  821. return NULL;
  822. }
  823. } else {
  824. switch (voltage) {
  825. case VOLTAGE_INFO_0_85V:
  826. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hdmi_0_85V);
  827. return icl_combo_phy_ddi_translations_dp_hdmi_0_85V;
  828. case VOLTAGE_INFO_0_95V:
  829. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hdmi_0_95V);
  830. return icl_combo_phy_ddi_translations_dp_hdmi_0_95V;
  831. case VOLTAGE_INFO_1_05V:
  832. *n_entries = ARRAY_SIZE(icl_combo_phy_ddi_translations_dp_hdmi_1_05V);
  833. return icl_combo_phy_ddi_translations_dp_hdmi_1_05V;
  834. default:
  835. MISSING_CASE(voltage);
  836. return NULL;
  837. }
  838. }
  839. }
  840. static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
  841. {
  842. int n_entries, level, default_entry;
  843. level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  844. if (IS_CANNONLAKE(dev_priv)) {
  845. cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
  846. default_entry = n_entries - 1;
  847. } else if (IS_GEN9_LP(dev_priv)) {
  848. bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
  849. default_entry = n_entries - 1;
  850. } else if (IS_GEN9_BC(dev_priv)) {
  851. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  852. default_entry = 8;
  853. } else if (IS_BROADWELL(dev_priv)) {
  854. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  855. default_entry = 7;
  856. } else if (IS_HASWELL(dev_priv)) {
  857. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  858. default_entry = 6;
  859. } else {
  860. WARN(1, "ddi translation table missing\n");
  861. return 0;
  862. }
  863. /* Choose a good default if VBT is badly populated */
  864. if (level == HDMI_LEVEL_SHIFT_UNKNOWN || level >= n_entries)
  865. level = default_entry;
  866. if (WARN_ON_ONCE(n_entries == 0))
  867. return 0;
  868. if (WARN_ON_ONCE(level >= n_entries))
  869. level = n_entries - 1;
  870. return level;
  871. }
  872. /*
  873. * Starting with Haswell, DDI port buffers must be programmed with correct
  874. * values in advance. This function programs the correct values for
  875. * DP/eDP/FDI use cases.
  876. */
  877. static void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder,
  878. const struct intel_crtc_state *crtc_state)
  879. {
  880. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  881. u32 iboost_bit = 0;
  882. int i, n_entries;
  883. enum port port = encoder->port;
  884. const struct ddi_buf_trans *ddi_translations;
  885. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
  886. ddi_translations = intel_ddi_get_buf_trans_fdi(dev_priv,
  887. &n_entries);
  888. else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
  889. ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port,
  890. &n_entries);
  891. else
  892. ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port,
  893. &n_entries);
  894. /* If we're boosting the current, set bit 31 of trans1 */
  895. if (IS_GEN9_BC(dev_priv) &&
  896. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  897. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  898. for (i = 0; i < n_entries; i++) {
  899. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  900. ddi_translations[i].trans1 | iboost_bit);
  901. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  902. ddi_translations[i].trans2);
  903. }
  904. }
  905. /*
  906. * Starting with Haswell, DDI port buffers must be programmed with correct
  907. * values in advance. This function programs the correct values for
  908. * HDMI/DVI use cases.
  909. */
  910. static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder,
  911. int level)
  912. {
  913. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  914. u32 iboost_bit = 0;
  915. int n_entries;
  916. enum port port = encoder->port;
  917. const struct ddi_buf_trans *ddi_translations;
  918. ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  919. if (WARN_ON_ONCE(!ddi_translations))
  920. return;
  921. if (WARN_ON_ONCE(level >= n_entries))
  922. level = n_entries - 1;
  923. /* If we're boosting the current, set bit 31 of trans1 */
  924. if (IS_GEN9_BC(dev_priv) &&
  925. dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
  926. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  927. /* Entry 9 is for HDMI: */
  928. I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
  929. ddi_translations[level].trans1 | iboost_bit);
  930. I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
  931. ddi_translations[level].trans2);
  932. }
  933. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  934. enum port port)
  935. {
  936. i915_reg_t reg = DDI_BUF_CTL(port);
  937. int i;
  938. for (i = 0; i < 16; i++) {
  939. udelay(1);
  940. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  941. return;
  942. }
  943. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  944. }
  945. static uint32_t hsw_pll_to_ddi_pll_sel(const struct intel_shared_dpll *pll)
  946. {
  947. switch (pll->info->id) {
  948. case DPLL_ID_WRPLL1:
  949. return PORT_CLK_SEL_WRPLL1;
  950. case DPLL_ID_WRPLL2:
  951. return PORT_CLK_SEL_WRPLL2;
  952. case DPLL_ID_SPLL:
  953. return PORT_CLK_SEL_SPLL;
  954. case DPLL_ID_LCPLL_810:
  955. return PORT_CLK_SEL_LCPLL_810;
  956. case DPLL_ID_LCPLL_1350:
  957. return PORT_CLK_SEL_LCPLL_1350;
  958. case DPLL_ID_LCPLL_2700:
  959. return PORT_CLK_SEL_LCPLL_2700;
  960. default:
  961. MISSING_CASE(pll->info->id);
  962. return PORT_CLK_SEL_NONE;
  963. }
  964. }
  965. static uint32_t icl_pll_to_ddi_pll_sel(struct intel_encoder *encoder,
  966. const struct intel_shared_dpll *pll)
  967. {
  968. const enum intel_dpll_id id = pll->info->id;
  969. switch (id) {
  970. default:
  971. MISSING_CASE(id);
  972. case DPLL_ID_ICL_DPLL0:
  973. case DPLL_ID_ICL_DPLL1:
  974. return DDI_CLK_SEL_NONE;
  975. case DPLL_ID_ICL_MGPLL1:
  976. case DPLL_ID_ICL_MGPLL2:
  977. case DPLL_ID_ICL_MGPLL3:
  978. case DPLL_ID_ICL_MGPLL4:
  979. return DDI_CLK_SEL_MG;
  980. }
  981. }
  982. /* Starting with Haswell, different DDI ports can work in FDI mode for
  983. * connection to the PCH-located connectors. For this, it is necessary to train
  984. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  985. *
  986. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  987. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  988. * DDI A (which is used for eDP)
  989. */
  990. void hsw_fdi_link_train(struct intel_crtc *crtc,
  991. const struct intel_crtc_state *crtc_state)
  992. {
  993. struct drm_device *dev = crtc->base.dev;
  994. struct drm_i915_private *dev_priv = to_i915(dev);
  995. struct intel_encoder *encoder;
  996. u32 temp, i, rx_ctl_val, ddi_pll_sel;
  997. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  998. WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
  999. intel_prepare_dp_ddi_buffers(encoder, crtc_state);
  1000. }
  1001. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  1002. * mode set "sequence for CRT port" document:
  1003. * - TP1 to TP2 time with the default value
  1004. * - FDI delay to 90h
  1005. *
  1006. * WaFDIAutoLinkSetTimingOverrride:hsw
  1007. */
  1008. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  1009. FDI_RX_PWRDN_LANE0_VAL(2) |
  1010. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  1011. /* Enable the PCH Receiver FDI PLL */
  1012. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  1013. FDI_RX_PLL_ENABLE |
  1014. FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
  1015. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  1016. POSTING_READ(FDI_RX_CTL(PIPE_A));
  1017. udelay(220);
  1018. /* Switch from Rawclk to PCDclk */
  1019. rx_ctl_val |= FDI_PCDCLK;
  1020. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  1021. /* Configure Port Clock Select */
  1022. ddi_pll_sel = hsw_pll_to_ddi_pll_sel(crtc_state->shared_dpll);
  1023. I915_WRITE(PORT_CLK_SEL(PORT_E), ddi_pll_sel);
  1024. WARN_ON(ddi_pll_sel != PORT_CLK_SEL_SPLL);
  1025. /* Start the training iterating through available voltages and emphasis,
  1026. * testing each value twice. */
  1027. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  1028. /* Configure DP_TP_CTL with auto-training */
  1029. I915_WRITE(DP_TP_CTL(PORT_E),
  1030. DP_TP_CTL_FDI_AUTOTRAIN |
  1031. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  1032. DP_TP_CTL_LINK_TRAIN_PAT1 |
  1033. DP_TP_CTL_ENABLE);
  1034. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  1035. * DDI E does not support port reversal, the functionality is
  1036. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  1037. * port reversal bit */
  1038. I915_WRITE(DDI_BUF_CTL(PORT_E),
  1039. DDI_BUF_CTL_ENABLE |
  1040. ((crtc_state->fdi_lanes - 1) << 1) |
  1041. DDI_BUF_TRANS_SELECT(i / 2));
  1042. POSTING_READ(DDI_BUF_CTL(PORT_E));
  1043. udelay(600);
  1044. /* Program PCH FDI Receiver TU */
  1045. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  1046. /* Enable PCH FDI Receiver with auto-training */
  1047. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  1048. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  1049. POSTING_READ(FDI_RX_CTL(PIPE_A));
  1050. /* Wait for FDI receiver lane calibration */
  1051. udelay(30);
  1052. /* Unset FDI_RX_MISC pwrdn lanes */
  1053. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  1054. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1055. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  1056. POSTING_READ(FDI_RX_MISC(PIPE_A));
  1057. /* Wait for FDI auto training time */
  1058. udelay(5);
  1059. temp = I915_READ(DP_TP_STATUS(PORT_E));
  1060. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  1061. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  1062. break;
  1063. }
  1064. /*
  1065. * Leave things enabled even if we failed to train FDI.
  1066. * Results in less fireworks from the state checker.
  1067. */
  1068. if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
  1069. DRM_ERROR("FDI link training failed!\n");
  1070. break;
  1071. }
  1072. rx_ctl_val &= ~FDI_RX_ENABLE;
  1073. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  1074. POSTING_READ(FDI_RX_CTL(PIPE_A));
  1075. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  1076. temp &= ~DDI_BUF_CTL_ENABLE;
  1077. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  1078. POSTING_READ(DDI_BUF_CTL(PORT_E));
  1079. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  1080. temp = I915_READ(DP_TP_CTL(PORT_E));
  1081. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1082. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1083. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  1084. POSTING_READ(DP_TP_CTL(PORT_E));
  1085. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  1086. /* Reset FDI_RX_MISC pwrdn lanes */
  1087. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  1088. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1089. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1090. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  1091. POSTING_READ(FDI_RX_MISC(PIPE_A));
  1092. }
  1093. /* Enable normal pixel sending for FDI */
  1094. I915_WRITE(DP_TP_CTL(PORT_E),
  1095. DP_TP_CTL_FDI_AUTOTRAIN |
  1096. DP_TP_CTL_LINK_TRAIN_NORMAL |
  1097. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  1098. DP_TP_CTL_ENABLE);
  1099. }
  1100. static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  1101. {
  1102. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1103. struct intel_digital_port *intel_dig_port =
  1104. enc_to_dig_port(&encoder->base);
  1105. intel_dp->DP = intel_dig_port->saved_port_bits |
  1106. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  1107. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  1108. }
  1109. static struct intel_encoder *
  1110. intel_ddi_get_crtc_encoder(struct intel_crtc *crtc)
  1111. {
  1112. struct drm_device *dev = crtc->base.dev;
  1113. struct intel_encoder *encoder, *ret = NULL;
  1114. int num_encoders = 0;
  1115. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  1116. ret = encoder;
  1117. num_encoders++;
  1118. }
  1119. if (num_encoders != 1)
  1120. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  1121. pipe_name(crtc->pipe));
  1122. BUG_ON(ret == NULL);
  1123. return ret;
  1124. }
  1125. /* Finds the only possible encoder associated with the given CRTC. */
  1126. struct intel_encoder *
  1127. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  1128. {
  1129. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1130. struct intel_encoder *ret = NULL;
  1131. struct drm_atomic_state *state;
  1132. struct drm_connector *connector;
  1133. struct drm_connector_state *connector_state;
  1134. int num_encoders = 0;
  1135. int i;
  1136. state = crtc_state->base.state;
  1137. for_each_new_connector_in_state(state, connector, connector_state, i) {
  1138. if (connector_state->crtc != crtc_state->base.crtc)
  1139. continue;
  1140. ret = to_intel_encoder(connector_state->best_encoder);
  1141. num_encoders++;
  1142. }
  1143. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  1144. pipe_name(crtc->pipe));
  1145. BUG_ON(ret == NULL);
  1146. return ret;
  1147. }
  1148. #define LC_FREQ 2700
  1149. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1150. i915_reg_t reg)
  1151. {
  1152. int refclk = LC_FREQ;
  1153. int n, p, r;
  1154. u32 wrpll;
  1155. wrpll = I915_READ(reg);
  1156. switch (wrpll & WRPLL_PLL_REF_MASK) {
  1157. case WRPLL_PLL_SSC:
  1158. case WRPLL_PLL_NON_SSC:
  1159. /*
  1160. * We could calculate spread here, but our checking
  1161. * code only cares about 5% accuracy, and spread is a max of
  1162. * 0.5% downspread.
  1163. */
  1164. refclk = 135;
  1165. break;
  1166. case WRPLL_PLL_LCPLL:
  1167. refclk = LC_FREQ;
  1168. break;
  1169. default:
  1170. WARN(1, "bad wrpll refclk\n");
  1171. return 0;
  1172. }
  1173. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  1174. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  1175. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  1176. /* Convert to KHz, p & r have a fixed point portion */
  1177. return (refclk * n * 100) / (p * r);
  1178. }
  1179. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1180. enum intel_dpll_id pll_id)
  1181. {
  1182. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  1183. uint32_t cfgcr1_val, cfgcr2_val;
  1184. uint32_t p0, p1, p2, dco_freq;
  1185. cfgcr1_reg = DPLL_CFGCR1(pll_id);
  1186. cfgcr2_reg = DPLL_CFGCR2(pll_id);
  1187. cfgcr1_val = I915_READ(cfgcr1_reg);
  1188. cfgcr2_val = I915_READ(cfgcr2_reg);
  1189. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  1190. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  1191. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  1192. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  1193. else
  1194. p1 = 1;
  1195. switch (p0) {
  1196. case DPLL_CFGCR2_PDIV_1:
  1197. p0 = 1;
  1198. break;
  1199. case DPLL_CFGCR2_PDIV_2:
  1200. p0 = 2;
  1201. break;
  1202. case DPLL_CFGCR2_PDIV_3:
  1203. p0 = 3;
  1204. break;
  1205. case DPLL_CFGCR2_PDIV_7:
  1206. p0 = 7;
  1207. break;
  1208. }
  1209. switch (p2) {
  1210. case DPLL_CFGCR2_KDIV_5:
  1211. p2 = 5;
  1212. break;
  1213. case DPLL_CFGCR2_KDIV_2:
  1214. p2 = 2;
  1215. break;
  1216. case DPLL_CFGCR2_KDIV_3:
  1217. p2 = 3;
  1218. break;
  1219. case DPLL_CFGCR2_KDIV_1:
  1220. p2 = 1;
  1221. break;
  1222. }
  1223. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  1224. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  1225. 1000) / 0x8000;
  1226. return dco_freq / (p0 * p1 * p2 * 5);
  1227. }
  1228. static int cnl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1229. enum intel_dpll_id pll_id)
  1230. {
  1231. uint32_t cfgcr0, cfgcr1;
  1232. uint32_t p0, p1, p2, dco_freq, ref_clock;
  1233. cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id));
  1234. cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(pll_id));
  1235. p0 = cfgcr1 & DPLL_CFGCR1_PDIV_MASK;
  1236. p2 = cfgcr1 & DPLL_CFGCR1_KDIV_MASK;
  1237. if (cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1))
  1238. p1 = (cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >>
  1239. DPLL_CFGCR1_QDIV_RATIO_SHIFT;
  1240. else
  1241. p1 = 1;
  1242. switch (p0) {
  1243. case DPLL_CFGCR1_PDIV_2:
  1244. p0 = 2;
  1245. break;
  1246. case DPLL_CFGCR1_PDIV_3:
  1247. p0 = 3;
  1248. break;
  1249. case DPLL_CFGCR1_PDIV_5:
  1250. p0 = 5;
  1251. break;
  1252. case DPLL_CFGCR1_PDIV_7:
  1253. p0 = 7;
  1254. break;
  1255. }
  1256. switch (p2) {
  1257. case DPLL_CFGCR1_KDIV_1:
  1258. p2 = 1;
  1259. break;
  1260. case DPLL_CFGCR1_KDIV_2:
  1261. p2 = 2;
  1262. break;
  1263. case DPLL_CFGCR1_KDIV_4:
  1264. p2 = 4;
  1265. break;
  1266. }
  1267. ref_clock = dev_priv->cdclk.hw.ref;
  1268. dco_freq = (cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK) * ref_clock;
  1269. dco_freq += (((cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >>
  1270. DPLL_CFGCR0_DCO_FRACTION_SHIFT) * ref_clock) / 0x8000;
  1271. if (WARN_ON(p0 == 0 || p1 == 0 || p2 == 0))
  1272. return 0;
  1273. return dco_freq / (p0 * p1 * p2 * 5);
  1274. }
  1275. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  1276. {
  1277. int dotclock;
  1278. if (pipe_config->has_pch_encoder)
  1279. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1280. &pipe_config->fdi_m_n);
  1281. else if (intel_crtc_has_dp_encoder(pipe_config))
  1282. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1283. &pipe_config->dp_m_n);
  1284. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  1285. dotclock = pipe_config->port_clock * 2 / 3;
  1286. else
  1287. dotclock = pipe_config->port_clock;
  1288. if (pipe_config->ycbcr420)
  1289. dotclock *= 2;
  1290. if (pipe_config->pixel_multiplier)
  1291. dotclock /= pipe_config->pixel_multiplier;
  1292. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  1293. }
  1294. static void cnl_ddi_clock_get(struct intel_encoder *encoder,
  1295. struct intel_crtc_state *pipe_config)
  1296. {
  1297. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1298. int link_clock = 0;
  1299. uint32_t cfgcr0;
  1300. enum intel_dpll_id pll_id;
  1301. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1302. cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id));
  1303. if (cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
  1304. link_clock = cnl_calc_wrpll_link(dev_priv, pll_id);
  1305. } else {
  1306. link_clock = cfgcr0 & DPLL_CFGCR0_LINK_RATE_MASK;
  1307. switch (link_clock) {
  1308. case DPLL_CFGCR0_LINK_RATE_810:
  1309. link_clock = 81000;
  1310. break;
  1311. case DPLL_CFGCR0_LINK_RATE_1080:
  1312. link_clock = 108000;
  1313. break;
  1314. case DPLL_CFGCR0_LINK_RATE_1350:
  1315. link_clock = 135000;
  1316. break;
  1317. case DPLL_CFGCR0_LINK_RATE_1620:
  1318. link_clock = 162000;
  1319. break;
  1320. case DPLL_CFGCR0_LINK_RATE_2160:
  1321. link_clock = 216000;
  1322. break;
  1323. case DPLL_CFGCR0_LINK_RATE_2700:
  1324. link_clock = 270000;
  1325. break;
  1326. case DPLL_CFGCR0_LINK_RATE_3240:
  1327. link_clock = 324000;
  1328. break;
  1329. case DPLL_CFGCR0_LINK_RATE_4050:
  1330. link_clock = 405000;
  1331. break;
  1332. default:
  1333. WARN(1, "Unsupported link rate\n");
  1334. break;
  1335. }
  1336. link_clock *= 2;
  1337. }
  1338. pipe_config->port_clock = link_clock;
  1339. ddi_dotclock_get(pipe_config);
  1340. }
  1341. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  1342. struct intel_crtc_state *pipe_config)
  1343. {
  1344. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1345. int link_clock = 0;
  1346. uint32_t dpll_ctl1;
  1347. enum intel_dpll_id pll_id;
  1348. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1349. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  1350. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(pll_id)) {
  1351. link_clock = skl_calc_wrpll_link(dev_priv, pll_id);
  1352. } else {
  1353. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(pll_id);
  1354. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(pll_id);
  1355. switch (link_clock) {
  1356. case DPLL_CTRL1_LINK_RATE_810:
  1357. link_clock = 81000;
  1358. break;
  1359. case DPLL_CTRL1_LINK_RATE_1080:
  1360. link_clock = 108000;
  1361. break;
  1362. case DPLL_CTRL1_LINK_RATE_1350:
  1363. link_clock = 135000;
  1364. break;
  1365. case DPLL_CTRL1_LINK_RATE_1620:
  1366. link_clock = 162000;
  1367. break;
  1368. case DPLL_CTRL1_LINK_RATE_2160:
  1369. link_clock = 216000;
  1370. break;
  1371. case DPLL_CTRL1_LINK_RATE_2700:
  1372. link_clock = 270000;
  1373. break;
  1374. default:
  1375. WARN(1, "Unsupported link rate\n");
  1376. break;
  1377. }
  1378. link_clock *= 2;
  1379. }
  1380. pipe_config->port_clock = link_clock;
  1381. ddi_dotclock_get(pipe_config);
  1382. }
  1383. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  1384. struct intel_crtc_state *pipe_config)
  1385. {
  1386. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1387. int link_clock = 0;
  1388. u32 val, pll;
  1389. val = hsw_pll_to_ddi_pll_sel(pipe_config->shared_dpll);
  1390. switch (val & PORT_CLK_SEL_MASK) {
  1391. case PORT_CLK_SEL_LCPLL_810:
  1392. link_clock = 81000;
  1393. break;
  1394. case PORT_CLK_SEL_LCPLL_1350:
  1395. link_clock = 135000;
  1396. break;
  1397. case PORT_CLK_SEL_LCPLL_2700:
  1398. link_clock = 270000;
  1399. break;
  1400. case PORT_CLK_SEL_WRPLL1:
  1401. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  1402. break;
  1403. case PORT_CLK_SEL_WRPLL2:
  1404. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  1405. break;
  1406. case PORT_CLK_SEL_SPLL:
  1407. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  1408. if (pll == SPLL_PLL_FREQ_810MHz)
  1409. link_clock = 81000;
  1410. else if (pll == SPLL_PLL_FREQ_1350MHz)
  1411. link_clock = 135000;
  1412. else if (pll == SPLL_PLL_FREQ_2700MHz)
  1413. link_clock = 270000;
  1414. else {
  1415. WARN(1, "bad spll freq\n");
  1416. return;
  1417. }
  1418. break;
  1419. default:
  1420. WARN(1, "bad port clock sel\n");
  1421. return;
  1422. }
  1423. pipe_config->port_clock = link_clock * 2;
  1424. ddi_dotclock_get(pipe_config);
  1425. }
  1426. static int bxt_calc_pll_link(struct intel_crtc_state *crtc_state)
  1427. {
  1428. struct intel_dpll_hw_state *state;
  1429. struct dpll clock;
  1430. /* For DDI ports we always use a shared PLL. */
  1431. if (WARN_ON(!crtc_state->shared_dpll))
  1432. return 0;
  1433. state = &crtc_state->dpll_hw_state;
  1434. clock.m1 = 2;
  1435. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  1436. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  1437. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  1438. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  1439. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  1440. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  1441. return chv_calc_dpll_params(100000, &clock);
  1442. }
  1443. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  1444. struct intel_crtc_state *pipe_config)
  1445. {
  1446. pipe_config->port_clock = bxt_calc_pll_link(pipe_config);
  1447. ddi_dotclock_get(pipe_config);
  1448. }
  1449. static void intel_ddi_clock_get(struct intel_encoder *encoder,
  1450. struct intel_crtc_state *pipe_config)
  1451. {
  1452. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1453. if (INTEL_GEN(dev_priv) <= 8)
  1454. hsw_ddi_clock_get(encoder, pipe_config);
  1455. else if (IS_GEN9_BC(dev_priv))
  1456. skl_ddi_clock_get(encoder, pipe_config);
  1457. else if (IS_GEN9_LP(dev_priv))
  1458. bxt_ddi_clock_get(encoder, pipe_config);
  1459. else if (IS_CANNONLAKE(dev_priv))
  1460. cnl_ddi_clock_get(encoder, pipe_config);
  1461. }
  1462. void intel_ddi_set_pipe_settings(const struct intel_crtc_state *crtc_state)
  1463. {
  1464. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1465. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1466. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1467. u32 temp;
  1468. if (!intel_crtc_has_dp_encoder(crtc_state))
  1469. return;
  1470. WARN_ON(transcoder_is_dsi(cpu_transcoder));
  1471. temp = TRANS_MSA_SYNC_CLK;
  1472. switch (crtc_state->pipe_bpp) {
  1473. case 18:
  1474. temp |= TRANS_MSA_6_BPC;
  1475. break;
  1476. case 24:
  1477. temp |= TRANS_MSA_8_BPC;
  1478. break;
  1479. case 30:
  1480. temp |= TRANS_MSA_10_BPC;
  1481. break;
  1482. case 36:
  1483. temp |= TRANS_MSA_12_BPC;
  1484. break;
  1485. default:
  1486. MISSING_CASE(crtc_state->pipe_bpp);
  1487. break;
  1488. }
  1489. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1490. }
  1491. void intel_ddi_set_vc_payload_alloc(const struct intel_crtc_state *crtc_state,
  1492. bool state)
  1493. {
  1494. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1495. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1496. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1497. uint32_t temp;
  1498. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1499. if (state == true)
  1500. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1501. else
  1502. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1503. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1504. }
  1505. void intel_ddi_enable_transcoder_func(const struct intel_crtc_state *crtc_state)
  1506. {
  1507. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1508. struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
  1509. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1510. enum pipe pipe = crtc->pipe;
  1511. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1512. enum port port = encoder->port;
  1513. uint32_t temp;
  1514. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1515. temp = TRANS_DDI_FUNC_ENABLE;
  1516. temp |= TRANS_DDI_SELECT_PORT(port);
  1517. switch (crtc_state->pipe_bpp) {
  1518. case 18:
  1519. temp |= TRANS_DDI_BPC_6;
  1520. break;
  1521. case 24:
  1522. temp |= TRANS_DDI_BPC_8;
  1523. break;
  1524. case 30:
  1525. temp |= TRANS_DDI_BPC_10;
  1526. break;
  1527. case 36:
  1528. temp |= TRANS_DDI_BPC_12;
  1529. break;
  1530. default:
  1531. BUG();
  1532. }
  1533. if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1534. temp |= TRANS_DDI_PVSYNC;
  1535. if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1536. temp |= TRANS_DDI_PHSYNC;
  1537. if (cpu_transcoder == TRANSCODER_EDP) {
  1538. switch (pipe) {
  1539. case PIPE_A:
  1540. /* On Haswell, can only use the always-on power well for
  1541. * eDP when not using the panel fitter, and when not
  1542. * using motion blur mitigation (which we don't
  1543. * support). */
  1544. if (IS_HASWELL(dev_priv) &&
  1545. (crtc_state->pch_pfit.enabled ||
  1546. crtc_state->pch_pfit.force_thru))
  1547. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1548. else
  1549. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1550. break;
  1551. case PIPE_B:
  1552. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1553. break;
  1554. case PIPE_C:
  1555. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1556. break;
  1557. default:
  1558. BUG();
  1559. break;
  1560. }
  1561. }
  1562. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  1563. if (crtc_state->has_hdmi_sink)
  1564. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1565. else
  1566. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1567. if (crtc_state->hdmi_scrambling)
  1568. temp |= TRANS_DDI_HDMI_SCRAMBLING_MASK;
  1569. if (crtc_state->hdmi_high_tmds_clock_ratio)
  1570. temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE;
  1571. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  1572. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1573. temp |= (crtc_state->fdi_lanes - 1) << 1;
  1574. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
  1575. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1576. temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
  1577. } else {
  1578. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1579. temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
  1580. }
  1581. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1582. }
  1583. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1584. enum transcoder cpu_transcoder)
  1585. {
  1586. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1587. uint32_t val = I915_READ(reg);
  1588. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1589. val |= TRANS_DDI_PORT_NONE;
  1590. I915_WRITE(reg, val);
  1591. }
  1592. int intel_ddi_toggle_hdcp_signalling(struct intel_encoder *intel_encoder,
  1593. bool enable)
  1594. {
  1595. struct drm_device *dev = intel_encoder->base.dev;
  1596. struct drm_i915_private *dev_priv = to_i915(dev);
  1597. enum pipe pipe = 0;
  1598. int ret = 0;
  1599. uint32_t tmp;
  1600. if (WARN_ON(!intel_display_power_get_if_enabled(dev_priv,
  1601. intel_encoder->power_domain)))
  1602. return -ENXIO;
  1603. if (WARN_ON(!intel_encoder->get_hw_state(intel_encoder, &pipe))) {
  1604. ret = -EIO;
  1605. goto out;
  1606. }
  1607. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe));
  1608. if (enable)
  1609. tmp |= TRANS_DDI_HDCP_SIGNALLING;
  1610. else
  1611. tmp &= ~TRANS_DDI_HDCP_SIGNALLING;
  1612. I915_WRITE(TRANS_DDI_FUNC_CTL(pipe), tmp);
  1613. out:
  1614. intel_display_power_put(dev_priv, intel_encoder->power_domain);
  1615. return ret;
  1616. }
  1617. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1618. {
  1619. struct drm_device *dev = intel_connector->base.dev;
  1620. struct drm_i915_private *dev_priv = to_i915(dev);
  1621. struct intel_encoder *encoder = intel_connector->encoder;
  1622. int type = intel_connector->base.connector_type;
  1623. enum port port = encoder->port;
  1624. enum pipe pipe = 0;
  1625. enum transcoder cpu_transcoder;
  1626. uint32_t tmp;
  1627. bool ret;
  1628. if (!intel_display_power_get_if_enabled(dev_priv,
  1629. encoder->power_domain))
  1630. return false;
  1631. if (!encoder->get_hw_state(encoder, &pipe)) {
  1632. ret = false;
  1633. goto out;
  1634. }
  1635. if (port == PORT_A)
  1636. cpu_transcoder = TRANSCODER_EDP;
  1637. else
  1638. cpu_transcoder = (enum transcoder) pipe;
  1639. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1640. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1641. case TRANS_DDI_MODE_SELECT_HDMI:
  1642. case TRANS_DDI_MODE_SELECT_DVI:
  1643. ret = type == DRM_MODE_CONNECTOR_HDMIA;
  1644. break;
  1645. case TRANS_DDI_MODE_SELECT_DP_SST:
  1646. ret = type == DRM_MODE_CONNECTOR_eDP ||
  1647. type == DRM_MODE_CONNECTOR_DisplayPort;
  1648. break;
  1649. case TRANS_DDI_MODE_SELECT_DP_MST:
  1650. /* if the transcoder is in MST state then
  1651. * connector isn't connected */
  1652. ret = false;
  1653. break;
  1654. case TRANS_DDI_MODE_SELECT_FDI:
  1655. ret = type == DRM_MODE_CONNECTOR_VGA;
  1656. break;
  1657. default:
  1658. ret = false;
  1659. break;
  1660. }
  1661. out:
  1662. intel_display_power_put(dev_priv, encoder->power_domain);
  1663. return ret;
  1664. }
  1665. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1666. enum pipe *pipe)
  1667. {
  1668. struct drm_device *dev = encoder->base.dev;
  1669. struct drm_i915_private *dev_priv = to_i915(dev);
  1670. enum port port = encoder->port;
  1671. enum pipe p;
  1672. u32 tmp;
  1673. bool ret;
  1674. if (!intel_display_power_get_if_enabled(dev_priv,
  1675. encoder->power_domain))
  1676. return false;
  1677. ret = false;
  1678. tmp = I915_READ(DDI_BUF_CTL(port));
  1679. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1680. goto out;
  1681. if (port == PORT_A) {
  1682. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1683. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1684. case TRANS_DDI_EDP_INPUT_A_ON:
  1685. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1686. *pipe = PIPE_A;
  1687. break;
  1688. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1689. *pipe = PIPE_B;
  1690. break;
  1691. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1692. *pipe = PIPE_C;
  1693. break;
  1694. }
  1695. ret = true;
  1696. goto out;
  1697. }
  1698. for_each_pipe(dev_priv, p) {
  1699. enum transcoder cpu_transcoder = (enum transcoder) p;
  1700. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1701. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
  1702. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
  1703. TRANS_DDI_MODE_SELECT_DP_MST)
  1704. goto out;
  1705. *pipe = p;
  1706. ret = true;
  1707. goto out;
  1708. }
  1709. }
  1710. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1711. out:
  1712. if (ret && IS_GEN9_LP(dev_priv)) {
  1713. tmp = I915_READ(BXT_PHY_CTL(port));
  1714. if ((tmp & (BXT_PHY_CMNLANE_POWERDOWN_ACK |
  1715. BXT_PHY_LANE_POWERDOWN_ACK |
  1716. BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
  1717. DRM_ERROR("Port %c enabled but PHY powered down? "
  1718. "(PHY_CTL %08x)\n", port_name(port), tmp);
  1719. }
  1720. intel_display_power_put(dev_priv, encoder->power_domain);
  1721. return ret;
  1722. }
  1723. static u64 intel_ddi_get_power_domains(struct intel_encoder *encoder)
  1724. {
  1725. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1726. enum pipe pipe;
  1727. if (intel_ddi_get_hw_state(encoder, &pipe))
  1728. return BIT_ULL(dig_port->ddi_io_power_domain);
  1729. return 0;
  1730. }
  1731. void intel_ddi_enable_pipe_clock(const struct intel_crtc_state *crtc_state)
  1732. {
  1733. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1734. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1735. struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
  1736. enum port port = encoder->port;
  1737. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1738. if (cpu_transcoder != TRANSCODER_EDP)
  1739. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1740. TRANS_CLK_SEL_PORT(port));
  1741. }
  1742. void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state)
  1743. {
  1744. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1745. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1746. if (cpu_transcoder != TRANSCODER_EDP)
  1747. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1748. TRANS_CLK_SEL_DISABLED);
  1749. }
  1750. static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
  1751. enum port port, uint8_t iboost)
  1752. {
  1753. u32 tmp;
  1754. tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1755. tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
  1756. if (iboost)
  1757. tmp |= iboost << BALANCE_LEG_SHIFT(port);
  1758. else
  1759. tmp |= BALANCE_LEG_DISABLE(port);
  1760. I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
  1761. }
  1762. static void skl_ddi_set_iboost(struct intel_encoder *encoder,
  1763. int level, enum intel_output_type type)
  1764. {
  1765. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  1766. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1767. enum port port = encoder->port;
  1768. uint8_t iboost;
  1769. if (type == INTEL_OUTPUT_HDMI)
  1770. iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1771. else
  1772. iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1773. if (iboost == 0) {
  1774. const struct ddi_buf_trans *ddi_translations;
  1775. int n_entries;
  1776. if (type == INTEL_OUTPUT_HDMI)
  1777. ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  1778. else if (type == INTEL_OUTPUT_EDP)
  1779. ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
  1780. else
  1781. ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
  1782. if (WARN_ON_ONCE(!ddi_translations))
  1783. return;
  1784. if (WARN_ON_ONCE(level >= n_entries))
  1785. level = n_entries - 1;
  1786. iboost = ddi_translations[level].i_boost;
  1787. }
  1788. /* Make sure that the requested I_boost is valid */
  1789. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1790. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1791. return;
  1792. }
  1793. _skl_ddi_set_iboost(dev_priv, port, iboost);
  1794. if (port == PORT_A && intel_dig_port->max_lanes == 4)
  1795. _skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
  1796. }
  1797. static void bxt_ddi_vswing_sequence(struct intel_encoder *encoder,
  1798. int level, enum intel_output_type type)
  1799. {
  1800. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1801. const struct bxt_ddi_buf_trans *ddi_translations;
  1802. enum port port = encoder->port;
  1803. int n_entries;
  1804. if (type == INTEL_OUTPUT_HDMI)
  1805. ddi_translations = bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
  1806. else if (type == INTEL_OUTPUT_EDP)
  1807. ddi_translations = bxt_get_buf_trans_edp(dev_priv, &n_entries);
  1808. else
  1809. ddi_translations = bxt_get_buf_trans_dp(dev_priv, &n_entries);
  1810. if (WARN_ON_ONCE(!ddi_translations))
  1811. return;
  1812. if (WARN_ON_ONCE(level >= n_entries))
  1813. level = n_entries - 1;
  1814. bxt_ddi_phy_set_signal_level(dev_priv, port,
  1815. ddi_translations[level].margin,
  1816. ddi_translations[level].scale,
  1817. ddi_translations[level].enable,
  1818. ddi_translations[level].deemphasis);
  1819. }
  1820. u8 intel_ddi_dp_voltage_max(struct intel_encoder *encoder)
  1821. {
  1822. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1823. enum port port = encoder->port;
  1824. int n_entries;
  1825. if (IS_ICELAKE(dev_priv)) {
  1826. if (port == PORT_A || port == PORT_B)
  1827. icl_get_combo_buf_trans(dev_priv, port, encoder->type,
  1828. &n_entries);
  1829. else
  1830. n_entries = ARRAY_SIZE(icl_mg_phy_ddi_translations);
  1831. } else if (IS_CANNONLAKE(dev_priv)) {
  1832. if (encoder->type == INTEL_OUTPUT_EDP)
  1833. cnl_get_buf_trans_edp(dev_priv, &n_entries);
  1834. else
  1835. cnl_get_buf_trans_dp(dev_priv, &n_entries);
  1836. } else if (IS_GEN9_LP(dev_priv)) {
  1837. if (encoder->type == INTEL_OUTPUT_EDP)
  1838. bxt_get_buf_trans_edp(dev_priv, &n_entries);
  1839. else
  1840. bxt_get_buf_trans_dp(dev_priv, &n_entries);
  1841. } else {
  1842. if (encoder->type == INTEL_OUTPUT_EDP)
  1843. intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
  1844. else
  1845. intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
  1846. }
  1847. if (WARN_ON(n_entries < 1))
  1848. n_entries = 1;
  1849. if (WARN_ON(n_entries > ARRAY_SIZE(index_to_dp_signal_levels)))
  1850. n_entries = ARRAY_SIZE(index_to_dp_signal_levels);
  1851. return index_to_dp_signal_levels[n_entries - 1] &
  1852. DP_TRAIN_VOLTAGE_SWING_MASK;
  1853. }
  1854. static void cnl_ddi_vswing_program(struct intel_encoder *encoder,
  1855. int level, enum intel_output_type type)
  1856. {
  1857. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1858. const struct cnl_ddi_buf_trans *ddi_translations;
  1859. enum port port = encoder->port;
  1860. int n_entries, ln;
  1861. u32 val;
  1862. if (type == INTEL_OUTPUT_HDMI)
  1863. ddi_translations = cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
  1864. else if (type == INTEL_OUTPUT_EDP)
  1865. ddi_translations = cnl_get_buf_trans_edp(dev_priv, &n_entries);
  1866. else
  1867. ddi_translations = cnl_get_buf_trans_dp(dev_priv, &n_entries);
  1868. if (WARN_ON_ONCE(!ddi_translations))
  1869. return;
  1870. if (WARN_ON_ONCE(level >= n_entries))
  1871. level = n_entries - 1;
  1872. /* Set PORT_TX_DW5 Scaling Mode Sel to 010b. */
  1873. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1874. val &= ~SCALING_MODE_SEL_MASK;
  1875. val |= SCALING_MODE_SEL(2);
  1876. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1877. /* Program PORT_TX_DW2 */
  1878. val = I915_READ(CNL_PORT_TX_DW2_LN0(port));
  1879. val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
  1880. RCOMP_SCALAR_MASK);
  1881. val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel);
  1882. val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel);
  1883. /* Rcomp scalar is fixed as 0x98 for every table entry */
  1884. val |= RCOMP_SCALAR(0x98);
  1885. I915_WRITE(CNL_PORT_TX_DW2_GRP(port), val);
  1886. /* Program PORT_TX_DW4 */
  1887. /* We cannot write to GRP. It would overrite individual loadgen */
  1888. for (ln = 0; ln < 4; ln++) {
  1889. val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
  1890. val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
  1891. CURSOR_COEFF_MASK);
  1892. val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1);
  1893. val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2);
  1894. val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff);
  1895. I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
  1896. }
  1897. /* Program PORT_TX_DW5 */
  1898. /* All DW5 values are fixed for every table entry */
  1899. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1900. val &= ~RTERM_SELECT_MASK;
  1901. val |= RTERM_SELECT(6);
  1902. val |= TAP3_DISABLE;
  1903. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1904. /* Program PORT_TX_DW7 */
  1905. val = I915_READ(CNL_PORT_TX_DW7_LN0(port));
  1906. val &= ~N_SCALAR_MASK;
  1907. val |= N_SCALAR(ddi_translations[level].dw7_n_scalar);
  1908. I915_WRITE(CNL_PORT_TX_DW7_GRP(port), val);
  1909. }
  1910. static void cnl_ddi_vswing_sequence(struct intel_encoder *encoder,
  1911. int level, enum intel_output_type type)
  1912. {
  1913. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1914. enum port port = encoder->port;
  1915. int width, rate, ln;
  1916. u32 val;
  1917. if (type == INTEL_OUTPUT_HDMI) {
  1918. width = 4;
  1919. rate = 0; /* Rate is always < than 6GHz for HDMI */
  1920. } else {
  1921. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1922. width = intel_dp->lane_count;
  1923. rate = intel_dp->link_rate;
  1924. }
  1925. /*
  1926. * 1. If port type is eDP or DP,
  1927. * set PORT_PCS_DW1 cmnkeeper_enable to 1b,
  1928. * else clear to 0b.
  1929. */
  1930. val = I915_READ(CNL_PORT_PCS_DW1_LN0(port));
  1931. if (type != INTEL_OUTPUT_HDMI)
  1932. val |= COMMON_KEEPER_EN;
  1933. else
  1934. val &= ~COMMON_KEEPER_EN;
  1935. I915_WRITE(CNL_PORT_PCS_DW1_GRP(port), val);
  1936. /* 2. Program loadgen select */
  1937. /*
  1938. * Program PORT_TX_DW4_LN depending on Bit rate and used lanes
  1939. * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
  1940. * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
  1941. * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
  1942. */
  1943. for (ln = 0; ln <= 3; ln++) {
  1944. val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
  1945. val &= ~LOADGEN_SELECT;
  1946. if ((rate <= 600000 && width == 4 && ln >= 1) ||
  1947. (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
  1948. val |= LOADGEN_SELECT;
  1949. }
  1950. I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
  1951. }
  1952. /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
  1953. val = I915_READ(CNL_PORT_CL1CM_DW5);
  1954. val |= SUS_CLOCK_CONFIG;
  1955. I915_WRITE(CNL_PORT_CL1CM_DW5, val);
  1956. /* 4. Clear training enable to change swing values */
  1957. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1958. val &= ~TX_TRAINING_EN;
  1959. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1960. /* 5. Program swing and de-emphasis */
  1961. cnl_ddi_vswing_program(encoder, level, type);
  1962. /* 6. Set training enable to trigger update */
  1963. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1964. val |= TX_TRAINING_EN;
  1965. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1966. }
  1967. static void icl_ddi_combo_vswing_program(struct drm_i915_private *dev_priv,
  1968. u32 level, enum port port, int type)
  1969. {
  1970. const struct icl_combo_phy_ddi_buf_trans *ddi_translations = NULL;
  1971. u32 n_entries, val;
  1972. int ln;
  1973. ddi_translations = icl_get_combo_buf_trans(dev_priv, port, type,
  1974. &n_entries);
  1975. if (!ddi_translations)
  1976. return;
  1977. if (level >= n_entries) {
  1978. DRM_DEBUG_KMS("DDI translation not found for level %d. Using %d instead.", level, n_entries - 1);
  1979. level = n_entries - 1;
  1980. }
  1981. /* Set PORT_TX_DW5 Rterm Sel to 110b. */
  1982. val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
  1983. val &= ~RTERM_SELECT_MASK;
  1984. val |= RTERM_SELECT(0x6);
  1985. I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
  1986. /* Program PORT_TX_DW5 */
  1987. val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
  1988. /* Set DisableTap2 and DisableTap3 if MIPI DSI
  1989. * Clear DisableTap2 and DisableTap3 for all other Ports
  1990. */
  1991. if (type == INTEL_OUTPUT_DSI) {
  1992. val |= TAP2_DISABLE;
  1993. val |= TAP3_DISABLE;
  1994. } else {
  1995. val &= ~TAP2_DISABLE;
  1996. val &= ~TAP3_DISABLE;
  1997. }
  1998. I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
  1999. /* Program PORT_TX_DW2 */
  2000. val = I915_READ(ICL_PORT_TX_DW2_LN0(port));
  2001. val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
  2002. RCOMP_SCALAR_MASK);
  2003. val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_select);
  2004. val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_select);
  2005. /* Program Rcomp scalar for every table entry */
  2006. val |= RCOMP_SCALAR(ddi_translations[level].dw2_swing_scalar);
  2007. I915_WRITE(ICL_PORT_TX_DW2_GRP(port), val);
  2008. /* Program PORT_TX_DW4 */
  2009. /* We cannot write to GRP. It would overwrite individual loadgen. */
  2010. for (ln = 0; ln <= 3; ln++) {
  2011. val = I915_READ(ICL_PORT_TX_DW4_LN(port, ln));
  2012. val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
  2013. CURSOR_COEFF_MASK);
  2014. val |= ddi_translations[level].dw4_scaling;
  2015. I915_WRITE(ICL_PORT_TX_DW4_LN(port, ln), val);
  2016. }
  2017. }
  2018. static void icl_combo_phy_ddi_vswing_sequence(struct intel_encoder *encoder,
  2019. u32 level,
  2020. enum intel_output_type type)
  2021. {
  2022. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2023. enum port port = encoder->port;
  2024. int width = 0;
  2025. int rate = 0;
  2026. u32 val;
  2027. int ln = 0;
  2028. if (type == INTEL_OUTPUT_HDMI) {
  2029. width = 4;
  2030. /* Rate is always < than 6GHz for HDMI */
  2031. } else {
  2032. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2033. width = intel_dp->lane_count;
  2034. rate = intel_dp->link_rate;
  2035. }
  2036. /*
  2037. * 1. If port type is eDP or DP,
  2038. * set PORT_PCS_DW1 cmnkeeper_enable to 1b,
  2039. * else clear to 0b.
  2040. */
  2041. val = I915_READ(ICL_PORT_PCS_DW1_LN0(port));
  2042. if (type == INTEL_OUTPUT_HDMI)
  2043. val &= ~COMMON_KEEPER_EN;
  2044. else
  2045. val |= COMMON_KEEPER_EN;
  2046. I915_WRITE(ICL_PORT_PCS_DW1_GRP(port), val);
  2047. /* 2. Program loadgen select */
  2048. /*
  2049. * Program PORT_TX_DW4_LN depending on Bit rate and used lanes
  2050. * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
  2051. * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
  2052. * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
  2053. */
  2054. for (ln = 0; ln <= 3; ln++) {
  2055. val = I915_READ(ICL_PORT_TX_DW4_LN(port, ln));
  2056. val &= ~LOADGEN_SELECT;
  2057. if ((rate <= 600000 && width == 4 && ln >= 1) ||
  2058. (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
  2059. val |= LOADGEN_SELECT;
  2060. }
  2061. I915_WRITE(ICL_PORT_TX_DW4_LN(port, ln), val);
  2062. }
  2063. /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
  2064. val = I915_READ(ICL_PORT_CL_DW5(port));
  2065. val |= SUS_CLOCK_CONFIG;
  2066. I915_WRITE(ICL_PORT_CL_DW5(port), val);
  2067. /* 4. Clear training enable to change swing values */
  2068. val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
  2069. val &= ~TX_TRAINING_EN;
  2070. I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
  2071. /* 5. Program swing and de-emphasis */
  2072. icl_ddi_combo_vswing_program(dev_priv, level, port, type);
  2073. /* 6. Set training enable to trigger update */
  2074. val = I915_READ(ICL_PORT_TX_DW5_LN0(port));
  2075. val |= TX_TRAINING_EN;
  2076. I915_WRITE(ICL_PORT_TX_DW5_GRP(port), val);
  2077. }
  2078. static void icl_ddi_vswing_sequence(struct intel_encoder *encoder, u32 level,
  2079. enum intel_output_type type)
  2080. {
  2081. enum port port = encoder->port;
  2082. if (port == PORT_A || port == PORT_B)
  2083. icl_combo_phy_ddi_vswing_sequence(encoder, level, type);
  2084. else
  2085. /* Not Implemented Yet */
  2086. WARN_ON(1);
  2087. }
  2088. static uint32_t translate_signal_level(int signal_levels)
  2089. {
  2090. int i;
  2091. for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) {
  2092. if (index_to_dp_signal_levels[i] == signal_levels)
  2093. return i;
  2094. }
  2095. WARN(1, "Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  2096. signal_levels);
  2097. return 0;
  2098. }
  2099. static uint32_t intel_ddi_dp_level(struct intel_dp *intel_dp)
  2100. {
  2101. uint8_t train_set = intel_dp->train_set[0];
  2102. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2103. DP_TRAIN_PRE_EMPHASIS_MASK);
  2104. return translate_signal_level(signal_levels);
  2105. }
  2106. u32 bxt_signal_levels(struct intel_dp *intel_dp)
  2107. {
  2108. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  2109. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  2110. struct intel_encoder *encoder = &dport->base;
  2111. int level = intel_ddi_dp_level(intel_dp);
  2112. if (IS_ICELAKE(dev_priv))
  2113. icl_ddi_vswing_sequence(encoder, level, encoder->type);
  2114. else if (IS_CANNONLAKE(dev_priv))
  2115. cnl_ddi_vswing_sequence(encoder, level, encoder->type);
  2116. else
  2117. bxt_ddi_vswing_sequence(encoder, level, encoder->type);
  2118. return 0;
  2119. }
  2120. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  2121. {
  2122. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  2123. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  2124. struct intel_encoder *encoder = &dport->base;
  2125. int level = intel_ddi_dp_level(intel_dp);
  2126. if (IS_GEN9_BC(dev_priv))
  2127. skl_ddi_set_iboost(encoder, level, encoder->type);
  2128. return DDI_BUF_TRANS_SELECT(level);
  2129. }
  2130. void icl_map_plls_to_ports(struct drm_crtc *crtc,
  2131. struct intel_crtc_state *crtc_state,
  2132. struct drm_atomic_state *old_state)
  2133. {
  2134. struct intel_shared_dpll *pll = crtc_state->shared_dpll;
  2135. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  2136. struct drm_connector_state *conn_state;
  2137. struct drm_connector *conn;
  2138. int i;
  2139. for_each_new_connector_in_state(old_state, conn, conn_state, i) {
  2140. struct intel_encoder *encoder =
  2141. to_intel_encoder(conn_state->best_encoder);
  2142. enum port port;
  2143. uint32_t val;
  2144. if (conn_state->crtc != crtc)
  2145. continue;
  2146. port = encoder->port;
  2147. mutex_lock(&dev_priv->dpll_lock);
  2148. val = I915_READ(DPCLKA_CFGCR0_ICL);
  2149. WARN_ON((val & DPCLKA_CFGCR0_DDI_CLK_OFF(port)) == 0);
  2150. if (port == PORT_A || port == PORT_B) {
  2151. val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
  2152. val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, port);
  2153. I915_WRITE(DPCLKA_CFGCR0_ICL, val);
  2154. POSTING_READ(DPCLKA_CFGCR0_ICL);
  2155. }
  2156. val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port);
  2157. I915_WRITE(DPCLKA_CFGCR0_ICL, val);
  2158. mutex_unlock(&dev_priv->dpll_lock);
  2159. }
  2160. }
  2161. void icl_unmap_plls_to_ports(struct drm_crtc *crtc,
  2162. struct intel_crtc_state *crtc_state,
  2163. struct drm_atomic_state *old_state)
  2164. {
  2165. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  2166. struct drm_connector_state *old_conn_state;
  2167. struct drm_connector *conn;
  2168. int i;
  2169. for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
  2170. struct intel_encoder *encoder =
  2171. to_intel_encoder(old_conn_state->best_encoder);
  2172. enum port port;
  2173. if (old_conn_state->crtc != crtc)
  2174. continue;
  2175. port = encoder->port;
  2176. mutex_lock(&dev_priv->dpll_lock);
  2177. I915_WRITE(DPCLKA_CFGCR0_ICL,
  2178. I915_READ(DPCLKA_CFGCR0_ICL) |
  2179. DPCLKA_CFGCR0_DDI_CLK_OFF(port));
  2180. mutex_unlock(&dev_priv->dpll_lock);
  2181. }
  2182. }
  2183. static void intel_ddi_clk_select(struct intel_encoder *encoder,
  2184. const struct intel_shared_dpll *pll)
  2185. {
  2186. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2187. enum port port = encoder->port;
  2188. uint32_t val;
  2189. if (WARN_ON(!pll))
  2190. return;
  2191. mutex_lock(&dev_priv->dpll_lock);
  2192. if (IS_ICELAKE(dev_priv)) {
  2193. if (port >= PORT_C)
  2194. I915_WRITE(DDI_CLK_SEL(port),
  2195. icl_pll_to_ddi_pll_sel(encoder, pll));
  2196. } else if (IS_CANNONLAKE(dev_priv)) {
  2197. /* Configure DPCLKA_CFGCR0 to map the DPLL to the DDI. */
  2198. val = I915_READ(DPCLKA_CFGCR0);
  2199. val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
  2200. val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, port);
  2201. I915_WRITE(DPCLKA_CFGCR0, val);
  2202. /*
  2203. * Configure DPCLKA_CFGCR0 to turn on the clock for the DDI.
  2204. * This step and the step before must be done with separate
  2205. * register writes.
  2206. */
  2207. val = I915_READ(DPCLKA_CFGCR0);
  2208. val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port);
  2209. I915_WRITE(DPCLKA_CFGCR0, val);
  2210. } else if (IS_GEN9_BC(dev_priv)) {
  2211. /* DDI -> PLL mapping */
  2212. val = I915_READ(DPLL_CTRL2);
  2213. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  2214. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  2215. val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->info->id, port) |
  2216. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  2217. I915_WRITE(DPLL_CTRL2, val);
  2218. } else if (INTEL_GEN(dev_priv) < 9) {
  2219. I915_WRITE(PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll));
  2220. }
  2221. mutex_unlock(&dev_priv->dpll_lock);
  2222. }
  2223. static void intel_ddi_clk_disable(struct intel_encoder *encoder)
  2224. {
  2225. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2226. enum port port = encoder->port;
  2227. if (IS_ICELAKE(dev_priv)) {
  2228. if (port >= PORT_C)
  2229. I915_WRITE(DDI_CLK_SEL(port), DDI_CLK_SEL_NONE);
  2230. } else if (IS_CANNONLAKE(dev_priv)) {
  2231. I915_WRITE(DPCLKA_CFGCR0, I915_READ(DPCLKA_CFGCR0) |
  2232. DPCLKA_CFGCR0_DDI_CLK_OFF(port));
  2233. } else if (IS_GEN9_BC(dev_priv)) {
  2234. I915_WRITE(DPLL_CTRL2, I915_READ(DPLL_CTRL2) |
  2235. DPLL_CTRL2_DDI_CLK_OFF(port));
  2236. } else if (INTEL_GEN(dev_priv) < 9) {
  2237. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  2238. }
  2239. }
  2240. static void intel_ddi_pre_enable_dp(struct intel_encoder *encoder,
  2241. const struct intel_crtc_state *crtc_state,
  2242. const struct drm_connector_state *conn_state)
  2243. {
  2244. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2245. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2246. enum port port = encoder->port;
  2247. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2248. bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST);
  2249. int level = intel_ddi_dp_level(intel_dp);
  2250. WARN_ON(is_mst && (port == PORT_A || port == PORT_E));
  2251. intel_dp_set_link_params(intel_dp, crtc_state->port_clock,
  2252. crtc_state->lane_count, is_mst);
  2253. intel_edp_panel_on(intel_dp);
  2254. intel_ddi_clk_select(encoder, crtc_state->shared_dpll);
  2255. intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
  2256. if (IS_ICELAKE(dev_priv))
  2257. icl_ddi_vswing_sequence(encoder, level, encoder->type);
  2258. else if (IS_CANNONLAKE(dev_priv))
  2259. cnl_ddi_vswing_sequence(encoder, level, encoder->type);
  2260. else if (IS_GEN9_LP(dev_priv))
  2261. bxt_ddi_vswing_sequence(encoder, level, encoder->type);
  2262. else
  2263. intel_prepare_dp_ddi_buffers(encoder, crtc_state);
  2264. intel_ddi_init_dp_buf_reg(encoder);
  2265. if (!is_mst)
  2266. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  2267. intel_dp_start_link_train(intel_dp);
  2268. if (port != PORT_A || INTEL_GEN(dev_priv) >= 9)
  2269. intel_dp_stop_link_train(intel_dp);
  2270. }
  2271. static void intel_ddi_pre_enable_hdmi(struct intel_encoder *encoder,
  2272. const struct intel_crtc_state *crtc_state,
  2273. const struct drm_connector_state *conn_state)
  2274. {
  2275. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  2276. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  2277. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2278. enum port port = encoder->port;
  2279. int level = intel_ddi_hdmi_level(dev_priv, port);
  2280. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2281. intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
  2282. intel_ddi_clk_select(encoder, crtc_state->shared_dpll);
  2283. intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
  2284. if (IS_ICELAKE(dev_priv))
  2285. icl_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  2286. else if (IS_CANNONLAKE(dev_priv))
  2287. cnl_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  2288. else if (IS_GEN9_LP(dev_priv))
  2289. bxt_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  2290. else
  2291. intel_prepare_hdmi_ddi_buffers(encoder, level);
  2292. if (IS_GEN9_BC(dev_priv))
  2293. skl_ddi_set_iboost(encoder, level, INTEL_OUTPUT_HDMI);
  2294. intel_dig_port->set_infoframes(&encoder->base,
  2295. crtc_state->has_infoframe,
  2296. crtc_state, conn_state);
  2297. }
  2298. static void intel_ddi_pre_enable(struct intel_encoder *encoder,
  2299. const struct intel_crtc_state *crtc_state,
  2300. const struct drm_connector_state *conn_state)
  2301. {
  2302. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  2303. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  2304. enum pipe pipe = crtc->pipe;
  2305. /*
  2306. * When called from DP MST code:
  2307. * - conn_state will be NULL
  2308. * - encoder will be the main encoder (ie. mst->primary)
  2309. * - the main connector associated with this port
  2310. * won't be active or linked to a crtc
  2311. * - crtc_state will be the state of the first stream to
  2312. * be activated on this port, and it may not be the same
  2313. * stream that will be deactivated last, but each stream
  2314. * should have a state that is identical when it comes to
  2315. * the DP link parameteres
  2316. */
  2317. WARN_ON(crtc_state->has_pch_encoder);
  2318. intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  2319. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  2320. intel_ddi_pre_enable_hdmi(encoder, crtc_state, conn_state);
  2321. else
  2322. intel_ddi_pre_enable_dp(encoder, crtc_state, conn_state);
  2323. }
  2324. static void intel_disable_ddi_buf(struct intel_encoder *encoder)
  2325. {
  2326. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2327. enum port port = encoder->port;
  2328. bool wait = false;
  2329. u32 val;
  2330. val = I915_READ(DDI_BUF_CTL(port));
  2331. if (val & DDI_BUF_CTL_ENABLE) {
  2332. val &= ~DDI_BUF_CTL_ENABLE;
  2333. I915_WRITE(DDI_BUF_CTL(port), val);
  2334. wait = true;
  2335. }
  2336. val = I915_READ(DP_TP_CTL(port));
  2337. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2338. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2339. I915_WRITE(DP_TP_CTL(port), val);
  2340. if (wait)
  2341. intel_wait_ddi_buf_idle(dev_priv, port);
  2342. }
  2343. static void intel_ddi_post_disable_dp(struct intel_encoder *encoder,
  2344. const struct intel_crtc_state *old_crtc_state,
  2345. const struct drm_connector_state *old_conn_state)
  2346. {
  2347. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2348. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2349. struct intel_dp *intel_dp = &dig_port->dp;
  2350. bool is_mst = intel_crtc_has_type(old_crtc_state,
  2351. INTEL_OUTPUT_DP_MST);
  2352. /*
  2353. * Power down sink before disabling the port, otherwise we end
  2354. * up getting interrupts from the sink on detecting link loss.
  2355. */
  2356. if (!is_mst)
  2357. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  2358. intel_disable_ddi_buf(encoder);
  2359. intel_edp_panel_vdd_on(intel_dp);
  2360. intel_edp_panel_off(intel_dp);
  2361. intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
  2362. intel_ddi_clk_disable(encoder);
  2363. }
  2364. static void intel_ddi_post_disable_hdmi(struct intel_encoder *encoder,
  2365. const struct intel_crtc_state *old_crtc_state,
  2366. const struct drm_connector_state *old_conn_state)
  2367. {
  2368. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2369. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2370. struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
  2371. intel_disable_ddi_buf(encoder);
  2372. dig_port->set_infoframes(&encoder->base, false,
  2373. old_crtc_state, old_conn_state);
  2374. intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
  2375. intel_ddi_clk_disable(encoder);
  2376. intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
  2377. }
  2378. static void intel_ddi_post_disable(struct intel_encoder *encoder,
  2379. const struct intel_crtc_state *old_crtc_state,
  2380. const struct drm_connector_state *old_conn_state)
  2381. {
  2382. /*
  2383. * When called from DP MST code:
  2384. * - old_conn_state will be NULL
  2385. * - encoder will be the main encoder (ie. mst->primary)
  2386. * - the main connector associated with this port
  2387. * won't be active or linked to a crtc
  2388. * - old_crtc_state will be the state of the last stream to
  2389. * be deactivated on this port, and it may not be the same
  2390. * stream that was activated last, but each stream
  2391. * should have a state that is identical when it comes to
  2392. * the DP link parameteres
  2393. */
  2394. if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
  2395. intel_ddi_post_disable_hdmi(encoder,
  2396. old_crtc_state, old_conn_state);
  2397. else
  2398. intel_ddi_post_disable_dp(encoder,
  2399. old_crtc_state, old_conn_state);
  2400. }
  2401. void intel_ddi_fdi_post_disable(struct intel_encoder *encoder,
  2402. const struct intel_crtc_state *old_crtc_state,
  2403. const struct drm_connector_state *old_conn_state)
  2404. {
  2405. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2406. uint32_t val;
  2407. /*
  2408. * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
  2409. * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
  2410. * step 13 is the correct place for it. Step 18 is where it was
  2411. * originally before the BUN.
  2412. */
  2413. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2414. val &= ~FDI_RX_ENABLE;
  2415. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2416. intel_disable_ddi_buf(encoder);
  2417. intel_ddi_clk_disable(encoder);
  2418. val = I915_READ(FDI_RX_MISC(PIPE_A));
  2419. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  2420. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  2421. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  2422. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2423. val &= ~FDI_PCDCLK;
  2424. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2425. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2426. val &= ~FDI_RX_PLL_ENABLE;
  2427. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2428. }
  2429. static void intel_enable_ddi_dp(struct intel_encoder *encoder,
  2430. const struct intel_crtc_state *crtc_state,
  2431. const struct drm_connector_state *conn_state)
  2432. {
  2433. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2434. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2435. enum port port = encoder->port;
  2436. if (port == PORT_A && INTEL_GEN(dev_priv) < 9)
  2437. intel_dp_stop_link_train(intel_dp);
  2438. intel_edp_backlight_on(crtc_state, conn_state);
  2439. intel_psr_enable(intel_dp, crtc_state);
  2440. intel_edp_drrs_enable(intel_dp, crtc_state);
  2441. if (crtc_state->has_audio)
  2442. intel_audio_codec_enable(encoder, crtc_state, conn_state);
  2443. }
  2444. static void intel_enable_ddi_hdmi(struct intel_encoder *encoder,
  2445. const struct intel_crtc_state *crtc_state,
  2446. const struct drm_connector_state *conn_state)
  2447. {
  2448. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2449. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2450. struct drm_connector *connector = conn_state->connector;
  2451. enum port port = encoder->port;
  2452. if (!intel_hdmi_handle_sink_scrambling(encoder, connector,
  2453. crtc_state->hdmi_high_tmds_clock_ratio,
  2454. crtc_state->hdmi_scrambling))
  2455. DRM_ERROR("[CONNECTOR:%d:%s] Failed to configure sink scrambling/TMDS bit clock ratio\n",
  2456. connector->base.id, connector->name);
  2457. /* Display WA #1143: skl,kbl,cfl */
  2458. if (IS_GEN9_BC(dev_priv)) {
  2459. /*
  2460. * For some reason these chicken bits have been
  2461. * stuffed into a transcoder register, event though
  2462. * the bits affect a specific DDI port rather than
  2463. * a specific transcoder.
  2464. */
  2465. static const enum transcoder port_to_transcoder[] = {
  2466. [PORT_A] = TRANSCODER_EDP,
  2467. [PORT_B] = TRANSCODER_A,
  2468. [PORT_C] = TRANSCODER_B,
  2469. [PORT_D] = TRANSCODER_C,
  2470. [PORT_E] = TRANSCODER_A,
  2471. };
  2472. enum transcoder transcoder = port_to_transcoder[port];
  2473. u32 val;
  2474. val = I915_READ(CHICKEN_TRANS(transcoder));
  2475. if (port == PORT_E)
  2476. val |= DDIE_TRAINING_OVERRIDE_ENABLE |
  2477. DDIE_TRAINING_OVERRIDE_VALUE;
  2478. else
  2479. val |= DDI_TRAINING_OVERRIDE_ENABLE |
  2480. DDI_TRAINING_OVERRIDE_VALUE;
  2481. I915_WRITE(CHICKEN_TRANS(transcoder), val);
  2482. POSTING_READ(CHICKEN_TRANS(transcoder));
  2483. udelay(1);
  2484. if (port == PORT_E)
  2485. val &= ~(DDIE_TRAINING_OVERRIDE_ENABLE |
  2486. DDIE_TRAINING_OVERRIDE_VALUE);
  2487. else
  2488. val &= ~(DDI_TRAINING_OVERRIDE_ENABLE |
  2489. DDI_TRAINING_OVERRIDE_VALUE);
  2490. I915_WRITE(CHICKEN_TRANS(transcoder), val);
  2491. }
  2492. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  2493. * are ignored so nothing special needs to be done besides
  2494. * enabling the port.
  2495. */
  2496. I915_WRITE(DDI_BUF_CTL(port),
  2497. dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE);
  2498. if (crtc_state->has_audio)
  2499. intel_audio_codec_enable(encoder, crtc_state, conn_state);
  2500. }
  2501. static void intel_enable_ddi(struct intel_encoder *encoder,
  2502. const struct intel_crtc_state *crtc_state,
  2503. const struct drm_connector_state *conn_state)
  2504. {
  2505. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  2506. intel_enable_ddi_hdmi(encoder, crtc_state, conn_state);
  2507. else
  2508. intel_enable_ddi_dp(encoder, crtc_state, conn_state);
  2509. /* Enable hdcp if it's desired */
  2510. if (conn_state->content_protection ==
  2511. DRM_MODE_CONTENT_PROTECTION_DESIRED)
  2512. intel_hdcp_enable(to_intel_connector(conn_state->connector));
  2513. }
  2514. static void intel_disable_ddi_dp(struct intel_encoder *encoder,
  2515. const struct intel_crtc_state *old_crtc_state,
  2516. const struct drm_connector_state *old_conn_state)
  2517. {
  2518. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2519. intel_dp->link_trained = false;
  2520. if (old_crtc_state->has_audio)
  2521. intel_audio_codec_disable(encoder,
  2522. old_crtc_state, old_conn_state);
  2523. intel_edp_drrs_disable(intel_dp, old_crtc_state);
  2524. intel_psr_disable(intel_dp, old_crtc_state);
  2525. intel_edp_backlight_off(old_conn_state);
  2526. }
  2527. static void intel_disable_ddi_hdmi(struct intel_encoder *encoder,
  2528. const struct intel_crtc_state *old_crtc_state,
  2529. const struct drm_connector_state *old_conn_state)
  2530. {
  2531. struct drm_connector *connector = old_conn_state->connector;
  2532. if (old_crtc_state->has_audio)
  2533. intel_audio_codec_disable(encoder,
  2534. old_crtc_state, old_conn_state);
  2535. if (!intel_hdmi_handle_sink_scrambling(encoder, connector,
  2536. false, false))
  2537. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Failed to reset sink scrambling/TMDS bit clock ratio\n",
  2538. connector->base.id, connector->name);
  2539. }
  2540. static void intel_disable_ddi(struct intel_encoder *encoder,
  2541. const struct intel_crtc_state *old_crtc_state,
  2542. const struct drm_connector_state *old_conn_state)
  2543. {
  2544. intel_hdcp_disable(to_intel_connector(old_conn_state->connector));
  2545. if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
  2546. intel_disable_ddi_hdmi(encoder, old_crtc_state, old_conn_state);
  2547. else
  2548. intel_disable_ddi_dp(encoder, old_crtc_state, old_conn_state);
  2549. }
  2550. static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder,
  2551. const struct intel_crtc_state *pipe_config,
  2552. const struct drm_connector_state *conn_state)
  2553. {
  2554. uint8_t mask = pipe_config->lane_lat_optim_mask;
  2555. bxt_ddi_phy_set_lane_optim_mask(encoder, mask);
  2556. }
  2557. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  2558. {
  2559. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2560. struct drm_i915_private *dev_priv =
  2561. to_i915(intel_dig_port->base.base.dev);
  2562. enum port port = intel_dig_port->base.port;
  2563. uint32_t val;
  2564. bool wait = false;
  2565. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  2566. val = I915_READ(DDI_BUF_CTL(port));
  2567. if (val & DDI_BUF_CTL_ENABLE) {
  2568. val &= ~DDI_BUF_CTL_ENABLE;
  2569. I915_WRITE(DDI_BUF_CTL(port), val);
  2570. wait = true;
  2571. }
  2572. val = I915_READ(DP_TP_CTL(port));
  2573. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2574. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2575. I915_WRITE(DP_TP_CTL(port), val);
  2576. POSTING_READ(DP_TP_CTL(port));
  2577. if (wait)
  2578. intel_wait_ddi_buf_idle(dev_priv, port);
  2579. }
  2580. val = DP_TP_CTL_ENABLE |
  2581. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  2582. if (intel_dp->link_mst)
  2583. val |= DP_TP_CTL_MODE_MST;
  2584. else {
  2585. val |= DP_TP_CTL_MODE_SST;
  2586. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2587. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  2588. }
  2589. I915_WRITE(DP_TP_CTL(port), val);
  2590. POSTING_READ(DP_TP_CTL(port));
  2591. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  2592. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  2593. POSTING_READ(DDI_BUF_CTL(port));
  2594. udelay(600);
  2595. }
  2596. static bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
  2597. enum transcoder cpu_transcoder)
  2598. {
  2599. if (cpu_transcoder == TRANSCODER_EDP)
  2600. return false;
  2601. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO))
  2602. return false;
  2603. return I915_READ(HSW_AUD_PIN_ELD_CP_VLD) &
  2604. AUDIO_OUTPUT_ENABLE(cpu_transcoder);
  2605. }
  2606. void intel_ddi_compute_min_voltage_level(struct drm_i915_private *dev_priv,
  2607. struct intel_crtc_state *crtc_state)
  2608. {
  2609. if (IS_CANNONLAKE(dev_priv) && crtc_state->port_clock > 594000)
  2610. crtc_state->min_voltage_level = 2;
  2611. }
  2612. void intel_ddi_get_config(struct intel_encoder *encoder,
  2613. struct intel_crtc_state *pipe_config)
  2614. {
  2615. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2616. struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
  2617. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  2618. struct intel_digital_port *intel_dig_port;
  2619. u32 temp, flags = 0;
  2620. /* XXX: DSI transcoder paranoia */
  2621. if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
  2622. return;
  2623. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  2624. if (temp & TRANS_DDI_PHSYNC)
  2625. flags |= DRM_MODE_FLAG_PHSYNC;
  2626. else
  2627. flags |= DRM_MODE_FLAG_NHSYNC;
  2628. if (temp & TRANS_DDI_PVSYNC)
  2629. flags |= DRM_MODE_FLAG_PVSYNC;
  2630. else
  2631. flags |= DRM_MODE_FLAG_NVSYNC;
  2632. pipe_config->base.adjusted_mode.flags |= flags;
  2633. switch (temp & TRANS_DDI_BPC_MASK) {
  2634. case TRANS_DDI_BPC_6:
  2635. pipe_config->pipe_bpp = 18;
  2636. break;
  2637. case TRANS_DDI_BPC_8:
  2638. pipe_config->pipe_bpp = 24;
  2639. break;
  2640. case TRANS_DDI_BPC_10:
  2641. pipe_config->pipe_bpp = 30;
  2642. break;
  2643. case TRANS_DDI_BPC_12:
  2644. pipe_config->pipe_bpp = 36;
  2645. break;
  2646. default:
  2647. break;
  2648. }
  2649. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  2650. case TRANS_DDI_MODE_SELECT_HDMI:
  2651. pipe_config->has_hdmi_sink = true;
  2652. intel_dig_port = enc_to_dig_port(&encoder->base);
  2653. if (intel_dig_port->infoframe_enabled(&encoder->base, pipe_config))
  2654. pipe_config->has_infoframe = true;
  2655. if ((temp & TRANS_DDI_HDMI_SCRAMBLING_MASK) ==
  2656. TRANS_DDI_HDMI_SCRAMBLING_MASK)
  2657. pipe_config->hdmi_scrambling = true;
  2658. if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE)
  2659. pipe_config->hdmi_high_tmds_clock_ratio = true;
  2660. /* fall through */
  2661. case TRANS_DDI_MODE_SELECT_DVI:
  2662. pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
  2663. pipe_config->lane_count = 4;
  2664. break;
  2665. case TRANS_DDI_MODE_SELECT_FDI:
  2666. pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG);
  2667. break;
  2668. case TRANS_DDI_MODE_SELECT_DP_SST:
  2669. if (encoder->type == INTEL_OUTPUT_EDP)
  2670. pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
  2671. else
  2672. pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
  2673. pipe_config->lane_count =
  2674. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2675. intel_dp_get_m_n(intel_crtc, pipe_config);
  2676. break;
  2677. case TRANS_DDI_MODE_SELECT_DP_MST:
  2678. pipe_config->output_types |= BIT(INTEL_OUTPUT_DP_MST);
  2679. pipe_config->lane_count =
  2680. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2681. intel_dp_get_m_n(intel_crtc, pipe_config);
  2682. break;
  2683. default:
  2684. break;
  2685. }
  2686. pipe_config->has_audio =
  2687. intel_ddi_is_audio_enabled(dev_priv, cpu_transcoder);
  2688. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
  2689. pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
  2690. /*
  2691. * This is a big fat ugly hack.
  2692. *
  2693. * Some machines in UEFI boot mode provide us a VBT that has 18
  2694. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  2695. * unknown we fail to light up. Yet the same BIOS boots up with
  2696. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  2697. * max, not what it tells us to use.
  2698. *
  2699. * Note: This will still be broken if the eDP panel is not lit
  2700. * up by the BIOS, and thus we can't get the mode at module
  2701. * load.
  2702. */
  2703. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  2704. pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
  2705. dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
  2706. }
  2707. intel_ddi_clock_get(encoder, pipe_config);
  2708. if (IS_GEN9_LP(dev_priv))
  2709. pipe_config->lane_lat_optim_mask =
  2710. bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
  2711. intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
  2712. }
  2713. static enum intel_output_type
  2714. intel_ddi_compute_output_type(struct intel_encoder *encoder,
  2715. struct intel_crtc_state *crtc_state,
  2716. struct drm_connector_state *conn_state)
  2717. {
  2718. switch (conn_state->connector->connector_type) {
  2719. case DRM_MODE_CONNECTOR_HDMIA:
  2720. return INTEL_OUTPUT_HDMI;
  2721. case DRM_MODE_CONNECTOR_eDP:
  2722. return INTEL_OUTPUT_EDP;
  2723. case DRM_MODE_CONNECTOR_DisplayPort:
  2724. return INTEL_OUTPUT_DP;
  2725. default:
  2726. MISSING_CASE(conn_state->connector->connector_type);
  2727. return INTEL_OUTPUT_UNUSED;
  2728. }
  2729. }
  2730. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  2731. struct intel_crtc_state *pipe_config,
  2732. struct drm_connector_state *conn_state)
  2733. {
  2734. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2735. enum port port = encoder->port;
  2736. int ret;
  2737. if (port == PORT_A)
  2738. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2739. if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
  2740. ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state);
  2741. else
  2742. ret = intel_dp_compute_config(encoder, pipe_config, conn_state);
  2743. if (IS_GEN9_LP(dev_priv) && ret)
  2744. pipe_config->lane_lat_optim_mask =
  2745. bxt_ddi_phy_calc_lane_lat_optim_mask(pipe_config->lane_count);
  2746. intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
  2747. return ret;
  2748. }
  2749. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2750. .reset = intel_dp_encoder_reset,
  2751. .destroy = intel_dp_encoder_destroy,
  2752. };
  2753. static struct intel_connector *
  2754. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2755. {
  2756. struct intel_connector *connector;
  2757. enum port port = intel_dig_port->base.port;
  2758. connector = intel_connector_alloc();
  2759. if (!connector)
  2760. return NULL;
  2761. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2762. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2763. kfree(connector);
  2764. return NULL;
  2765. }
  2766. return connector;
  2767. }
  2768. static int modeset_pipe(struct drm_crtc *crtc,
  2769. struct drm_modeset_acquire_ctx *ctx)
  2770. {
  2771. struct drm_atomic_state *state;
  2772. struct drm_crtc_state *crtc_state;
  2773. int ret;
  2774. state = drm_atomic_state_alloc(crtc->dev);
  2775. if (!state)
  2776. return -ENOMEM;
  2777. state->acquire_ctx = ctx;
  2778. crtc_state = drm_atomic_get_crtc_state(state, crtc);
  2779. if (IS_ERR(crtc_state)) {
  2780. ret = PTR_ERR(crtc_state);
  2781. goto out;
  2782. }
  2783. crtc_state->mode_changed = true;
  2784. ret = drm_atomic_add_affected_connectors(state, crtc);
  2785. if (ret)
  2786. goto out;
  2787. ret = drm_atomic_add_affected_planes(state, crtc);
  2788. if (ret)
  2789. goto out;
  2790. ret = drm_atomic_commit(state);
  2791. if (ret)
  2792. goto out;
  2793. return 0;
  2794. out:
  2795. drm_atomic_state_put(state);
  2796. return ret;
  2797. }
  2798. static int intel_hdmi_reset_link(struct intel_encoder *encoder,
  2799. struct drm_modeset_acquire_ctx *ctx)
  2800. {
  2801. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2802. struct intel_hdmi *hdmi = enc_to_intel_hdmi(&encoder->base);
  2803. struct intel_connector *connector = hdmi->attached_connector;
  2804. struct i2c_adapter *adapter =
  2805. intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
  2806. struct drm_connector_state *conn_state;
  2807. struct intel_crtc_state *crtc_state;
  2808. struct intel_crtc *crtc;
  2809. u8 config;
  2810. int ret;
  2811. if (!connector || connector->base.status != connector_status_connected)
  2812. return 0;
  2813. ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
  2814. ctx);
  2815. if (ret)
  2816. return ret;
  2817. conn_state = connector->base.state;
  2818. crtc = to_intel_crtc(conn_state->crtc);
  2819. if (!crtc)
  2820. return 0;
  2821. ret = drm_modeset_lock(&crtc->base.mutex, ctx);
  2822. if (ret)
  2823. return ret;
  2824. crtc_state = to_intel_crtc_state(crtc->base.state);
  2825. WARN_ON(!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI));
  2826. if (!crtc_state->base.active)
  2827. return 0;
  2828. if (!crtc_state->hdmi_high_tmds_clock_ratio &&
  2829. !crtc_state->hdmi_scrambling)
  2830. return 0;
  2831. if (conn_state->commit &&
  2832. !try_wait_for_completion(&conn_state->commit->hw_done))
  2833. return 0;
  2834. ret = drm_scdc_readb(adapter, SCDC_TMDS_CONFIG, &config);
  2835. if (ret < 0) {
  2836. DRM_ERROR("Failed to read TMDS config: %d\n", ret);
  2837. return 0;
  2838. }
  2839. if (!!(config & SCDC_TMDS_BIT_CLOCK_RATIO_BY_40) ==
  2840. crtc_state->hdmi_high_tmds_clock_ratio &&
  2841. !!(config & SCDC_SCRAMBLING_ENABLE) ==
  2842. crtc_state->hdmi_scrambling)
  2843. return 0;
  2844. /*
  2845. * HDMI 2.0 says that one should not send scrambled data
  2846. * prior to configuring the sink scrambling, and that
  2847. * TMDS clock/data transmission should be suspended when
  2848. * changing the TMDS clock rate in the sink. So let's
  2849. * just do a full modeset here, even though some sinks
  2850. * would be perfectly happy if were to just reconfigure
  2851. * the SCDC settings on the fly.
  2852. */
  2853. return modeset_pipe(&crtc->base, ctx);
  2854. }
  2855. static bool intel_ddi_hotplug(struct intel_encoder *encoder,
  2856. struct intel_connector *connector)
  2857. {
  2858. struct drm_modeset_acquire_ctx ctx;
  2859. bool changed;
  2860. int ret;
  2861. changed = intel_encoder_hotplug(encoder, connector);
  2862. drm_modeset_acquire_init(&ctx, 0);
  2863. for (;;) {
  2864. if (connector->base.connector_type == DRM_MODE_CONNECTOR_HDMIA)
  2865. ret = intel_hdmi_reset_link(encoder, &ctx);
  2866. else
  2867. ret = intel_dp_retrain_link(encoder, &ctx);
  2868. if (ret == -EDEADLK) {
  2869. drm_modeset_backoff(&ctx);
  2870. continue;
  2871. }
  2872. break;
  2873. }
  2874. drm_modeset_drop_locks(&ctx);
  2875. drm_modeset_acquire_fini(&ctx);
  2876. WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
  2877. return changed;
  2878. }
  2879. static struct intel_connector *
  2880. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2881. {
  2882. struct intel_connector *connector;
  2883. enum port port = intel_dig_port->base.port;
  2884. connector = intel_connector_alloc();
  2885. if (!connector)
  2886. return NULL;
  2887. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2888. intel_hdmi_init_connector(intel_dig_port, connector);
  2889. return connector;
  2890. }
  2891. static bool intel_ddi_a_force_4_lanes(struct intel_digital_port *dport)
  2892. {
  2893. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  2894. if (dport->base.port != PORT_A)
  2895. return false;
  2896. if (dport->saved_port_bits & DDI_A_4_LANES)
  2897. return false;
  2898. /* Broxton/Geminilake: Bspec says that DDI_A_4_LANES is the only
  2899. * supported configuration
  2900. */
  2901. if (IS_GEN9_LP(dev_priv))
  2902. return true;
  2903. /* Cannonlake: Most of SKUs don't support DDI_E, and the only
  2904. * one who does also have a full A/E split called
  2905. * DDI_F what makes DDI_E useless. However for this
  2906. * case let's trust VBT info.
  2907. */
  2908. if (IS_CANNONLAKE(dev_priv) &&
  2909. !intel_bios_is_port_present(dev_priv, PORT_E))
  2910. return true;
  2911. return false;
  2912. }
  2913. static int
  2914. intel_ddi_max_lanes(struct intel_digital_port *intel_dport)
  2915. {
  2916. struct drm_i915_private *dev_priv = to_i915(intel_dport->base.base.dev);
  2917. enum port port = intel_dport->base.port;
  2918. int max_lanes = 4;
  2919. if (INTEL_GEN(dev_priv) >= 11)
  2920. return max_lanes;
  2921. if (port == PORT_A || port == PORT_E) {
  2922. if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
  2923. max_lanes = port == PORT_A ? 4 : 0;
  2924. else
  2925. /* Both A and E share 2 lanes */
  2926. max_lanes = 2;
  2927. }
  2928. /*
  2929. * Some BIOS might fail to set this bit on port A if eDP
  2930. * wasn't lit up at boot. Force this bit set when needed
  2931. * so we use the proper lane count for our calculations.
  2932. */
  2933. if (intel_ddi_a_force_4_lanes(intel_dport)) {
  2934. DRM_DEBUG_KMS("Forcing DDI_A_4_LANES for port A\n");
  2935. intel_dport->saved_port_bits |= DDI_A_4_LANES;
  2936. max_lanes = 4;
  2937. }
  2938. return max_lanes;
  2939. }
  2940. void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port)
  2941. {
  2942. struct intel_digital_port *intel_dig_port;
  2943. struct intel_encoder *intel_encoder;
  2944. struct drm_encoder *encoder;
  2945. bool init_hdmi, init_dp, init_lspcon = false;
  2946. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  2947. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  2948. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  2949. if (intel_bios_is_lspcon_present(dev_priv, port)) {
  2950. /*
  2951. * Lspcon device needs to be driven with DP connector
  2952. * with special detection sequence. So make sure DP
  2953. * is initialized before lspcon.
  2954. */
  2955. init_dp = true;
  2956. init_lspcon = true;
  2957. init_hdmi = false;
  2958. DRM_DEBUG_KMS("VBT says port %c has lspcon\n", port_name(port));
  2959. }
  2960. if (!init_dp && !init_hdmi) {
  2961. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  2962. port_name(port));
  2963. return;
  2964. }
  2965. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  2966. if (!intel_dig_port)
  2967. return;
  2968. intel_encoder = &intel_dig_port->base;
  2969. encoder = &intel_encoder->base;
  2970. drm_encoder_init(&dev_priv->drm, encoder, &intel_ddi_funcs,
  2971. DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
  2972. intel_encoder->hotplug = intel_ddi_hotplug;
  2973. intel_encoder->compute_output_type = intel_ddi_compute_output_type;
  2974. intel_encoder->compute_config = intel_ddi_compute_config;
  2975. intel_encoder->enable = intel_enable_ddi;
  2976. if (IS_GEN9_LP(dev_priv))
  2977. intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable;
  2978. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2979. intel_encoder->disable = intel_disable_ddi;
  2980. intel_encoder->post_disable = intel_ddi_post_disable;
  2981. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2982. intel_encoder->get_config = intel_ddi_get_config;
  2983. intel_encoder->suspend = intel_dp_encoder_suspend;
  2984. intel_encoder->get_power_domains = intel_ddi_get_power_domains;
  2985. intel_encoder->type = INTEL_OUTPUT_DDI;
  2986. intel_encoder->power_domain = intel_port_to_power_domain(port);
  2987. intel_encoder->port = port;
  2988. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2989. intel_encoder->cloneable = 0;
  2990. if (INTEL_GEN(dev_priv) >= 11)
  2991. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2992. DDI_BUF_PORT_REVERSAL;
  2993. else
  2994. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2995. (DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES);
  2996. intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
  2997. intel_dig_port->max_lanes = intel_ddi_max_lanes(intel_dig_port);
  2998. switch (port) {
  2999. case PORT_A:
  3000. intel_dig_port->ddi_io_power_domain =
  3001. POWER_DOMAIN_PORT_DDI_A_IO;
  3002. break;
  3003. case PORT_B:
  3004. intel_dig_port->ddi_io_power_domain =
  3005. POWER_DOMAIN_PORT_DDI_B_IO;
  3006. break;
  3007. case PORT_C:
  3008. intel_dig_port->ddi_io_power_domain =
  3009. POWER_DOMAIN_PORT_DDI_C_IO;
  3010. break;
  3011. case PORT_D:
  3012. intel_dig_port->ddi_io_power_domain =
  3013. POWER_DOMAIN_PORT_DDI_D_IO;
  3014. break;
  3015. case PORT_E:
  3016. intel_dig_port->ddi_io_power_domain =
  3017. POWER_DOMAIN_PORT_DDI_E_IO;
  3018. break;
  3019. case PORT_F:
  3020. intel_dig_port->ddi_io_power_domain =
  3021. POWER_DOMAIN_PORT_DDI_F_IO;
  3022. break;
  3023. default:
  3024. MISSING_CASE(port);
  3025. }
  3026. intel_infoframe_init(intel_dig_port);
  3027. if (init_dp) {
  3028. if (!intel_ddi_init_dp_connector(intel_dig_port))
  3029. goto err;
  3030. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  3031. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  3032. }
  3033. /* In theory we don't need the encoder->type check, but leave it just in
  3034. * case we have some really bad VBTs... */
  3035. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  3036. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  3037. goto err;
  3038. }
  3039. if (init_lspcon) {
  3040. if (lspcon_init(intel_dig_port))
  3041. /* TODO: handle hdmi info frame part */
  3042. DRM_DEBUG_KMS("LSPCON init success on port %c\n",
  3043. port_name(port));
  3044. else
  3045. /*
  3046. * LSPCON init faied, but DP init was success, so
  3047. * lets try to drive as DP++ port.
  3048. */
  3049. DRM_ERROR("LSPCON init failed on port %c\n",
  3050. port_name(port));
  3051. }
  3052. return;
  3053. err:
  3054. drm_encoder_cleanup(encoder);
  3055. kfree(intel_dig_port);
  3056. }