intel_breadcrumbs.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894
  1. /*
  2. * Copyright © 2015 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <linux/kthread.h>
  25. #include <uapi/linux/sched/types.h>
  26. #include "i915_drv.h"
  27. #ifdef CONFIG_SMP
  28. #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
  29. #else
  30. #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
  31. #endif
  32. static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
  33. {
  34. struct intel_wait *wait;
  35. unsigned int result = 0;
  36. lockdep_assert_held(&b->irq_lock);
  37. wait = b->irq_wait;
  38. if (wait) {
  39. /*
  40. * N.B. Since task_asleep() and ttwu are not atomic, the
  41. * waiter may actually go to sleep after the check, causing
  42. * us to suppress a valid wakeup. We prefer to reduce the
  43. * number of false positive missed_breadcrumb() warnings
  44. * at the expense of a few false negatives, as it it easy
  45. * to trigger a false positive under heavy load. Enough
  46. * signal should remain from genuine missed_breadcrumb()
  47. * for us to detect in CI.
  48. */
  49. bool was_asleep = task_asleep(wait->tsk);
  50. result = ENGINE_WAKEUP_WAITER;
  51. if (wake_up_process(wait->tsk) && was_asleep)
  52. result |= ENGINE_WAKEUP_ASLEEP;
  53. }
  54. return result;
  55. }
  56. unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
  57. {
  58. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  59. unsigned long flags;
  60. unsigned int result;
  61. spin_lock_irqsave(&b->irq_lock, flags);
  62. result = __intel_breadcrumbs_wakeup(b);
  63. spin_unlock_irqrestore(&b->irq_lock, flags);
  64. return result;
  65. }
  66. static unsigned long wait_timeout(void)
  67. {
  68. return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
  69. }
  70. static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
  71. {
  72. if (GEM_SHOW_DEBUG()) {
  73. struct drm_printer p = drm_debug_printer(__func__);
  74. intel_engine_dump(engine, &p,
  75. "%s missed breadcrumb at %pS\n",
  76. engine->name, __builtin_return_address(0));
  77. }
  78. set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
  79. }
  80. static void intel_breadcrumbs_hangcheck(struct timer_list *t)
  81. {
  82. struct intel_engine_cs *engine =
  83. from_timer(engine, t, breadcrumbs.hangcheck);
  84. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  85. if (!b->irq_armed)
  86. return;
  87. if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
  88. b->hangcheck_interrupts = atomic_read(&engine->irq_count);
  89. mod_timer(&b->hangcheck, wait_timeout());
  90. return;
  91. }
  92. /* We keep the hangcheck timer alive until we disarm the irq, even
  93. * if there are no waiters at present.
  94. *
  95. * If the waiter was currently running, assume it hasn't had a chance
  96. * to process the pending interrupt (e.g, low priority task on a loaded
  97. * system) and wait until it sleeps before declaring a missed interrupt.
  98. *
  99. * If the waiter was asleep (and not even pending a wakeup), then we
  100. * must have missed an interrupt as the GPU has stopped advancing
  101. * but we still have a waiter. Assuming all batches complete within
  102. * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
  103. */
  104. if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
  105. missed_breadcrumb(engine);
  106. mod_timer(&b->fake_irq, jiffies + 1);
  107. } else {
  108. mod_timer(&b->hangcheck, wait_timeout());
  109. }
  110. }
  111. static void intel_breadcrumbs_fake_irq(struct timer_list *t)
  112. {
  113. struct intel_engine_cs *engine =
  114. from_timer(engine, t, breadcrumbs.fake_irq);
  115. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  116. /*
  117. * The timer persists in case we cannot enable interrupts,
  118. * or if we have previously seen seqno/interrupt incoherency
  119. * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
  120. * Here the worker will wake up every jiffie in order to kick the
  121. * oldest waiter to do the coherent seqno check.
  122. */
  123. spin_lock_irq(&b->irq_lock);
  124. if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
  125. __intel_engine_disarm_breadcrumbs(engine);
  126. spin_unlock_irq(&b->irq_lock);
  127. if (!b->irq_armed)
  128. return;
  129. /* If the user has disabled the fake-irq, restore the hangchecking */
  130. if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings)) {
  131. mod_timer(&b->hangcheck, wait_timeout());
  132. return;
  133. }
  134. mod_timer(&b->fake_irq, jiffies + 1);
  135. }
  136. static void irq_enable(struct intel_engine_cs *engine)
  137. {
  138. /*
  139. * FIXME: Ideally we want this on the API boundary, but for the
  140. * sake of testing with mock breadcrumbs (no HW so unable to
  141. * enable irqs) we place it deep within the bowels, at the point
  142. * of no return.
  143. */
  144. GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
  145. /* Enabling the IRQ may miss the generation of the interrupt, but
  146. * we still need to force the barrier before reading the seqno,
  147. * just in case.
  148. */
  149. set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
  150. /* Caller disables interrupts */
  151. if (engine->irq_enable) {
  152. spin_lock(&engine->i915->irq_lock);
  153. engine->irq_enable(engine);
  154. spin_unlock(&engine->i915->irq_lock);
  155. }
  156. }
  157. static void irq_disable(struct intel_engine_cs *engine)
  158. {
  159. /* Caller disables interrupts */
  160. if (engine->irq_disable) {
  161. spin_lock(&engine->i915->irq_lock);
  162. engine->irq_disable(engine);
  163. spin_unlock(&engine->i915->irq_lock);
  164. }
  165. }
  166. void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
  167. {
  168. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  169. lockdep_assert_held(&b->irq_lock);
  170. GEM_BUG_ON(b->irq_wait);
  171. GEM_BUG_ON(!b->irq_armed);
  172. GEM_BUG_ON(!b->irq_enabled);
  173. if (!--b->irq_enabled)
  174. irq_disable(engine);
  175. b->irq_armed = false;
  176. }
  177. void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
  178. {
  179. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  180. spin_lock_irq(&b->irq_lock);
  181. if (!b->irq_enabled++)
  182. irq_enable(engine);
  183. GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
  184. spin_unlock_irq(&b->irq_lock);
  185. }
  186. void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
  187. {
  188. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  189. spin_lock_irq(&b->irq_lock);
  190. GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
  191. if (!--b->irq_enabled)
  192. irq_disable(engine);
  193. spin_unlock_irq(&b->irq_lock);
  194. }
  195. void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
  196. {
  197. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  198. struct intel_wait *wait, *n;
  199. if (!b->irq_armed)
  200. return;
  201. /*
  202. * We only disarm the irq when we are idle (all requests completed),
  203. * so if the bottom-half remains asleep, it missed the request
  204. * completion.
  205. */
  206. if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
  207. missed_breadcrumb(engine);
  208. spin_lock_irq(&b->rb_lock);
  209. spin_lock(&b->irq_lock);
  210. b->irq_wait = NULL;
  211. if (b->irq_armed)
  212. __intel_engine_disarm_breadcrumbs(engine);
  213. spin_unlock(&b->irq_lock);
  214. rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
  215. GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine),
  216. wait->seqno));
  217. RB_CLEAR_NODE(&wait->node);
  218. wake_up_process(wait->tsk);
  219. }
  220. b->waiters = RB_ROOT;
  221. spin_unlock_irq(&b->rb_lock);
  222. }
  223. static bool use_fake_irq(const struct intel_breadcrumbs *b)
  224. {
  225. const struct intel_engine_cs *engine =
  226. container_of(b, struct intel_engine_cs, breadcrumbs);
  227. if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
  228. return false;
  229. /* Only start with the heavy weight fake irq timer if we have not
  230. * seen any interrupts since enabling it the first time. If the
  231. * interrupts are still arriving, it means we made a mistake in our
  232. * engine->seqno_barrier(), a timing error that should be transient
  233. * and unlikely to reoccur.
  234. */
  235. return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
  236. }
  237. static void enable_fake_irq(struct intel_breadcrumbs *b)
  238. {
  239. /* Ensure we never sleep indefinitely */
  240. if (!b->irq_enabled || use_fake_irq(b))
  241. mod_timer(&b->fake_irq, jiffies + 1);
  242. else
  243. mod_timer(&b->hangcheck, wait_timeout());
  244. }
  245. static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
  246. {
  247. struct intel_engine_cs *engine =
  248. container_of(b, struct intel_engine_cs, breadcrumbs);
  249. struct drm_i915_private *i915 = engine->i915;
  250. bool enabled;
  251. lockdep_assert_held(&b->irq_lock);
  252. if (b->irq_armed)
  253. return false;
  254. /* The breadcrumb irq will be disarmed on the interrupt after the
  255. * waiters are signaled. This gives us a single interrupt window in
  256. * which we can add a new waiter and avoid the cost of re-enabling
  257. * the irq.
  258. */
  259. b->irq_armed = true;
  260. if (I915_SELFTEST_ONLY(b->mock)) {
  261. /* For our mock objects we want to avoid interaction
  262. * with the real hardware (which is not set up). So
  263. * we simply pretend we have enabled the powerwell
  264. * and the irq, and leave it up to the mock
  265. * implementation to call intel_engine_wakeup()
  266. * itself when it wants to simulate a user interrupt,
  267. */
  268. return true;
  269. }
  270. /* Since we are waiting on a request, the GPU should be busy
  271. * and should have its own rpm reference. This is tracked
  272. * by i915->gt.awake, we can forgo holding our own wakref
  273. * for the interrupt as before i915->gt.awake is released (when
  274. * the driver is idle) we disarm the breadcrumbs.
  275. */
  276. /* No interrupts? Kick the waiter every jiffie! */
  277. enabled = false;
  278. if (!b->irq_enabled++ &&
  279. !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
  280. irq_enable(engine);
  281. enabled = true;
  282. }
  283. enable_fake_irq(b);
  284. return enabled;
  285. }
  286. static inline struct intel_wait *to_wait(struct rb_node *node)
  287. {
  288. return rb_entry(node, struct intel_wait, node);
  289. }
  290. static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
  291. struct intel_wait *wait)
  292. {
  293. lockdep_assert_held(&b->rb_lock);
  294. GEM_BUG_ON(b->irq_wait == wait);
  295. /*
  296. * This request is completed, so remove it from the tree, mark it as
  297. * complete, and *then* wake up the associated task. N.B. when the
  298. * task wakes up, it will find the empty rb_node, discern that it
  299. * has already been removed from the tree and skip the serialisation
  300. * of the b->rb_lock and b->irq_lock. This means that the destruction
  301. * of the intel_wait is not serialised with the interrupt handler
  302. * by the waiter - it must instead be serialised by the caller.
  303. */
  304. rb_erase(&wait->node, &b->waiters);
  305. RB_CLEAR_NODE(&wait->node);
  306. if (wait->tsk->state != TASK_RUNNING)
  307. wake_up_process(wait->tsk); /* implicit smp_wmb() */
  308. }
  309. static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
  310. struct rb_node *next)
  311. {
  312. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  313. spin_lock(&b->irq_lock);
  314. GEM_BUG_ON(!b->irq_armed);
  315. GEM_BUG_ON(!b->irq_wait);
  316. b->irq_wait = to_wait(next);
  317. spin_unlock(&b->irq_lock);
  318. /* We always wake up the next waiter that takes over as the bottom-half
  319. * as we may delegate not only the irq-seqno barrier to the next waiter
  320. * but also the task of waking up concurrent waiters.
  321. */
  322. if (next)
  323. wake_up_process(to_wait(next)->tsk);
  324. }
  325. static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
  326. struct intel_wait *wait)
  327. {
  328. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  329. struct rb_node **p, *parent, *completed;
  330. bool first, armed;
  331. u32 seqno;
  332. GEM_BUG_ON(!wait->seqno);
  333. /* Insert the request into the retirement ordered list
  334. * of waiters by walking the rbtree. If we are the oldest
  335. * seqno in the tree (the first to be retired), then
  336. * set ourselves as the bottom-half.
  337. *
  338. * As we descend the tree, prune completed branches since we hold the
  339. * spinlock we know that the first_waiter must be delayed and can
  340. * reduce some of the sequential wake up latency if we take action
  341. * ourselves and wake up the completed tasks in parallel. Also, by
  342. * removing stale elements in the tree, we may be able to reduce the
  343. * ping-pong between the old bottom-half and ourselves as first-waiter.
  344. */
  345. armed = false;
  346. first = true;
  347. parent = NULL;
  348. completed = NULL;
  349. seqno = intel_engine_get_seqno(engine);
  350. /* If the request completed before we managed to grab the spinlock,
  351. * return now before adding ourselves to the rbtree. We let the
  352. * current bottom-half handle any pending wakeups and instead
  353. * try and get out of the way quickly.
  354. */
  355. if (i915_seqno_passed(seqno, wait->seqno)) {
  356. RB_CLEAR_NODE(&wait->node);
  357. return first;
  358. }
  359. p = &b->waiters.rb_node;
  360. while (*p) {
  361. parent = *p;
  362. if (wait->seqno == to_wait(parent)->seqno) {
  363. /* We have multiple waiters on the same seqno, select
  364. * the highest priority task (that with the smallest
  365. * task->prio) to serve as the bottom-half for this
  366. * group.
  367. */
  368. if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
  369. p = &parent->rb_right;
  370. first = false;
  371. } else {
  372. p = &parent->rb_left;
  373. }
  374. } else if (i915_seqno_passed(wait->seqno,
  375. to_wait(parent)->seqno)) {
  376. p = &parent->rb_right;
  377. if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
  378. completed = parent;
  379. else
  380. first = false;
  381. } else {
  382. p = &parent->rb_left;
  383. }
  384. }
  385. rb_link_node(&wait->node, parent, p);
  386. rb_insert_color(&wait->node, &b->waiters);
  387. if (first) {
  388. spin_lock(&b->irq_lock);
  389. b->irq_wait = wait;
  390. /* After assigning ourselves as the new bottom-half, we must
  391. * perform a cursory check to prevent a missed interrupt.
  392. * Either we miss the interrupt whilst programming the hardware,
  393. * or if there was a previous waiter (for a later seqno) they
  394. * may be woken instead of us (due to the inherent race
  395. * in the unlocked read of b->irq_seqno_bh in the irq handler)
  396. * and so we miss the wake up.
  397. */
  398. armed = __intel_breadcrumbs_enable_irq(b);
  399. spin_unlock(&b->irq_lock);
  400. }
  401. if (completed) {
  402. /* Advance the bottom-half (b->irq_wait) before we wake up
  403. * the waiters who may scribble over their intel_wait
  404. * just as the interrupt handler is dereferencing it via
  405. * b->irq_wait.
  406. */
  407. if (!first) {
  408. struct rb_node *next = rb_next(completed);
  409. GEM_BUG_ON(next == &wait->node);
  410. __intel_breadcrumbs_next(engine, next);
  411. }
  412. do {
  413. struct intel_wait *crumb = to_wait(completed);
  414. completed = rb_prev(completed);
  415. __intel_breadcrumbs_finish(b, crumb);
  416. } while (completed);
  417. }
  418. GEM_BUG_ON(!b->irq_wait);
  419. GEM_BUG_ON(!b->irq_armed);
  420. GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
  421. return armed;
  422. }
  423. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  424. struct intel_wait *wait)
  425. {
  426. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  427. bool armed;
  428. spin_lock_irq(&b->rb_lock);
  429. armed = __intel_engine_add_wait(engine, wait);
  430. spin_unlock_irq(&b->rb_lock);
  431. if (armed)
  432. return armed;
  433. /* Make the caller recheck if its request has already started. */
  434. return i915_seqno_passed(intel_engine_get_seqno(engine),
  435. wait->seqno - 1);
  436. }
  437. static inline bool chain_wakeup(struct rb_node *rb, int priority)
  438. {
  439. return rb && to_wait(rb)->tsk->prio <= priority;
  440. }
  441. static inline int wakeup_priority(struct intel_breadcrumbs *b,
  442. struct task_struct *tsk)
  443. {
  444. if (tsk == b->signaler)
  445. return INT_MIN;
  446. else
  447. return tsk->prio;
  448. }
  449. static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
  450. struct intel_wait *wait)
  451. {
  452. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  453. lockdep_assert_held(&b->rb_lock);
  454. if (RB_EMPTY_NODE(&wait->node))
  455. goto out;
  456. if (b->irq_wait == wait) {
  457. const int priority = wakeup_priority(b, wait->tsk);
  458. struct rb_node *next;
  459. /* We are the current bottom-half. Find the next candidate,
  460. * the first waiter in the queue on the remaining oldest
  461. * request. As multiple seqnos may complete in the time it
  462. * takes us to wake up and find the next waiter, we have to
  463. * wake up that waiter for it to perform its own coherent
  464. * completion check.
  465. */
  466. next = rb_next(&wait->node);
  467. if (chain_wakeup(next, priority)) {
  468. /* If the next waiter is already complete,
  469. * wake it up and continue onto the next waiter. So
  470. * if have a small herd, they will wake up in parallel
  471. * rather than sequentially, which should reduce
  472. * the overall latency in waking all the completed
  473. * clients.
  474. *
  475. * However, waking up a chain adds extra latency to
  476. * the first_waiter. This is undesirable if that
  477. * waiter is a high priority task.
  478. */
  479. u32 seqno = intel_engine_get_seqno(engine);
  480. while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
  481. struct rb_node *n = rb_next(next);
  482. __intel_breadcrumbs_finish(b, to_wait(next));
  483. next = n;
  484. if (!chain_wakeup(next, priority))
  485. break;
  486. }
  487. }
  488. __intel_breadcrumbs_next(engine, next);
  489. } else {
  490. GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
  491. }
  492. GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
  493. rb_erase(&wait->node, &b->waiters);
  494. RB_CLEAR_NODE(&wait->node);
  495. out:
  496. GEM_BUG_ON(b->irq_wait == wait);
  497. GEM_BUG_ON(rb_first(&b->waiters) !=
  498. (b->irq_wait ? &b->irq_wait->node : NULL));
  499. }
  500. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  501. struct intel_wait *wait)
  502. {
  503. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  504. /* Quick check to see if this waiter was already decoupled from
  505. * the tree by the bottom-half to avoid contention on the spinlock
  506. * by the herd.
  507. */
  508. if (RB_EMPTY_NODE(&wait->node)) {
  509. GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
  510. return;
  511. }
  512. spin_lock_irq(&b->rb_lock);
  513. __intel_engine_remove_wait(engine, wait);
  514. spin_unlock_irq(&b->rb_lock);
  515. }
  516. static void signaler_set_rtpriority(void)
  517. {
  518. struct sched_param param = { .sched_priority = 1 };
  519. sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
  520. }
  521. static int intel_breadcrumbs_signaler(void *arg)
  522. {
  523. struct intel_engine_cs *engine = arg;
  524. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  525. struct i915_request *rq, *n;
  526. /* Install ourselves with high priority to reduce signalling latency */
  527. signaler_set_rtpriority();
  528. do {
  529. bool do_schedule = true;
  530. LIST_HEAD(list);
  531. u32 seqno;
  532. set_current_state(TASK_INTERRUPTIBLE);
  533. if (list_empty(&b->signals))
  534. goto sleep;
  535. /*
  536. * We are either woken up by the interrupt bottom-half,
  537. * or by a client adding a new signaller. In both cases,
  538. * the GPU seqno may have advanced beyond our oldest signal.
  539. * If it has, propagate the signal, remove the waiter and
  540. * check again with the next oldest signal. Otherwise we
  541. * need to wait for a new interrupt from the GPU or for
  542. * a new client.
  543. */
  544. seqno = intel_engine_get_seqno(engine);
  545. spin_lock_irq(&b->rb_lock);
  546. list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
  547. u32 this = rq->signaling.wait.seqno;
  548. GEM_BUG_ON(!rq->signaling.wait.seqno);
  549. if (!i915_seqno_passed(seqno, this))
  550. break;
  551. if (likely(this == i915_request_global_seqno(rq))) {
  552. __intel_engine_remove_wait(engine,
  553. &rq->signaling.wait);
  554. rq->signaling.wait.seqno = 0;
  555. __list_del_entry(&rq->signaling.link);
  556. if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
  557. &rq->fence.flags)) {
  558. list_add_tail(&rq->signaling.link,
  559. &list);
  560. i915_request_get(rq);
  561. }
  562. }
  563. }
  564. spin_unlock_irq(&b->rb_lock);
  565. if (!list_empty(&list)) {
  566. local_bh_disable();
  567. list_for_each_entry_safe(rq, n, &list, signaling.link) {
  568. dma_fence_signal(&rq->fence);
  569. GEM_BUG_ON(!i915_request_completed(rq));
  570. i915_request_put(rq);
  571. }
  572. local_bh_enable(); /* kick start the tasklets */
  573. /*
  574. * If the engine is saturated we may be continually
  575. * processing completed requests. This angers the
  576. * NMI watchdog if we never let anything else
  577. * have access to the CPU. Let's pretend to be nice
  578. * and relinquish the CPU if we burn through the
  579. * entire RT timeslice!
  580. */
  581. do_schedule = need_resched();
  582. }
  583. if (unlikely(do_schedule)) {
  584. /* Before we sleep, check for a missed seqno */
  585. if (current->state & TASK_NORMAL &&
  586. !list_empty(&b->signals) &&
  587. engine->irq_seqno_barrier &&
  588. test_and_clear_bit(ENGINE_IRQ_BREADCRUMB,
  589. &engine->irq_posted)) {
  590. engine->irq_seqno_barrier(engine);
  591. intel_engine_wakeup(engine);
  592. }
  593. sleep:
  594. if (kthread_should_park())
  595. kthread_parkme();
  596. if (unlikely(kthread_should_stop()))
  597. break;
  598. schedule();
  599. }
  600. } while (1);
  601. __set_current_state(TASK_RUNNING);
  602. return 0;
  603. }
  604. static void insert_signal(struct intel_breadcrumbs *b,
  605. struct i915_request *request,
  606. const u32 seqno)
  607. {
  608. struct i915_request *iter;
  609. lockdep_assert_held(&b->rb_lock);
  610. /*
  611. * A reasonable assumption is that we are called to add signals
  612. * in sequence, as the requests are submitted for execution and
  613. * assigned a global_seqno. This will be the case for the majority
  614. * of internally generated signals (inter-engine signaling).
  615. *
  616. * Out of order waiters triggering random signaling enabling will
  617. * be more problematic, but hopefully rare enough and the list
  618. * small enough that the O(N) insertion sort is not an issue.
  619. */
  620. list_for_each_entry_reverse(iter, &b->signals, signaling.link)
  621. if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
  622. break;
  623. list_add(&request->signaling.link, &iter->signaling.link);
  624. }
  625. bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
  626. {
  627. struct intel_engine_cs *engine = request->engine;
  628. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  629. struct intel_wait *wait = &request->signaling.wait;
  630. u32 seqno;
  631. /*
  632. * Note that we may be called from an interrupt handler on another
  633. * device (e.g. nouveau signaling a fence completion causing us
  634. * to submit a request, and so enable signaling). As such,
  635. * we need to make sure that all other users of b->rb_lock protect
  636. * against interrupts, i.e. use spin_lock_irqsave.
  637. */
  638. /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
  639. GEM_BUG_ON(!irqs_disabled());
  640. lockdep_assert_held(&request->lock);
  641. seqno = i915_request_global_seqno(request);
  642. if (!seqno) /* will be enabled later upon execution */
  643. return true;
  644. GEM_BUG_ON(wait->seqno);
  645. wait->tsk = b->signaler;
  646. wait->request = request;
  647. wait->seqno = seqno;
  648. /*
  649. * Add ourselves into the list of waiters, but registering our
  650. * bottom-half as the signaller thread. As per usual, only the oldest
  651. * waiter (not just signaller) is tasked as the bottom-half waking
  652. * up all completed waiters after the user interrupt.
  653. *
  654. * If we are the oldest waiter, enable the irq (after which we
  655. * must double check that the seqno did not complete).
  656. */
  657. spin_lock(&b->rb_lock);
  658. insert_signal(b, request, seqno);
  659. wakeup &= __intel_engine_add_wait(engine, wait);
  660. spin_unlock(&b->rb_lock);
  661. if (wakeup) {
  662. wake_up_process(b->signaler);
  663. return !intel_wait_complete(wait);
  664. }
  665. return true;
  666. }
  667. void intel_engine_cancel_signaling(struct i915_request *request)
  668. {
  669. struct intel_engine_cs *engine = request->engine;
  670. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  671. GEM_BUG_ON(!irqs_disabled());
  672. lockdep_assert_held(&request->lock);
  673. if (!READ_ONCE(request->signaling.wait.seqno))
  674. return;
  675. spin_lock(&b->rb_lock);
  676. __intel_engine_remove_wait(engine, &request->signaling.wait);
  677. if (fetch_and_zero(&request->signaling.wait.seqno))
  678. __list_del_entry(&request->signaling.link);
  679. spin_unlock(&b->rb_lock);
  680. }
  681. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
  682. {
  683. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  684. struct task_struct *tsk;
  685. spin_lock_init(&b->rb_lock);
  686. spin_lock_init(&b->irq_lock);
  687. timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
  688. timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
  689. INIT_LIST_HEAD(&b->signals);
  690. /* Spawn a thread to provide a common bottom-half for all signals.
  691. * As this is an asynchronous interface we cannot steal the current
  692. * task for handling the bottom-half to the user interrupt, therefore
  693. * we create a thread to do the coherent seqno dance after the
  694. * interrupt and then signal the waitqueue (via the dma-buf/fence).
  695. */
  696. tsk = kthread_run(intel_breadcrumbs_signaler, engine,
  697. "i915/signal:%d", engine->id);
  698. if (IS_ERR(tsk))
  699. return PTR_ERR(tsk);
  700. b->signaler = tsk;
  701. return 0;
  702. }
  703. static void cancel_fake_irq(struct intel_engine_cs *engine)
  704. {
  705. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  706. del_timer_sync(&b->fake_irq); /* may queue b->hangcheck */
  707. del_timer_sync(&b->hangcheck);
  708. clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
  709. }
  710. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
  711. {
  712. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  713. spin_lock_irq(&b->irq_lock);
  714. /*
  715. * Leave the fake_irq timer enabled (if it is running), but clear the
  716. * bit so that it turns itself off on its next wake up and goes back
  717. * to the long hangcheck interval if still required.
  718. */
  719. clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
  720. if (b->irq_enabled)
  721. irq_enable(engine);
  722. else
  723. irq_disable(engine);
  724. /*
  725. * We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
  726. * GPU is active and may have already executed the MI_USER_INTERRUPT
  727. * before the CPU is ready to receive. However, the engine is currently
  728. * idle (we haven't started it yet), there is no possibility for a
  729. * missed interrupt as we enabled the irq and so we can clear the
  730. * immediate wakeup (until a real interrupt arrives for the waiter).
  731. */
  732. clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
  733. spin_unlock_irq(&b->irq_lock);
  734. }
  735. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
  736. {
  737. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  738. /* The engines should be idle and all requests accounted for! */
  739. WARN_ON(READ_ONCE(b->irq_wait));
  740. WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
  741. WARN_ON(!list_empty(&b->signals));
  742. if (!IS_ERR_OR_NULL(b->signaler))
  743. kthread_stop(b->signaler);
  744. cancel_fake_irq(engine);
  745. }
  746. #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
  747. #include "selftests/intel_breadcrumbs.c"
  748. #endif