i915_irq.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ilk[HPD_NUM_PINS] = {
  45. [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  46. };
  47. static const u32 hpd_ivb[HPD_NUM_PINS] = {
  48. [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  49. };
  50. static const u32 hpd_bdw[HPD_NUM_PINS] = {
  51. [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  52. };
  53. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  54. [HPD_CRT] = SDE_CRT_HOTPLUG,
  55. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  56. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  57. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  58. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  59. };
  60. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  61. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  62. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  63. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  64. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  65. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  66. };
  67. static const u32 hpd_spt[HPD_NUM_PINS] = {
  68. [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  69. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  70. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  71. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  72. [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  73. };
  74. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  75. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  76. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  77. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  78. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  79. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  80. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  81. };
  82. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  83. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  84. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  85. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  86. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  87. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  88. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  89. };
  90. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  91. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  92. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  93. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  94. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  95. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  96. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  97. };
  98. /* BXT hpd list */
  99. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  100. [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
  101. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  102. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  103. };
  104. /* IIR can theoretically queue up two events. Be paranoid. */
  105. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  106. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  107. POSTING_READ(GEN8_##type##_IMR(which)); \
  108. I915_WRITE(GEN8_##type##_IER(which), 0); \
  109. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  110. POSTING_READ(GEN8_##type##_IIR(which)); \
  111. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  112. POSTING_READ(GEN8_##type##_IIR(which)); \
  113. } while (0)
  114. #define GEN3_IRQ_RESET(type) do { \
  115. I915_WRITE(type##IMR, 0xffffffff); \
  116. POSTING_READ(type##IMR); \
  117. I915_WRITE(type##IER, 0); \
  118. I915_WRITE(type##IIR, 0xffffffff); \
  119. POSTING_READ(type##IIR); \
  120. I915_WRITE(type##IIR, 0xffffffff); \
  121. POSTING_READ(type##IIR); \
  122. } while (0)
  123. #define GEN2_IRQ_RESET(type) do { \
  124. I915_WRITE16(type##IMR, 0xffff); \
  125. POSTING_READ16(type##IMR); \
  126. I915_WRITE16(type##IER, 0); \
  127. I915_WRITE16(type##IIR, 0xffff); \
  128. POSTING_READ16(type##IIR); \
  129. I915_WRITE16(type##IIR, 0xffff); \
  130. POSTING_READ16(type##IIR); \
  131. } while (0)
  132. /*
  133. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  134. */
  135. static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  136. i915_reg_t reg)
  137. {
  138. u32 val = I915_READ(reg);
  139. if (val == 0)
  140. return;
  141. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  142. i915_mmio_reg_offset(reg), val);
  143. I915_WRITE(reg, 0xffffffff);
  144. POSTING_READ(reg);
  145. I915_WRITE(reg, 0xffffffff);
  146. POSTING_READ(reg);
  147. }
  148. static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  149. i915_reg_t reg)
  150. {
  151. u16 val = I915_READ16(reg);
  152. if (val == 0)
  153. return;
  154. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  155. i915_mmio_reg_offset(reg), val);
  156. I915_WRITE16(reg, 0xffff);
  157. POSTING_READ16(reg);
  158. I915_WRITE16(reg, 0xffff);
  159. POSTING_READ16(reg);
  160. }
  161. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  162. gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
  163. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  164. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  165. POSTING_READ(GEN8_##type##_IMR(which)); \
  166. } while (0)
  167. #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
  168. gen3_assert_iir_is_zero(dev_priv, type##IIR); \
  169. I915_WRITE(type##IER, (ier_val)); \
  170. I915_WRITE(type##IMR, (imr_val)); \
  171. POSTING_READ(type##IMR); \
  172. } while (0)
  173. #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
  174. gen2_assert_iir_is_zero(dev_priv, type##IIR); \
  175. I915_WRITE16(type##IER, (ier_val)); \
  176. I915_WRITE16(type##IMR, (imr_val)); \
  177. POSTING_READ16(type##IMR); \
  178. } while (0)
  179. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  180. static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  181. /* For display hotplug interrupt */
  182. static inline void
  183. i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
  184. uint32_t mask,
  185. uint32_t bits)
  186. {
  187. uint32_t val;
  188. lockdep_assert_held(&dev_priv->irq_lock);
  189. WARN_ON(bits & ~mask);
  190. val = I915_READ(PORT_HOTPLUG_EN);
  191. val &= ~mask;
  192. val |= bits;
  193. I915_WRITE(PORT_HOTPLUG_EN, val);
  194. }
  195. /**
  196. * i915_hotplug_interrupt_update - update hotplug interrupt enable
  197. * @dev_priv: driver private
  198. * @mask: bits to update
  199. * @bits: bits to enable
  200. * NOTE: the HPD enable bits are modified both inside and outside
  201. * of an interrupt context. To avoid that read-modify-write cycles
  202. * interfer, these bits are protected by a spinlock. Since this
  203. * function is usually not called from a context where the lock is
  204. * held already, this function acquires the lock itself. A non-locking
  205. * version is also available.
  206. */
  207. void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
  208. uint32_t mask,
  209. uint32_t bits)
  210. {
  211. spin_lock_irq(&dev_priv->irq_lock);
  212. i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
  213. spin_unlock_irq(&dev_priv->irq_lock);
  214. }
  215. static u32
  216. gen11_gt_engine_identity(struct drm_i915_private * const i915,
  217. const unsigned int bank, const unsigned int bit);
  218. bool gen11_reset_one_iir(struct drm_i915_private * const i915,
  219. const unsigned int bank,
  220. const unsigned int bit)
  221. {
  222. void __iomem * const regs = i915->regs;
  223. u32 dw;
  224. lockdep_assert_held(&i915->irq_lock);
  225. dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
  226. if (dw & BIT(bit)) {
  227. /*
  228. * According to the BSpec, DW_IIR bits cannot be cleared without
  229. * first servicing the Selector & Shared IIR registers.
  230. */
  231. gen11_gt_engine_identity(i915, bank, bit);
  232. /*
  233. * We locked GT INT DW by reading it. If we want to (try
  234. * to) recover from this succesfully, we need to clear
  235. * our bit, otherwise we are locking the register for
  236. * everybody.
  237. */
  238. raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
  239. return true;
  240. }
  241. return false;
  242. }
  243. /**
  244. * ilk_update_display_irq - update DEIMR
  245. * @dev_priv: driver private
  246. * @interrupt_mask: mask of interrupt bits to update
  247. * @enabled_irq_mask: mask of interrupt bits to enable
  248. */
  249. void ilk_update_display_irq(struct drm_i915_private *dev_priv,
  250. uint32_t interrupt_mask,
  251. uint32_t enabled_irq_mask)
  252. {
  253. uint32_t new_val;
  254. lockdep_assert_held(&dev_priv->irq_lock);
  255. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  256. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  257. return;
  258. new_val = dev_priv->irq_mask;
  259. new_val &= ~interrupt_mask;
  260. new_val |= (~enabled_irq_mask & interrupt_mask);
  261. if (new_val != dev_priv->irq_mask) {
  262. dev_priv->irq_mask = new_val;
  263. I915_WRITE(DEIMR, dev_priv->irq_mask);
  264. POSTING_READ(DEIMR);
  265. }
  266. }
  267. /**
  268. * ilk_update_gt_irq - update GTIMR
  269. * @dev_priv: driver private
  270. * @interrupt_mask: mask of interrupt bits to update
  271. * @enabled_irq_mask: mask of interrupt bits to enable
  272. */
  273. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  274. uint32_t interrupt_mask,
  275. uint32_t enabled_irq_mask)
  276. {
  277. lockdep_assert_held(&dev_priv->irq_lock);
  278. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  279. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  280. return;
  281. dev_priv->gt_irq_mask &= ~interrupt_mask;
  282. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  283. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  284. }
  285. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  286. {
  287. ilk_update_gt_irq(dev_priv, mask, mask);
  288. POSTING_READ_FW(GTIMR);
  289. }
  290. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  291. {
  292. ilk_update_gt_irq(dev_priv, mask, 0);
  293. }
  294. static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
  295. {
  296. WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
  297. return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  298. }
  299. static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
  300. {
  301. if (INTEL_GEN(dev_priv) >= 11)
  302. return GEN11_GPM_WGBOXPERF_INTR_MASK;
  303. else if (INTEL_GEN(dev_priv) >= 8)
  304. return GEN8_GT_IMR(2);
  305. else
  306. return GEN6_PMIMR;
  307. }
  308. static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
  309. {
  310. if (INTEL_GEN(dev_priv) >= 11)
  311. return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
  312. else if (INTEL_GEN(dev_priv) >= 8)
  313. return GEN8_GT_IER(2);
  314. else
  315. return GEN6_PMIER;
  316. }
  317. /**
  318. * snb_update_pm_irq - update GEN6_PMIMR
  319. * @dev_priv: driver private
  320. * @interrupt_mask: mask of interrupt bits to update
  321. * @enabled_irq_mask: mask of interrupt bits to enable
  322. */
  323. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  324. uint32_t interrupt_mask,
  325. uint32_t enabled_irq_mask)
  326. {
  327. uint32_t new_val;
  328. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  329. lockdep_assert_held(&dev_priv->irq_lock);
  330. new_val = dev_priv->pm_imr;
  331. new_val &= ~interrupt_mask;
  332. new_val |= (~enabled_irq_mask & interrupt_mask);
  333. if (new_val != dev_priv->pm_imr) {
  334. dev_priv->pm_imr = new_val;
  335. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
  336. POSTING_READ(gen6_pm_imr(dev_priv));
  337. }
  338. }
  339. void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  340. {
  341. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  342. return;
  343. snb_update_pm_irq(dev_priv, mask, mask);
  344. }
  345. static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  346. {
  347. snb_update_pm_irq(dev_priv, mask, 0);
  348. }
  349. void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  350. {
  351. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  352. return;
  353. __gen6_mask_pm_irq(dev_priv, mask);
  354. }
  355. static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
  356. {
  357. i915_reg_t reg = gen6_pm_iir(dev_priv);
  358. lockdep_assert_held(&dev_priv->irq_lock);
  359. I915_WRITE(reg, reset_mask);
  360. I915_WRITE(reg, reset_mask);
  361. POSTING_READ(reg);
  362. }
  363. static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
  364. {
  365. lockdep_assert_held(&dev_priv->irq_lock);
  366. dev_priv->pm_ier |= enable_mask;
  367. I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
  368. gen6_unmask_pm_irq(dev_priv, enable_mask);
  369. /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
  370. }
  371. static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
  372. {
  373. lockdep_assert_held(&dev_priv->irq_lock);
  374. dev_priv->pm_ier &= ~disable_mask;
  375. __gen6_mask_pm_irq(dev_priv, disable_mask);
  376. I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
  377. /* though a barrier is missing here, but don't really need a one */
  378. }
  379. void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
  380. {
  381. spin_lock_irq(&dev_priv->irq_lock);
  382. while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
  383. ;
  384. dev_priv->gt_pm.rps.pm_iir = 0;
  385. spin_unlock_irq(&dev_priv->irq_lock);
  386. }
  387. void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
  388. {
  389. spin_lock_irq(&dev_priv->irq_lock);
  390. gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
  391. dev_priv->gt_pm.rps.pm_iir = 0;
  392. spin_unlock_irq(&dev_priv->irq_lock);
  393. }
  394. void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
  395. {
  396. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  397. if (READ_ONCE(rps->interrupts_enabled))
  398. return;
  399. spin_lock_irq(&dev_priv->irq_lock);
  400. WARN_ON_ONCE(rps->pm_iir);
  401. if (INTEL_GEN(dev_priv) >= 11)
  402. WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
  403. else
  404. WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  405. rps->interrupts_enabled = true;
  406. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  407. spin_unlock_irq(&dev_priv->irq_lock);
  408. }
  409. void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
  410. {
  411. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  412. if (!READ_ONCE(rps->interrupts_enabled))
  413. return;
  414. spin_lock_irq(&dev_priv->irq_lock);
  415. rps->interrupts_enabled = false;
  416. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
  417. gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  418. spin_unlock_irq(&dev_priv->irq_lock);
  419. synchronize_irq(dev_priv->drm.irq);
  420. /* Now that we will not be generating any more work, flush any
  421. * outstanding tasks. As we are called on the RPS idle path,
  422. * we will reset the GPU to minimum frequencies, so the current
  423. * state of the worker can be discarded.
  424. */
  425. cancel_work_sync(&rps->work);
  426. if (INTEL_GEN(dev_priv) >= 11)
  427. gen11_reset_rps_interrupts(dev_priv);
  428. else
  429. gen6_reset_rps_interrupts(dev_priv);
  430. }
  431. void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
  432. {
  433. assert_rpm_wakelock_held(dev_priv);
  434. spin_lock_irq(&dev_priv->irq_lock);
  435. gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
  436. spin_unlock_irq(&dev_priv->irq_lock);
  437. }
  438. void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
  439. {
  440. assert_rpm_wakelock_held(dev_priv);
  441. spin_lock_irq(&dev_priv->irq_lock);
  442. if (!dev_priv->guc.interrupts_enabled) {
  443. WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
  444. dev_priv->pm_guc_events);
  445. dev_priv->guc.interrupts_enabled = true;
  446. gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
  447. }
  448. spin_unlock_irq(&dev_priv->irq_lock);
  449. }
  450. void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
  451. {
  452. assert_rpm_wakelock_held(dev_priv);
  453. spin_lock_irq(&dev_priv->irq_lock);
  454. dev_priv->guc.interrupts_enabled = false;
  455. gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
  456. spin_unlock_irq(&dev_priv->irq_lock);
  457. synchronize_irq(dev_priv->drm.irq);
  458. gen9_reset_guc_interrupts(dev_priv);
  459. }
  460. /**
  461. * bdw_update_port_irq - update DE port interrupt
  462. * @dev_priv: driver private
  463. * @interrupt_mask: mask of interrupt bits to update
  464. * @enabled_irq_mask: mask of interrupt bits to enable
  465. */
  466. static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
  467. uint32_t interrupt_mask,
  468. uint32_t enabled_irq_mask)
  469. {
  470. uint32_t new_val;
  471. uint32_t old_val;
  472. lockdep_assert_held(&dev_priv->irq_lock);
  473. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  474. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  475. return;
  476. old_val = I915_READ(GEN8_DE_PORT_IMR);
  477. new_val = old_val;
  478. new_val &= ~interrupt_mask;
  479. new_val |= (~enabled_irq_mask & interrupt_mask);
  480. if (new_val != old_val) {
  481. I915_WRITE(GEN8_DE_PORT_IMR, new_val);
  482. POSTING_READ(GEN8_DE_PORT_IMR);
  483. }
  484. }
  485. /**
  486. * bdw_update_pipe_irq - update DE pipe interrupt
  487. * @dev_priv: driver private
  488. * @pipe: pipe whose interrupt to update
  489. * @interrupt_mask: mask of interrupt bits to update
  490. * @enabled_irq_mask: mask of interrupt bits to enable
  491. */
  492. void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
  493. enum pipe pipe,
  494. uint32_t interrupt_mask,
  495. uint32_t enabled_irq_mask)
  496. {
  497. uint32_t new_val;
  498. lockdep_assert_held(&dev_priv->irq_lock);
  499. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  500. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  501. return;
  502. new_val = dev_priv->de_irq_mask[pipe];
  503. new_val &= ~interrupt_mask;
  504. new_val |= (~enabled_irq_mask & interrupt_mask);
  505. if (new_val != dev_priv->de_irq_mask[pipe]) {
  506. dev_priv->de_irq_mask[pipe] = new_val;
  507. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  508. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  509. }
  510. }
  511. /**
  512. * ibx_display_interrupt_update - update SDEIMR
  513. * @dev_priv: driver private
  514. * @interrupt_mask: mask of interrupt bits to update
  515. * @enabled_irq_mask: mask of interrupt bits to enable
  516. */
  517. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  518. uint32_t interrupt_mask,
  519. uint32_t enabled_irq_mask)
  520. {
  521. uint32_t sdeimr = I915_READ(SDEIMR);
  522. sdeimr &= ~interrupt_mask;
  523. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  524. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  525. lockdep_assert_held(&dev_priv->irq_lock);
  526. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  527. return;
  528. I915_WRITE(SDEIMR, sdeimr);
  529. POSTING_READ(SDEIMR);
  530. }
  531. u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
  532. enum pipe pipe)
  533. {
  534. u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
  535. u32 enable_mask = status_mask << 16;
  536. lockdep_assert_held(&dev_priv->irq_lock);
  537. if (INTEL_GEN(dev_priv) < 5)
  538. goto out;
  539. /*
  540. * On pipe A we don't support the PSR interrupt yet,
  541. * on pipe B and C the same bit MBZ.
  542. */
  543. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  544. return 0;
  545. /*
  546. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  547. * A the same bit is for perf counters which we don't use either.
  548. */
  549. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  550. return 0;
  551. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  552. SPRITE0_FLIP_DONE_INT_EN_VLV |
  553. SPRITE1_FLIP_DONE_INT_EN_VLV);
  554. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  555. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  556. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  557. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  558. out:
  559. WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  560. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  561. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  562. pipe_name(pipe), enable_mask, status_mask);
  563. return enable_mask;
  564. }
  565. void i915_enable_pipestat(struct drm_i915_private *dev_priv,
  566. enum pipe pipe, u32 status_mask)
  567. {
  568. i915_reg_t reg = PIPESTAT(pipe);
  569. u32 enable_mask;
  570. WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
  571. "pipe %c: status_mask=0x%x\n",
  572. pipe_name(pipe), status_mask);
  573. lockdep_assert_held(&dev_priv->irq_lock);
  574. WARN_ON(!intel_irqs_enabled(dev_priv));
  575. if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
  576. return;
  577. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  578. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  579. I915_WRITE(reg, enable_mask | status_mask);
  580. POSTING_READ(reg);
  581. }
  582. void i915_disable_pipestat(struct drm_i915_private *dev_priv,
  583. enum pipe pipe, u32 status_mask)
  584. {
  585. i915_reg_t reg = PIPESTAT(pipe);
  586. u32 enable_mask;
  587. WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
  588. "pipe %c: status_mask=0x%x\n",
  589. pipe_name(pipe), status_mask);
  590. lockdep_assert_held(&dev_priv->irq_lock);
  591. WARN_ON(!intel_irqs_enabled(dev_priv));
  592. if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
  593. return;
  594. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  595. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  596. I915_WRITE(reg, enable_mask | status_mask);
  597. POSTING_READ(reg);
  598. }
  599. /**
  600. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  601. * @dev_priv: i915 device private
  602. */
  603. static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
  604. {
  605. if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
  606. return;
  607. spin_lock_irq(&dev_priv->irq_lock);
  608. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  609. if (INTEL_GEN(dev_priv) >= 4)
  610. i915_enable_pipestat(dev_priv, PIPE_A,
  611. PIPE_LEGACY_BLC_EVENT_STATUS);
  612. spin_unlock_irq(&dev_priv->irq_lock);
  613. }
  614. /*
  615. * This timing diagram depicts the video signal in and
  616. * around the vertical blanking period.
  617. *
  618. * Assumptions about the fictitious mode used in this example:
  619. * vblank_start >= 3
  620. * vsync_start = vblank_start + 1
  621. * vsync_end = vblank_start + 2
  622. * vtotal = vblank_start + 3
  623. *
  624. * start of vblank:
  625. * latch double buffered registers
  626. * increment frame counter (ctg+)
  627. * generate start of vblank interrupt (gen4+)
  628. * |
  629. * | frame start:
  630. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  631. * | may be shifted forward 1-3 extra lines via PIPECONF
  632. * | |
  633. * | | start of vsync:
  634. * | | generate vsync interrupt
  635. * | | |
  636. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  637. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  638. * ----va---> <-----------------vb--------------------> <--------va-------------
  639. * | | <----vs-----> |
  640. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  641. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  642. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  643. * | | |
  644. * last visible pixel first visible pixel
  645. * | increment frame counter (gen3/4)
  646. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  647. *
  648. * x = horizontal active
  649. * _ = horizontal blanking
  650. * hs = horizontal sync
  651. * va = vertical active
  652. * vb = vertical blanking
  653. * vs = vertical sync
  654. * vbs = vblank_start (number)
  655. *
  656. * Summary:
  657. * - most events happen at the start of horizontal sync
  658. * - frame start happens at the start of horizontal blank, 1-4 lines
  659. * (depending on PIPECONF settings) after the start of vblank
  660. * - gen3/4 pixel and frame counter are synchronized with the start
  661. * of horizontal active on the first line of vertical active
  662. */
  663. /* Called from drm generic code, passed a 'crtc', which
  664. * we use as a pipe index
  665. */
  666. static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  667. {
  668. struct drm_i915_private *dev_priv = to_i915(dev);
  669. i915_reg_t high_frame, low_frame;
  670. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  671. const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
  672. unsigned long irqflags;
  673. htotal = mode->crtc_htotal;
  674. hsync_start = mode->crtc_hsync_start;
  675. vbl_start = mode->crtc_vblank_start;
  676. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  677. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  678. /* Convert to pixel count */
  679. vbl_start *= htotal;
  680. /* Start of vblank event occurs at start of hsync */
  681. vbl_start -= htotal - hsync_start;
  682. high_frame = PIPEFRAME(pipe);
  683. low_frame = PIPEFRAMEPIXEL(pipe);
  684. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  685. /*
  686. * High & low register fields aren't synchronized, so make sure
  687. * we get a low value that's stable across two reads of the high
  688. * register.
  689. */
  690. do {
  691. high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
  692. low = I915_READ_FW(low_frame);
  693. high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
  694. } while (high1 != high2);
  695. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  696. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  697. pixel = low & PIPE_PIXEL_MASK;
  698. low >>= PIPE_FRAME_LOW_SHIFT;
  699. /*
  700. * The frame counter increments at beginning of active.
  701. * Cook up a vblank counter by also checking the pixel
  702. * counter against vblank start.
  703. */
  704. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  705. }
  706. static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  707. {
  708. struct drm_i915_private *dev_priv = to_i915(dev);
  709. return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
  710. }
  711. /*
  712. * On certain encoders on certain platforms, pipe
  713. * scanline register will not work to get the scanline,
  714. * since the timings are driven from the PORT or issues
  715. * with scanline register updates.
  716. * This function will use Framestamp and current
  717. * timestamp registers to calculate the scanline.
  718. */
  719. static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
  720. {
  721. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  722. struct drm_vblank_crtc *vblank =
  723. &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
  724. const struct drm_display_mode *mode = &vblank->hwmode;
  725. u32 vblank_start = mode->crtc_vblank_start;
  726. u32 vtotal = mode->crtc_vtotal;
  727. u32 htotal = mode->crtc_htotal;
  728. u32 clock = mode->crtc_clock;
  729. u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
  730. /*
  731. * To avoid the race condition where we might cross into the
  732. * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
  733. * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
  734. * during the same frame.
  735. */
  736. do {
  737. /*
  738. * This field provides read back of the display
  739. * pipe frame time stamp. The time stamp value
  740. * is sampled at every start of vertical blank.
  741. */
  742. scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
  743. /*
  744. * The TIMESTAMP_CTR register has the current
  745. * time stamp value.
  746. */
  747. scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
  748. scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
  749. } while (scan_post_time != scan_prev_time);
  750. scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
  751. clock), 1000 * htotal);
  752. scanline = min(scanline, vtotal - 1);
  753. scanline = (scanline + vblank_start) % vtotal;
  754. return scanline;
  755. }
  756. /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
  757. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  758. {
  759. struct drm_device *dev = crtc->base.dev;
  760. struct drm_i915_private *dev_priv = to_i915(dev);
  761. const struct drm_display_mode *mode;
  762. struct drm_vblank_crtc *vblank;
  763. enum pipe pipe = crtc->pipe;
  764. int position, vtotal;
  765. if (!crtc->active)
  766. return -1;
  767. vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
  768. mode = &vblank->hwmode;
  769. if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
  770. return __intel_get_crtc_scanline_from_timestamp(crtc);
  771. vtotal = mode->crtc_vtotal;
  772. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  773. vtotal /= 2;
  774. if (IS_GEN2(dev_priv))
  775. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  776. else
  777. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  778. /*
  779. * On HSW, the DSL reg (0x70000) appears to return 0 if we
  780. * read it just before the start of vblank. So try it again
  781. * so we don't accidentally end up spanning a vblank frame
  782. * increment, causing the pipe_update_end() code to squak at us.
  783. *
  784. * The nature of this problem means we can't simply check the ISR
  785. * bit and return the vblank start value; nor can we use the scanline
  786. * debug register in the transcoder as it appears to have the same
  787. * problem. We may need to extend this to include other platforms,
  788. * but so far testing only shows the problem on HSW.
  789. */
  790. if (HAS_DDI(dev_priv) && !position) {
  791. int i, temp;
  792. for (i = 0; i < 100; i++) {
  793. udelay(1);
  794. temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  795. if (temp != position) {
  796. position = temp;
  797. break;
  798. }
  799. }
  800. }
  801. /*
  802. * See update_scanline_offset() for the details on the
  803. * scanline_offset adjustment.
  804. */
  805. return (position + crtc->scanline_offset) % vtotal;
  806. }
  807. static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
  808. bool in_vblank_irq, int *vpos, int *hpos,
  809. ktime_t *stime, ktime_t *etime,
  810. const struct drm_display_mode *mode)
  811. {
  812. struct drm_i915_private *dev_priv = to_i915(dev);
  813. struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
  814. pipe);
  815. int position;
  816. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  817. unsigned long irqflags;
  818. if (WARN_ON(!mode->crtc_clock)) {
  819. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  820. "pipe %c\n", pipe_name(pipe));
  821. return false;
  822. }
  823. htotal = mode->crtc_htotal;
  824. hsync_start = mode->crtc_hsync_start;
  825. vtotal = mode->crtc_vtotal;
  826. vbl_start = mode->crtc_vblank_start;
  827. vbl_end = mode->crtc_vblank_end;
  828. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  829. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  830. vbl_end /= 2;
  831. vtotal /= 2;
  832. }
  833. /*
  834. * Lock uncore.lock, as we will do multiple timing critical raw
  835. * register reads, potentially with preemption disabled, so the
  836. * following code must not block on uncore.lock.
  837. */
  838. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  839. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  840. /* Get optional system timestamp before query. */
  841. if (stime)
  842. *stime = ktime_get();
  843. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  844. /* No obvious pixelcount register. Only query vertical
  845. * scanout position from Display scan line register.
  846. */
  847. position = __intel_get_crtc_scanline(intel_crtc);
  848. } else {
  849. /* Have access to pixelcount since start of frame.
  850. * We can split this into vertical and horizontal
  851. * scanout position.
  852. */
  853. position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  854. /* convert to pixel counts */
  855. vbl_start *= htotal;
  856. vbl_end *= htotal;
  857. vtotal *= htotal;
  858. /*
  859. * In interlaced modes, the pixel counter counts all pixels,
  860. * so one field will have htotal more pixels. In order to avoid
  861. * the reported position from jumping backwards when the pixel
  862. * counter is beyond the length of the shorter field, just
  863. * clamp the position the length of the shorter field. This
  864. * matches how the scanline counter based position works since
  865. * the scanline counter doesn't count the two half lines.
  866. */
  867. if (position >= vtotal)
  868. position = vtotal - 1;
  869. /*
  870. * Start of vblank interrupt is triggered at start of hsync,
  871. * just prior to the first active line of vblank. However we
  872. * consider lines to start at the leading edge of horizontal
  873. * active. So, should we get here before we've crossed into
  874. * the horizontal active of the first line in vblank, we would
  875. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  876. * always add htotal-hsync_start to the current pixel position.
  877. */
  878. position = (position + htotal - hsync_start) % vtotal;
  879. }
  880. /* Get optional system timestamp after query. */
  881. if (etime)
  882. *etime = ktime_get();
  883. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  884. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  885. /*
  886. * While in vblank, position will be negative
  887. * counting up towards 0 at vbl_end. And outside
  888. * vblank, position will be positive counting
  889. * up since vbl_end.
  890. */
  891. if (position >= vbl_start)
  892. position -= vbl_end;
  893. else
  894. position += vtotal - vbl_end;
  895. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  896. *vpos = position;
  897. *hpos = 0;
  898. } else {
  899. *vpos = position / htotal;
  900. *hpos = position - (*vpos * htotal);
  901. }
  902. return true;
  903. }
  904. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  905. {
  906. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  907. unsigned long irqflags;
  908. int position;
  909. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  910. position = __intel_get_crtc_scanline(crtc);
  911. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  912. return position;
  913. }
  914. static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
  915. {
  916. u32 busy_up, busy_down, max_avg, min_avg;
  917. u8 new_delay;
  918. spin_lock(&mchdev_lock);
  919. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  920. new_delay = dev_priv->ips.cur_delay;
  921. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  922. busy_up = I915_READ(RCPREVBSYTUPAVG);
  923. busy_down = I915_READ(RCPREVBSYTDNAVG);
  924. max_avg = I915_READ(RCBMAXAVG);
  925. min_avg = I915_READ(RCBMINAVG);
  926. /* Handle RCS change request from hw */
  927. if (busy_up > max_avg) {
  928. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  929. new_delay = dev_priv->ips.cur_delay - 1;
  930. if (new_delay < dev_priv->ips.max_delay)
  931. new_delay = dev_priv->ips.max_delay;
  932. } else if (busy_down < min_avg) {
  933. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  934. new_delay = dev_priv->ips.cur_delay + 1;
  935. if (new_delay > dev_priv->ips.min_delay)
  936. new_delay = dev_priv->ips.min_delay;
  937. }
  938. if (ironlake_set_drps(dev_priv, new_delay))
  939. dev_priv->ips.cur_delay = new_delay;
  940. spin_unlock(&mchdev_lock);
  941. return;
  942. }
  943. static void notify_ring(struct intel_engine_cs *engine)
  944. {
  945. struct i915_request *rq = NULL;
  946. struct intel_wait *wait;
  947. if (!engine->breadcrumbs.irq_armed)
  948. return;
  949. atomic_inc(&engine->irq_count);
  950. set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
  951. spin_lock(&engine->breadcrumbs.irq_lock);
  952. wait = engine->breadcrumbs.irq_wait;
  953. if (wait) {
  954. bool wakeup = engine->irq_seqno_barrier;
  955. /* We use a callback from the dma-fence to submit
  956. * requests after waiting on our own requests. To
  957. * ensure minimum delay in queuing the next request to
  958. * hardware, signal the fence now rather than wait for
  959. * the signaler to be woken up. We still wake up the
  960. * waiter in order to handle the irq-seqno coherency
  961. * issues (we may receive the interrupt before the
  962. * seqno is written, see __i915_request_irq_complete())
  963. * and to handle coalescing of multiple seqno updates
  964. * and many waiters.
  965. */
  966. if (i915_seqno_passed(intel_engine_get_seqno(engine),
  967. wait->seqno)) {
  968. struct i915_request *waiter = wait->request;
  969. wakeup = true;
  970. if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
  971. &waiter->fence.flags) &&
  972. intel_wait_check_request(wait, waiter))
  973. rq = i915_request_get(waiter);
  974. }
  975. if (wakeup)
  976. wake_up_process(wait->tsk);
  977. } else {
  978. if (engine->breadcrumbs.irq_armed)
  979. __intel_engine_disarm_breadcrumbs(engine);
  980. }
  981. spin_unlock(&engine->breadcrumbs.irq_lock);
  982. if (rq) {
  983. dma_fence_signal(&rq->fence);
  984. GEM_BUG_ON(!i915_request_completed(rq));
  985. i915_request_put(rq);
  986. }
  987. trace_intel_engine_notify(engine, wait);
  988. }
  989. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  990. struct intel_rps_ei *ei)
  991. {
  992. ei->ktime = ktime_get_raw();
  993. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  994. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  995. }
  996. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  997. {
  998. memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
  999. }
  1000. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  1001. {
  1002. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1003. const struct intel_rps_ei *prev = &rps->ei;
  1004. struct intel_rps_ei now;
  1005. u32 events = 0;
  1006. if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
  1007. return 0;
  1008. vlv_c0_read(dev_priv, &now);
  1009. if (prev->ktime) {
  1010. u64 time, c0;
  1011. u32 render, media;
  1012. time = ktime_us_delta(now.ktime, prev->ktime);
  1013. time *= dev_priv->czclk_freq;
  1014. /* Workload can be split between render + media,
  1015. * e.g. SwapBuffers being blitted in X after being rendered in
  1016. * mesa. To account for this we need to combine both engines
  1017. * into our activity counter.
  1018. */
  1019. render = now.render_c0 - prev->render_c0;
  1020. media = now.media_c0 - prev->media_c0;
  1021. c0 = max(render, media);
  1022. c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
  1023. if (c0 > time * rps->up_threshold)
  1024. events = GEN6_PM_RP_UP_THRESHOLD;
  1025. else if (c0 < time * rps->down_threshold)
  1026. events = GEN6_PM_RP_DOWN_THRESHOLD;
  1027. }
  1028. rps->ei = now;
  1029. return events;
  1030. }
  1031. static void gen6_pm_rps_work(struct work_struct *work)
  1032. {
  1033. struct drm_i915_private *dev_priv =
  1034. container_of(work, struct drm_i915_private, gt_pm.rps.work);
  1035. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1036. bool client_boost = false;
  1037. int new_delay, adj, min, max;
  1038. u32 pm_iir = 0;
  1039. spin_lock_irq(&dev_priv->irq_lock);
  1040. if (rps->interrupts_enabled) {
  1041. pm_iir = fetch_and_zero(&rps->pm_iir);
  1042. client_boost = atomic_read(&rps->num_waiters);
  1043. }
  1044. spin_unlock_irq(&dev_priv->irq_lock);
  1045. /* Make sure we didn't queue anything we're not going to process. */
  1046. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  1047. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  1048. goto out;
  1049. mutex_lock(&dev_priv->pcu_lock);
  1050. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  1051. adj = rps->last_adj;
  1052. new_delay = rps->cur_freq;
  1053. min = rps->min_freq_softlimit;
  1054. max = rps->max_freq_softlimit;
  1055. if (client_boost)
  1056. max = rps->max_freq;
  1057. if (client_boost && new_delay < rps->boost_freq) {
  1058. new_delay = rps->boost_freq;
  1059. adj = 0;
  1060. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  1061. if (adj > 0)
  1062. adj *= 2;
  1063. else /* CHV needs even encode values */
  1064. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  1065. if (new_delay >= rps->max_freq_softlimit)
  1066. adj = 0;
  1067. } else if (client_boost) {
  1068. adj = 0;
  1069. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  1070. if (rps->cur_freq > rps->efficient_freq)
  1071. new_delay = rps->efficient_freq;
  1072. else if (rps->cur_freq > rps->min_freq_softlimit)
  1073. new_delay = rps->min_freq_softlimit;
  1074. adj = 0;
  1075. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  1076. if (adj < 0)
  1077. adj *= 2;
  1078. else /* CHV needs even encode values */
  1079. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  1080. if (new_delay <= rps->min_freq_softlimit)
  1081. adj = 0;
  1082. } else { /* unknown event */
  1083. adj = 0;
  1084. }
  1085. rps->last_adj = adj;
  1086. /* sysfs frequency interfaces may have snuck in while servicing the
  1087. * interrupt
  1088. */
  1089. new_delay += adj;
  1090. new_delay = clamp_t(int, new_delay, min, max);
  1091. if (intel_set_rps(dev_priv, new_delay)) {
  1092. DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
  1093. rps->last_adj = 0;
  1094. }
  1095. mutex_unlock(&dev_priv->pcu_lock);
  1096. out:
  1097. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  1098. spin_lock_irq(&dev_priv->irq_lock);
  1099. if (rps->interrupts_enabled)
  1100. gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
  1101. spin_unlock_irq(&dev_priv->irq_lock);
  1102. }
  1103. /**
  1104. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  1105. * occurred.
  1106. * @work: workqueue struct
  1107. *
  1108. * Doesn't actually do anything except notify userspace. As a consequence of
  1109. * this event, userspace should try to remap the bad rows since statistically
  1110. * it is likely the same row is more likely to go bad again.
  1111. */
  1112. static void ivybridge_parity_work(struct work_struct *work)
  1113. {
  1114. struct drm_i915_private *dev_priv =
  1115. container_of(work, typeof(*dev_priv), l3_parity.error_work);
  1116. u32 error_status, row, bank, subbank;
  1117. char *parity_event[6];
  1118. uint32_t misccpctl;
  1119. uint8_t slice = 0;
  1120. /* We must turn off DOP level clock gating to access the L3 registers.
  1121. * In order to prevent a get/put style interface, acquire struct mutex
  1122. * any time we access those registers.
  1123. */
  1124. mutex_lock(&dev_priv->drm.struct_mutex);
  1125. /* If we've screwed up tracking, just let the interrupt fire again */
  1126. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  1127. goto out;
  1128. misccpctl = I915_READ(GEN7_MISCCPCTL);
  1129. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  1130. POSTING_READ(GEN7_MISCCPCTL);
  1131. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  1132. i915_reg_t reg;
  1133. slice--;
  1134. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
  1135. break;
  1136. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  1137. reg = GEN7_L3CDERRST1(slice);
  1138. error_status = I915_READ(reg);
  1139. row = GEN7_PARITY_ERROR_ROW(error_status);
  1140. bank = GEN7_PARITY_ERROR_BANK(error_status);
  1141. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  1142. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  1143. POSTING_READ(reg);
  1144. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  1145. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  1146. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  1147. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  1148. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  1149. parity_event[5] = NULL;
  1150. kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
  1151. KOBJ_CHANGE, parity_event);
  1152. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  1153. slice, row, bank, subbank);
  1154. kfree(parity_event[4]);
  1155. kfree(parity_event[3]);
  1156. kfree(parity_event[2]);
  1157. kfree(parity_event[1]);
  1158. }
  1159. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  1160. out:
  1161. WARN_ON(dev_priv->l3_parity.which_slice);
  1162. spin_lock_irq(&dev_priv->irq_lock);
  1163. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1164. spin_unlock_irq(&dev_priv->irq_lock);
  1165. mutex_unlock(&dev_priv->drm.struct_mutex);
  1166. }
  1167. static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
  1168. u32 iir)
  1169. {
  1170. if (!HAS_L3_DPF(dev_priv))
  1171. return;
  1172. spin_lock(&dev_priv->irq_lock);
  1173. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1174. spin_unlock(&dev_priv->irq_lock);
  1175. iir &= GT_PARITY_ERROR(dev_priv);
  1176. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  1177. dev_priv->l3_parity.which_slice |= 1 << 1;
  1178. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  1179. dev_priv->l3_parity.which_slice |= 1 << 0;
  1180. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  1181. }
  1182. static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
  1183. u32 gt_iir)
  1184. {
  1185. if (gt_iir & GT_RENDER_USER_INTERRUPT)
  1186. notify_ring(dev_priv->engine[RCS]);
  1187. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  1188. notify_ring(dev_priv->engine[VCS]);
  1189. }
  1190. static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
  1191. u32 gt_iir)
  1192. {
  1193. if (gt_iir & GT_RENDER_USER_INTERRUPT)
  1194. notify_ring(dev_priv->engine[RCS]);
  1195. if (gt_iir & GT_BSD_USER_INTERRUPT)
  1196. notify_ring(dev_priv->engine[VCS]);
  1197. if (gt_iir & GT_BLT_USER_INTERRUPT)
  1198. notify_ring(dev_priv->engine[BCS]);
  1199. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  1200. GT_BSD_CS_ERROR_INTERRUPT |
  1201. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  1202. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  1203. if (gt_iir & GT_PARITY_ERROR(dev_priv))
  1204. ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
  1205. }
  1206. static void
  1207. gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
  1208. {
  1209. struct intel_engine_execlists * const execlists = &engine->execlists;
  1210. bool tasklet = false;
  1211. if (iir & GT_CONTEXT_SWITCH_INTERRUPT) {
  1212. if (READ_ONCE(engine->execlists.active))
  1213. tasklet = !test_and_set_bit(ENGINE_IRQ_EXECLIST,
  1214. &engine->irq_posted);
  1215. }
  1216. if (iir & GT_RENDER_USER_INTERRUPT) {
  1217. notify_ring(engine);
  1218. tasklet |= USES_GUC_SUBMISSION(engine->i915);
  1219. }
  1220. if (tasklet)
  1221. tasklet_hi_schedule(&execlists->tasklet);
  1222. }
  1223. static void gen8_gt_irq_ack(struct drm_i915_private *i915,
  1224. u32 master_ctl, u32 gt_iir[4])
  1225. {
  1226. void __iomem * const regs = i915->regs;
  1227. #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
  1228. GEN8_GT_BCS_IRQ | \
  1229. GEN8_GT_VCS1_IRQ | \
  1230. GEN8_GT_VCS2_IRQ | \
  1231. GEN8_GT_VECS_IRQ | \
  1232. GEN8_GT_PM_IRQ | \
  1233. GEN8_GT_GUC_IRQ)
  1234. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1235. gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
  1236. if (likely(gt_iir[0]))
  1237. raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
  1238. }
  1239. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1240. gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
  1241. if (likely(gt_iir[1]))
  1242. raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
  1243. }
  1244. if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
  1245. gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
  1246. if (likely(gt_iir[2] & (i915->pm_rps_events |
  1247. i915->pm_guc_events)))
  1248. raw_reg_write(regs, GEN8_GT_IIR(2),
  1249. gt_iir[2] & (i915->pm_rps_events |
  1250. i915->pm_guc_events));
  1251. }
  1252. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1253. gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
  1254. if (likely(gt_iir[3]))
  1255. raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
  1256. }
  1257. }
  1258. static void gen8_gt_irq_handler(struct drm_i915_private *i915,
  1259. u32 master_ctl, u32 gt_iir[4])
  1260. {
  1261. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1262. gen8_cs_irq_handler(i915->engine[RCS],
  1263. gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
  1264. gen8_cs_irq_handler(i915->engine[BCS],
  1265. gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
  1266. }
  1267. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1268. gen8_cs_irq_handler(i915->engine[VCS],
  1269. gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
  1270. gen8_cs_irq_handler(i915->engine[VCS2],
  1271. gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
  1272. }
  1273. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1274. gen8_cs_irq_handler(i915->engine[VECS],
  1275. gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
  1276. }
  1277. if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
  1278. gen6_rps_irq_handler(i915, gt_iir[2]);
  1279. gen9_guc_irq_handler(i915, gt_iir[2]);
  1280. }
  1281. }
  1282. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1283. {
  1284. switch (port) {
  1285. case PORT_A:
  1286. return val & PORTA_HOTPLUG_LONG_DETECT;
  1287. case PORT_B:
  1288. return val & PORTB_HOTPLUG_LONG_DETECT;
  1289. case PORT_C:
  1290. return val & PORTC_HOTPLUG_LONG_DETECT;
  1291. default:
  1292. return false;
  1293. }
  1294. }
  1295. static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
  1296. {
  1297. switch (port) {
  1298. case PORT_E:
  1299. return val & PORTE_HOTPLUG_LONG_DETECT;
  1300. default:
  1301. return false;
  1302. }
  1303. }
  1304. static bool spt_port_hotplug_long_detect(enum port port, u32 val)
  1305. {
  1306. switch (port) {
  1307. case PORT_A:
  1308. return val & PORTA_HOTPLUG_LONG_DETECT;
  1309. case PORT_B:
  1310. return val & PORTB_HOTPLUG_LONG_DETECT;
  1311. case PORT_C:
  1312. return val & PORTC_HOTPLUG_LONG_DETECT;
  1313. case PORT_D:
  1314. return val & PORTD_HOTPLUG_LONG_DETECT;
  1315. default:
  1316. return false;
  1317. }
  1318. }
  1319. static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
  1320. {
  1321. switch (port) {
  1322. case PORT_A:
  1323. return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
  1324. default:
  1325. return false;
  1326. }
  1327. }
  1328. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1329. {
  1330. switch (port) {
  1331. case PORT_B:
  1332. return val & PORTB_HOTPLUG_LONG_DETECT;
  1333. case PORT_C:
  1334. return val & PORTC_HOTPLUG_LONG_DETECT;
  1335. case PORT_D:
  1336. return val & PORTD_HOTPLUG_LONG_DETECT;
  1337. default:
  1338. return false;
  1339. }
  1340. }
  1341. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1342. {
  1343. switch (port) {
  1344. case PORT_B:
  1345. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1346. case PORT_C:
  1347. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1348. case PORT_D:
  1349. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1350. default:
  1351. return false;
  1352. }
  1353. }
  1354. /*
  1355. * Get a bit mask of pins that have triggered, and which ones may be long.
  1356. * This can be called multiple times with the same masks to accumulate
  1357. * hotplug detection results from several registers.
  1358. *
  1359. * Note that the caller is expected to zero out the masks initially.
  1360. */
  1361. static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
  1362. u32 *pin_mask, u32 *long_mask,
  1363. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1364. const u32 hpd[HPD_NUM_PINS],
  1365. bool long_pulse_detect(enum port port, u32 val))
  1366. {
  1367. enum port port;
  1368. int i;
  1369. for_each_hpd_pin(i) {
  1370. if ((hpd[i] & hotplug_trigger) == 0)
  1371. continue;
  1372. *pin_mask |= BIT(i);
  1373. port = intel_hpd_pin_to_port(dev_priv, i);
  1374. if (port == PORT_NONE)
  1375. continue;
  1376. if (long_pulse_detect(port, dig_hotplug_reg))
  1377. *long_mask |= BIT(i);
  1378. }
  1379. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1380. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1381. }
  1382. static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
  1383. {
  1384. wake_up_all(&dev_priv->gmbus_wait_queue);
  1385. }
  1386. static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
  1387. {
  1388. wake_up_all(&dev_priv->gmbus_wait_queue);
  1389. }
  1390. #if defined(CONFIG_DEBUG_FS)
  1391. static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1392. enum pipe pipe,
  1393. uint32_t crc0, uint32_t crc1,
  1394. uint32_t crc2, uint32_t crc3,
  1395. uint32_t crc4)
  1396. {
  1397. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1398. struct intel_pipe_crc_entry *entry;
  1399. struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
  1400. struct drm_driver *driver = dev_priv->drm.driver;
  1401. uint32_t crcs[5];
  1402. int head, tail;
  1403. spin_lock(&pipe_crc->lock);
  1404. if (pipe_crc->source && !crtc->base.crc.opened) {
  1405. if (!pipe_crc->entries) {
  1406. spin_unlock(&pipe_crc->lock);
  1407. DRM_DEBUG_KMS("spurious interrupt\n");
  1408. return;
  1409. }
  1410. head = pipe_crc->head;
  1411. tail = pipe_crc->tail;
  1412. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1413. spin_unlock(&pipe_crc->lock);
  1414. DRM_ERROR("CRC buffer overflowing\n");
  1415. return;
  1416. }
  1417. entry = &pipe_crc->entries[head];
  1418. entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
  1419. entry->crc[0] = crc0;
  1420. entry->crc[1] = crc1;
  1421. entry->crc[2] = crc2;
  1422. entry->crc[3] = crc3;
  1423. entry->crc[4] = crc4;
  1424. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1425. pipe_crc->head = head;
  1426. spin_unlock(&pipe_crc->lock);
  1427. wake_up_interruptible(&pipe_crc->wq);
  1428. } else {
  1429. /*
  1430. * For some not yet identified reason, the first CRC is
  1431. * bonkers. So let's just wait for the next vblank and read
  1432. * out the buggy result.
  1433. *
  1434. * On GEN8+ sometimes the second CRC is bonkers as well, so
  1435. * don't trust that one either.
  1436. */
  1437. if (pipe_crc->skipped <= 0 ||
  1438. (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
  1439. pipe_crc->skipped++;
  1440. spin_unlock(&pipe_crc->lock);
  1441. return;
  1442. }
  1443. spin_unlock(&pipe_crc->lock);
  1444. crcs[0] = crc0;
  1445. crcs[1] = crc1;
  1446. crcs[2] = crc2;
  1447. crcs[3] = crc3;
  1448. crcs[4] = crc4;
  1449. drm_crtc_add_crc_entry(&crtc->base, true,
  1450. drm_crtc_accurate_vblank_count(&crtc->base),
  1451. crcs);
  1452. }
  1453. }
  1454. #else
  1455. static inline void
  1456. display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1457. enum pipe pipe,
  1458. uint32_t crc0, uint32_t crc1,
  1459. uint32_t crc2, uint32_t crc3,
  1460. uint32_t crc4) {}
  1461. #endif
  1462. static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1463. enum pipe pipe)
  1464. {
  1465. display_pipe_crc_irq_handler(dev_priv, pipe,
  1466. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1467. 0, 0, 0, 0);
  1468. }
  1469. static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1470. enum pipe pipe)
  1471. {
  1472. display_pipe_crc_irq_handler(dev_priv, pipe,
  1473. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1474. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1475. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1476. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1477. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1478. }
  1479. static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1480. enum pipe pipe)
  1481. {
  1482. uint32_t res1, res2;
  1483. if (INTEL_GEN(dev_priv) >= 3)
  1484. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1485. else
  1486. res1 = 0;
  1487. if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
  1488. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1489. else
  1490. res2 = 0;
  1491. display_pipe_crc_irq_handler(dev_priv, pipe,
  1492. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1493. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1494. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1495. res1, res2);
  1496. }
  1497. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1498. * IMR bits until the work is done. Other interrupts can be processed without
  1499. * the work queue. */
  1500. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1501. {
  1502. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1503. if (pm_iir & dev_priv->pm_rps_events) {
  1504. spin_lock(&dev_priv->irq_lock);
  1505. gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1506. if (rps->interrupts_enabled) {
  1507. rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1508. schedule_work(&rps->work);
  1509. }
  1510. spin_unlock(&dev_priv->irq_lock);
  1511. }
  1512. if (INTEL_GEN(dev_priv) >= 8)
  1513. return;
  1514. if (HAS_VEBOX(dev_priv)) {
  1515. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1516. notify_ring(dev_priv->engine[VECS]);
  1517. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1518. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1519. }
  1520. }
  1521. static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
  1522. {
  1523. if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
  1524. intel_guc_to_host_event_handler(&dev_priv->guc);
  1525. }
  1526. static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
  1527. {
  1528. enum pipe pipe;
  1529. for_each_pipe(dev_priv, pipe) {
  1530. I915_WRITE(PIPESTAT(pipe),
  1531. PIPESTAT_INT_STATUS_MASK |
  1532. PIPE_FIFO_UNDERRUN_STATUS);
  1533. dev_priv->pipestat_irq_mask[pipe] = 0;
  1534. }
  1535. }
  1536. static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
  1537. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1538. {
  1539. int pipe;
  1540. spin_lock(&dev_priv->irq_lock);
  1541. if (!dev_priv->display_irqs_enabled) {
  1542. spin_unlock(&dev_priv->irq_lock);
  1543. return;
  1544. }
  1545. for_each_pipe(dev_priv, pipe) {
  1546. i915_reg_t reg;
  1547. u32 status_mask, enable_mask, iir_bit = 0;
  1548. /*
  1549. * PIPESTAT bits get signalled even when the interrupt is
  1550. * disabled with the mask bits, and some of the status bits do
  1551. * not generate interrupts at all (like the underrun bit). Hence
  1552. * we need to be careful that we only handle what we want to
  1553. * handle.
  1554. */
  1555. /* fifo underruns are filterered in the underrun handler. */
  1556. status_mask = PIPE_FIFO_UNDERRUN_STATUS;
  1557. switch (pipe) {
  1558. case PIPE_A:
  1559. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1560. break;
  1561. case PIPE_B:
  1562. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1563. break;
  1564. case PIPE_C:
  1565. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1566. break;
  1567. }
  1568. if (iir & iir_bit)
  1569. status_mask |= dev_priv->pipestat_irq_mask[pipe];
  1570. if (!status_mask)
  1571. continue;
  1572. reg = PIPESTAT(pipe);
  1573. pipe_stats[pipe] = I915_READ(reg) & status_mask;
  1574. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  1575. /*
  1576. * Clear the PIPE*STAT regs before the IIR
  1577. */
  1578. if (pipe_stats[pipe])
  1579. I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
  1580. }
  1581. spin_unlock(&dev_priv->irq_lock);
  1582. }
  1583. static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1584. u16 iir, u32 pipe_stats[I915_MAX_PIPES])
  1585. {
  1586. enum pipe pipe;
  1587. for_each_pipe(dev_priv, pipe) {
  1588. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
  1589. drm_handle_vblank(&dev_priv->drm, pipe);
  1590. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1591. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1592. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1593. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1594. }
  1595. }
  1596. static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1597. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1598. {
  1599. bool blc_event = false;
  1600. enum pipe pipe;
  1601. for_each_pipe(dev_priv, pipe) {
  1602. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
  1603. drm_handle_vblank(&dev_priv->drm, pipe);
  1604. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  1605. blc_event = true;
  1606. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1607. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1608. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1609. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1610. }
  1611. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  1612. intel_opregion_asle_intr(dev_priv);
  1613. }
  1614. static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1615. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1616. {
  1617. bool blc_event = false;
  1618. enum pipe pipe;
  1619. for_each_pipe(dev_priv, pipe) {
  1620. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
  1621. drm_handle_vblank(&dev_priv->drm, pipe);
  1622. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  1623. blc_event = true;
  1624. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1625. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1626. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1627. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1628. }
  1629. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  1630. intel_opregion_asle_intr(dev_priv);
  1631. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1632. gmbus_irq_handler(dev_priv);
  1633. }
  1634. static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1635. u32 pipe_stats[I915_MAX_PIPES])
  1636. {
  1637. enum pipe pipe;
  1638. for_each_pipe(dev_priv, pipe) {
  1639. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
  1640. drm_handle_vblank(&dev_priv->drm, pipe);
  1641. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1642. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1643. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1644. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1645. }
  1646. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1647. gmbus_irq_handler(dev_priv);
  1648. }
  1649. static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
  1650. {
  1651. u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1652. if (hotplug_status)
  1653. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1654. return hotplug_status;
  1655. }
  1656. static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1657. u32 hotplug_status)
  1658. {
  1659. u32 pin_mask = 0, long_mask = 0;
  1660. if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
  1661. IS_CHERRYVIEW(dev_priv)) {
  1662. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1663. if (hotplug_trigger) {
  1664. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
  1665. hotplug_trigger, hotplug_trigger,
  1666. hpd_status_g4x,
  1667. i9xx_port_hotplug_long_detect);
  1668. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1669. }
  1670. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1671. dp_aux_irq_handler(dev_priv);
  1672. } else {
  1673. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1674. if (hotplug_trigger) {
  1675. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
  1676. hotplug_trigger, hotplug_trigger,
  1677. hpd_status_i915,
  1678. i9xx_port_hotplug_long_detect);
  1679. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1680. }
  1681. }
  1682. }
  1683. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1684. {
  1685. struct drm_device *dev = arg;
  1686. struct drm_i915_private *dev_priv = to_i915(dev);
  1687. irqreturn_t ret = IRQ_NONE;
  1688. if (!intel_irqs_enabled(dev_priv))
  1689. return IRQ_NONE;
  1690. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1691. disable_rpm_wakeref_asserts(dev_priv);
  1692. do {
  1693. u32 iir, gt_iir, pm_iir;
  1694. u32 pipe_stats[I915_MAX_PIPES] = {};
  1695. u32 hotplug_status = 0;
  1696. u32 ier = 0;
  1697. gt_iir = I915_READ(GTIIR);
  1698. pm_iir = I915_READ(GEN6_PMIIR);
  1699. iir = I915_READ(VLV_IIR);
  1700. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1701. break;
  1702. ret = IRQ_HANDLED;
  1703. /*
  1704. * Theory on interrupt generation, based on empirical evidence:
  1705. *
  1706. * x = ((VLV_IIR & VLV_IER) ||
  1707. * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
  1708. * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
  1709. *
  1710. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1711. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
  1712. * guarantee the CPU interrupt will be raised again even if we
  1713. * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
  1714. * bits this time around.
  1715. */
  1716. I915_WRITE(VLV_MASTER_IER, 0);
  1717. ier = I915_READ(VLV_IER);
  1718. I915_WRITE(VLV_IER, 0);
  1719. if (gt_iir)
  1720. I915_WRITE(GTIIR, gt_iir);
  1721. if (pm_iir)
  1722. I915_WRITE(GEN6_PMIIR, pm_iir);
  1723. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1724. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1725. /* Call regardless, as some status bits might not be
  1726. * signalled in iir */
  1727. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1728. if (iir & (I915_LPE_PIPE_A_INTERRUPT |
  1729. I915_LPE_PIPE_B_INTERRUPT))
  1730. intel_lpe_audio_irq_handler(dev_priv);
  1731. /*
  1732. * VLV_IIR is single buffered, and reflects the level
  1733. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1734. */
  1735. if (iir)
  1736. I915_WRITE(VLV_IIR, iir);
  1737. I915_WRITE(VLV_IER, ier);
  1738. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  1739. POSTING_READ(VLV_MASTER_IER);
  1740. if (gt_iir)
  1741. snb_gt_irq_handler(dev_priv, gt_iir);
  1742. if (pm_iir)
  1743. gen6_rps_irq_handler(dev_priv, pm_iir);
  1744. if (hotplug_status)
  1745. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1746. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1747. } while (0);
  1748. enable_rpm_wakeref_asserts(dev_priv);
  1749. return ret;
  1750. }
  1751. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1752. {
  1753. struct drm_device *dev = arg;
  1754. struct drm_i915_private *dev_priv = to_i915(dev);
  1755. irqreturn_t ret = IRQ_NONE;
  1756. if (!intel_irqs_enabled(dev_priv))
  1757. return IRQ_NONE;
  1758. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1759. disable_rpm_wakeref_asserts(dev_priv);
  1760. do {
  1761. u32 master_ctl, iir;
  1762. u32 pipe_stats[I915_MAX_PIPES] = {};
  1763. u32 hotplug_status = 0;
  1764. u32 gt_iir[4];
  1765. u32 ier = 0;
  1766. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1767. iir = I915_READ(VLV_IIR);
  1768. if (master_ctl == 0 && iir == 0)
  1769. break;
  1770. ret = IRQ_HANDLED;
  1771. /*
  1772. * Theory on interrupt generation, based on empirical evidence:
  1773. *
  1774. * x = ((VLV_IIR & VLV_IER) ||
  1775. * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
  1776. * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
  1777. *
  1778. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1779. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
  1780. * guarantee the CPU interrupt will be raised again even if we
  1781. * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
  1782. * bits this time around.
  1783. */
  1784. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1785. ier = I915_READ(VLV_IER);
  1786. I915_WRITE(VLV_IER, 0);
  1787. gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  1788. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1789. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1790. /* Call regardless, as some status bits might not be
  1791. * signalled in iir */
  1792. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1793. if (iir & (I915_LPE_PIPE_A_INTERRUPT |
  1794. I915_LPE_PIPE_B_INTERRUPT |
  1795. I915_LPE_PIPE_C_INTERRUPT))
  1796. intel_lpe_audio_irq_handler(dev_priv);
  1797. /*
  1798. * VLV_IIR is single buffered, and reflects the level
  1799. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1800. */
  1801. if (iir)
  1802. I915_WRITE(VLV_IIR, iir);
  1803. I915_WRITE(VLV_IER, ier);
  1804. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1805. POSTING_READ(GEN8_MASTER_IRQ);
  1806. gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
  1807. if (hotplug_status)
  1808. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1809. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1810. } while (0);
  1811. enable_rpm_wakeref_asserts(dev_priv);
  1812. return ret;
  1813. }
  1814. static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1815. u32 hotplug_trigger,
  1816. const u32 hpd[HPD_NUM_PINS])
  1817. {
  1818. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1819. /*
  1820. * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
  1821. * unless we touch the hotplug register, even if hotplug_trigger is
  1822. * zero. Not acking leads to "The master control interrupt lied (SDE)!"
  1823. * errors.
  1824. */
  1825. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1826. if (!hotplug_trigger) {
  1827. u32 mask = PORTA_HOTPLUG_STATUS_MASK |
  1828. PORTD_HOTPLUG_STATUS_MASK |
  1829. PORTC_HOTPLUG_STATUS_MASK |
  1830. PORTB_HOTPLUG_STATUS_MASK;
  1831. dig_hotplug_reg &= ~mask;
  1832. }
  1833. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1834. if (!hotplug_trigger)
  1835. return;
  1836. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
  1837. dig_hotplug_reg, hpd,
  1838. pch_port_hotplug_long_detect);
  1839. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1840. }
  1841. static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1842. {
  1843. int pipe;
  1844. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1845. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
  1846. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1847. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1848. SDE_AUDIO_POWER_SHIFT);
  1849. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1850. port_name(port));
  1851. }
  1852. if (pch_iir & SDE_AUX_MASK)
  1853. dp_aux_irq_handler(dev_priv);
  1854. if (pch_iir & SDE_GMBUS)
  1855. gmbus_irq_handler(dev_priv);
  1856. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1857. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1858. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1859. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1860. if (pch_iir & SDE_POISON)
  1861. DRM_ERROR("PCH poison interrupt\n");
  1862. if (pch_iir & SDE_FDI_MASK)
  1863. for_each_pipe(dev_priv, pipe)
  1864. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1865. pipe_name(pipe),
  1866. I915_READ(FDI_RX_IIR(pipe)));
  1867. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1868. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1869. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1870. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1871. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1872. intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
  1873. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1874. intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
  1875. }
  1876. static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
  1877. {
  1878. u32 err_int = I915_READ(GEN7_ERR_INT);
  1879. enum pipe pipe;
  1880. if (err_int & ERR_INT_POISON)
  1881. DRM_ERROR("Poison interrupt\n");
  1882. for_each_pipe(dev_priv, pipe) {
  1883. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1884. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1885. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1886. if (IS_IVYBRIDGE(dev_priv))
  1887. ivb_pipe_crc_irq_handler(dev_priv, pipe);
  1888. else
  1889. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  1890. }
  1891. }
  1892. I915_WRITE(GEN7_ERR_INT, err_int);
  1893. }
  1894. static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
  1895. {
  1896. u32 serr_int = I915_READ(SERR_INT);
  1897. enum pipe pipe;
  1898. if (serr_int & SERR_INT_POISON)
  1899. DRM_ERROR("PCH poison interrupt\n");
  1900. for_each_pipe(dev_priv, pipe)
  1901. if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
  1902. intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
  1903. I915_WRITE(SERR_INT, serr_int);
  1904. }
  1905. static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1906. {
  1907. int pipe;
  1908. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1909. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
  1910. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1911. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1912. SDE_AUDIO_POWER_SHIFT_CPT);
  1913. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1914. port_name(port));
  1915. }
  1916. if (pch_iir & SDE_AUX_MASK_CPT)
  1917. dp_aux_irq_handler(dev_priv);
  1918. if (pch_iir & SDE_GMBUS_CPT)
  1919. gmbus_irq_handler(dev_priv);
  1920. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1921. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1922. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1923. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1924. if (pch_iir & SDE_FDI_MASK_CPT)
  1925. for_each_pipe(dev_priv, pipe)
  1926. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1927. pipe_name(pipe),
  1928. I915_READ(FDI_RX_IIR(pipe)));
  1929. if (pch_iir & SDE_ERROR_CPT)
  1930. cpt_serr_int_handler(dev_priv);
  1931. }
  1932. static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1933. {
  1934. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
  1935. ~SDE_PORTE_HOTPLUG_SPT;
  1936. u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
  1937. u32 pin_mask = 0, long_mask = 0;
  1938. if (hotplug_trigger) {
  1939. u32 dig_hotplug_reg;
  1940. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1941. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1942. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
  1943. hotplug_trigger, dig_hotplug_reg, hpd_spt,
  1944. spt_port_hotplug_long_detect);
  1945. }
  1946. if (hotplug2_trigger) {
  1947. u32 dig_hotplug_reg;
  1948. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1949. I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
  1950. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
  1951. hotplug2_trigger, dig_hotplug_reg, hpd_spt,
  1952. spt_port_hotplug2_long_detect);
  1953. }
  1954. if (pin_mask)
  1955. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1956. if (pch_iir & SDE_GMBUS_CPT)
  1957. gmbus_irq_handler(dev_priv);
  1958. }
  1959. static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1960. u32 hotplug_trigger,
  1961. const u32 hpd[HPD_NUM_PINS])
  1962. {
  1963. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1964. dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  1965. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
  1966. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
  1967. dig_hotplug_reg, hpd,
  1968. ilk_port_hotplug_long_detect);
  1969. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1970. }
  1971. static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
  1972. u32 de_iir)
  1973. {
  1974. enum pipe pipe;
  1975. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
  1976. if (hotplug_trigger)
  1977. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
  1978. if (de_iir & DE_AUX_CHANNEL_A)
  1979. dp_aux_irq_handler(dev_priv);
  1980. if (de_iir & DE_GSE)
  1981. intel_opregion_asle_intr(dev_priv);
  1982. if (de_iir & DE_POISON)
  1983. DRM_ERROR("Poison interrupt\n");
  1984. for_each_pipe(dev_priv, pipe) {
  1985. if (de_iir & DE_PIPE_VBLANK(pipe))
  1986. drm_handle_vblank(&dev_priv->drm, pipe);
  1987. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1988. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1989. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1990. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1991. }
  1992. /* check event from PCH */
  1993. if (de_iir & DE_PCH_EVENT) {
  1994. u32 pch_iir = I915_READ(SDEIIR);
  1995. if (HAS_PCH_CPT(dev_priv))
  1996. cpt_irq_handler(dev_priv, pch_iir);
  1997. else
  1998. ibx_irq_handler(dev_priv, pch_iir);
  1999. /* should clear PCH hotplug event before clear CPU irq */
  2000. I915_WRITE(SDEIIR, pch_iir);
  2001. }
  2002. if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
  2003. ironlake_rps_change_irq_handler(dev_priv);
  2004. }
  2005. static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
  2006. u32 de_iir)
  2007. {
  2008. enum pipe pipe;
  2009. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
  2010. if (hotplug_trigger)
  2011. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
  2012. if (de_iir & DE_ERR_INT_IVB)
  2013. ivb_err_int_handler(dev_priv);
  2014. if (de_iir & DE_EDP_PSR_INT_HSW) {
  2015. u32 psr_iir = I915_READ(EDP_PSR_IIR);
  2016. intel_psr_irq_handler(dev_priv, psr_iir);
  2017. I915_WRITE(EDP_PSR_IIR, psr_iir);
  2018. }
  2019. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  2020. dp_aux_irq_handler(dev_priv);
  2021. if (de_iir & DE_GSE_IVB)
  2022. intel_opregion_asle_intr(dev_priv);
  2023. for_each_pipe(dev_priv, pipe) {
  2024. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
  2025. drm_handle_vblank(&dev_priv->drm, pipe);
  2026. }
  2027. /* check event from PCH */
  2028. if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
  2029. u32 pch_iir = I915_READ(SDEIIR);
  2030. cpt_irq_handler(dev_priv, pch_iir);
  2031. /* clear PCH hotplug event before clear CPU irq */
  2032. I915_WRITE(SDEIIR, pch_iir);
  2033. }
  2034. }
  2035. /*
  2036. * To handle irqs with the minimum potential races with fresh interrupts, we:
  2037. * 1 - Disable Master Interrupt Control.
  2038. * 2 - Find the source(s) of the interrupt.
  2039. * 3 - Clear the Interrupt Identity bits (IIR).
  2040. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  2041. * 5 - Re-enable Master Interrupt Control.
  2042. */
  2043. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  2044. {
  2045. struct drm_device *dev = arg;
  2046. struct drm_i915_private *dev_priv = to_i915(dev);
  2047. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  2048. irqreturn_t ret = IRQ_NONE;
  2049. if (!intel_irqs_enabled(dev_priv))
  2050. return IRQ_NONE;
  2051. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2052. disable_rpm_wakeref_asserts(dev_priv);
  2053. /* disable master interrupt before clearing iir */
  2054. de_ier = I915_READ(DEIER);
  2055. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  2056. POSTING_READ(DEIER);
  2057. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  2058. * interrupts will will be stored on its back queue, and then we'll be
  2059. * able to process them after we restore SDEIER (as soon as we restore
  2060. * it, we'll get an interrupt if SDEIIR still has something to process
  2061. * due to its back queue). */
  2062. if (!HAS_PCH_NOP(dev_priv)) {
  2063. sde_ier = I915_READ(SDEIER);
  2064. I915_WRITE(SDEIER, 0);
  2065. POSTING_READ(SDEIER);
  2066. }
  2067. /* Find, clear, then process each source of interrupt */
  2068. gt_iir = I915_READ(GTIIR);
  2069. if (gt_iir) {
  2070. I915_WRITE(GTIIR, gt_iir);
  2071. ret = IRQ_HANDLED;
  2072. if (INTEL_GEN(dev_priv) >= 6)
  2073. snb_gt_irq_handler(dev_priv, gt_iir);
  2074. else
  2075. ilk_gt_irq_handler(dev_priv, gt_iir);
  2076. }
  2077. de_iir = I915_READ(DEIIR);
  2078. if (de_iir) {
  2079. I915_WRITE(DEIIR, de_iir);
  2080. ret = IRQ_HANDLED;
  2081. if (INTEL_GEN(dev_priv) >= 7)
  2082. ivb_display_irq_handler(dev_priv, de_iir);
  2083. else
  2084. ilk_display_irq_handler(dev_priv, de_iir);
  2085. }
  2086. if (INTEL_GEN(dev_priv) >= 6) {
  2087. u32 pm_iir = I915_READ(GEN6_PMIIR);
  2088. if (pm_iir) {
  2089. I915_WRITE(GEN6_PMIIR, pm_iir);
  2090. ret = IRQ_HANDLED;
  2091. gen6_rps_irq_handler(dev_priv, pm_iir);
  2092. }
  2093. }
  2094. I915_WRITE(DEIER, de_ier);
  2095. POSTING_READ(DEIER);
  2096. if (!HAS_PCH_NOP(dev_priv)) {
  2097. I915_WRITE(SDEIER, sde_ier);
  2098. POSTING_READ(SDEIER);
  2099. }
  2100. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2101. enable_rpm_wakeref_asserts(dev_priv);
  2102. return ret;
  2103. }
  2104. static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
  2105. u32 hotplug_trigger,
  2106. const u32 hpd[HPD_NUM_PINS])
  2107. {
  2108. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  2109. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  2110. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  2111. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
  2112. dig_hotplug_reg, hpd,
  2113. bxt_port_hotplug_long_detect);
  2114. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  2115. }
  2116. static irqreturn_t
  2117. gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
  2118. {
  2119. irqreturn_t ret = IRQ_NONE;
  2120. u32 iir;
  2121. enum pipe pipe;
  2122. if (master_ctl & GEN8_DE_MISC_IRQ) {
  2123. iir = I915_READ(GEN8_DE_MISC_IIR);
  2124. if (iir) {
  2125. bool found = false;
  2126. I915_WRITE(GEN8_DE_MISC_IIR, iir);
  2127. ret = IRQ_HANDLED;
  2128. if (iir & GEN8_DE_MISC_GSE) {
  2129. intel_opregion_asle_intr(dev_priv);
  2130. found = true;
  2131. }
  2132. if (iir & GEN8_DE_EDP_PSR) {
  2133. u32 psr_iir = I915_READ(EDP_PSR_IIR);
  2134. intel_psr_irq_handler(dev_priv, psr_iir);
  2135. I915_WRITE(EDP_PSR_IIR, psr_iir);
  2136. found = true;
  2137. }
  2138. if (!found)
  2139. DRM_ERROR("Unexpected DE Misc interrupt\n");
  2140. }
  2141. else
  2142. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  2143. }
  2144. if (master_ctl & GEN8_DE_PORT_IRQ) {
  2145. iir = I915_READ(GEN8_DE_PORT_IIR);
  2146. if (iir) {
  2147. u32 tmp_mask;
  2148. bool found = false;
  2149. I915_WRITE(GEN8_DE_PORT_IIR, iir);
  2150. ret = IRQ_HANDLED;
  2151. tmp_mask = GEN8_AUX_CHANNEL_A;
  2152. if (INTEL_GEN(dev_priv) >= 9)
  2153. tmp_mask |= GEN9_AUX_CHANNEL_B |
  2154. GEN9_AUX_CHANNEL_C |
  2155. GEN9_AUX_CHANNEL_D;
  2156. if (IS_CNL_WITH_PORT_F(dev_priv))
  2157. tmp_mask |= CNL_AUX_CHANNEL_F;
  2158. if (iir & tmp_mask) {
  2159. dp_aux_irq_handler(dev_priv);
  2160. found = true;
  2161. }
  2162. if (IS_GEN9_LP(dev_priv)) {
  2163. tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
  2164. if (tmp_mask) {
  2165. bxt_hpd_irq_handler(dev_priv, tmp_mask,
  2166. hpd_bxt);
  2167. found = true;
  2168. }
  2169. } else if (IS_BROADWELL(dev_priv)) {
  2170. tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
  2171. if (tmp_mask) {
  2172. ilk_hpd_irq_handler(dev_priv,
  2173. tmp_mask, hpd_bdw);
  2174. found = true;
  2175. }
  2176. }
  2177. if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
  2178. gmbus_irq_handler(dev_priv);
  2179. found = true;
  2180. }
  2181. if (!found)
  2182. DRM_ERROR("Unexpected DE Port interrupt\n");
  2183. }
  2184. else
  2185. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  2186. }
  2187. for_each_pipe(dev_priv, pipe) {
  2188. u32 fault_errors;
  2189. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  2190. continue;
  2191. iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  2192. if (!iir) {
  2193. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  2194. continue;
  2195. }
  2196. ret = IRQ_HANDLED;
  2197. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
  2198. if (iir & GEN8_PIPE_VBLANK)
  2199. drm_handle_vblank(&dev_priv->drm, pipe);
  2200. if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
  2201. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  2202. if (iir & GEN8_PIPE_FIFO_UNDERRUN)
  2203. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  2204. fault_errors = iir;
  2205. if (INTEL_GEN(dev_priv) >= 9)
  2206. fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2207. else
  2208. fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2209. if (fault_errors)
  2210. DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
  2211. pipe_name(pipe),
  2212. fault_errors);
  2213. }
  2214. if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
  2215. master_ctl & GEN8_DE_PCH_IRQ) {
  2216. /*
  2217. * FIXME(BDW): Assume for now that the new interrupt handling
  2218. * scheme also closed the SDE interrupt handling race we've seen
  2219. * on older pch-split platforms. But this needs testing.
  2220. */
  2221. iir = I915_READ(SDEIIR);
  2222. if (iir) {
  2223. I915_WRITE(SDEIIR, iir);
  2224. ret = IRQ_HANDLED;
  2225. if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
  2226. HAS_PCH_CNP(dev_priv))
  2227. spt_irq_handler(dev_priv, iir);
  2228. else
  2229. cpt_irq_handler(dev_priv, iir);
  2230. } else {
  2231. /*
  2232. * Like on previous PCH there seems to be something
  2233. * fishy going on with forwarding PCH interrupts.
  2234. */
  2235. DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
  2236. }
  2237. }
  2238. return ret;
  2239. }
  2240. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  2241. {
  2242. struct drm_i915_private *dev_priv = to_i915(arg);
  2243. u32 master_ctl;
  2244. u32 gt_iir[4];
  2245. if (!intel_irqs_enabled(dev_priv))
  2246. return IRQ_NONE;
  2247. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  2248. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  2249. if (!master_ctl)
  2250. return IRQ_NONE;
  2251. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  2252. /* Find, clear, then process each source of interrupt */
  2253. gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  2254. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2255. if (master_ctl & ~GEN8_GT_IRQS) {
  2256. disable_rpm_wakeref_asserts(dev_priv);
  2257. gen8_de_irq_handler(dev_priv, master_ctl);
  2258. enable_rpm_wakeref_asserts(dev_priv);
  2259. }
  2260. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2261. gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
  2262. return IRQ_HANDLED;
  2263. }
  2264. struct wedge_me {
  2265. struct delayed_work work;
  2266. struct drm_i915_private *i915;
  2267. const char *name;
  2268. };
  2269. static void wedge_me(struct work_struct *work)
  2270. {
  2271. struct wedge_me *w = container_of(work, typeof(*w), work.work);
  2272. dev_err(w->i915->drm.dev,
  2273. "%s timed out, cancelling all in-flight rendering.\n",
  2274. w->name);
  2275. i915_gem_set_wedged(w->i915);
  2276. }
  2277. static void __init_wedge(struct wedge_me *w,
  2278. struct drm_i915_private *i915,
  2279. long timeout,
  2280. const char *name)
  2281. {
  2282. w->i915 = i915;
  2283. w->name = name;
  2284. INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
  2285. schedule_delayed_work(&w->work, timeout);
  2286. }
  2287. static void __fini_wedge(struct wedge_me *w)
  2288. {
  2289. cancel_delayed_work_sync(&w->work);
  2290. destroy_delayed_work_on_stack(&w->work);
  2291. w->i915 = NULL;
  2292. }
  2293. #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
  2294. for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
  2295. (W)->i915; \
  2296. __fini_wedge((W)))
  2297. static u32
  2298. gen11_gt_engine_identity(struct drm_i915_private * const i915,
  2299. const unsigned int bank, const unsigned int bit)
  2300. {
  2301. void __iomem * const regs = i915->regs;
  2302. u32 timeout_ts;
  2303. u32 ident;
  2304. lockdep_assert_held(&i915->irq_lock);
  2305. raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
  2306. /*
  2307. * NB: Specs do not specify how long to spin wait,
  2308. * so we do ~100us as an educated guess.
  2309. */
  2310. timeout_ts = (local_clock() >> 10) + 100;
  2311. do {
  2312. ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
  2313. } while (!(ident & GEN11_INTR_DATA_VALID) &&
  2314. !time_after32(local_clock() >> 10, timeout_ts));
  2315. if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
  2316. DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
  2317. bank, bit, ident);
  2318. return 0;
  2319. }
  2320. raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
  2321. GEN11_INTR_DATA_VALID);
  2322. return ident;
  2323. }
  2324. static void
  2325. gen11_other_irq_handler(struct drm_i915_private * const i915,
  2326. const u8 instance, const u16 iir)
  2327. {
  2328. if (instance == OTHER_GTPM_INSTANCE)
  2329. return gen6_rps_irq_handler(i915, iir);
  2330. WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
  2331. instance, iir);
  2332. }
  2333. static void
  2334. gen11_engine_irq_handler(struct drm_i915_private * const i915,
  2335. const u8 class, const u8 instance, const u16 iir)
  2336. {
  2337. struct intel_engine_cs *engine;
  2338. if (instance <= MAX_ENGINE_INSTANCE)
  2339. engine = i915->engine_class[class][instance];
  2340. else
  2341. engine = NULL;
  2342. if (likely(engine))
  2343. return gen8_cs_irq_handler(engine, iir);
  2344. WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
  2345. class, instance);
  2346. }
  2347. static void
  2348. gen11_gt_identity_handler(struct drm_i915_private * const i915,
  2349. const u32 identity)
  2350. {
  2351. const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
  2352. const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
  2353. const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
  2354. if (unlikely(!intr))
  2355. return;
  2356. if (class <= COPY_ENGINE_CLASS)
  2357. return gen11_engine_irq_handler(i915, class, instance, intr);
  2358. if (class == OTHER_CLASS)
  2359. return gen11_other_irq_handler(i915, instance, intr);
  2360. WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
  2361. class, instance, intr);
  2362. }
  2363. static void
  2364. gen11_gt_bank_handler(struct drm_i915_private * const i915,
  2365. const unsigned int bank)
  2366. {
  2367. void __iomem * const regs = i915->regs;
  2368. unsigned long intr_dw;
  2369. unsigned int bit;
  2370. lockdep_assert_held(&i915->irq_lock);
  2371. intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
  2372. if (unlikely(!intr_dw)) {
  2373. DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
  2374. return;
  2375. }
  2376. for_each_set_bit(bit, &intr_dw, 32) {
  2377. const u32 ident = gen11_gt_engine_identity(i915,
  2378. bank, bit);
  2379. gen11_gt_identity_handler(i915, ident);
  2380. }
  2381. /* Clear must be after shared has been served for engine */
  2382. raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
  2383. }
  2384. static void
  2385. gen11_gt_irq_handler(struct drm_i915_private * const i915,
  2386. const u32 master_ctl)
  2387. {
  2388. unsigned int bank;
  2389. spin_lock(&i915->irq_lock);
  2390. for (bank = 0; bank < 2; bank++) {
  2391. if (master_ctl & GEN11_GT_DW_IRQ(bank))
  2392. gen11_gt_bank_handler(i915, bank);
  2393. }
  2394. spin_unlock(&i915->irq_lock);
  2395. }
  2396. static irqreturn_t gen11_irq_handler(int irq, void *arg)
  2397. {
  2398. struct drm_i915_private * const i915 = to_i915(arg);
  2399. void __iomem * const regs = i915->regs;
  2400. u32 master_ctl;
  2401. if (!intel_irqs_enabled(i915))
  2402. return IRQ_NONE;
  2403. master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
  2404. master_ctl &= ~GEN11_MASTER_IRQ;
  2405. if (!master_ctl)
  2406. return IRQ_NONE;
  2407. /* Disable interrupts. */
  2408. raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
  2409. /* Find, clear, then process each source of interrupt. */
  2410. gen11_gt_irq_handler(i915, master_ctl);
  2411. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2412. if (master_ctl & GEN11_DISPLAY_IRQ) {
  2413. const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
  2414. disable_rpm_wakeref_asserts(i915);
  2415. /*
  2416. * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
  2417. * for the display related bits.
  2418. */
  2419. gen8_de_irq_handler(i915, disp_ctl);
  2420. enable_rpm_wakeref_asserts(i915);
  2421. }
  2422. /* Acknowledge and enable interrupts. */
  2423. raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
  2424. return IRQ_HANDLED;
  2425. }
  2426. static void i915_reset_device(struct drm_i915_private *dev_priv,
  2427. u32 engine_mask,
  2428. const char *reason)
  2429. {
  2430. struct i915_gpu_error *error = &dev_priv->gpu_error;
  2431. struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
  2432. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  2433. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  2434. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  2435. struct wedge_me w;
  2436. kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
  2437. DRM_DEBUG_DRIVER("resetting chip\n");
  2438. kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
  2439. /* Use a watchdog to ensure that our reset completes */
  2440. i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
  2441. intel_prepare_reset(dev_priv);
  2442. error->reason = reason;
  2443. error->stalled_mask = engine_mask;
  2444. /* Signal that locked waiters should reset the GPU */
  2445. smp_mb__before_atomic();
  2446. set_bit(I915_RESET_HANDOFF, &error->flags);
  2447. wake_up_all(&error->wait_queue);
  2448. /* Wait for anyone holding the lock to wakeup, without
  2449. * blocking indefinitely on struct_mutex.
  2450. */
  2451. do {
  2452. if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
  2453. i915_reset(dev_priv, engine_mask, reason);
  2454. mutex_unlock(&dev_priv->drm.struct_mutex);
  2455. }
  2456. } while (wait_on_bit_timeout(&error->flags,
  2457. I915_RESET_HANDOFF,
  2458. TASK_UNINTERRUPTIBLE,
  2459. 1));
  2460. error->stalled_mask = 0;
  2461. error->reason = NULL;
  2462. intel_finish_reset(dev_priv);
  2463. }
  2464. if (!test_bit(I915_WEDGED, &error->flags))
  2465. kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
  2466. }
  2467. static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
  2468. {
  2469. u32 eir;
  2470. if (!IS_GEN2(dev_priv))
  2471. I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
  2472. if (INTEL_GEN(dev_priv) < 4)
  2473. I915_WRITE(IPEIR, I915_READ(IPEIR));
  2474. else
  2475. I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
  2476. I915_WRITE(EIR, I915_READ(EIR));
  2477. eir = I915_READ(EIR);
  2478. if (eir) {
  2479. /*
  2480. * some errors might have become stuck,
  2481. * mask them.
  2482. */
  2483. DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
  2484. I915_WRITE(EMR, I915_READ(EMR) | eir);
  2485. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  2486. }
  2487. }
  2488. /**
  2489. * i915_handle_error - handle a gpu error
  2490. * @dev_priv: i915 device private
  2491. * @engine_mask: mask representing engines that are hung
  2492. * @flags: control flags
  2493. * @fmt: Error message format string
  2494. *
  2495. * Do some basic checking of register state at error time and
  2496. * dump it to the syslog. Also call i915_capture_error_state() to make
  2497. * sure we get a record and make it available in debugfs. Fire a uevent
  2498. * so userspace knows something bad happened (should trigger collection
  2499. * of a ring dump etc.).
  2500. */
  2501. void i915_handle_error(struct drm_i915_private *dev_priv,
  2502. u32 engine_mask,
  2503. unsigned long flags,
  2504. const char *fmt, ...)
  2505. {
  2506. struct intel_engine_cs *engine;
  2507. unsigned int tmp;
  2508. char error_msg[80];
  2509. char *msg = NULL;
  2510. if (fmt) {
  2511. va_list args;
  2512. va_start(args, fmt);
  2513. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  2514. va_end(args);
  2515. msg = error_msg;
  2516. }
  2517. /*
  2518. * In most cases it's guaranteed that we get here with an RPM
  2519. * reference held, for example because there is a pending GPU
  2520. * request that won't finish until the reset is done. This
  2521. * isn't the case at least when we get here by doing a
  2522. * simulated reset via debugfs, so get an RPM reference.
  2523. */
  2524. intel_runtime_pm_get(dev_priv);
  2525. engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
  2526. if (flags & I915_ERROR_CAPTURE) {
  2527. i915_capture_error_state(dev_priv, engine_mask, msg);
  2528. i915_clear_error_registers(dev_priv);
  2529. }
  2530. /*
  2531. * Try engine reset when available. We fall back to full reset if
  2532. * single reset fails.
  2533. */
  2534. if (intel_has_reset_engine(dev_priv)) {
  2535. for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
  2536. BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
  2537. if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
  2538. &dev_priv->gpu_error.flags))
  2539. continue;
  2540. if (i915_reset_engine(engine, msg) == 0)
  2541. engine_mask &= ~intel_engine_flag(engine);
  2542. clear_bit(I915_RESET_ENGINE + engine->id,
  2543. &dev_priv->gpu_error.flags);
  2544. wake_up_bit(&dev_priv->gpu_error.flags,
  2545. I915_RESET_ENGINE + engine->id);
  2546. }
  2547. }
  2548. if (!engine_mask)
  2549. goto out;
  2550. /* Full reset needs the mutex, stop any other user trying to do so. */
  2551. if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
  2552. wait_event(dev_priv->gpu_error.reset_queue,
  2553. !test_bit(I915_RESET_BACKOFF,
  2554. &dev_priv->gpu_error.flags));
  2555. goto out;
  2556. }
  2557. /* Prevent any other reset-engine attempt. */
  2558. for_each_engine(engine, dev_priv, tmp) {
  2559. while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
  2560. &dev_priv->gpu_error.flags))
  2561. wait_on_bit(&dev_priv->gpu_error.flags,
  2562. I915_RESET_ENGINE + engine->id,
  2563. TASK_UNINTERRUPTIBLE);
  2564. }
  2565. i915_reset_device(dev_priv, engine_mask, msg);
  2566. for_each_engine(engine, dev_priv, tmp) {
  2567. clear_bit(I915_RESET_ENGINE + engine->id,
  2568. &dev_priv->gpu_error.flags);
  2569. }
  2570. clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
  2571. wake_up_all(&dev_priv->gpu_error.reset_queue);
  2572. out:
  2573. intel_runtime_pm_put(dev_priv);
  2574. }
  2575. /* Called from drm generic code, passed 'crtc' which
  2576. * we use as a pipe index
  2577. */
  2578. static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2579. {
  2580. struct drm_i915_private *dev_priv = to_i915(dev);
  2581. unsigned long irqflags;
  2582. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2583. i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
  2584. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2585. return 0;
  2586. }
  2587. static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2588. {
  2589. struct drm_i915_private *dev_priv = to_i915(dev);
  2590. unsigned long irqflags;
  2591. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2592. i915_enable_pipestat(dev_priv, pipe,
  2593. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2594. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2595. return 0;
  2596. }
  2597. static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2598. {
  2599. struct drm_i915_private *dev_priv = to_i915(dev);
  2600. unsigned long irqflags;
  2601. uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
  2602. DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
  2603. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2604. ilk_enable_display_irq(dev_priv, bit);
  2605. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2606. /* Even though there is no DMC, frame counter can get stuck when
  2607. * PSR is active as no frames are generated.
  2608. */
  2609. if (HAS_PSR(dev_priv))
  2610. drm_vblank_restore(dev, pipe);
  2611. return 0;
  2612. }
  2613. static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2614. {
  2615. struct drm_i915_private *dev_priv = to_i915(dev);
  2616. unsigned long irqflags;
  2617. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2618. bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2619. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2620. /* Even if there is no DMC, frame counter can get stuck when
  2621. * PSR is active as no frames are generated, so check only for PSR.
  2622. */
  2623. if (HAS_PSR(dev_priv))
  2624. drm_vblank_restore(dev, pipe);
  2625. return 0;
  2626. }
  2627. /* Called from drm generic code, passed 'crtc' which
  2628. * we use as a pipe index
  2629. */
  2630. static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2631. {
  2632. struct drm_i915_private *dev_priv = to_i915(dev);
  2633. unsigned long irqflags;
  2634. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2635. i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
  2636. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2637. }
  2638. static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2639. {
  2640. struct drm_i915_private *dev_priv = to_i915(dev);
  2641. unsigned long irqflags;
  2642. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2643. i915_disable_pipestat(dev_priv, pipe,
  2644. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2645. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2646. }
  2647. static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2648. {
  2649. struct drm_i915_private *dev_priv = to_i915(dev);
  2650. unsigned long irqflags;
  2651. uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
  2652. DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
  2653. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2654. ilk_disable_display_irq(dev_priv, bit);
  2655. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2656. }
  2657. static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2658. {
  2659. struct drm_i915_private *dev_priv = to_i915(dev);
  2660. unsigned long irqflags;
  2661. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2662. bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2663. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2664. }
  2665. static void ibx_irq_reset(struct drm_i915_private *dev_priv)
  2666. {
  2667. if (HAS_PCH_NOP(dev_priv))
  2668. return;
  2669. GEN3_IRQ_RESET(SDE);
  2670. if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
  2671. I915_WRITE(SERR_INT, 0xffffffff);
  2672. }
  2673. /*
  2674. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2675. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2676. * instead we unconditionally enable all PCH interrupt sources here, but then
  2677. * only unmask them as needed with SDEIMR.
  2678. *
  2679. * This function needs to be called before interrupts are enabled.
  2680. */
  2681. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2682. {
  2683. struct drm_i915_private *dev_priv = to_i915(dev);
  2684. if (HAS_PCH_NOP(dev_priv))
  2685. return;
  2686. WARN_ON(I915_READ(SDEIER) != 0);
  2687. I915_WRITE(SDEIER, 0xffffffff);
  2688. POSTING_READ(SDEIER);
  2689. }
  2690. static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
  2691. {
  2692. GEN3_IRQ_RESET(GT);
  2693. if (INTEL_GEN(dev_priv) >= 6)
  2694. GEN3_IRQ_RESET(GEN6_PM);
  2695. }
  2696. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2697. {
  2698. if (IS_CHERRYVIEW(dev_priv))
  2699. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2700. else
  2701. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2702. i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
  2703. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2704. i9xx_pipestat_irq_reset(dev_priv);
  2705. GEN3_IRQ_RESET(VLV_);
  2706. dev_priv->irq_mask = ~0u;
  2707. }
  2708. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2709. {
  2710. u32 pipestat_mask;
  2711. u32 enable_mask;
  2712. enum pipe pipe;
  2713. pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
  2714. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2715. for_each_pipe(dev_priv, pipe)
  2716. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2717. enable_mask = I915_DISPLAY_PORT_INTERRUPT |
  2718. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2719. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2720. I915_LPE_PIPE_A_INTERRUPT |
  2721. I915_LPE_PIPE_B_INTERRUPT;
  2722. if (IS_CHERRYVIEW(dev_priv))
  2723. enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
  2724. I915_LPE_PIPE_C_INTERRUPT;
  2725. WARN_ON(dev_priv->irq_mask != ~0u);
  2726. dev_priv->irq_mask = ~enable_mask;
  2727. GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
  2728. }
  2729. /* drm_dma.h hooks
  2730. */
  2731. static void ironlake_irq_reset(struct drm_device *dev)
  2732. {
  2733. struct drm_i915_private *dev_priv = to_i915(dev);
  2734. if (IS_GEN5(dev_priv))
  2735. I915_WRITE(HWSTAM, 0xffffffff);
  2736. GEN3_IRQ_RESET(DE);
  2737. if (IS_GEN7(dev_priv))
  2738. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2739. if (IS_HASWELL(dev_priv)) {
  2740. I915_WRITE(EDP_PSR_IMR, 0xffffffff);
  2741. I915_WRITE(EDP_PSR_IIR, 0xffffffff);
  2742. }
  2743. gen5_gt_irq_reset(dev_priv);
  2744. ibx_irq_reset(dev_priv);
  2745. }
  2746. static void valleyview_irq_reset(struct drm_device *dev)
  2747. {
  2748. struct drm_i915_private *dev_priv = to_i915(dev);
  2749. I915_WRITE(VLV_MASTER_IER, 0);
  2750. POSTING_READ(VLV_MASTER_IER);
  2751. gen5_gt_irq_reset(dev_priv);
  2752. spin_lock_irq(&dev_priv->irq_lock);
  2753. if (dev_priv->display_irqs_enabled)
  2754. vlv_display_irq_reset(dev_priv);
  2755. spin_unlock_irq(&dev_priv->irq_lock);
  2756. }
  2757. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2758. {
  2759. GEN8_IRQ_RESET_NDX(GT, 0);
  2760. GEN8_IRQ_RESET_NDX(GT, 1);
  2761. GEN8_IRQ_RESET_NDX(GT, 2);
  2762. GEN8_IRQ_RESET_NDX(GT, 3);
  2763. }
  2764. static void gen8_irq_reset(struct drm_device *dev)
  2765. {
  2766. struct drm_i915_private *dev_priv = to_i915(dev);
  2767. int pipe;
  2768. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2769. POSTING_READ(GEN8_MASTER_IRQ);
  2770. gen8_gt_irq_reset(dev_priv);
  2771. I915_WRITE(EDP_PSR_IMR, 0xffffffff);
  2772. I915_WRITE(EDP_PSR_IIR, 0xffffffff);
  2773. for_each_pipe(dev_priv, pipe)
  2774. if (intel_display_power_is_enabled(dev_priv,
  2775. POWER_DOMAIN_PIPE(pipe)))
  2776. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2777. GEN3_IRQ_RESET(GEN8_DE_PORT_);
  2778. GEN3_IRQ_RESET(GEN8_DE_MISC_);
  2779. GEN3_IRQ_RESET(GEN8_PCU_);
  2780. if (HAS_PCH_SPLIT(dev_priv))
  2781. ibx_irq_reset(dev_priv);
  2782. }
  2783. static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
  2784. {
  2785. /* Disable RCS, BCS, VCS and VECS class engines. */
  2786. I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
  2787. I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0);
  2788. /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
  2789. I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0);
  2790. I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0);
  2791. I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0);
  2792. I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0);
  2793. I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
  2794. I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
  2795. I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
  2796. }
  2797. static void gen11_irq_reset(struct drm_device *dev)
  2798. {
  2799. struct drm_i915_private *dev_priv = dev->dev_private;
  2800. int pipe;
  2801. I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
  2802. POSTING_READ(GEN11_GFX_MSTR_IRQ);
  2803. gen11_gt_irq_reset(dev_priv);
  2804. I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
  2805. for_each_pipe(dev_priv, pipe)
  2806. if (intel_display_power_is_enabled(dev_priv,
  2807. POWER_DOMAIN_PIPE(pipe)))
  2808. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2809. GEN3_IRQ_RESET(GEN8_DE_PORT_);
  2810. GEN3_IRQ_RESET(GEN8_DE_MISC_);
  2811. GEN3_IRQ_RESET(GEN8_PCU_);
  2812. }
  2813. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2814. u8 pipe_mask)
  2815. {
  2816. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2817. enum pipe pipe;
  2818. spin_lock_irq(&dev_priv->irq_lock);
  2819. if (!intel_irqs_enabled(dev_priv)) {
  2820. spin_unlock_irq(&dev_priv->irq_lock);
  2821. return;
  2822. }
  2823. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2824. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2825. dev_priv->de_irq_mask[pipe],
  2826. ~dev_priv->de_irq_mask[pipe] | extra_ier);
  2827. spin_unlock_irq(&dev_priv->irq_lock);
  2828. }
  2829. void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
  2830. u8 pipe_mask)
  2831. {
  2832. enum pipe pipe;
  2833. spin_lock_irq(&dev_priv->irq_lock);
  2834. if (!intel_irqs_enabled(dev_priv)) {
  2835. spin_unlock_irq(&dev_priv->irq_lock);
  2836. return;
  2837. }
  2838. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2839. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2840. spin_unlock_irq(&dev_priv->irq_lock);
  2841. /* make sure we're done processing display irqs */
  2842. synchronize_irq(dev_priv->drm.irq);
  2843. }
  2844. static void cherryview_irq_reset(struct drm_device *dev)
  2845. {
  2846. struct drm_i915_private *dev_priv = to_i915(dev);
  2847. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2848. POSTING_READ(GEN8_MASTER_IRQ);
  2849. gen8_gt_irq_reset(dev_priv);
  2850. GEN3_IRQ_RESET(GEN8_PCU_);
  2851. spin_lock_irq(&dev_priv->irq_lock);
  2852. if (dev_priv->display_irqs_enabled)
  2853. vlv_display_irq_reset(dev_priv);
  2854. spin_unlock_irq(&dev_priv->irq_lock);
  2855. }
  2856. static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
  2857. const u32 hpd[HPD_NUM_PINS])
  2858. {
  2859. struct intel_encoder *encoder;
  2860. u32 enabled_irqs = 0;
  2861. for_each_intel_encoder(&dev_priv->drm, encoder)
  2862. if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
  2863. enabled_irqs |= hpd[encoder->hpd_pin];
  2864. return enabled_irqs;
  2865. }
  2866. static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2867. {
  2868. u32 hotplug;
  2869. /*
  2870. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2871. * duration to 2ms (which is the minimum in the Display Port spec).
  2872. * The pulse duration bits are reserved on LPT+.
  2873. */
  2874. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2875. hotplug &= ~(PORTB_PULSE_DURATION_MASK |
  2876. PORTC_PULSE_DURATION_MASK |
  2877. PORTD_PULSE_DURATION_MASK);
  2878. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2879. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2880. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2881. /*
  2882. * When CPU and PCH are on the same package, port A
  2883. * HPD must be enabled in both north and south.
  2884. */
  2885. if (HAS_PCH_LPT_LP(dev_priv))
  2886. hotplug |= PORTA_HOTPLUG_ENABLE;
  2887. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2888. }
  2889. static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2890. {
  2891. u32 hotplug_irqs, enabled_irqs;
  2892. if (HAS_PCH_IBX(dev_priv)) {
  2893. hotplug_irqs = SDE_HOTPLUG_MASK;
  2894. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
  2895. } else {
  2896. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2897. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
  2898. }
  2899. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2900. ibx_hpd_detection_setup(dev_priv);
  2901. }
  2902. static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2903. {
  2904. u32 val, hotplug;
  2905. /* Display WA #1179 WaHardHangonHotPlug: cnp */
  2906. if (HAS_PCH_CNP(dev_priv)) {
  2907. val = I915_READ(SOUTH_CHICKEN1);
  2908. val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
  2909. val |= CHASSIS_CLK_REQ_DURATION(0xf);
  2910. I915_WRITE(SOUTH_CHICKEN1, val);
  2911. }
  2912. /* Enable digital hotplug on the PCH */
  2913. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2914. hotplug |= PORTA_HOTPLUG_ENABLE |
  2915. PORTB_HOTPLUG_ENABLE |
  2916. PORTC_HOTPLUG_ENABLE |
  2917. PORTD_HOTPLUG_ENABLE;
  2918. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2919. hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  2920. hotplug |= PORTE_HOTPLUG_ENABLE;
  2921. I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  2922. }
  2923. static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2924. {
  2925. u32 hotplug_irqs, enabled_irqs;
  2926. hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  2927. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
  2928. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2929. spt_hpd_detection_setup(dev_priv);
  2930. }
  2931. static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2932. {
  2933. u32 hotplug;
  2934. /*
  2935. * Enable digital hotplug on the CPU, and configure the DP short pulse
  2936. * duration to 2ms (which is the minimum in the Display Port spec)
  2937. * The pulse duration bits are reserved on HSW+.
  2938. */
  2939. hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  2940. hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
  2941. hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
  2942. DIGITAL_PORTA_PULSE_DURATION_2ms;
  2943. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
  2944. }
  2945. static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2946. {
  2947. u32 hotplug_irqs, enabled_irqs;
  2948. if (INTEL_GEN(dev_priv) >= 8) {
  2949. hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
  2950. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
  2951. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2952. } else if (INTEL_GEN(dev_priv) >= 7) {
  2953. hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
  2954. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
  2955. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2956. } else {
  2957. hotplug_irqs = DE_DP_A_HOTPLUG;
  2958. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
  2959. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2960. }
  2961. ilk_hpd_detection_setup(dev_priv);
  2962. ibx_hpd_irq_setup(dev_priv);
  2963. }
  2964. static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
  2965. u32 enabled_irqs)
  2966. {
  2967. u32 hotplug;
  2968. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2969. hotplug |= PORTA_HOTPLUG_ENABLE |
  2970. PORTB_HOTPLUG_ENABLE |
  2971. PORTC_HOTPLUG_ENABLE;
  2972. DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
  2973. hotplug, enabled_irqs);
  2974. hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
  2975. /*
  2976. * For BXT invert bit has to be set based on AOB design
  2977. * for HPD detection logic, update it based on VBT fields.
  2978. */
  2979. if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
  2980. intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
  2981. hotplug |= BXT_DDIA_HPD_INVERT;
  2982. if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
  2983. intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
  2984. hotplug |= BXT_DDIB_HPD_INVERT;
  2985. if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
  2986. intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
  2987. hotplug |= BXT_DDIC_HPD_INVERT;
  2988. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2989. }
  2990. static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2991. {
  2992. __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
  2993. }
  2994. static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2995. {
  2996. u32 hotplug_irqs, enabled_irqs;
  2997. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
  2998. hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
  2999. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  3000. __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
  3001. }
  3002. static void ibx_irq_postinstall(struct drm_device *dev)
  3003. {
  3004. struct drm_i915_private *dev_priv = to_i915(dev);
  3005. u32 mask;
  3006. if (HAS_PCH_NOP(dev_priv))
  3007. return;
  3008. if (HAS_PCH_IBX(dev_priv))
  3009. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  3010. else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
  3011. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  3012. else
  3013. mask = SDE_GMBUS_CPT;
  3014. gen3_assert_iir_is_zero(dev_priv, SDEIIR);
  3015. I915_WRITE(SDEIMR, ~mask);
  3016. if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
  3017. HAS_PCH_LPT(dev_priv))
  3018. ibx_hpd_detection_setup(dev_priv);
  3019. else
  3020. spt_hpd_detection_setup(dev_priv);
  3021. }
  3022. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  3023. {
  3024. struct drm_i915_private *dev_priv = to_i915(dev);
  3025. u32 pm_irqs, gt_irqs;
  3026. pm_irqs = gt_irqs = 0;
  3027. dev_priv->gt_irq_mask = ~0;
  3028. if (HAS_L3_DPF(dev_priv)) {
  3029. /* L3 parity interrupt is always unmasked. */
  3030. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
  3031. gt_irqs |= GT_PARITY_ERROR(dev_priv);
  3032. }
  3033. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  3034. if (IS_GEN5(dev_priv)) {
  3035. gt_irqs |= ILK_BSD_USER_INTERRUPT;
  3036. } else {
  3037. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  3038. }
  3039. GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  3040. if (INTEL_GEN(dev_priv) >= 6) {
  3041. /*
  3042. * RPS interrupts will get enabled/disabled on demand when RPS
  3043. * itself is enabled/disabled.
  3044. */
  3045. if (HAS_VEBOX(dev_priv)) {
  3046. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  3047. dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
  3048. }
  3049. dev_priv->pm_imr = 0xffffffff;
  3050. GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
  3051. }
  3052. }
  3053. static int ironlake_irq_postinstall(struct drm_device *dev)
  3054. {
  3055. struct drm_i915_private *dev_priv = to_i915(dev);
  3056. u32 display_mask, extra_mask;
  3057. if (INTEL_GEN(dev_priv) >= 7) {
  3058. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  3059. DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
  3060. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  3061. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
  3062. DE_DP_A_HOTPLUG_IVB);
  3063. } else {
  3064. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  3065. DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
  3066. DE_PIPEA_CRC_DONE | DE_POISON);
  3067. extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  3068. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
  3069. DE_DP_A_HOTPLUG);
  3070. }
  3071. if (IS_HASWELL(dev_priv)) {
  3072. gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
  3073. intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
  3074. display_mask |= DE_EDP_PSR_INT_HSW;
  3075. }
  3076. dev_priv->irq_mask = ~display_mask;
  3077. ibx_irq_pre_postinstall(dev);
  3078. GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  3079. gen5_gt_irq_postinstall(dev);
  3080. ilk_hpd_detection_setup(dev_priv);
  3081. ibx_irq_postinstall(dev);
  3082. if (IS_IRONLAKE_M(dev_priv)) {
  3083. /* Enable PCU event interrupts
  3084. *
  3085. * spinlocking not required here for correctness since interrupt
  3086. * setup is guaranteed to run in single-threaded context. But we
  3087. * need it to make the assert_spin_locked happy. */
  3088. spin_lock_irq(&dev_priv->irq_lock);
  3089. ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
  3090. spin_unlock_irq(&dev_priv->irq_lock);
  3091. }
  3092. return 0;
  3093. }
  3094. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  3095. {
  3096. lockdep_assert_held(&dev_priv->irq_lock);
  3097. if (dev_priv->display_irqs_enabled)
  3098. return;
  3099. dev_priv->display_irqs_enabled = true;
  3100. if (intel_irqs_enabled(dev_priv)) {
  3101. vlv_display_irq_reset(dev_priv);
  3102. vlv_display_irq_postinstall(dev_priv);
  3103. }
  3104. }
  3105. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  3106. {
  3107. lockdep_assert_held(&dev_priv->irq_lock);
  3108. if (!dev_priv->display_irqs_enabled)
  3109. return;
  3110. dev_priv->display_irqs_enabled = false;
  3111. if (intel_irqs_enabled(dev_priv))
  3112. vlv_display_irq_reset(dev_priv);
  3113. }
  3114. static int valleyview_irq_postinstall(struct drm_device *dev)
  3115. {
  3116. struct drm_i915_private *dev_priv = to_i915(dev);
  3117. gen5_gt_irq_postinstall(dev);
  3118. spin_lock_irq(&dev_priv->irq_lock);
  3119. if (dev_priv->display_irqs_enabled)
  3120. vlv_display_irq_postinstall(dev_priv);
  3121. spin_unlock_irq(&dev_priv->irq_lock);
  3122. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  3123. POSTING_READ(VLV_MASTER_IER);
  3124. return 0;
  3125. }
  3126. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  3127. {
  3128. /* These are interrupts we'll toggle with the ring mask register */
  3129. uint32_t gt_interrupts[] = {
  3130. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3131. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3132. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  3133. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  3134. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3135. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3136. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  3137. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  3138. 0,
  3139. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  3140. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  3141. };
  3142. if (HAS_L3_DPF(dev_priv))
  3143. gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  3144. dev_priv->pm_ier = 0x0;
  3145. dev_priv->pm_imr = ~dev_priv->pm_ier;
  3146. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  3147. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  3148. /*
  3149. * RPS interrupts will get enabled/disabled on demand when RPS itself
  3150. * is enabled/disabled. Same wil be the case for GuC interrupts.
  3151. */
  3152. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
  3153. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  3154. }
  3155. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  3156. {
  3157. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  3158. uint32_t de_pipe_enables;
  3159. u32 de_port_masked = GEN8_AUX_CHANNEL_A;
  3160. u32 de_port_enables;
  3161. u32 de_misc_masked = GEN8_DE_MISC_GSE | GEN8_DE_EDP_PSR;
  3162. enum pipe pipe;
  3163. if (INTEL_GEN(dev_priv) >= 9) {
  3164. de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  3165. de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  3166. GEN9_AUX_CHANNEL_D;
  3167. if (IS_GEN9_LP(dev_priv))
  3168. de_port_masked |= BXT_DE_PORT_GMBUS;
  3169. } else {
  3170. de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  3171. }
  3172. if (IS_CNL_WITH_PORT_F(dev_priv))
  3173. de_port_masked |= CNL_AUX_CHANNEL_F;
  3174. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  3175. GEN8_PIPE_FIFO_UNDERRUN;
  3176. de_port_enables = de_port_masked;
  3177. if (IS_GEN9_LP(dev_priv))
  3178. de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
  3179. else if (IS_BROADWELL(dev_priv))
  3180. de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
  3181. gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
  3182. intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
  3183. for_each_pipe(dev_priv, pipe) {
  3184. dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
  3185. if (intel_display_power_is_enabled(dev_priv,
  3186. POWER_DOMAIN_PIPE(pipe)))
  3187. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  3188. dev_priv->de_irq_mask[pipe],
  3189. de_pipe_enables);
  3190. }
  3191. GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
  3192. GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
  3193. if (IS_GEN9_LP(dev_priv))
  3194. bxt_hpd_detection_setup(dev_priv);
  3195. else if (IS_BROADWELL(dev_priv))
  3196. ilk_hpd_detection_setup(dev_priv);
  3197. }
  3198. static int gen8_irq_postinstall(struct drm_device *dev)
  3199. {
  3200. struct drm_i915_private *dev_priv = to_i915(dev);
  3201. if (HAS_PCH_SPLIT(dev_priv))
  3202. ibx_irq_pre_postinstall(dev);
  3203. gen8_gt_irq_postinstall(dev_priv);
  3204. gen8_de_irq_postinstall(dev_priv);
  3205. if (HAS_PCH_SPLIT(dev_priv))
  3206. ibx_irq_postinstall(dev);
  3207. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3208. POSTING_READ(GEN8_MASTER_IRQ);
  3209. return 0;
  3210. }
  3211. static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  3212. {
  3213. const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
  3214. BUILD_BUG_ON(irqs & 0xffff0000);
  3215. /* Enable RCS, BCS, VCS and VECS class interrupts. */
  3216. I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
  3217. I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs);
  3218. /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
  3219. I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16));
  3220. I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16));
  3221. I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16));
  3222. I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16));
  3223. I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
  3224. /*
  3225. * RPS interrupts will get enabled/disabled on demand when RPS itself
  3226. * is enabled/disabled.
  3227. */
  3228. dev_priv->pm_ier = 0x0;
  3229. dev_priv->pm_imr = ~dev_priv->pm_ier;
  3230. I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
  3231. I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
  3232. }
  3233. static int gen11_irq_postinstall(struct drm_device *dev)
  3234. {
  3235. struct drm_i915_private *dev_priv = dev->dev_private;
  3236. gen11_gt_irq_postinstall(dev_priv);
  3237. gen8_de_irq_postinstall(dev_priv);
  3238. I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
  3239. I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
  3240. POSTING_READ(GEN11_GFX_MSTR_IRQ);
  3241. return 0;
  3242. }
  3243. static int cherryview_irq_postinstall(struct drm_device *dev)
  3244. {
  3245. struct drm_i915_private *dev_priv = to_i915(dev);
  3246. gen8_gt_irq_postinstall(dev_priv);
  3247. spin_lock_irq(&dev_priv->irq_lock);
  3248. if (dev_priv->display_irqs_enabled)
  3249. vlv_display_irq_postinstall(dev_priv);
  3250. spin_unlock_irq(&dev_priv->irq_lock);
  3251. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3252. POSTING_READ(GEN8_MASTER_IRQ);
  3253. return 0;
  3254. }
  3255. static void i8xx_irq_reset(struct drm_device *dev)
  3256. {
  3257. struct drm_i915_private *dev_priv = to_i915(dev);
  3258. i9xx_pipestat_irq_reset(dev_priv);
  3259. I915_WRITE16(HWSTAM, 0xffff);
  3260. GEN2_IRQ_RESET();
  3261. }
  3262. static int i8xx_irq_postinstall(struct drm_device *dev)
  3263. {
  3264. struct drm_i915_private *dev_priv = to_i915(dev);
  3265. u16 enable_mask;
  3266. I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
  3267. I915_ERROR_MEMORY_REFRESH));
  3268. /* Unmask the interrupts that we always want on. */
  3269. dev_priv->irq_mask =
  3270. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3271. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
  3272. enable_mask =
  3273. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3274. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3275. I915_USER_INTERRUPT;
  3276. GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3277. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3278. * just to make the assert_spin_locked check happy. */
  3279. spin_lock_irq(&dev_priv->irq_lock);
  3280. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3281. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3282. spin_unlock_irq(&dev_priv->irq_lock);
  3283. return 0;
  3284. }
  3285. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  3286. {
  3287. struct drm_device *dev = arg;
  3288. struct drm_i915_private *dev_priv = to_i915(dev);
  3289. irqreturn_t ret = IRQ_NONE;
  3290. if (!intel_irqs_enabled(dev_priv))
  3291. return IRQ_NONE;
  3292. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3293. disable_rpm_wakeref_asserts(dev_priv);
  3294. do {
  3295. u32 pipe_stats[I915_MAX_PIPES] = {};
  3296. u16 iir;
  3297. iir = I915_READ16(IIR);
  3298. if (iir == 0)
  3299. break;
  3300. ret = IRQ_HANDLED;
  3301. /* Call regardless, as some status bits might not be
  3302. * signalled in iir */
  3303. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3304. I915_WRITE16(IIR, iir);
  3305. if (iir & I915_USER_INTERRUPT)
  3306. notify_ring(dev_priv->engine[RCS]);
  3307. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3308. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3309. i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3310. } while (0);
  3311. enable_rpm_wakeref_asserts(dev_priv);
  3312. return ret;
  3313. }
  3314. static void i915_irq_reset(struct drm_device *dev)
  3315. {
  3316. struct drm_i915_private *dev_priv = to_i915(dev);
  3317. if (I915_HAS_HOTPLUG(dev_priv)) {
  3318. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3319. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3320. }
  3321. i9xx_pipestat_irq_reset(dev_priv);
  3322. I915_WRITE(HWSTAM, 0xffffffff);
  3323. GEN3_IRQ_RESET();
  3324. }
  3325. static int i915_irq_postinstall(struct drm_device *dev)
  3326. {
  3327. struct drm_i915_private *dev_priv = to_i915(dev);
  3328. u32 enable_mask;
  3329. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
  3330. I915_ERROR_MEMORY_REFRESH));
  3331. /* Unmask the interrupts that we always want on. */
  3332. dev_priv->irq_mask =
  3333. ~(I915_ASLE_INTERRUPT |
  3334. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3335. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
  3336. enable_mask =
  3337. I915_ASLE_INTERRUPT |
  3338. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3339. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3340. I915_USER_INTERRUPT;
  3341. if (I915_HAS_HOTPLUG(dev_priv)) {
  3342. /* Enable in IER... */
  3343. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3344. /* and unmask in IMR */
  3345. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3346. }
  3347. GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3348. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3349. * just to make the assert_spin_locked check happy. */
  3350. spin_lock_irq(&dev_priv->irq_lock);
  3351. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3352. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3353. spin_unlock_irq(&dev_priv->irq_lock);
  3354. i915_enable_asle_pipestat(dev_priv);
  3355. return 0;
  3356. }
  3357. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3358. {
  3359. struct drm_device *dev = arg;
  3360. struct drm_i915_private *dev_priv = to_i915(dev);
  3361. irqreturn_t ret = IRQ_NONE;
  3362. if (!intel_irqs_enabled(dev_priv))
  3363. return IRQ_NONE;
  3364. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3365. disable_rpm_wakeref_asserts(dev_priv);
  3366. do {
  3367. u32 pipe_stats[I915_MAX_PIPES] = {};
  3368. u32 hotplug_status = 0;
  3369. u32 iir;
  3370. iir = I915_READ(IIR);
  3371. if (iir == 0)
  3372. break;
  3373. ret = IRQ_HANDLED;
  3374. if (I915_HAS_HOTPLUG(dev_priv) &&
  3375. iir & I915_DISPLAY_PORT_INTERRUPT)
  3376. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3377. /* Call regardless, as some status bits might not be
  3378. * signalled in iir */
  3379. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3380. I915_WRITE(IIR, iir);
  3381. if (iir & I915_USER_INTERRUPT)
  3382. notify_ring(dev_priv->engine[RCS]);
  3383. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3384. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3385. if (hotplug_status)
  3386. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3387. i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3388. } while (0);
  3389. enable_rpm_wakeref_asserts(dev_priv);
  3390. return ret;
  3391. }
  3392. static void i965_irq_reset(struct drm_device *dev)
  3393. {
  3394. struct drm_i915_private *dev_priv = to_i915(dev);
  3395. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3396. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3397. i9xx_pipestat_irq_reset(dev_priv);
  3398. I915_WRITE(HWSTAM, 0xffffffff);
  3399. GEN3_IRQ_RESET();
  3400. }
  3401. static int i965_irq_postinstall(struct drm_device *dev)
  3402. {
  3403. struct drm_i915_private *dev_priv = to_i915(dev);
  3404. u32 enable_mask;
  3405. u32 error_mask;
  3406. /*
  3407. * Enable some error detection, note the instruction error mask
  3408. * bit is reserved, so we leave it masked.
  3409. */
  3410. if (IS_G4X(dev_priv)) {
  3411. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3412. GM45_ERROR_MEM_PRIV |
  3413. GM45_ERROR_CP_PRIV |
  3414. I915_ERROR_MEMORY_REFRESH);
  3415. } else {
  3416. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3417. I915_ERROR_MEMORY_REFRESH);
  3418. }
  3419. I915_WRITE(EMR, error_mask);
  3420. /* Unmask the interrupts that we always want on. */
  3421. dev_priv->irq_mask =
  3422. ~(I915_ASLE_INTERRUPT |
  3423. I915_DISPLAY_PORT_INTERRUPT |
  3424. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3425. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3426. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3427. enable_mask =
  3428. I915_ASLE_INTERRUPT |
  3429. I915_DISPLAY_PORT_INTERRUPT |
  3430. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3431. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3432. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
  3433. I915_USER_INTERRUPT;
  3434. if (IS_G4X(dev_priv))
  3435. enable_mask |= I915_BSD_USER_INTERRUPT;
  3436. GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3437. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3438. * just to make the assert_spin_locked check happy. */
  3439. spin_lock_irq(&dev_priv->irq_lock);
  3440. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3441. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3442. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3443. spin_unlock_irq(&dev_priv->irq_lock);
  3444. i915_enable_asle_pipestat(dev_priv);
  3445. return 0;
  3446. }
  3447. static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
  3448. {
  3449. u32 hotplug_en;
  3450. lockdep_assert_held(&dev_priv->irq_lock);
  3451. /* Note HDMI and DP share hotplug bits */
  3452. /* enable bits are the same for all generations */
  3453. hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
  3454. /* Programming the CRT detection parameters tends
  3455. to generate a spurious hotplug event about three
  3456. seconds later. So just do it once.
  3457. */
  3458. if (IS_G4X(dev_priv))
  3459. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3460. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3461. /* Ignore TV since it's buggy */
  3462. i915_hotplug_interrupt_update_locked(dev_priv,
  3463. HOTPLUG_INT_EN_MASK |
  3464. CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
  3465. CRT_HOTPLUG_ACTIVATION_PERIOD_64,
  3466. hotplug_en);
  3467. }
  3468. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3469. {
  3470. struct drm_device *dev = arg;
  3471. struct drm_i915_private *dev_priv = to_i915(dev);
  3472. irqreturn_t ret = IRQ_NONE;
  3473. if (!intel_irqs_enabled(dev_priv))
  3474. return IRQ_NONE;
  3475. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3476. disable_rpm_wakeref_asserts(dev_priv);
  3477. do {
  3478. u32 pipe_stats[I915_MAX_PIPES] = {};
  3479. u32 hotplug_status = 0;
  3480. u32 iir;
  3481. iir = I915_READ(IIR);
  3482. if (iir == 0)
  3483. break;
  3484. ret = IRQ_HANDLED;
  3485. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  3486. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3487. /* Call regardless, as some status bits might not be
  3488. * signalled in iir */
  3489. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3490. I915_WRITE(IIR, iir);
  3491. if (iir & I915_USER_INTERRUPT)
  3492. notify_ring(dev_priv->engine[RCS]);
  3493. if (iir & I915_BSD_USER_INTERRUPT)
  3494. notify_ring(dev_priv->engine[VCS]);
  3495. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3496. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3497. if (hotplug_status)
  3498. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3499. i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3500. } while (0);
  3501. enable_rpm_wakeref_asserts(dev_priv);
  3502. return ret;
  3503. }
  3504. /**
  3505. * intel_irq_init - initializes irq support
  3506. * @dev_priv: i915 device instance
  3507. *
  3508. * This function initializes all the irq support including work items, timers
  3509. * and all the vtables. It does not setup the interrupt itself though.
  3510. */
  3511. void intel_irq_init(struct drm_i915_private *dev_priv)
  3512. {
  3513. struct drm_device *dev = &dev_priv->drm;
  3514. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3515. int i;
  3516. intel_hpd_init_work(dev_priv);
  3517. INIT_WORK(&rps->work, gen6_pm_rps_work);
  3518. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3519. for (i = 0; i < MAX_L3_SLICES; ++i)
  3520. dev_priv->l3_parity.remap_info[i] = NULL;
  3521. if (HAS_GUC_SCHED(dev_priv))
  3522. dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
  3523. /* Let's track the enabled rps events */
  3524. if (IS_VALLEYVIEW(dev_priv))
  3525. /* WaGsvRC0ResidencyMethod:vlv */
  3526. dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
  3527. else
  3528. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3529. rps->pm_intrmsk_mbz = 0;
  3530. /*
  3531. * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
  3532. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3533. *
  3534. * TODO: verify if this can be reproduced on VLV,CHV.
  3535. */
  3536. if (INTEL_GEN(dev_priv) <= 7)
  3537. rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
  3538. if (INTEL_GEN(dev_priv) >= 8)
  3539. rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
  3540. if (IS_GEN2(dev_priv)) {
  3541. /* Gen2 doesn't have a hardware frame counter */
  3542. dev->max_vblank_count = 0;
  3543. } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  3544. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3545. dev->driver->get_vblank_counter = g4x_get_vblank_counter;
  3546. } else {
  3547. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3548. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3549. }
  3550. /*
  3551. * Opt out of the vblank disable timer on everything except gen2.
  3552. * Gen2 doesn't have a hardware frame counter and so depends on
  3553. * vblank interrupts to produce sane vblank seuquence numbers.
  3554. */
  3555. if (!IS_GEN2(dev_priv))
  3556. dev->vblank_disable_immediate = true;
  3557. /* Most platforms treat the display irq block as an always-on
  3558. * power domain. vlv/chv can disable it at runtime and need
  3559. * special care to avoid writing any of the display block registers
  3560. * outside of the power domain. We defer setting up the display irqs
  3561. * in this case to the runtime pm.
  3562. */
  3563. dev_priv->display_irqs_enabled = true;
  3564. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  3565. dev_priv->display_irqs_enabled = false;
  3566. dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3567. dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
  3568. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3569. if (IS_CHERRYVIEW(dev_priv)) {
  3570. dev->driver->irq_handler = cherryview_irq_handler;
  3571. dev->driver->irq_preinstall = cherryview_irq_reset;
  3572. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3573. dev->driver->irq_uninstall = cherryview_irq_reset;
  3574. dev->driver->enable_vblank = i965_enable_vblank;
  3575. dev->driver->disable_vblank = i965_disable_vblank;
  3576. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3577. } else if (IS_VALLEYVIEW(dev_priv)) {
  3578. dev->driver->irq_handler = valleyview_irq_handler;
  3579. dev->driver->irq_preinstall = valleyview_irq_reset;
  3580. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3581. dev->driver->irq_uninstall = valleyview_irq_reset;
  3582. dev->driver->enable_vblank = i965_enable_vblank;
  3583. dev->driver->disable_vblank = i965_disable_vblank;
  3584. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3585. } else if (INTEL_GEN(dev_priv) >= 11) {
  3586. dev->driver->irq_handler = gen11_irq_handler;
  3587. dev->driver->irq_preinstall = gen11_irq_reset;
  3588. dev->driver->irq_postinstall = gen11_irq_postinstall;
  3589. dev->driver->irq_uninstall = gen11_irq_reset;
  3590. dev->driver->enable_vblank = gen8_enable_vblank;
  3591. dev->driver->disable_vblank = gen8_disable_vblank;
  3592. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3593. } else if (INTEL_GEN(dev_priv) >= 8) {
  3594. dev->driver->irq_handler = gen8_irq_handler;
  3595. dev->driver->irq_preinstall = gen8_irq_reset;
  3596. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3597. dev->driver->irq_uninstall = gen8_irq_reset;
  3598. dev->driver->enable_vblank = gen8_enable_vblank;
  3599. dev->driver->disable_vblank = gen8_disable_vblank;
  3600. if (IS_GEN9_LP(dev_priv))
  3601. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3602. else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
  3603. HAS_PCH_CNP(dev_priv))
  3604. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3605. else
  3606. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3607. } else if (HAS_PCH_SPLIT(dev_priv)) {
  3608. dev->driver->irq_handler = ironlake_irq_handler;
  3609. dev->driver->irq_preinstall = ironlake_irq_reset;
  3610. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3611. dev->driver->irq_uninstall = ironlake_irq_reset;
  3612. dev->driver->enable_vblank = ironlake_enable_vblank;
  3613. dev->driver->disable_vblank = ironlake_disable_vblank;
  3614. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3615. } else {
  3616. if (IS_GEN2(dev_priv)) {
  3617. dev->driver->irq_preinstall = i8xx_irq_reset;
  3618. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3619. dev->driver->irq_handler = i8xx_irq_handler;
  3620. dev->driver->irq_uninstall = i8xx_irq_reset;
  3621. dev->driver->enable_vblank = i8xx_enable_vblank;
  3622. dev->driver->disable_vblank = i8xx_disable_vblank;
  3623. } else if (IS_GEN3(dev_priv)) {
  3624. dev->driver->irq_preinstall = i915_irq_reset;
  3625. dev->driver->irq_postinstall = i915_irq_postinstall;
  3626. dev->driver->irq_uninstall = i915_irq_reset;
  3627. dev->driver->irq_handler = i915_irq_handler;
  3628. dev->driver->enable_vblank = i8xx_enable_vblank;
  3629. dev->driver->disable_vblank = i8xx_disable_vblank;
  3630. } else {
  3631. dev->driver->irq_preinstall = i965_irq_reset;
  3632. dev->driver->irq_postinstall = i965_irq_postinstall;
  3633. dev->driver->irq_uninstall = i965_irq_reset;
  3634. dev->driver->irq_handler = i965_irq_handler;
  3635. dev->driver->enable_vblank = i965_enable_vblank;
  3636. dev->driver->disable_vblank = i965_disable_vblank;
  3637. }
  3638. if (I915_HAS_HOTPLUG(dev_priv))
  3639. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3640. }
  3641. }
  3642. /**
  3643. * intel_irq_fini - deinitializes IRQ support
  3644. * @i915: i915 device instance
  3645. *
  3646. * This function deinitializes all the IRQ support.
  3647. */
  3648. void intel_irq_fini(struct drm_i915_private *i915)
  3649. {
  3650. int i;
  3651. for (i = 0; i < MAX_L3_SLICES; ++i)
  3652. kfree(i915->l3_parity.remap_info[i]);
  3653. }
  3654. /**
  3655. * intel_irq_install - enables the hardware interrupt
  3656. * @dev_priv: i915 device instance
  3657. *
  3658. * This function enables the hardware interrupt handling, but leaves the hotplug
  3659. * handling still disabled. It is called after intel_irq_init().
  3660. *
  3661. * In the driver load and resume code we need working interrupts in a few places
  3662. * but don't want to deal with the hassle of concurrent probe and hotplug
  3663. * workers. Hence the split into this two-stage approach.
  3664. */
  3665. int intel_irq_install(struct drm_i915_private *dev_priv)
  3666. {
  3667. /*
  3668. * We enable some interrupt sources in our postinstall hooks, so mark
  3669. * interrupts as enabled _before_ actually enabling them to avoid
  3670. * special cases in our ordering checks.
  3671. */
  3672. dev_priv->runtime_pm.irqs_enabled = true;
  3673. return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
  3674. }
  3675. /**
  3676. * intel_irq_uninstall - finilizes all irq handling
  3677. * @dev_priv: i915 device instance
  3678. *
  3679. * This stops interrupt and hotplug handling and unregisters and frees all
  3680. * resources acquired in the init functions.
  3681. */
  3682. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3683. {
  3684. drm_irq_uninstall(&dev_priv->drm);
  3685. intel_hpd_cancel_work(dev_priv);
  3686. dev_priv->runtime_pm.irqs_enabled = false;
  3687. }
  3688. /**
  3689. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3690. * @dev_priv: i915 device instance
  3691. *
  3692. * This function is used to disable interrupts at runtime, both in the runtime
  3693. * pm and the system suspend/resume code.
  3694. */
  3695. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3696. {
  3697. dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
  3698. dev_priv->runtime_pm.irqs_enabled = false;
  3699. synchronize_irq(dev_priv->drm.irq);
  3700. }
  3701. /**
  3702. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3703. * @dev_priv: i915 device instance
  3704. *
  3705. * This function is used to enable interrupts at runtime, both in the runtime
  3706. * pm and the system suspend/resume code.
  3707. */
  3708. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3709. {
  3710. dev_priv->runtime_pm.irqs_enabled = true;
  3711. dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
  3712. dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
  3713. }