scheduler.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460
  1. /*
  2. * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. * SOFTWARE.
  22. *
  23. * Authors:
  24. * Zhi Wang <zhi.a.wang@intel.com>
  25. *
  26. * Contributors:
  27. * Ping Gao <ping.a.gao@intel.com>
  28. * Tina Zhang <tina.zhang@intel.com>
  29. * Chanbin Du <changbin.du@intel.com>
  30. * Min He <min.he@intel.com>
  31. * Bing Niu <bing.niu@intel.com>
  32. * Zhenyu Wang <zhenyuw@linux.intel.com>
  33. *
  34. */
  35. #include <linux/kthread.h>
  36. #include "i915_drv.h"
  37. #include "gvt.h"
  38. #define RING_CTX_OFF(x) \
  39. offsetof(struct execlist_ring_context, x)
  40. static void set_context_pdp_root_pointer(
  41. struct execlist_ring_context *ring_context,
  42. u32 pdp[8])
  43. {
  44. struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
  45. int i;
  46. for (i = 0; i < 8; i++)
  47. pdp_pair[i].val = pdp[7 - i];
  48. }
  49. static void update_shadow_pdps(struct intel_vgpu_workload *workload)
  50. {
  51. struct intel_vgpu *vgpu = workload->vgpu;
  52. int ring_id = workload->ring_id;
  53. struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
  54. struct drm_i915_gem_object *ctx_obj =
  55. shadow_ctx->__engine[ring_id].state->obj;
  56. struct execlist_ring_context *shadow_ring_context;
  57. struct page *page;
  58. if (WARN_ON(!workload->shadow_mm))
  59. return;
  60. if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
  61. return;
  62. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  63. shadow_ring_context = kmap(page);
  64. set_context_pdp_root_pointer(shadow_ring_context,
  65. (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
  66. kunmap(page);
  67. }
  68. /*
  69. * when populating shadow ctx from guest, we should not overrride oa related
  70. * registers, so that they will not be overlapped by guest oa configs. Thus
  71. * made it possible to capture oa data from host for both host and guests.
  72. */
  73. static void sr_oa_regs(struct intel_vgpu_workload *workload,
  74. u32 *reg_state, bool save)
  75. {
  76. struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
  77. u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
  78. u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
  79. int i = 0;
  80. u32 flex_mmio[] = {
  81. i915_mmio_reg_offset(EU_PERF_CNTL0),
  82. i915_mmio_reg_offset(EU_PERF_CNTL1),
  83. i915_mmio_reg_offset(EU_PERF_CNTL2),
  84. i915_mmio_reg_offset(EU_PERF_CNTL3),
  85. i915_mmio_reg_offset(EU_PERF_CNTL4),
  86. i915_mmio_reg_offset(EU_PERF_CNTL5),
  87. i915_mmio_reg_offset(EU_PERF_CNTL6),
  88. };
  89. if (workload->ring_id != RCS)
  90. return;
  91. if (save) {
  92. workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
  93. for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
  94. u32 state_offset = ctx_flexeu0 + i * 2;
  95. workload->flex_mmio[i] = reg_state[state_offset + 1];
  96. }
  97. } else {
  98. reg_state[ctx_oactxctrl] =
  99. i915_mmio_reg_offset(GEN8_OACTXCONTROL);
  100. reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
  101. for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
  102. u32 state_offset = ctx_flexeu0 + i * 2;
  103. u32 mmio = flex_mmio[i];
  104. reg_state[state_offset] = mmio;
  105. reg_state[state_offset + 1] = workload->flex_mmio[i];
  106. }
  107. }
  108. }
  109. static int populate_shadow_context(struct intel_vgpu_workload *workload)
  110. {
  111. struct intel_vgpu *vgpu = workload->vgpu;
  112. struct intel_gvt *gvt = vgpu->gvt;
  113. int ring_id = workload->ring_id;
  114. struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
  115. struct drm_i915_gem_object *ctx_obj =
  116. shadow_ctx->__engine[ring_id].state->obj;
  117. struct execlist_ring_context *shadow_ring_context;
  118. struct page *page;
  119. void *dst;
  120. unsigned long context_gpa, context_page_num;
  121. int i;
  122. gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
  123. workload->ctx_desc.lrca);
  124. context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
  125. context_page_num = context_page_num >> PAGE_SHIFT;
  126. if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
  127. context_page_num = 19;
  128. i = 2;
  129. while (i < context_page_num) {
  130. context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
  131. (u32)((workload->ctx_desc.lrca + i) <<
  132. I915_GTT_PAGE_SHIFT));
  133. if (context_gpa == INTEL_GVT_INVALID_ADDR) {
  134. gvt_vgpu_err("Invalid guest context descriptor\n");
  135. return -EFAULT;
  136. }
  137. page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
  138. dst = kmap(page);
  139. intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
  140. I915_GTT_PAGE_SIZE);
  141. kunmap(page);
  142. i++;
  143. }
  144. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  145. shadow_ring_context = kmap(page);
  146. sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
  147. #define COPY_REG(name) \
  148. intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
  149. + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
  150. #define COPY_REG_MASKED(name) {\
  151. intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
  152. + RING_CTX_OFF(name.val),\
  153. &shadow_ring_context->name.val, 4);\
  154. shadow_ring_context->name.val |= 0xffff << 16;\
  155. }
  156. COPY_REG_MASKED(ctx_ctrl);
  157. COPY_REG(ctx_timestamp);
  158. if (ring_id == RCS) {
  159. COPY_REG(bb_per_ctx_ptr);
  160. COPY_REG(rcs_indirect_ctx);
  161. COPY_REG(rcs_indirect_ctx_offset);
  162. }
  163. #undef COPY_REG
  164. #undef COPY_REG_MASKED
  165. intel_gvt_hypervisor_read_gpa(vgpu,
  166. workload->ring_context_gpa +
  167. sizeof(*shadow_ring_context),
  168. (void *)shadow_ring_context +
  169. sizeof(*shadow_ring_context),
  170. I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
  171. sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
  172. kunmap(page);
  173. return 0;
  174. }
  175. static inline bool is_gvt_request(struct i915_request *req)
  176. {
  177. return i915_gem_context_force_single_submission(req->ctx);
  178. }
  179. static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
  180. {
  181. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  182. u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
  183. i915_reg_t reg;
  184. reg = RING_INSTDONE(ring_base);
  185. vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
  186. reg = RING_ACTHD(ring_base);
  187. vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
  188. reg = RING_ACTHD_UDW(ring_base);
  189. vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
  190. }
  191. static int shadow_context_status_change(struct notifier_block *nb,
  192. unsigned long action, void *data)
  193. {
  194. struct i915_request *req = data;
  195. struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
  196. shadow_ctx_notifier_block[req->engine->id]);
  197. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  198. enum intel_engine_id ring_id = req->engine->id;
  199. struct intel_vgpu_workload *workload;
  200. unsigned long flags;
  201. if (!is_gvt_request(req)) {
  202. spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
  203. if (action == INTEL_CONTEXT_SCHEDULE_IN &&
  204. scheduler->engine_owner[ring_id]) {
  205. /* Switch ring from vGPU to host. */
  206. intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
  207. NULL, ring_id);
  208. scheduler->engine_owner[ring_id] = NULL;
  209. }
  210. spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
  211. return NOTIFY_OK;
  212. }
  213. workload = scheduler->current_workload[ring_id];
  214. if (unlikely(!workload))
  215. return NOTIFY_OK;
  216. switch (action) {
  217. case INTEL_CONTEXT_SCHEDULE_IN:
  218. spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
  219. if (workload->vgpu != scheduler->engine_owner[ring_id]) {
  220. /* Switch ring from host to vGPU or vGPU to vGPU. */
  221. intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
  222. workload->vgpu, ring_id);
  223. scheduler->engine_owner[ring_id] = workload->vgpu;
  224. } else
  225. gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
  226. ring_id, workload->vgpu->id);
  227. spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
  228. atomic_set(&workload->shadow_ctx_active, 1);
  229. break;
  230. case INTEL_CONTEXT_SCHEDULE_OUT:
  231. save_ring_hw_state(workload->vgpu, ring_id);
  232. atomic_set(&workload->shadow_ctx_active, 0);
  233. break;
  234. case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
  235. save_ring_hw_state(workload->vgpu, ring_id);
  236. break;
  237. default:
  238. WARN_ON(1);
  239. return NOTIFY_OK;
  240. }
  241. wake_up(&workload->shadow_ctx_status_wq);
  242. return NOTIFY_OK;
  243. }
  244. static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
  245. struct intel_engine_cs *engine)
  246. {
  247. struct intel_context *ce = to_intel_context(ctx, engine);
  248. u64 desc = 0;
  249. desc = ce->lrc_desc;
  250. /* Update bits 0-11 of the context descriptor which includes flags
  251. * like GEN8_CTX_* cached in desc_template
  252. */
  253. desc &= U64_MAX << 12;
  254. desc |= ctx->desc_template & ((1ULL << 12) - 1);
  255. ce->lrc_desc = desc;
  256. }
  257. static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
  258. {
  259. struct intel_vgpu *vgpu = workload->vgpu;
  260. void *shadow_ring_buffer_va;
  261. u32 *cs;
  262. struct i915_request *req = workload->req;
  263. if (IS_KABYLAKE(req->i915) &&
  264. is_inhibit_context(req->ctx, req->engine->id))
  265. intel_vgpu_restore_inhibit_context(vgpu, req);
  266. /* allocate shadow ring buffer */
  267. cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
  268. if (IS_ERR(cs)) {
  269. gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
  270. workload->rb_len);
  271. return PTR_ERR(cs);
  272. }
  273. shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
  274. /* get shadow ring buffer va */
  275. workload->shadow_ring_buffer_va = cs;
  276. memcpy(cs, shadow_ring_buffer_va,
  277. workload->rb_len);
  278. cs += workload->rb_len / sizeof(u32);
  279. intel_ring_advance(workload->req, cs);
  280. return 0;
  281. }
  282. static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  283. {
  284. if (!wa_ctx->indirect_ctx.obj)
  285. return;
  286. i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
  287. i915_gem_object_put(wa_ctx->indirect_ctx.obj);
  288. }
  289. /**
  290. * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
  291. * shadow it as well, include ringbuffer,wa_ctx and ctx.
  292. * @workload: an abstract entity for each execlist submission.
  293. *
  294. * This function is called before the workload submitting to i915, to make
  295. * sure the content of the workload is valid.
  296. */
  297. int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
  298. {
  299. struct intel_vgpu *vgpu = workload->vgpu;
  300. struct intel_vgpu_submission *s = &vgpu->submission;
  301. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  302. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  303. int ring_id = workload->ring_id;
  304. struct intel_engine_cs *engine = dev_priv->engine[ring_id];
  305. struct intel_ring *ring;
  306. int ret;
  307. lockdep_assert_held(&dev_priv->drm.struct_mutex);
  308. if (workload->shadowed)
  309. return 0;
  310. shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
  311. shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
  312. GEN8_CTX_ADDRESSING_MODE_SHIFT;
  313. if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
  314. shadow_context_descriptor_update(shadow_ctx,
  315. dev_priv->engine[ring_id]);
  316. ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
  317. if (ret)
  318. goto err_scan;
  319. if ((workload->ring_id == RCS) &&
  320. (workload->wa_ctx.indirect_ctx.size != 0)) {
  321. ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
  322. if (ret)
  323. goto err_scan;
  324. }
  325. /* pin shadow context by gvt even the shadow context will be pinned
  326. * when i915 alloc request. That is because gvt will update the guest
  327. * context from shadow context when workload is completed, and at that
  328. * moment, i915 may already unpined the shadow context to make the
  329. * shadow_ctx pages invalid. So gvt need to pin itself. After update
  330. * the guest context, gvt can unpin the shadow_ctx safely.
  331. */
  332. ring = intel_context_pin(shadow_ctx, engine);
  333. if (IS_ERR(ring)) {
  334. ret = PTR_ERR(ring);
  335. gvt_vgpu_err("fail to pin shadow context\n");
  336. goto err_shadow;
  337. }
  338. ret = populate_shadow_context(workload);
  339. if (ret)
  340. goto err_unpin;
  341. workload->shadowed = true;
  342. return 0;
  343. err_unpin:
  344. intel_context_unpin(shadow_ctx, engine);
  345. err_shadow:
  346. release_shadow_wa_ctx(&workload->wa_ctx);
  347. err_scan:
  348. return ret;
  349. }
  350. static int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
  351. {
  352. int ring_id = workload->ring_id;
  353. struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
  354. struct intel_engine_cs *engine = dev_priv->engine[ring_id];
  355. struct i915_request *rq;
  356. struct intel_vgpu *vgpu = workload->vgpu;
  357. struct intel_vgpu_submission *s = &vgpu->submission;
  358. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  359. int ret;
  360. rq = i915_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
  361. if (IS_ERR(rq)) {
  362. gvt_vgpu_err("fail to allocate gem request\n");
  363. ret = PTR_ERR(rq);
  364. goto err_unpin;
  365. }
  366. gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
  367. workload->req = i915_request_get(rq);
  368. ret = copy_workload_to_ring_buffer(workload);
  369. if (ret)
  370. goto err_unpin;
  371. return 0;
  372. err_unpin:
  373. intel_context_unpin(shadow_ctx, engine);
  374. release_shadow_wa_ctx(&workload->wa_ctx);
  375. return ret;
  376. }
  377. static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
  378. static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
  379. {
  380. struct intel_gvt *gvt = workload->vgpu->gvt;
  381. const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
  382. struct intel_vgpu_shadow_bb *bb;
  383. int ret;
  384. list_for_each_entry(bb, &workload->shadow_bb, list) {
  385. /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
  386. * is only updated into ring_scan_buffer, not real ring address
  387. * allocated in later copy_workload_to_ring_buffer. pls be noted
  388. * shadow_ring_buffer_va is now pointed to real ring buffer va
  389. * in copy_workload_to_ring_buffer.
  390. */
  391. if (bb->bb_offset)
  392. bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
  393. + bb->bb_offset;
  394. if (bb->ppgtt) {
  395. /* for non-priv bb, scan&shadow is only for
  396. * debugging purpose, so the content of shadow bb
  397. * is the same as original bb. Therefore,
  398. * here, rather than switch to shadow bb's gma
  399. * address, we directly use original batch buffer's
  400. * gma address, and send original bb to hardware
  401. * directly
  402. */
  403. if (bb->clflush & CLFLUSH_AFTER) {
  404. drm_clflush_virt_range(bb->va,
  405. bb->obj->base.size);
  406. bb->clflush &= ~CLFLUSH_AFTER;
  407. }
  408. i915_gem_obj_finish_shmem_access(bb->obj);
  409. bb->accessing = false;
  410. } else {
  411. bb->vma = i915_gem_object_ggtt_pin(bb->obj,
  412. NULL, 0, 0, 0);
  413. if (IS_ERR(bb->vma)) {
  414. ret = PTR_ERR(bb->vma);
  415. goto err;
  416. }
  417. /* relocate shadow batch buffer */
  418. bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
  419. if (gmadr_bytes == 8)
  420. bb->bb_start_cmd_va[2] = 0;
  421. /* No one is going to touch shadow bb from now on. */
  422. if (bb->clflush & CLFLUSH_AFTER) {
  423. drm_clflush_virt_range(bb->va,
  424. bb->obj->base.size);
  425. bb->clflush &= ~CLFLUSH_AFTER;
  426. }
  427. ret = i915_gem_object_set_to_gtt_domain(bb->obj,
  428. false);
  429. if (ret)
  430. goto err;
  431. i915_gem_obj_finish_shmem_access(bb->obj);
  432. bb->accessing = false;
  433. i915_vma_move_to_active(bb->vma, workload->req, 0);
  434. }
  435. }
  436. return 0;
  437. err:
  438. release_shadow_batch_buffer(workload);
  439. return ret;
  440. }
  441. static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  442. {
  443. struct intel_vgpu_workload *workload = container_of(wa_ctx,
  444. struct intel_vgpu_workload,
  445. wa_ctx);
  446. int ring_id = workload->ring_id;
  447. struct intel_vgpu_submission *s = &workload->vgpu->submission;
  448. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  449. struct drm_i915_gem_object *ctx_obj =
  450. shadow_ctx->__engine[ring_id].state->obj;
  451. struct execlist_ring_context *shadow_ring_context;
  452. struct page *page;
  453. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  454. shadow_ring_context = kmap_atomic(page);
  455. shadow_ring_context->bb_per_ctx_ptr.val =
  456. (shadow_ring_context->bb_per_ctx_ptr.val &
  457. (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
  458. shadow_ring_context->rcs_indirect_ctx.val =
  459. (shadow_ring_context->rcs_indirect_ctx.val &
  460. (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
  461. kunmap_atomic(shadow_ring_context);
  462. return 0;
  463. }
  464. static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  465. {
  466. struct i915_vma *vma;
  467. unsigned char *per_ctx_va =
  468. (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
  469. wa_ctx->indirect_ctx.size;
  470. if (wa_ctx->indirect_ctx.size == 0)
  471. return 0;
  472. vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
  473. 0, CACHELINE_BYTES, 0);
  474. if (IS_ERR(vma))
  475. return PTR_ERR(vma);
  476. /* FIXME: we are not tracking our pinned VMA leaving it
  477. * up to the core to fix up the stray pin_count upon
  478. * free.
  479. */
  480. wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
  481. wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
  482. memset(per_ctx_va, 0, CACHELINE_BYTES);
  483. update_wa_ctx_2_shadow_ctx(wa_ctx);
  484. return 0;
  485. }
  486. static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
  487. {
  488. struct intel_vgpu *vgpu = workload->vgpu;
  489. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  490. struct intel_vgpu_shadow_bb *bb, *pos;
  491. if (list_empty(&workload->shadow_bb))
  492. return;
  493. bb = list_first_entry(&workload->shadow_bb,
  494. struct intel_vgpu_shadow_bb, list);
  495. mutex_lock(&dev_priv->drm.struct_mutex);
  496. list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
  497. if (bb->obj) {
  498. if (bb->accessing)
  499. i915_gem_obj_finish_shmem_access(bb->obj);
  500. if (bb->va && !IS_ERR(bb->va))
  501. i915_gem_object_unpin_map(bb->obj);
  502. if (bb->vma && !IS_ERR(bb->vma)) {
  503. i915_vma_unpin(bb->vma);
  504. i915_vma_close(bb->vma);
  505. }
  506. __i915_gem_object_release_unless_active(bb->obj);
  507. }
  508. list_del(&bb->list);
  509. kfree(bb);
  510. }
  511. mutex_unlock(&dev_priv->drm.struct_mutex);
  512. }
  513. static int prepare_workload(struct intel_vgpu_workload *workload)
  514. {
  515. struct intel_vgpu *vgpu = workload->vgpu;
  516. int ret = 0;
  517. ret = intel_vgpu_pin_mm(workload->shadow_mm);
  518. if (ret) {
  519. gvt_vgpu_err("fail to vgpu pin mm\n");
  520. return ret;
  521. }
  522. update_shadow_pdps(workload);
  523. ret = intel_vgpu_sync_oos_pages(workload->vgpu);
  524. if (ret) {
  525. gvt_vgpu_err("fail to vgpu sync oos pages\n");
  526. goto err_unpin_mm;
  527. }
  528. ret = intel_vgpu_flush_post_shadow(workload->vgpu);
  529. if (ret) {
  530. gvt_vgpu_err("fail to flush post shadow\n");
  531. goto err_unpin_mm;
  532. }
  533. ret = intel_gvt_generate_request(workload);
  534. if (ret) {
  535. gvt_vgpu_err("fail to generate request\n");
  536. goto err_unpin_mm;
  537. }
  538. ret = prepare_shadow_batch_buffer(workload);
  539. if (ret) {
  540. gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
  541. goto err_unpin_mm;
  542. }
  543. ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
  544. if (ret) {
  545. gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
  546. goto err_shadow_batch;
  547. }
  548. if (workload->prepare) {
  549. ret = workload->prepare(workload);
  550. if (ret)
  551. goto err_shadow_wa_ctx;
  552. }
  553. return 0;
  554. err_shadow_wa_ctx:
  555. release_shadow_wa_ctx(&workload->wa_ctx);
  556. err_shadow_batch:
  557. release_shadow_batch_buffer(workload);
  558. err_unpin_mm:
  559. intel_vgpu_unpin_mm(workload->shadow_mm);
  560. return ret;
  561. }
  562. static int dispatch_workload(struct intel_vgpu_workload *workload)
  563. {
  564. struct intel_vgpu *vgpu = workload->vgpu;
  565. struct intel_vgpu_submission *s = &vgpu->submission;
  566. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  567. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  568. int ring_id = workload->ring_id;
  569. struct intel_engine_cs *engine = dev_priv->engine[ring_id];
  570. int ret = 0;
  571. gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
  572. ring_id, workload);
  573. mutex_lock(&dev_priv->drm.struct_mutex);
  574. ret = intel_gvt_scan_and_shadow_workload(workload);
  575. if (ret)
  576. goto out;
  577. ret = prepare_workload(workload);
  578. if (ret) {
  579. intel_context_unpin(shadow_ctx, engine);
  580. goto out;
  581. }
  582. out:
  583. if (ret)
  584. workload->status = ret;
  585. if (!IS_ERR_OR_NULL(workload->req)) {
  586. gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
  587. ring_id, workload->req);
  588. i915_request_add(workload->req);
  589. workload->dispatched = true;
  590. }
  591. mutex_unlock(&dev_priv->drm.struct_mutex);
  592. return ret;
  593. }
  594. static struct intel_vgpu_workload *pick_next_workload(
  595. struct intel_gvt *gvt, int ring_id)
  596. {
  597. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  598. struct intel_vgpu_workload *workload = NULL;
  599. mutex_lock(&gvt->lock);
  600. /*
  601. * no current vgpu / will be scheduled out / no workload
  602. * bail out
  603. */
  604. if (!scheduler->current_vgpu) {
  605. gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
  606. goto out;
  607. }
  608. if (scheduler->need_reschedule) {
  609. gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
  610. goto out;
  611. }
  612. if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
  613. goto out;
  614. /*
  615. * still have current workload, maybe the workload disptacher
  616. * fail to submit it for some reason, resubmit it.
  617. */
  618. if (scheduler->current_workload[ring_id]) {
  619. workload = scheduler->current_workload[ring_id];
  620. gvt_dbg_sched("ring id %d still have current workload %p\n",
  621. ring_id, workload);
  622. goto out;
  623. }
  624. /*
  625. * pick a workload as current workload
  626. * once current workload is set, schedule policy routines
  627. * will wait the current workload is finished when trying to
  628. * schedule out a vgpu.
  629. */
  630. scheduler->current_workload[ring_id] = container_of(
  631. workload_q_head(scheduler->current_vgpu, ring_id)->next,
  632. struct intel_vgpu_workload, list);
  633. workload = scheduler->current_workload[ring_id];
  634. gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
  635. atomic_inc(&workload->vgpu->submission.running_workload_num);
  636. out:
  637. mutex_unlock(&gvt->lock);
  638. return workload;
  639. }
  640. static void update_guest_context(struct intel_vgpu_workload *workload)
  641. {
  642. struct intel_vgpu *vgpu = workload->vgpu;
  643. struct intel_gvt *gvt = vgpu->gvt;
  644. struct intel_vgpu_submission *s = &vgpu->submission;
  645. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  646. int ring_id = workload->ring_id;
  647. struct drm_i915_gem_object *ctx_obj =
  648. shadow_ctx->__engine[ring_id].state->obj;
  649. struct execlist_ring_context *shadow_ring_context;
  650. struct page *page;
  651. void *src;
  652. unsigned long context_gpa, context_page_num;
  653. int i;
  654. gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
  655. workload->ctx_desc.lrca);
  656. context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
  657. context_page_num = context_page_num >> PAGE_SHIFT;
  658. if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
  659. context_page_num = 19;
  660. i = 2;
  661. while (i < context_page_num) {
  662. context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
  663. (u32)((workload->ctx_desc.lrca + i) <<
  664. I915_GTT_PAGE_SHIFT));
  665. if (context_gpa == INTEL_GVT_INVALID_ADDR) {
  666. gvt_vgpu_err("invalid guest context descriptor\n");
  667. return;
  668. }
  669. page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
  670. src = kmap(page);
  671. intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
  672. I915_GTT_PAGE_SIZE);
  673. kunmap(page);
  674. i++;
  675. }
  676. intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
  677. RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
  678. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  679. shadow_ring_context = kmap(page);
  680. #define COPY_REG(name) \
  681. intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
  682. RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
  683. COPY_REG(ctx_ctrl);
  684. COPY_REG(ctx_timestamp);
  685. #undef COPY_REG
  686. intel_gvt_hypervisor_write_gpa(vgpu,
  687. workload->ring_context_gpa +
  688. sizeof(*shadow_ring_context),
  689. (void *)shadow_ring_context +
  690. sizeof(*shadow_ring_context),
  691. I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
  692. kunmap(page);
  693. }
  694. static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
  695. {
  696. struct intel_vgpu_submission *s = &vgpu->submission;
  697. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  698. struct intel_engine_cs *engine;
  699. struct intel_vgpu_workload *pos, *n;
  700. unsigned int tmp;
  701. /* free the unsubmited workloads in the queues. */
  702. for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
  703. list_for_each_entry_safe(pos, n,
  704. &s->workload_q_head[engine->id], list) {
  705. list_del_init(&pos->list);
  706. intel_vgpu_destroy_workload(pos);
  707. }
  708. clear_bit(engine->id, s->shadow_ctx_desc_updated);
  709. }
  710. }
  711. static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
  712. {
  713. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  714. struct intel_vgpu_workload *workload =
  715. scheduler->current_workload[ring_id];
  716. struct intel_vgpu *vgpu = workload->vgpu;
  717. struct intel_vgpu_submission *s = &vgpu->submission;
  718. int event;
  719. mutex_lock(&gvt->lock);
  720. /* For the workload w/ request, needs to wait for the context
  721. * switch to make sure request is completed.
  722. * For the workload w/o request, directly complete the workload.
  723. */
  724. if (workload->req) {
  725. struct drm_i915_private *dev_priv =
  726. workload->vgpu->gvt->dev_priv;
  727. struct intel_engine_cs *engine =
  728. dev_priv->engine[workload->ring_id];
  729. wait_event(workload->shadow_ctx_status_wq,
  730. !atomic_read(&workload->shadow_ctx_active));
  731. /* If this request caused GPU hang, req->fence.error will
  732. * be set to -EIO. Use -EIO to set workload status so
  733. * that when this request caused GPU hang, didn't trigger
  734. * context switch interrupt to guest.
  735. */
  736. if (likely(workload->status == -EINPROGRESS)) {
  737. if (workload->req->fence.error == -EIO)
  738. workload->status = -EIO;
  739. else
  740. workload->status = 0;
  741. }
  742. i915_request_put(fetch_and_zero(&workload->req));
  743. if (!workload->status && !(vgpu->resetting_eng &
  744. ENGINE_MASK(ring_id))) {
  745. update_guest_context(workload);
  746. for_each_set_bit(event, workload->pending_events,
  747. INTEL_GVT_EVENT_MAX)
  748. intel_vgpu_trigger_virtual_event(vgpu, event);
  749. }
  750. mutex_lock(&dev_priv->drm.struct_mutex);
  751. /* unpin shadow ctx as the shadow_ctx update is done */
  752. intel_context_unpin(s->shadow_ctx, engine);
  753. mutex_unlock(&dev_priv->drm.struct_mutex);
  754. }
  755. gvt_dbg_sched("ring id %d complete workload %p status %d\n",
  756. ring_id, workload, workload->status);
  757. scheduler->current_workload[ring_id] = NULL;
  758. list_del_init(&workload->list);
  759. if (!workload->status) {
  760. release_shadow_batch_buffer(workload);
  761. release_shadow_wa_ctx(&workload->wa_ctx);
  762. }
  763. if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
  764. /* if workload->status is not successful means HW GPU
  765. * has occurred GPU hang or something wrong with i915/GVT,
  766. * and GVT won't inject context switch interrupt to guest.
  767. * So this error is a vGPU hang actually to the guest.
  768. * According to this we should emunlate a vGPU hang. If
  769. * there are pending workloads which are already submitted
  770. * from guest, we should clean them up like HW GPU does.
  771. *
  772. * if it is in middle of engine resetting, the pending
  773. * workloads won't be submitted to HW GPU and will be
  774. * cleaned up during the resetting process later, so doing
  775. * the workload clean up here doesn't have any impact.
  776. **/
  777. clean_workloads(vgpu, ENGINE_MASK(ring_id));
  778. }
  779. workload->complete(workload);
  780. atomic_dec(&s->running_workload_num);
  781. wake_up(&scheduler->workload_complete_wq);
  782. if (gvt->scheduler.need_reschedule)
  783. intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
  784. mutex_unlock(&gvt->lock);
  785. }
  786. struct workload_thread_param {
  787. struct intel_gvt *gvt;
  788. int ring_id;
  789. };
  790. static int workload_thread(void *priv)
  791. {
  792. struct workload_thread_param *p = (struct workload_thread_param *)priv;
  793. struct intel_gvt *gvt = p->gvt;
  794. int ring_id = p->ring_id;
  795. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  796. struct intel_vgpu_workload *workload = NULL;
  797. struct intel_vgpu *vgpu = NULL;
  798. int ret;
  799. bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
  800. || IS_KABYLAKE(gvt->dev_priv);
  801. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  802. kfree(p);
  803. gvt_dbg_core("workload thread for ring %d started\n", ring_id);
  804. while (!kthread_should_stop()) {
  805. add_wait_queue(&scheduler->waitq[ring_id], &wait);
  806. do {
  807. workload = pick_next_workload(gvt, ring_id);
  808. if (workload)
  809. break;
  810. wait_woken(&wait, TASK_INTERRUPTIBLE,
  811. MAX_SCHEDULE_TIMEOUT);
  812. } while (!kthread_should_stop());
  813. remove_wait_queue(&scheduler->waitq[ring_id], &wait);
  814. if (!workload)
  815. break;
  816. gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
  817. workload->ring_id, workload,
  818. workload->vgpu->id);
  819. intel_runtime_pm_get(gvt->dev_priv);
  820. gvt_dbg_sched("ring id %d will dispatch workload %p\n",
  821. workload->ring_id, workload);
  822. if (need_force_wake)
  823. intel_uncore_forcewake_get(gvt->dev_priv,
  824. FORCEWAKE_ALL);
  825. mutex_lock(&gvt->lock);
  826. ret = dispatch_workload(workload);
  827. mutex_unlock(&gvt->lock);
  828. if (ret) {
  829. vgpu = workload->vgpu;
  830. gvt_vgpu_err("fail to dispatch workload, skip\n");
  831. goto complete;
  832. }
  833. gvt_dbg_sched("ring id %d wait workload %p\n",
  834. workload->ring_id, workload);
  835. i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
  836. complete:
  837. gvt_dbg_sched("will complete workload %p, status: %d\n",
  838. workload, workload->status);
  839. complete_current_workload(gvt, ring_id);
  840. if (need_force_wake)
  841. intel_uncore_forcewake_put(gvt->dev_priv,
  842. FORCEWAKE_ALL);
  843. intel_runtime_pm_put(gvt->dev_priv);
  844. if (ret && (vgpu_is_vm_unhealthy(ret)))
  845. enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
  846. }
  847. return 0;
  848. }
  849. void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
  850. {
  851. struct intel_vgpu_submission *s = &vgpu->submission;
  852. struct intel_gvt *gvt = vgpu->gvt;
  853. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  854. if (atomic_read(&s->running_workload_num)) {
  855. gvt_dbg_sched("wait vgpu idle\n");
  856. wait_event(scheduler->workload_complete_wq,
  857. !atomic_read(&s->running_workload_num));
  858. }
  859. }
  860. void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
  861. {
  862. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  863. struct intel_engine_cs *engine;
  864. enum intel_engine_id i;
  865. gvt_dbg_core("clean workload scheduler\n");
  866. for_each_engine(engine, gvt->dev_priv, i) {
  867. atomic_notifier_chain_unregister(
  868. &engine->context_status_notifier,
  869. &gvt->shadow_ctx_notifier_block[i]);
  870. kthread_stop(scheduler->thread[i]);
  871. }
  872. }
  873. int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
  874. {
  875. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  876. struct workload_thread_param *param = NULL;
  877. struct intel_engine_cs *engine;
  878. enum intel_engine_id i;
  879. int ret;
  880. gvt_dbg_core("init workload scheduler\n");
  881. init_waitqueue_head(&scheduler->workload_complete_wq);
  882. for_each_engine(engine, gvt->dev_priv, i) {
  883. init_waitqueue_head(&scheduler->waitq[i]);
  884. param = kzalloc(sizeof(*param), GFP_KERNEL);
  885. if (!param) {
  886. ret = -ENOMEM;
  887. goto err;
  888. }
  889. param->gvt = gvt;
  890. param->ring_id = i;
  891. scheduler->thread[i] = kthread_run(workload_thread, param,
  892. "gvt workload %d", i);
  893. if (IS_ERR(scheduler->thread[i])) {
  894. gvt_err("fail to create workload thread\n");
  895. ret = PTR_ERR(scheduler->thread[i]);
  896. goto err;
  897. }
  898. gvt->shadow_ctx_notifier_block[i].notifier_call =
  899. shadow_context_status_change;
  900. atomic_notifier_chain_register(&engine->context_status_notifier,
  901. &gvt->shadow_ctx_notifier_block[i]);
  902. }
  903. return 0;
  904. err:
  905. intel_gvt_clean_workload_scheduler(gvt);
  906. kfree(param);
  907. param = NULL;
  908. return ret;
  909. }
  910. /**
  911. * intel_vgpu_clean_submission - free submission-related resource for vGPU
  912. * @vgpu: a vGPU
  913. *
  914. * This function is called when a vGPU is being destroyed.
  915. *
  916. */
  917. void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
  918. {
  919. struct intel_vgpu_submission *s = &vgpu->submission;
  920. intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
  921. i915_gem_context_put(s->shadow_ctx);
  922. kmem_cache_destroy(s->workloads);
  923. }
  924. /**
  925. * intel_vgpu_reset_submission - reset submission-related resource for vGPU
  926. * @vgpu: a vGPU
  927. * @engine_mask: engines expected to be reset
  928. *
  929. * This function is called when a vGPU is being destroyed.
  930. *
  931. */
  932. void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
  933. unsigned long engine_mask)
  934. {
  935. struct intel_vgpu_submission *s = &vgpu->submission;
  936. if (!s->active)
  937. return;
  938. clean_workloads(vgpu, engine_mask);
  939. s->ops->reset(vgpu, engine_mask);
  940. }
  941. /**
  942. * intel_vgpu_setup_submission - setup submission-related resource for vGPU
  943. * @vgpu: a vGPU
  944. *
  945. * This function is called when a vGPU is being created.
  946. *
  947. * Returns:
  948. * Zero on success, negative error code if failed.
  949. *
  950. */
  951. int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
  952. {
  953. struct intel_vgpu_submission *s = &vgpu->submission;
  954. enum intel_engine_id i;
  955. struct intel_engine_cs *engine;
  956. int ret;
  957. s->shadow_ctx = i915_gem_context_create_gvt(
  958. &vgpu->gvt->dev_priv->drm);
  959. if (IS_ERR(s->shadow_ctx))
  960. return PTR_ERR(s->shadow_ctx);
  961. bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
  962. s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
  963. sizeof(struct intel_vgpu_workload), 0,
  964. SLAB_HWCACHE_ALIGN,
  965. offsetof(struct intel_vgpu_workload, rb_tail),
  966. sizeof_field(struct intel_vgpu_workload, rb_tail),
  967. NULL);
  968. if (!s->workloads) {
  969. ret = -ENOMEM;
  970. goto out_shadow_ctx;
  971. }
  972. for_each_engine(engine, vgpu->gvt->dev_priv, i)
  973. INIT_LIST_HEAD(&s->workload_q_head[i]);
  974. atomic_set(&s->running_workload_num, 0);
  975. bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
  976. return 0;
  977. out_shadow_ctx:
  978. i915_gem_context_put(s->shadow_ctx);
  979. return ret;
  980. }
  981. /**
  982. * intel_vgpu_select_submission_ops - select virtual submission interface
  983. * @vgpu: a vGPU
  984. * @interface: expected vGPU virtual submission interface
  985. *
  986. * This function is called when guest configures submission interface.
  987. *
  988. * Returns:
  989. * Zero on success, negative error code if failed.
  990. *
  991. */
  992. int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
  993. unsigned long engine_mask,
  994. unsigned int interface)
  995. {
  996. struct intel_vgpu_submission *s = &vgpu->submission;
  997. const struct intel_vgpu_submission_ops *ops[] = {
  998. [INTEL_VGPU_EXECLIST_SUBMISSION] =
  999. &intel_vgpu_execlist_submission_ops,
  1000. };
  1001. int ret;
  1002. if (WARN_ON(interface >= ARRAY_SIZE(ops)))
  1003. return -EINVAL;
  1004. if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
  1005. return -EINVAL;
  1006. if (s->active)
  1007. s->ops->clean(vgpu, engine_mask);
  1008. if (interface == 0) {
  1009. s->ops = NULL;
  1010. s->virtual_submission_interface = 0;
  1011. s->active = false;
  1012. gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
  1013. return 0;
  1014. }
  1015. ret = ops[interface]->init(vgpu, engine_mask);
  1016. if (ret)
  1017. return ret;
  1018. s->ops = ops[interface];
  1019. s->virtual_submission_interface = interface;
  1020. s->active = true;
  1021. gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
  1022. vgpu->id, s->ops->name);
  1023. return 0;
  1024. }
  1025. /**
  1026. * intel_vgpu_destroy_workload - destroy a vGPU workload
  1027. * @vgpu: a vGPU
  1028. *
  1029. * This function is called when destroy a vGPU workload.
  1030. *
  1031. */
  1032. void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
  1033. {
  1034. struct intel_vgpu_submission *s = &workload->vgpu->submission;
  1035. if (workload->shadow_mm)
  1036. intel_vgpu_mm_put(workload->shadow_mm);
  1037. kmem_cache_free(s->workloads, workload);
  1038. }
  1039. static struct intel_vgpu_workload *
  1040. alloc_workload(struct intel_vgpu *vgpu)
  1041. {
  1042. struct intel_vgpu_submission *s = &vgpu->submission;
  1043. struct intel_vgpu_workload *workload;
  1044. workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
  1045. if (!workload)
  1046. return ERR_PTR(-ENOMEM);
  1047. INIT_LIST_HEAD(&workload->list);
  1048. INIT_LIST_HEAD(&workload->shadow_bb);
  1049. init_waitqueue_head(&workload->shadow_ctx_status_wq);
  1050. atomic_set(&workload->shadow_ctx_active, 0);
  1051. workload->status = -EINPROGRESS;
  1052. workload->shadowed = false;
  1053. workload->vgpu = vgpu;
  1054. return workload;
  1055. }
  1056. #define RING_CTX_OFF(x) \
  1057. offsetof(struct execlist_ring_context, x)
  1058. static void read_guest_pdps(struct intel_vgpu *vgpu,
  1059. u64 ring_context_gpa, u32 pdp[8])
  1060. {
  1061. u64 gpa;
  1062. int i;
  1063. gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
  1064. for (i = 0; i < 8; i++)
  1065. intel_gvt_hypervisor_read_gpa(vgpu,
  1066. gpa + i * 8, &pdp[7 - i], 4);
  1067. }
  1068. static int prepare_mm(struct intel_vgpu_workload *workload)
  1069. {
  1070. struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
  1071. struct intel_vgpu_mm *mm;
  1072. struct intel_vgpu *vgpu = workload->vgpu;
  1073. intel_gvt_gtt_type_t root_entry_type;
  1074. u64 pdps[GVT_RING_CTX_NR_PDPS];
  1075. switch (desc->addressing_mode) {
  1076. case 1: /* legacy 32-bit */
  1077. root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
  1078. break;
  1079. case 3: /* legacy 64-bit */
  1080. root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
  1081. break;
  1082. default:
  1083. gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
  1084. return -EINVAL;
  1085. }
  1086. read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
  1087. mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
  1088. if (IS_ERR(mm))
  1089. return PTR_ERR(mm);
  1090. workload->shadow_mm = mm;
  1091. return 0;
  1092. }
  1093. #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
  1094. ((a)->lrca == (b)->lrca))
  1095. #define get_last_workload(q) \
  1096. (list_empty(q) ? NULL : container_of(q->prev, \
  1097. struct intel_vgpu_workload, list))
  1098. /**
  1099. * intel_vgpu_create_workload - create a vGPU workload
  1100. * @vgpu: a vGPU
  1101. * @desc: a guest context descriptor
  1102. *
  1103. * This function is called when creating a vGPU workload.
  1104. *
  1105. * Returns:
  1106. * struct intel_vgpu_workload * on success, negative error code in
  1107. * pointer if failed.
  1108. *
  1109. */
  1110. struct intel_vgpu_workload *
  1111. intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
  1112. struct execlist_ctx_descriptor_format *desc)
  1113. {
  1114. struct intel_vgpu_submission *s = &vgpu->submission;
  1115. struct list_head *q = workload_q_head(vgpu, ring_id);
  1116. struct intel_vgpu_workload *last_workload = get_last_workload(q);
  1117. struct intel_vgpu_workload *workload = NULL;
  1118. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  1119. u64 ring_context_gpa;
  1120. u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
  1121. int ret;
  1122. ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
  1123. (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
  1124. if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
  1125. gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
  1126. return ERR_PTR(-EINVAL);
  1127. }
  1128. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1129. RING_CTX_OFF(ring_header.val), &head, 4);
  1130. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1131. RING_CTX_OFF(ring_tail.val), &tail, 4);
  1132. head &= RB_HEAD_OFF_MASK;
  1133. tail &= RB_TAIL_OFF_MASK;
  1134. if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
  1135. gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
  1136. gvt_dbg_el("ctx head %x real head %lx\n", head,
  1137. last_workload->rb_tail);
  1138. /*
  1139. * cannot use guest context head pointer here,
  1140. * as it might not be updated at this time
  1141. */
  1142. head = last_workload->rb_tail;
  1143. }
  1144. gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
  1145. /* record some ring buffer register values for scan and shadow */
  1146. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1147. RING_CTX_OFF(rb_start.val), &start, 4);
  1148. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1149. RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
  1150. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1151. RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
  1152. workload = alloc_workload(vgpu);
  1153. if (IS_ERR(workload))
  1154. return workload;
  1155. workload->ring_id = ring_id;
  1156. workload->ctx_desc = *desc;
  1157. workload->ring_context_gpa = ring_context_gpa;
  1158. workload->rb_head = head;
  1159. workload->rb_tail = tail;
  1160. workload->rb_start = start;
  1161. workload->rb_ctl = ctl;
  1162. if (ring_id == RCS) {
  1163. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1164. RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
  1165. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1166. RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
  1167. workload->wa_ctx.indirect_ctx.guest_gma =
  1168. indirect_ctx & INDIRECT_CTX_ADDR_MASK;
  1169. workload->wa_ctx.indirect_ctx.size =
  1170. (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
  1171. CACHELINE_BYTES;
  1172. workload->wa_ctx.per_ctx.guest_gma =
  1173. per_ctx & PER_CTX_ADDR_MASK;
  1174. workload->wa_ctx.per_ctx.valid = per_ctx & 1;
  1175. }
  1176. gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
  1177. workload, ring_id, head, tail, start, ctl);
  1178. ret = prepare_mm(workload);
  1179. if (ret) {
  1180. kmem_cache_free(s->workloads, workload);
  1181. return ERR_PTR(ret);
  1182. }
  1183. /* Only scan and shadow the first workload in the queue
  1184. * as there is only one pre-allocated buf-obj for shadow.
  1185. */
  1186. if (list_empty(workload_q_head(vgpu, ring_id))) {
  1187. intel_runtime_pm_get(dev_priv);
  1188. mutex_lock(&dev_priv->drm.struct_mutex);
  1189. ret = intel_gvt_scan_and_shadow_workload(workload);
  1190. mutex_unlock(&dev_priv->drm.struct_mutex);
  1191. intel_runtime_pm_put(dev_priv);
  1192. }
  1193. if (ret && (vgpu_is_vm_unhealthy(ret))) {
  1194. enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
  1195. intel_vgpu_destroy_workload(workload);
  1196. return ERR_PTR(ret);
  1197. }
  1198. return workload;
  1199. }
  1200. /**
  1201. * intel_vgpu_queue_workload - Qeue a vGPU workload
  1202. * @workload: the workload to queue in
  1203. */
  1204. void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
  1205. {
  1206. list_add_tail(&workload->list,
  1207. workload_q_head(workload->vgpu, workload->ring_id));
  1208. intel_gvt_kick_schedule(workload->vgpu->gvt);
  1209. wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
  1210. }