mtk-platform.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598
  1. /*
  2. * Driver for EIP97 cryptographic accelerator.
  3. *
  4. * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. */
  11. #include <linux/clk.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/pm_runtime.h>
  17. #include "mtk-platform.h"
  18. #define MTK_BURST_SIZE_MSK GENMASK(7, 4)
  19. #define MTK_BURST_SIZE(x) ((x) << 4)
  20. #define MTK_DESC_SIZE(x) ((x) << 0)
  21. #define MTK_DESC_OFFSET(x) ((x) << 16)
  22. #define MTK_DESC_FETCH_SIZE(x) ((x) << 0)
  23. #define MTK_DESC_FETCH_THRESH(x) ((x) << 16)
  24. #define MTK_DESC_OVL_IRQ_EN BIT(25)
  25. #define MTK_DESC_ATP_PRESENT BIT(30)
  26. #define MTK_DFSE_IDLE GENMASK(3, 0)
  27. #define MTK_DFSE_THR_CTRL_EN BIT(30)
  28. #define MTK_DFSE_THR_CTRL_RESET BIT(31)
  29. #define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0))
  30. #define MTK_DFSE_MIN_DATA(x) ((x) << 0)
  31. #define MTK_DFSE_MAX_DATA(x) ((x) << 8)
  32. #define MTK_DFE_MIN_CTRL(x) ((x) << 16)
  33. #define MTK_DFE_MAX_CTRL(x) ((x) << 24)
  34. #define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8)
  35. #define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12)
  36. #define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0)
  37. #define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4)
  38. #define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0))
  39. #define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
  40. #define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0))
  41. #define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
  42. #define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0))
  43. #define MTK_PE_TK_LOC_AVL BIT(2)
  44. #define MTK_PE_PROC_HELD BIT(14)
  45. #define MTK_PE_TK_TIMEOUT_EN BIT(22)
  46. #define MTK_PE_INPUT_DMA_ERR BIT(0)
  47. #define MTK_PE_OUTPUT_DMA_ERR BIT(1)
  48. #define MTK_PE_PKT_PORC_ERR BIT(2)
  49. #define MTK_PE_PKT_TIMEOUT BIT(3)
  50. #define MTK_PE_FATAL_ERR BIT(14)
  51. #define MTK_PE_INPUT_DMA_ERR_EN BIT(16)
  52. #define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17)
  53. #define MTK_PE_PKT_PORC_ERR_EN BIT(18)
  54. #define MTK_PE_PKT_TIMEOUT_EN BIT(19)
  55. #define MTK_PE_FATAL_ERR_EN BIT(30)
  56. #define MTK_PE_INT_OUT_EN BIT(31)
  57. #define MTK_HIA_SIGNATURE ((u16)0x35ca)
  58. #define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0))
  59. #define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0))
  60. #define MTK_CDR_STAT_CLR GENMASK(4, 0)
  61. #define MTK_RDR_STAT_CLR GENMASK(7, 0)
  62. #define MTK_AIC_INT_MSK GENMASK(5, 0)
  63. #define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20))
  64. #define MTK_AIC_VER11 0x011036c9
  65. #define MTK_AIC_VER12 0x012036c9
  66. #define MTK_AIC_G_CLR GENMASK(30, 20)
  67. /**
  68. * EIP97 is an integrated security subsystem to accelerate cryptographic
  69. * functions and protocols to offload the host processor.
  70. * Some important hardware modules are briefly introduced below:
  71. *
  72. * Host Interface Adapter(HIA) - the main interface between the host
  73. * system and the hardware subsystem. It is responsible for attaching
  74. * processing engine to the specific host bus interface and provides a
  75. * standardized software view for off loading tasks to the engine.
  76. *
  77. * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
  78. * CD the host has prepared in the CDR. It monitors the fill level of its
  79. * CD-FIFO and if there's sufficient space for the next block of descriptors,
  80. * then it fires off a DMA request to fetch a block of CDs.
  81. *
  82. * Data fetch engine(DFE) - It is responsible for parsing the CD and
  83. * setting up the required control and packet data DMA transfers from
  84. * system memory to the processing engine.
  85. *
  86. * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
  87. * but target is result descriptors, Moreover, it also handles the RD
  88. * updates under control of the DSE. For each packet data segment
  89. * processed, the DSE triggers the RDR Manager to write the updated RD.
  90. * If triggered to update, the RDR Manager sets up a DMA operation to
  91. * copy the RD from the DSE to the correct location in the RDR.
  92. *
  93. * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
  94. * and setting up the required control and packet data DMA transfers from
  95. * the processing engine to system memory.
  96. *
  97. * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
  98. * from various sources and combine them into one interrupt output.
  99. * The AICs are used by:
  100. * - One for the HIA global and processing engine interrupts.
  101. * - The others for the descriptor ring interrupts.
  102. */
  103. /* Cryptographic engine capabilities */
  104. struct mtk_sys_cap {
  105. /* host interface adapter */
  106. u32 hia_ver;
  107. u32 hia_opt;
  108. /* packet engine */
  109. u32 pkt_eng_opt;
  110. /* global hardware */
  111. u32 hw_opt;
  112. };
  113. static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
  114. {
  115. /* Assign rings to DFE/DSE thread and enable it */
  116. writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
  117. writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
  118. }
  119. static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
  120. struct mtk_sys_cap *cap)
  121. {
  122. u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
  123. u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
  124. u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
  125. u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
  126. u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
  127. writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
  128. MTK_DFSE_MAX_DATA(ipbuf) |
  129. MTK_DFE_MIN_CTRL(itbuf - 1) |
  130. MTK_DFE_MAX_CTRL(itbuf),
  131. cryp->base + DFE_CFG);
  132. writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
  133. MTK_DFSE_MAX_DATA(opbuf),
  134. cryp->base + DSE_CFG);
  135. writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
  136. MTK_IN_BUF_MAX_THRESH(ipbuf),
  137. cryp->base + PE_IN_DBUF_THRESH);
  138. writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
  139. MTK_IN_BUF_MAX_THRESH(itbuf),
  140. cryp->base + PE_IN_TBUF_THRESH);
  141. writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
  142. MTK_OUT_BUF_MAX_THRESH(opbuf),
  143. cryp->base + PE_OUT_DBUF_THRESH);
  144. writel(0, cryp->base + PE_OUT_TBUF_THRESH);
  145. writel(0, cryp->base + PE_OUT_BUF_CTRL);
  146. }
  147. static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
  148. {
  149. int ret = -EINVAL;
  150. u32 val;
  151. /* Check for completion of all DMA transfers */
  152. val = readl(cryp->base + DFE_THR_STAT);
  153. if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
  154. val = readl(cryp->base + DSE_THR_STAT);
  155. if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
  156. ret = 0;
  157. }
  158. if (!ret) {
  159. /* Take DFE/DSE thread out of reset */
  160. writel(0, cryp->base + DFE_THR_CTRL);
  161. writel(0, cryp->base + DSE_THR_CTRL);
  162. } else {
  163. return -EBUSY;
  164. }
  165. return 0;
  166. }
  167. static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
  168. {
  169. int err;
  170. /* Reset DSE/DFE and correct system priorities for all rings. */
  171. writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
  172. writel(0, cryp->base + DFE_PRIO_0);
  173. writel(0, cryp->base + DFE_PRIO_1);
  174. writel(0, cryp->base + DFE_PRIO_2);
  175. writel(0, cryp->base + DFE_PRIO_3);
  176. writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
  177. writel(0, cryp->base + DSE_PRIO_0);
  178. writel(0, cryp->base + DSE_PRIO_1);
  179. writel(0, cryp->base + DSE_PRIO_2);
  180. writel(0, cryp->base + DSE_PRIO_3);
  181. err = mtk_dfe_dse_state_check(cryp);
  182. if (err)
  183. return err;
  184. return 0;
  185. }
  186. static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
  187. int i, struct mtk_sys_cap *cap)
  188. {
  189. /* Full descriptor that fits FIFO minus one */
  190. u32 count =
  191. ((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
  192. /* Temporarily disable external triggering */
  193. writel(0, cryp->base + CDR_CFG(i));
  194. /* Clear CDR count */
  195. writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
  196. writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
  197. writel(0, cryp->base + CDR_PREP_PNTR(i));
  198. writel(0, cryp->base + CDR_PROC_PNTR(i));
  199. writel(0, cryp->base + CDR_DMA_CFG(i));
  200. /* Configure CDR host address space */
  201. writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
  202. writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
  203. writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
  204. /* Clear and disable all CDR interrupts */
  205. writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
  206. /*
  207. * Set command descriptor offset and enable additional
  208. * token present in descriptor.
  209. */
  210. writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
  211. MTK_DESC_OFFSET(MTK_DESC_OFF) |
  212. MTK_DESC_ATP_PRESENT,
  213. cryp->base + CDR_DESC_SIZE(i));
  214. writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
  215. MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
  216. cryp->base + CDR_CFG(i));
  217. }
  218. static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
  219. int i, struct mtk_sys_cap *cap)
  220. {
  221. u32 rndup = 2;
  222. u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
  223. /* Temporarily disable external triggering */
  224. writel(0, cryp->base + RDR_CFG(i));
  225. /* Clear RDR count */
  226. writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
  227. writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
  228. writel(0, cryp->base + RDR_PREP_PNTR(i));
  229. writel(0, cryp->base + RDR_PROC_PNTR(i));
  230. writel(0, cryp->base + RDR_DMA_CFG(i));
  231. /* Configure RDR host address space */
  232. writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
  233. writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
  234. writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
  235. writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
  236. /*
  237. * RDR manager generates update interrupts on a per-completed-packet,
  238. * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
  239. * for the RDR exceeds the number of packets.
  240. */
  241. writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
  242. cryp->base + RDR_THRESH(i));
  243. /*
  244. * Configure a threshold and time-out value for the processed
  245. * result descriptors (or complete packets) that are written to
  246. * the RDR.
  247. */
  248. writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
  249. cryp->base + RDR_DESC_SIZE(i));
  250. /*
  251. * Configure HIA fetch size and fetch threshold that are used to
  252. * fetch blocks of multiple descriptors.
  253. */
  254. writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
  255. MTK_DESC_FETCH_THRESH(count * rndup) |
  256. MTK_DESC_OVL_IRQ_EN,
  257. cryp->base + RDR_CFG(i));
  258. }
  259. static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
  260. {
  261. struct mtk_sys_cap cap;
  262. int i, err;
  263. u32 val;
  264. cap.hia_ver = readl(cryp->base + HIA_VERSION);
  265. cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
  266. cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
  267. if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
  268. return -EINVAL;
  269. /* Configure endianness conversion method for master (DMA) interface */
  270. writel(0, cryp->base + EIP97_MST_CTRL);
  271. /* Set HIA burst size */
  272. val = readl(cryp->base + HIA_MST_CTRL);
  273. val &= ~MTK_BURST_SIZE_MSK;
  274. val |= MTK_BURST_SIZE(5);
  275. writel(val, cryp->base + HIA_MST_CTRL);
  276. err = mtk_dfe_dse_reset(cryp);
  277. if (err) {
  278. dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
  279. return err;
  280. }
  281. mtk_dfe_dse_buf_setup(cryp, &cap);
  282. /* Enable the 4 rings for the packet engines. */
  283. mtk_desc_ring_link(cryp, 0xf);
  284. for (i = 0; i < MTK_RING_MAX; i++) {
  285. mtk_cmd_desc_ring_setup(cryp, i, &cap);
  286. mtk_res_desc_ring_setup(cryp, i, &cap);
  287. }
  288. writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
  289. cryp->base + PE_TOKEN_CTRL_STAT);
  290. /* Clear all pending interrupts */
  291. writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
  292. writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
  293. MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
  294. MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
  295. MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
  296. MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
  297. MTK_PE_INT_OUT_EN,
  298. cryp->base + PE_INTERRUPT_CTRL_STAT);
  299. return 0;
  300. }
  301. static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
  302. {
  303. u32 val;
  304. if (hw == MTK_RING_MAX)
  305. val = readl(cryp->base + AIC_G_VERSION);
  306. else
  307. val = readl(cryp->base + AIC_VERSION(hw));
  308. val &= MTK_AIC_VER_MSK;
  309. if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
  310. return -ENXIO;
  311. if (hw == MTK_RING_MAX)
  312. val = readl(cryp->base + AIC_G_OPTIONS);
  313. else
  314. val = readl(cryp->base + AIC_OPTIONS(hw));
  315. val &= MTK_AIC_INT_MSK;
  316. if (!val || val > 32)
  317. return -ENXIO;
  318. return 0;
  319. }
  320. static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
  321. {
  322. int err;
  323. err = mtk_aic_cap_check(cryp, hw);
  324. if (err)
  325. return err;
  326. /* Disable all interrupts and set initial configuration */
  327. if (hw == MTK_RING_MAX) {
  328. writel(0, cryp->base + AIC_G_ENABLE_CTRL);
  329. writel(0, cryp->base + AIC_G_POL_CTRL);
  330. writel(0, cryp->base + AIC_G_TYPE_CTRL);
  331. writel(0, cryp->base + AIC_G_ENABLE_SET);
  332. } else {
  333. writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
  334. writel(0, cryp->base + AIC_POL_CTRL(hw));
  335. writel(0, cryp->base + AIC_TYPE_CTRL(hw));
  336. writel(0, cryp->base + AIC_ENABLE_SET(hw));
  337. }
  338. return 0;
  339. }
  340. static int mtk_accelerator_init(struct mtk_cryp *cryp)
  341. {
  342. int i, err;
  343. /* Initialize advanced interrupt controller(AIC) */
  344. for (i = 0; i < MTK_IRQ_NUM; i++) {
  345. err = mtk_aic_init(cryp, i);
  346. if (err) {
  347. dev_err(cryp->dev, "Failed to initialize AIC.\n");
  348. return err;
  349. }
  350. }
  351. /* Initialize packet engine */
  352. err = mtk_packet_engine_setup(cryp);
  353. if (err) {
  354. dev_err(cryp->dev, "Failed to configure packet engine.\n");
  355. return err;
  356. }
  357. return 0;
  358. }
  359. static void mtk_desc_dma_free(struct mtk_cryp *cryp)
  360. {
  361. int i;
  362. for (i = 0; i < MTK_RING_MAX; i++) {
  363. dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
  364. cryp->ring[i]->res_base,
  365. cryp->ring[i]->res_dma);
  366. dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
  367. cryp->ring[i]->cmd_base,
  368. cryp->ring[i]->cmd_dma);
  369. kfree(cryp->ring[i]);
  370. }
  371. }
  372. static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
  373. {
  374. struct mtk_ring **ring = cryp->ring;
  375. int i, err = ENOMEM;
  376. for (i = 0; i < MTK_RING_MAX; i++) {
  377. ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
  378. if (!ring[i])
  379. goto err_cleanup;
  380. ring[i]->cmd_base = dma_zalloc_coherent(cryp->dev,
  381. MTK_DESC_RING_SZ,
  382. &ring[i]->cmd_dma,
  383. GFP_KERNEL);
  384. if (!ring[i]->cmd_base)
  385. goto err_cleanup;
  386. ring[i]->res_base = dma_zalloc_coherent(cryp->dev,
  387. MTK_DESC_RING_SZ,
  388. &ring[i]->res_dma,
  389. GFP_KERNEL);
  390. if (!ring[i]->res_base)
  391. goto err_cleanup;
  392. ring[i]->cmd_next = ring[i]->cmd_base;
  393. ring[i]->res_next = ring[i]->res_base;
  394. }
  395. return 0;
  396. err_cleanup:
  397. for (; i--; ) {
  398. dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
  399. ring[i]->res_base, ring[i]->res_dma);
  400. dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
  401. ring[i]->cmd_base, ring[i]->cmd_dma);
  402. kfree(ring[i]);
  403. }
  404. return err;
  405. }
  406. static int mtk_crypto_probe(struct platform_device *pdev)
  407. {
  408. struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  409. struct mtk_cryp *cryp;
  410. int i, err;
  411. cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
  412. if (!cryp)
  413. return -ENOMEM;
  414. cryp->base = devm_ioremap_resource(&pdev->dev, res);
  415. if (IS_ERR(cryp->base))
  416. return PTR_ERR(cryp->base);
  417. for (i = 0; i < MTK_IRQ_NUM; i++) {
  418. cryp->irq[i] = platform_get_irq(pdev, i);
  419. if (cryp->irq[i] < 0) {
  420. dev_err(cryp->dev, "no IRQ:%d resource info\n", i);
  421. return cryp->irq[i];
  422. }
  423. }
  424. cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
  425. if (IS_ERR(cryp->clk_cryp))
  426. return -EPROBE_DEFER;
  427. cryp->dev = &pdev->dev;
  428. pm_runtime_enable(cryp->dev);
  429. pm_runtime_get_sync(cryp->dev);
  430. err = clk_prepare_enable(cryp->clk_cryp);
  431. if (err)
  432. goto err_clk_cryp;
  433. /* Allocate four command/result descriptor rings */
  434. err = mtk_desc_ring_alloc(cryp);
  435. if (err) {
  436. dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
  437. goto err_resource;
  438. }
  439. /* Initialize hardware modules */
  440. err = mtk_accelerator_init(cryp);
  441. if (err) {
  442. dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
  443. goto err_engine;
  444. }
  445. err = mtk_cipher_alg_register(cryp);
  446. if (err) {
  447. dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
  448. goto err_cipher;
  449. }
  450. err = mtk_hash_alg_register(cryp);
  451. if (err) {
  452. dev_err(cryp->dev, "Unable to register hash algorithm.\n");
  453. goto err_hash;
  454. }
  455. platform_set_drvdata(pdev, cryp);
  456. return 0;
  457. err_hash:
  458. mtk_cipher_alg_release(cryp);
  459. err_cipher:
  460. mtk_dfe_dse_reset(cryp);
  461. err_engine:
  462. mtk_desc_dma_free(cryp);
  463. err_resource:
  464. clk_disable_unprepare(cryp->clk_cryp);
  465. err_clk_cryp:
  466. pm_runtime_put_sync(cryp->dev);
  467. pm_runtime_disable(cryp->dev);
  468. return err;
  469. }
  470. static int mtk_crypto_remove(struct platform_device *pdev)
  471. {
  472. struct mtk_cryp *cryp = platform_get_drvdata(pdev);
  473. mtk_hash_alg_release(cryp);
  474. mtk_cipher_alg_release(cryp);
  475. mtk_desc_dma_free(cryp);
  476. clk_disable_unprepare(cryp->clk_cryp);
  477. pm_runtime_put_sync(cryp->dev);
  478. pm_runtime_disable(cryp->dev);
  479. platform_set_drvdata(pdev, NULL);
  480. return 0;
  481. }
  482. static const struct of_device_id of_crypto_id[] = {
  483. { .compatible = "mediatek,eip97-crypto" },
  484. {},
  485. };
  486. MODULE_DEVICE_TABLE(of, of_crypto_id);
  487. static struct platform_driver mtk_crypto_driver = {
  488. .probe = mtk_crypto_probe,
  489. .remove = mtk_crypto_remove,
  490. .driver = {
  491. .name = "mtk-crypto",
  492. .of_match_table = of_crypto_id,
  493. },
  494. };
  495. module_platform_driver(mtk_crypto_driver);
  496. MODULE_LICENSE("GPL");
  497. MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
  498. MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");