cc_hash.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
  3. #include <linux/kernel.h>
  4. #include <linux/module.h>
  5. #include <crypto/algapi.h>
  6. #include <crypto/hash.h>
  7. #include <crypto/md5.h>
  8. #include <crypto/internal/hash.h>
  9. #include "cc_driver.h"
  10. #include "cc_request_mgr.h"
  11. #include "cc_buffer_mgr.h"
  12. #include "cc_hash.h"
  13. #include "cc_sram_mgr.h"
  14. #define CC_MAX_HASH_SEQ_LEN 12
  15. #define CC_MAX_OPAD_KEYS_SIZE CC_MAX_HASH_BLCK_SIZE
  16. struct cc_hash_handle {
  17. cc_sram_addr_t digest_len_sram_addr; /* const value in SRAM*/
  18. cc_sram_addr_t larval_digest_sram_addr; /* const value in SRAM */
  19. struct list_head hash_list;
  20. };
  21. static const u32 digest_len_init[] = {
  22. 0x00000040, 0x00000000, 0x00000000, 0x00000000 };
  23. static const u32 md5_init[] = {
  24. SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
  25. static const u32 sha1_init[] = {
  26. SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
  27. static const u32 sha224_init[] = {
  28. SHA224_H7, SHA224_H6, SHA224_H5, SHA224_H4,
  29. SHA224_H3, SHA224_H2, SHA224_H1, SHA224_H0 };
  30. static const u32 sha256_init[] = {
  31. SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
  32. SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
  33. static const u32 digest_len_sha512_init[] = {
  34. 0x00000080, 0x00000000, 0x00000000, 0x00000000 };
  35. static u64 sha384_init[] = {
  36. SHA384_H7, SHA384_H6, SHA384_H5, SHA384_H4,
  37. SHA384_H3, SHA384_H2, SHA384_H1, SHA384_H0 };
  38. static u64 sha512_init[] = {
  39. SHA512_H7, SHA512_H6, SHA512_H5, SHA512_H4,
  40. SHA512_H3, SHA512_H2, SHA512_H1, SHA512_H0 };
  41. static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
  42. unsigned int *seq_size);
  43. static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
  44. unsigned int *seq_size);
  45. static const void *cc_larval_digest(struct device *dev, u32 mode);
  46. struct cc_hash_alg {
  47. struct list_head entry;
  48. int hash_mode;
  49. int hw_mode;
  50. int inter_digestsize;
  51. struct cc_drvdata *drvdata;
  52. struct ahash_alg ahash_alg;
  53. };
  54. struct hash_key_req_ctx {
  55. u32 keylen;
  56. dma_addr_t key_dma_addr;
  57. };
  58. /* hash per-session context */
  59. struct cc_hash_ctx {
  60. struct cc_drvdata *drvdata;
  61. /* holds the origin digest; the digest after "setkey" if HMAC,*
  62. * the initial digest if HASH.
  63. */
  64. u8 digest_buff[CC_MAX_HASH_DIGEST_SIZE] ____cacheline_aligned;
  65. u8 opad_tmp_keys_buff[CC_MAX_OPAD_KEYS_SIZE] ____cacheline_aligned;
  66. dma_addr_t opad_tmp_keys_dma_addr ____cacheline_aligned;
  67. dma_addr_t digest_buff_dma_addr;
  68. /* use for hmac with key large then mode block size */
  69. struct hash_key_req_ctx key_params;
  70. int hash_mode;
  71. int hw_mode;
  72. int inter_digestsize;
  73. struct completion setkey_comp;
  74. bool is_hmac;
  75. };
  76. static void cc_set_desc(struct ahash_req_ctx *areq_ctx, struct cc_hash_ctx *ctx,
  77. unsigned int flow_mode, struct cc_hw_desc desc[],
  78. bool is_not_last_data, unsigned int *seq_size);
  79. static void cc_set_endianity(u32 mode, struct cc_hw_desc *desc)
  80. {
  81. if (mode == DRV_HASH_MD5 || mode == DRV_HASH_SHA384 ||
  82. mode == DRV_HASH_SHA512) {
  83. set_bytes_swap(desc, 1);
  84. } else {
  85. set_cipher_config0(desc, HASH_DIGEST_RESULT_LITTLE_ENDIAN);
  86. }
  87. }
  88. static int cc_map_result(struct device *dev, struct ahash_req_ctx *state,
  89. unsigned int digestsize)
  90. {
  91. state->digest_result_dma_addr =
  92. dma_map_single(dev, state->digest_result_buff,
  93. digestsize, DMA_BIDIRECTIONAL);
  94. if (dma_mapping_error(dev, state->digest_result_dma_addr)) {
  95. dev_err(dev, "Mapping digest result buffer %u B for DMA failed\n",
  96. digestsize);
  97. return -ENOMEM;
  98. }
  99. dev_dbg(dev, "Mapped digest result buffer %u B at va=%pK to dma=%pad\n",
  100. digestsize, state->digest_result_buff,
  101. &state->digest_result_dma_addr);
  102. return 0;
  103. }
  104. static void cc_init_req(struct device *dev, struct ahash_req_ctx *state,
  105. struct cc_hash_ctx *ctx)
  106. {
  107. bool is_hmac = ctx->is_hmac;
  108. memset(state, 0, sizeof(*state));
  109. if (is_hmac) {
  110. if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC &&
  111. ctx->hw_mode != DRV_CIPHER_CMAC) {
  112. dma_sync_single_for_cpu(dev, ctx->digest_buff_dma_addr,
  113. ctx->inter_digestsize,
  114. DMA_BIDIRECTIONAL);
  115. memcpy(state->digest_buff, ctx->digest_buff,
  116. ctx->inter_digestsize);
  117. if (ctx->hash_mode == DRV_HASH_SHA512 ||
  118. ctx->hash_mode == DRV_HASH_SHA384)
  119. memcpy(state->digest_bytes_len,
  120. digest_len_sha512_init,
  121. ctx->drvdata->hash_len_sz);
  122. else
  123. memcpy(state->digest_bytes_len, digest_len_init,
  124. ctx->drvdata->hash_len_sz);
  125. }
  126. if (ctx->hash_mode != DRV_HASH_NULL) {
  127. dma_sync_single_for_cpu(dev,
  128. ctx->opad_tmp_keys_dma_addr,
  129. ctx->inter_digestsize,
  130. DMA_BIDIRECTIONAL);
  131. memcpy(state->opad_digest_buff,
  132. ctx->opad_tmp_keys_buff, ctx->inter_digestsize);
  133. }
  134. } else { /*hash*/
  135. /* Copy the initial digests if hash flow. */
  136. const void *larval = cc_larval_digest(dev, ctx->hash_mode);
  137. memcpy(state->digest_buff, larval, ctx->inter_digestsize);
  138. }
  139. }
  140. static int cc_map_req(struct device *dev, struct ahash_req_ctx *state,
  141. struct cc_hash_ctx *ctx)
  142. {
  143. bool is_hmac = ctx->is_hmac;
  144. state->digest_buff_dma_addr =
  145. dma_map_single(dev, state->digest_buff,
  146. ctx->inter_digestsize, DMA_BIDIRECTIONAL);
  147. if (dma_mapping_error(dev, state->digest_buff_dma_addr)) {
  148. dev_err(dev, "Mapping digest len %d B at va=%pK for DMA failed\n",
  149. ctx->inter_digestsize, state->digest_buff);
  150. return -EINVAL;
  151. }
  152. dev_dbg(dev, "Mapped digest %d B at va=%pK to dma=%pad\n",
  153. ctx->inter_digestsize, state->digest_buff,
  154. &state->digest_buff_dma_addr);
  155. if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC) {
  156. state->digest_bytes_len_dma_addr =
  157. dma_map_single(dev, state->digest_bytes_len,
  158. HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
  159. if (dma_mapping_error(dev, state->digest_bytes_len_dma_addr)) {
  160. dev_err(dev, "Mapping digest len %u B at va=%pK for DMA failed\n",
  161. HASH_MAX_LEN_SIZE, state->digest_bytes_len);
  162. goto unmap_digest_buf;
  163. }
  164. dev_dbg(dev, "Mapped digest len %u B at va=%pK to dma=%pad\n",
  165. HASH_MAX_LEN_SIZE, state->digest_bytes_len,
  166. &state->digest_bytes_len_dma_addr);
  167. }
  168. if (is_hmac && ctx->hash_mode != DRV_HASH_NULL) {
  169. state->opad_digest_dma_addr =
  170. dma_map_single(dev, state->opad_digest_buff,
  171. ctx->inter_digestsize,
  172. DMA_BIDIRECTIONAL);
  173. if (dma_mapping_error(dev, state->opad_digest_dma_addr)) {
  174. dev_err(dev, "Mapping opad digest %d B at va=%pK for DMA failed\n",
  175. ctx->inter_digestsize,
  176. state->opad_digest_buff);
  177. goto unmap_digest_len;
  178. }
  179. dev_dbg(dev, "Mapped opad digest %d B at va=%pK to dma=%pad\n",
  180. ctx->inter_digestsize, state->opad_digest_buff,
  181. &state->opad_digest_dma_addr);
  182. }
  183. return 0;
  184. unmap_digest_len:
  185. if (state->digest_bytes_len_dma_addr) {
  186. dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
  187. HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
  188. state->digest_bytes_len_dma_addr = 0;
  189. }
  190. unmap_digest_buf:
  191. if (state->digest_buff_dma_addr) {
  192. dma_unmap_single(dev, state->digest_buff_dma_addr,
  193. ctx->inter_digestsize, DMA_BIDIRECTIONAL);
  194. state->digest_buff_dma_addr = 0;
  195. }
  196. return -EINVAL;
  197. }
  198. static void cc_unmap_req(struct device *dev, struct ahash_req_ctx *state,
  199. struct cc_hash_ctx *ctx)
  200. {
  201. if (state->digest_buff_dma_addr) {
  202. dma_unmap_single(dev, state->digest_buff_dma_addr,
  203. ctx->inter_digestsize, DMA_BIDIRECTIONAL);
  204. dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
  205. &state->digest_buff_dma_addr);
  206. state->digest_buff_dma_addr = 0;
  207. }
  208. if (state->digest_bytes_len_dma_addr) {
  209. dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
  210. HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
  211. dev_dbg(dev, "Unmapped digest-bytes-len buffer: digest_bytes_len_dma_addr=%pad\n",
  212. &state->digest_bytes_len_dma_addr);
  213. state->digest_bytes_len_dma_addr = 0;
  214. }
  215. if (state->opad_digest_dma_addr) {
  216. dma_unmap_single(dev, state->opad_digest_dma_addr,
  217. ctx->inter_digestsize, DMA_BIDIRECTIONAL);
  218. dev_dbg(dev, "Unmapped opad-digest: opad_digest_dma_addr=%pad\n",
  219. &state->opad_digest_dma_addr);
  220. state->opad_digest_dma_addr = 0;
  221. }
  222. }
  223. static void cc_unmap_result(struct device *dev, struct ahash_req_ctx *state,
  224. unsigned int digestsize, u8 *result)
  225. {
  226. if (state->digest_result_dma_addr) {
  227. dma_unmap_single(dev, state->digest_result_dma_addr, digestsize,
  228. DMA_BIDIRECTIONAL);
  229. dev_dbg(dev, "unmpa digest result buffer va (%pK) pa (%pad) len %u\n",
  230. state->digest_result_buff,
  231. &state->digest_result_dma_addr, digestsize);
  232. memcpy(result, state->digest_result_buff, digestsize);
  233. }
  234. state->digest_result_dma_addr = 0;
  235. }
  236. static void cc_update_complete(struct device *dev, void *cc_req, int err)
  237. {
  238. struct ahash_request *req = (struct ahash_request *)cc_req;
  239. struct ahash_req_ctx *state = ahash_request_ctx(req);
  240. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  241. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  242. dev_dbg(dev, "req=%pK\n", req);
  243. cc_unmap_hash_request(dev, state, req->src, false);
  244. cc_unmap_req(dev, state, ctx);
  245. req->base.complete(&req->base, err);
  246. }
  247. static void cc_digest_complete(struct device *dev, void *cc_req, int err)
  248. {
  249. struct ahash_request *req = (struct ahash_request *)cc_req;
  250. struct ahash_req_ctx *state = ahash_request_ctx(req);
  251. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  252. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  253. u32 digestsize = crypto_ahash_digestsize(tfm);
  254. dev_dbg(dev, "req=%pK\n", req);
  255. cc_unmap_hash_request(dev, state, req->src, false);
  256. cc_unmap_result(dev, state, digestsize, req->result);
  257. cc_unmap_req(dev, state, ctx);
  258. req->base.complete(&req->base, err);
  259. }
  260. static void cc_hash_complete(struct device *dev, void *cc_req, int err)
  261. {
  262. struct ahash_request *req = (struct ahash_request *)cc_req;
  263. struct ahash_req_ctx *state = ahash_request_ctx(req);
  264. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  265. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  266. u32 digestsize = crypto_ahash_digestsize(tfm);
  267. dev_dbg(dev, "req=%pK\n", req);
  268. cc_unmap_hash_request(dev, state, req->src, false);
  269. cc_unmap_result(dev, state, digestsize, req->result);
  270. cc_unmap_req(dev, state, ctx);
  271. req->base.complete(&req->base, err);
  272. }
  273. static int cc_fin_result(struct cc_hw_desc *desc, struct ahash_request *req,
  274. int idx)
  275. {
  276. struct ahash_req_ctx *state = ahash_request_ctx(req);
  277. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  278. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  279. u32 digestsize = crypto_ahash_digestsize(tfm);
  280. /* Get final MAC result */
  281. hw_desc_init(&desc[idx]);
  282. set_cipher_mode(&desc[idx], ctx->hw_mode);
  283. /* TODO */
  284. set_dout_dlli(&desc[idx], state->digest_result_dma_addr, digestsize,
  285. NS_BIT, 1);
  286. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  287. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  288. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  289. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  290. cc_set_endianity(ctx->hash_mode, &desc[idx]);
  291. idx++;
  292. return idx;
  293. }
  294. static int cc_fin_hmac(struct cc_hw_desc *desc, struct ahash_request *req,
  295. int idx)
  296. {
  297. struct ahash_req_ctx *state = ahash_request_ctx(req);
  298. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  299. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  300. u32 digestsize = crypto_ahash_digestsize(tfm);
  301. /* store the hash digest result in the context */
  302. hw_desc_init(&desc[idx]);
  303. set_cipher_mode(&desc[idx], ctx->hw_mode);
  304. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, digestsize,
  305. NS_BIT, 0);
  306. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  307. cc_set_endianity(ctx->hash_mode, &desc[idx]);
  308. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  309. idx++;
  310. /* Loading hash opad xor key state */
  311. hw_desc_init(&desc[idx]);
  312. set_cipher_mode(&desc[idx], ctx->hw_mode);
  313. set_din_type(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr,
  314. ctx->inter_digestsize, NS_BIT);
  315. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  316. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  317. idx++;
  318. /* Load the hash current length */
  319. hw_desc_init(&desc[idx]);
  320. set_cipher_mode(&desc[idx], ctx->hw_mode);
  321. set_din_sram(&desc[idx],
  322. cc_digest_len_addr(ctx->drvdata, ctx->hash_mode),
  323. ctx->drvdata->hash_len_sz);
  324. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  325. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  326. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  327. idx++;
  328. /* Memory Barrier: wait for IPAD/OPAD axi write to complete */
  329. hw_desc_init(&desc[idx]);
  330. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  331. set_dout_no_dma(&desc[idx], 0, 0, 1);
  332. idx++;
  333. /* Perform HASH update */
  334. hw_desc_init(&desc[idx]);
  335. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  336. digestsize, NS_BIT);
  337. set_flow_mode(&desc[idx], DIN_HASH);
  338. idx++;
  339. return idx;
  340. }
  341. static int cc_hash_digest(struct ahash_request *req)
  342. {
  343. struct ahash_req_ctx *state = ahash_request_ctx(req);
  344. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  345. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  346. u32 digestsize = crypto_ahash_digestsize(tfm);
  347. struct scatterlist *src = req->src;
  348. unsigned int nbytes = req->nbytes;
  349. u8 *result = req->result;
  350. struct device *dev = drvdata_to_dev(ctx->drvdata);
  351. bool is_hmac = ctx->is_hmac;
  352. struct cc_crypto_req cc_req = {};
  353. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  354. cc_sram_addr_t larval_digest_addr =
  355. cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode);
  356. int idx = 0;
  357. int rc = 0;
  358. gfp_t flags = cc_gfp_flags(&req->base);
  359. dev_dbg(dev, "===== %s-digest (%d) ====\n", is_hmac ? "hmac" : "hash",
  360. nbytes);
  361. cc_init_req(dev, state, ctx);
  362. if (cc_map_req(dev, state, ctx)) {
  363. dev_err(dev, "map_ahash_source() failed\n");
  364. return -ENOMEM;
  365. }
  366. if (cc_map_result(dev, state, digestsize)) {
  367. dev_err(dev, "map_ahash_digest() failed\n");
  368. cc_unmap_req(dev, state, ctx);
  369. return -ENOMEM;
  370. }
  371. if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, 1,
  372. flags)) {
  373. dev_err(dev, "map_ahash_request_final() failed\n");
  374. cc_unmap_result(dev, state, digestsize, result);
  375. cc_unmap_req(dev, state, ctx);
  376. return -ENOMEM;
  377. }
  378. /* Setup request structure */
  379. cc_req.user_cb = cc_digest_complete;
  380. cc_req.user_arg = req;
  381. /* If HMAC then load hash IPAD xor key, if HASH then load initial
  382. * digest
  383. */
  384. hw_desc_init(&desc[idx]);
  385. set_cipher_mode(&desc[idx], ctx->hw_mode);
  386. if (is_hmac) {
  387. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  388. ctx->inter_digestsize, NS_BIT);
  389. } else {
  390. set_din_sram(&desc[idx], larval_digest_addr,
  391. ctx->inter_digestsize);
  392. }
  393. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  394. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  395. idx++;
  396. /* Load the hash current length */
  397. hw_desc_init(&desc[idx]);
  398. set_cipher_mode(&desc[idx], ctx->hw_mode);
  399. if (is_hmac) {
  400. set_din_type(&desc[idx], DMA_DLLI,
  401. state->digest_bytes_len_dma_addr,
  402. ctx->drvdata->hash_len_sz, NS_BIT);
  403. } else {
  404. set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
  405. if (nbytes)
  406. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  407. else
  408. set_cipher_do(&desc[idx], DO_PAD);
  409. }
  410. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  411. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  412. idx++;
  413. cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
  414. if (is_hmac) {
  415. /* HW last hash block padding (aka. "DO_PAD") */
  416. hw_desc_init(&desc[idx]);
  417. set_cipher_mode(&desc[idx], ctx->hw_mode);
  418. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
  419. ctx->drvdata->hash_len_sz, NS_BIT, 0);
  420. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  421. set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
  422. set_cipher_do(&desc[idx], DO_PAD);
  423. idx++;
  424. idx = cc_fin_hmac(desc, req, idx);
  425. }
  426. idx = cc_fin_result(desc, req, idx);
  427. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  428. if (rc != -EINPROGRESS && rc != -EBUSY) {
  429. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  430. cc_unmap_hash_request(dev, state, src, true);
  431. cc_unmap_result(dev, state, digestsize, result);
  432. cc_unmap_req(dev, state, ctx);
  433. }
  434. return rc;
  435. }
  436. static int cc_restore_hash(struct cc_hw_desc *desc, struct cc_hash_ctx *ctx,
  437. struct ahash_req_ctx *state, unsigned int idx)
  438. {
  439. /* Restore hash digest */
  440. hw_desc_init(&desc[idx]);
  441. set_cipher_mode(&desc[idx], ctx->hw_mode);
  442. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  443. ctx->inter_digestsize, NS_BIT);
  444. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  445. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  446. idx++;
  447. /* Restore hash current length */
  448. hw_desc_init(&desc[idx]);
  449. set_cipher_mode(&desc[idx], ctx->hw_mode);
  450. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  451. set_din_type(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr,
  452. ctx->drvdata->hash_len_sz, NS_BIT);
  453. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  454. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  455. idx++;
  456. cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
  457. return idx;
  458. }
  459. static int cc_hash_update(struct ahash_request *req)
  460. {
  461. struct ahash_req_ctx *state = ahash_request_ctx(req);
  462. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  463. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  464. unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
  465. struct scatterlist *src = req->src;
  466. unsigned int nbytes = req->nbytes;
  467. struct device *dev = drvdata_to_dev(ctx->drvdata);
  468. struct cc_crypto_req cc_req = {};
  469. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  470. u32 idx = 0;
  471. int rc;
  472. gfp_t flags = cc_gfp_flags(&req->base);
  473. dev_dbg(dev, "===== %s-update (%d) ====\n", ctx->is_hmac ?
  474. "hmac" : "hash", nbytes);
  475. if (nbytes == 0) {
  476. /* no real updates required */
  477. return 0;
  478. }
  479. rc = cc_map_hash_request_update(ctx->drvdata, state, src, nbytes,
  480. block_size, flags);
  481. if (rc) {
  482. if (rc == 1) {
  483. dev_dbg(dev, " data size not require HW update %x\n",
  484. nbytes);
  485. /* No hardware updates are required */
  486. return 0;
  487. }
  488. dev_err(dev, "map_ahash_request_update() failed\n");
  489. return -ENOMEM;
  490. }
  491. if (cc_map_req(dev, state, ctx)) {
  492. dev_err(dev, "map_ahash_source() failed\n");
  493. cc_unmap_hash_request(dev, state, src, true);
  494. return -EINVAL;
  495. }
  496. /* Setup request structure */
  497. cc_req.user_cb = cc_update_complete;
  498. cc_req.user_arg = req;
  499. idx = cc_restore_hash(desc, ctx, state, idx);
  500. /* store the hash digest result in context */
  501. hw_desc_init(&desc[idx]);
  502. set_cipher_mode(&desc[idx], ctx->hw_mode);
  503. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
  504. ctx->inter_digestsize, NS_BIT, 0);
  505. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  506. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  507. idx++;
  508. /* store current hash length in context */
  509. hw_desc_init(&desc[idx]);
  510. set_cipher_mode(&desc[idx], ctx->hw_mode);
  511. set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
  512. ctx->drvdata->hash_len_sz, NS_BIT, 1);
  513. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  514. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  515. set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
  516. idx++;
  517. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  518. if (rc != -EINPROGRESS && rc != -EBUSY) {
  519. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  520. cc_unmap_hash_request(dev, state, src, true);
  521. cc_unmap_req(dev, state, ctx);
  522. }
  523. return rc;
  524. }
  525. static int cc_hash_finup(struct ahash_request *req)
  526. {
  527. struct ahash_req_ctx *state = ahash_request_ctx(req);
  528. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  529. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  530. u32 digestsize = crypto_ahash_digestsize(tfm);
  531. struct scatterlist *src = req->src;
  532. unsigned int nbytes = req->nbytes;
  533. u8 *result = req->result;
  534. struct device *dev = drvdata_to_dev(ctx->drvdata);
  535. bool is_hmac = ctx->is_hmac;
  536. struct cc_crypto_req cc_req = {};
  537. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  538. unsigned int idx = 0;
  539. int rc;
  540. gfp_t flags = cc_gfp_flags(&req->base);
  541. dev_dbg(dev, "===== %s-finup (%d) ====\n", is_hmac ? "hmac" : "hash",
  542. nbytes);
  543. if (cc_map_req(dev, state, ctx)) {
  544. dev_err(dev, "map_ahash_source() failed\n");
  545. return -EINVAL;
  546. }
  547. if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, 1,
  548. flags)) {
  549. dev_err(dev, "map_ahash_request_final() failed\n");
  550. cc_unmap_req(dev, state, ctx);
  551. return -ENOMEM;
  552. }
  553. if (cc_map_result(dev, state, digestsize)) {
  554. dev_err(dev, "map_ahash_digest() failed\n");
  555. cc_unmap_hash_request(dev, state, src, true);
  556. cc_unmap_req(dev, state, ctx);
  557. return -ENOMEM;
  558. }
  559. /* Setup request structure */
  560. cc_req.user_cb = cc_hash_complete;
  561. cc_req.user_arg = req;
  562. idx = cc_restore_hash(desc, ctx, state, idx);
  563. if (is_hmac)
  564. idx = cc_fin_hmac(desc, req, idx);
  565. idx = cc_fin_result(desc, req, idx);
  566. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  567. if (rc != -EINPROGRESS && rc != -EBUSY) {
  568. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  569. cc_unmap_hash_request(dev, state, src, true);
  570. cc_unmap_result(dev, state, digestsize, result);
  571. cc_unmap_req(dev, state, ctx);
  572. }
  573. return rc;
  574. }
  575. static int cc_hash_final(struct ahash_request *req)
  576. {
  577. struct ahash_req_ctx *state = ahash_request_ctx(req);
  578. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  579. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  580. u32 digestsize = crypto_ahash_digestsize(tfm);
  581. struct scatterlist *src = req->src;
  582. unsigned int nbytes = req->nbytes;
  583. u8 *result = req->result;
  584. struct device *dev = drvdata_to_dev(ctx->drvdata);
  585. bool is_hmac = ctx->is_hmac;
  586. struct cc_crypto_req cc_req = {};
  587. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  588. unsigned int idx = 0;
  589. int rc;
  590. gfp_t flags = cc_gfp_flags(&req->base);
  591. dev_dbg(dev, "===== %s-final (%d) ====\n", is_hmac ? "hmac" : "hash",
  592. nbytes);
  593. if (cc_map_req(dev, state, ctx)) {
  594. dev_err(dev, "map_ahash_source() failed\n");
  595. return -EINVAL;
  596. }
  597. if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, 0,
  598. flags)) {
  599. dev_err(dev, "map_ahash_request_final() failed\n");
  600. cc_unmap_req(dev, state, ctx);
  601. return -ENOMEM;
  602. }
  603. if (cc_map_result(dev, state, digestsize)) {
  604. dev_err(dev, "map_ahash_digest() failed\n");
  605. cc_unmap_hash_request(dev, state, src, true);
  606. cc_unmap_req(dev, state, ctx);
  607. return -ENOMEM;
  608. }
  609. /* Setup request structure */
  610. cc_req.user_cb = cc_hash_complete;
  611. cc_req.user_arg = req;
  612. idx = cc_restore_hash(desc, ctx, state, idx);
  613. /* "DO-PAD" must be enabled only when writing current length to HW */
  614. hw_desc_init(&desc[idx]);
  615. set_cipher_do(&desc[idx], DO_PAD);
  616. set_cipher_mode(&desc[idx], ctx->hw_mode);
  617. set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
  618. ctx->drvdata->hash_len_sz, NS_BIT, 0);
  619. set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
  620. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  621. idx++;
  622. if (is_hmac)
  623. idx = cc_fin_hmac(desc, req, idx);
  624. idx = cc_fin_result(desc, req, idx);
  625. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  626. if (rc != -EINPROGRESS && rc != -EBUSY) {
  627. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  628. cc_unmap_hash_request(dev, state, src, true);
  629. cc_unmap_result(dev, state, digestsize, result);
  630. cc_unmap_req(dev, state, ctx);
  631. }
  632. return rc;
  633. }
  634. static int cc_hash_init(struct ahash_request *req)
  635. {
  636. struct ahash_req_ctx *state = ahash_request_ctx(req);
  637. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  638. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  639. struct device *dev = drvdata_to_dev(ctx->drvdata);
  640. dev_dbg(dev, "===== init (%d) ====\n", req->nbytes);
  641. cc_init_req(dev, state, ctx);
  642. return 0;
  643. }
  644. static int cc_hash_setkey(struct crypto_ahash *ahash, const u8 *key,
  645. unsigned int keylen)
  646. {
  647. unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
  648. struct cc_crypto_req cc_req = {};
  649. struct cc_hash_ctx *ctx = NULL;
  650. int blocksize = 0;
  651. int digestsize = 0;
  652. int i, idx = 0, rc = 0;
  653. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  654. cc_sram_addr_t larval_addr;
  655. struct device *dev;
  656. ctx = crypto_ahash_ctx(ahash);
  657. dev = drvdata_to_dev(ctx->drvdata);
  658. dev_dbg(dev, "start keylen: %d", keylen);
  659. blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  660. digestsize = crypto_ahash_digestsize(ahash);
  661. larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode);
  662. /* The keylen value distinguishes HASH in case keylen is ZERO bytes,
  663. * any NON-ZERO value utilizes HMAC flow
  664. */
  665. ctx->key_params.keylen = keylen;
  666. ctx->key_params.key_dma_addr = 0;
  667. ctx->is_hmac = true;
  668. if (keylen) {
  669. ctx->key_params.key_dma_addr =
  670. dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE);
  671. if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
  672. dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
  673. key, keylen);
  674. return -ENOMEM;
  675. }
  676. dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
  677. &ctx->key_params.key_dma_addr, ctx->key_params.keylen);
  678. if (keylen > blocksize) {
  679. /* Load hash initial state */
  680. hw_desc_init(&desc[idx]);
  681. set_cipher_mode(&desc[idx], ctx->hw_mode);
  682. set_din_sram(&desc[idx], larval_addr,
  683. ctx->inter_digestsize);
  684. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  685. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  686. idx++;
  687. /* Load the hash current length*/
  688. hw_desc_init(&desc[idx]);
  689. set_cipher_mode(&desc[idx], ctx->hw_mode);
  690. set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
  691. set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
  692. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  693. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  694. idx++;
  695. hw_desc_init(&desc[idx]);
  696. set_din_type(&desc[idx], DMA_DLLI,
  697. ctx->key_params.key_dma_addr, keylen,
  698. NS_BIT);
  699. set_flow_mode(&desc[idx], DIN_HASH);
  700. idx++;
  701. /* Get hashed key */
  702. hw_desc_init(&desc[idx]);
  703. set_cipher_mode(&desc[idx], ctx->hw_mode);
  704. set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
  705. digestsize, NS_BIT, 0);
  706. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  707. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  708. set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
  709. cc_set_endianity(ctx->hash_mode, &desc[idx]);
  710. idx++;
  711. hw_desc_init(&desc[idx]);
  712. set_din_const(&desc[idx], 0, (blocksize - digestsize));
  713. set_flow_mode(&desc[idx], BYPASS);
  714. set_dout_dlli(&desc[idx],
  715. (ctx->opad_tmp_keys_dma_addr +
  716. digestsize),
  717. (blocksize - digestsize), NS_BIT, 0);
  718. idx++;
  719. } else {
  720. hw_desc_init(&desc[idx]);
  721. set_din_type(&desc[idx], DMA_DLLI,
  722. ctx->key_params.key_dma_addr, keylen,
  723. NS_BIT);
  724. set_flow_mode(&desc[idx], BYPASS);
  725. set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
  726. keylen, NS_BIT, 0);
  727. idx++;
  728. if ((blocksize - keylen)) {
  729. hw_desc_init(&desc[idx]);
  730. set_din_const(&desc[idx], 0,
  731. (blocksize - keylen));
  732. set_flow_mode(&desc[idx], BYPASS);
  733. set_dout_dlli(&desc[idx],
  734. (ctx->opad_tmp_keys_dma_addr +
  735. keylen), (blocksize - keylen),
  736. NS_BIT, 0);
  737. idx++;
  738. }
  739. }
  740. } else {
  741. hw_desc_init(&desc[idx]);
  742. set_din_const(&desc[idx], 0, blocksize);
  743. set_flow_mode(&desc[idx], BYPASS);
  744. set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr),
  745. blocksize, NS_BIT, 0);
  746. idx++;
  747. }
  748. rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
  749. if (rc) {
  750. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  751. goto out;
  752. }
  753. /* calc derived HMAC key */
  754. for (idx = 0, i = 0; i < 2; i++) {
  755. /* Load hash initial state */
  756. hw_desc_init(&desc[idx]);
  757. set_cipher_mode(&desc[idx], ctx->hw_mode);
  758. set_din_sram(&desc[idx], larval_addr, ctx->inter_digestsize);
  759. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  760. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  761. idx++;
  762. /* Load the hash current length*/
  763. hw_desc_init(&desc[idx]);
  764. set_cipher_mode(&desc[idx], ctx->hw_mode);
  765. set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
  766. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  767. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  768. idx++;
  769. /* Prepare ipad key */
  770. hw_desc_init(&desc[idx]);
  771. set_xor_val(&desc[idx], hmac_pad_const[i]);
  772. set_cipher_mode(&desc[idx], ctx->hw_mode);
  773. set_flow_mode(&desc[idx], S_DIN_to_HASH);
  774. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  775. idx++;
  776. /* Perform HASH update */
  777. hw_desc_init(&desc[idx]);
  778. set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
  779. blocksize, NS_BIT);
  780. set_cipher_mode(&desc[idx], ctx->hw_mode);
  781. set_xor_active(&desc[idx]);
  782. set_flow_mode(&desc[idx], DIN_HASH);
  783. idx++;
  784. /* Get the IPAD/OPAD xor key (Note, IPAD is the initial digest
  785. * of the first HASH "update" state)
  786. */
  787. hw_desc_init(&desc[idx]);
  788. set_cipher_mode(&desc[idx], ctx->hw_mode);
  789. if (i > 0) /* Not first iteration */
  790. set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
  791. ctx->inter_digestsize, NS_BIT, 0);
  792. else /* First iteration */
  793. set_dout_dlli(&desc[idx], ctx->digest_buff_dma_addr,
  794. ctx->inter_digestsize, NS_BIT, 0);
  795. set_flow_mode(&desc[idx], S_HASH_to_DOUT);
  796. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  797. idx++;
  798. }
  799. rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
  800. out:
  801. if (rc)
  802. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  803. if (ctx->key_params.key_dma_addr) {
  804. dma_unmap_single(dev, ctx->key_params.key_dma_addr,
  805. ctx->key_params.keylen, DMA_TO_DEVICE);
  806. dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
  807. &ctx->key_params.key_dma_addr, ctx->key_params.keylen);
  808. }
  809. return rc;
  810. }
  811. static int cc_xcbc_setkey(struct crypto_ahash *ahash,
  812. const u8 *key, unsigned int keylen)
  813. {
  814. struct cc_crypto_req cc_req = {};
  815. struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  816. struct device *dev = drvdata_to_dev(ctx->drvdata);
  817. int rc = 0;
  818. unsigned int idx = 0;
  819. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  820. dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
  821. switch (keylen) {
  822. case AES_KEYSIZE_128:
  823. case AES_KEYSIZE_192:
  824. case AES_KEYSIZE_256:
  825. break;
  826. default:
  827. return -EINVAL;
  828. }
  829. ctx->key_params.keylen = keylen;
  830. ctx->key_params.key_dma_addr =
  831. dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE);
  832. if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
  833. dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
  834. key, keylen);
  835. return -ENOMEM;
  836. }
  837. dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
  838. &ctx->key_params.key_dma_addr, ctx->key_params.keylen);
  839. ctx->is_hmac = true;
  840. /* 1. Load the AES key */
  841. hw_desc_init(&desc[idx]);
  842. set_din_type(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr,
  843. keylen, NS_BIT);
  844. set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
  845. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
  846. set_key_size_aes(&desc[idx], keylen);
  847. set_flow_mode(&desc[idx], S_DIN_to_AES);
  848. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  849. idx++;
  850. hw_desc_init(&desc[idx]);
  851. set_din_const(&desc[idx], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
  852. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  853. set_dout_dlli(&desc[idx],
  854. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
  855. CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
  856. idx++;
  857. hw_desc_init(&desc[idx]);
  858. set_din_const(&desc[idx], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
  859. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  860. set_dout_dlli(&desc[idx],
  861. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
  862. CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
  863. idx++;
  864. hw_desc_init(&desc[idx]);
  865. set_din_const(&desc[idx], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
  866. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  867. set_dout_dlli(&desc[idx],
  868. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
  869. CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
  870. idx++;
  871. rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
  872. if (rc)
  873. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  874. dma_unmap_single(dev, ctx->key_params.key_dma_addr,
  875. ctx->key_params.keylen, DMA_TO_DEVICE);
  876. dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
  877. &ctx->key_params.key_dma_addr, ctx->key_params.keylen);
  878. return rc;
  879. }
  880. static int cc_cmac_setkey(struct crypto_ahash *ahash,
  881. const u8 *key, unsigned int keylen)
  882. {
  883. struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  884. struct device *dev = drvdata_to_dev(ctx->drvdata);
  885. dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
  886. ctx->is_hmac = true;
  887. switch (keylen) {
  888. case AES_KEYSIZE_128:
  889. case AES_KEYSIZE_192:
  890. case AES_KEYSIZE_256:
  891. break;
  892. default:
  893. return -EINVAL;
  894. }
  895. ctx->key_params.keylen = keylen;
  896. /* STAT_PHASE_1: Copy key to ctx */
  897. dma_sync_single_for_cpu(dev, ctx->opad_tmp_keys_dma_addr,
  898. keylen, DMA_TO_DEVICE);
  899. memcpy(ctx->opad_tmp_keys_buff, key, keylen);
  900. if (keylen == 24) {
  901. memset(ctx->opad_tmp_keys_buff + 24, 0,
  902. CC_AES_KEY_SIZE_MAX - 24);
  903. }
  904. dma_sync_single_for_device(dev, ctx->opad_tmp_keys_dma_addr,
  905. keylen, DMA_TO_DEVICE);
  906. ctx->key_params.keylen = keylen;
  907. return 0;
  908. }
  909. static void cc_free_ctx(struct cc_hash_ctx *ctx)
  910. {
  911. struct device *dev = drvdata_to_dev(ctx->drvdata);
  912. if (ctx->digest_buff_dma_addr) {
  913. dma_unmap_single(dev, ctx->digest_buff_dma_addr,
  914. sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
  915. dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
  916. &ctx->digest_buff_dma_addr);
  917. ctx->digest_buff_dma_addr = 0;
  918. }
  919. if (ctx->opad_tmp_keys_dma_addr) {
  920. dma_unmap_single(dev, ctx->opad_tmp_keys_dma_addr,
  921. sizeof(ctx->opad_tmp_keys_buff),
  922. DMA_BIDIRECTIONAL);
  923. dev_dbg(dev, "Unmapped opad-digest: opad_tmp_keys_dma_addr=%pad\n",
  924. &ctx->opad_tmp_keys_dma_addr);
  925. ctx->opad_tmp_keys_dma_addr = 0;
  926. }
  927. ctx->key_params.keylen = 0;
  928. }
  929. static int cc_alloc_ctx(struct cc_hash_ctx *ctx)
  930. {
  931. struct device *dev = drvdata_to_dev(ctx->drvdata);
  932. ctx->key_params.keylen = 0;
  933. ctx->digest_buff_dma_addr =
  934. dma_map_single(dev, (void *)ctx->digest_buff,
  935. sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
  936. if (dma_mapping_error(dev, ctx->digest_buff_dma_addr)) {
  937. dev_err(dev, "Mapping digest len %zu B at va=%pK for DMA failed\n",
  938. sizeof(ctx->digest_buff), ctx->digest_buff);
  939. goto fail;
  940. }
  941. dev_dbg(dev, "Mapped digest %zu B at va=%pK to dma=%pad\n",
  942. sizeof(ctx->digest_buff), ctx->digest_buff,
  943. &ctx->digest_buff_dma_addr);
  944. ctx->opad_tmp_keys_dma_addr =
  945. dma_map_single(dev, (void *)ctx->opad_tmp_keys_buff,
  946. sizeof(ctx->opad_tmp_keys_buff),
  947. DMA_BIDIRECTIONAL);
  948. if (dma_mapping_error(dev, ctx->opad_tmp_keys_dma_addr)) {
  949. dev_err(dev, "Mapping opad digest %zu B at va=%pK for DMA failed\n",
  950. sizeof(ctx->opad_tmp_keys_buff),
  951. ctx->opad_tmp_keys_buff);
  952. goto fail;
  953. }
  954. dev_dbg(dev, "Mapped opad_tmp_keys %zu B at va=%pK to dma=%pad\n",
  955. sizeof(ctx->opad_tmp_keys_buff), ctx->opad_tmp_keys_buff,
  956. &ctx->opad_tmp_keys_dma_addr);
  957. ctx->is_hmac = false;
  958. return 0;
  959. fail:
  960. cc_free_ctx(ctx);
  961. return -ENOMEM;
  962. }
  963. static int cc_cra_init(struct crypto_tfm *tfm)
  964. {
  965. struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  966. struct hash_alg_common *hash_alg_common =
  967. container_of(tfm->__crt_alg, struct hash_alg_common, base);
  968. struct ahash_alg *ahash_alg =
  969. container_of(hash_alg_common, struct ahash_alg, halg);
  970. struct cc_hash_alg *cc_alg =
  971. container_of(ahash_alg, struct cc_hash_alg, ahash_alg);
  972. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  973. sizeof(struct ahash_req_ctx));
  974. ctx->hash_mode = cc_alg->hash_mode;
  975. ctx->hw_mode = cc_alg->hw_mode;
  976. ctx->inter_digestsize = cc_alg->inter_digestsize;
  977. ctx->drvdata = cc_alg->drvdata;
  978. return cc_alloc_ctx(ctx);
  979. }
  980. static void cc_cra_exit(struct crypto_tfm *tfm)
  981. {
  982. struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  983. struct device *dev = drvdata_to_dev(ctx->drvdata);
  984. dev_dbg(dev, "cc_cra_exit");
  985. cc_free_ctx(ctx);
  986. }
  987. static int cc_mac_update(struct ahash_request *req)
  988. {
  989. struct ahash_req_ctx *state = ahash_request_ctx(req);
  990. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  991. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  992. struct device *dev = drvdata_to_dev(ctx->drvdata);
  993. unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
  994. struct cc_crypto_req cc_req = {};
  995. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  996. int rc;
  997. u32 idx = 0;
  998. gfp_t flags = cc_gfp_flags(&req->base);
  999. if (req->nbytes == 0) {
  1000. /* no real updates required */
  1001. return 0;
  1002. }
  1003. state->xcbc_count++;
  1004. rc = cc_map_hash_request_update(ctx->drvdata, state, req->src,
  1005. req->nbytes, block_size, flags);
  1006. if (rc) {
  1007. if (rc == 1) {
  1008. dev_dbg(dev, " data size not require HW update %x\n",
  1009. req->nbytes);
  1010. /* No hardware updates are required */
  1011. return 0;
  1012. }
  1013. dev_err(dev, "map_ahash_request_update() failed\n");
  1014. return -ENOMEM;
  1015. }
  1016. if (cc_map_req(dev, state, ctx)) {
  1017. dev_err(dev, "map_ahash_source() failed\n");
  1018. return -EINVAL;
  1019. }
  1020. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
  1021. cc_setup_xcbc(req, desc, &idx);
  1022. else
  1023. cc_setup_cmac(req, desc, &idx);
  1024. cc_set_desc(state, ctx, DIN_AES_DOUT, desc, true, &idx);
  1025. /* store the hash digest result in context */
  1026. hw_desc_init(&desc[idx]);
  1027. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1028. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
  1029. ctx->inter_digestsize, NS_BIT, 1);
  1030. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1031. set_flow_mode(&desc[idx], S_AES_to_DOUT);
  1032. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1033. idx++;
  1034. /* Setup request structure */
  1035. cc_req.user_cb = (void *)cc_update_complete;
  1036. cc_req.user_arg = (void *)req;
  1037. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  1038. if (rc != -EINPROGRESS && rc != -EBUSY) {
  1039. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  1040. cc_unmap_hash_request(dev, state, req->src, true);
  1041. cc_unmap_req(dev, state, ctx);
  1042. }
  1043. return rc;
  1044. }
  1045. static int cc_mac_final(struct ahash_request *req)
  1046. {
  1047. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1048. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1049. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1050. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1051. struct cc_crypto_req cc_req = {};
  1052. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  1053. int idx = 0;
  1054. int rc = 0;
  1055. u32 key_size, key_len;
  1056. u32 digestsize = crypto_ahash_digestsize(tfm);
  1057. gfp_t flags = cc_gfp_flags(&req->base);
  1058. u32 rem_cnt = *cc_hash_buf_cnt(state);
  1059. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
  1060. key_size = CC_AES_128_BIT_KEY_SIZE;
  1061. key_len = CC_AES_128_BIT_KEY_SIZE;
  1062. } else {
  1063. key_size = (ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
  1064. ctx->key_params.keylen;
  1065. key_len = ctx->key_params.keylen;
  1066. }
  1067. dev_dbg(dev, "===== final xcbc reminder (%d) ====\n", rem_cnt);
  1068. if (cc_map_req(dev, state, ctx)) {
  1069. dev_err(dev, "map_ahash_source() failed\n");
  1070. return -EINVAL;
  1071. }
  1072. if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
  1073. req->nbytes, 0, flags)) {
  1074. dev_err(dev, "map_ahash_request_final() failed\n");
  1075. cc_unmap_req(dev, state, ctx);
  1076. return -ENOMEM;
  1077. }
  1078. if (cc_map_result(dev, state, digestsize)) {
  1079. dev_err(dev, "map_ahash_digest() failed\n");
  1080. cc_unmap_hash_request(dev, state, req->src, true);
  1081. cc_unmap_req(dev, state, ctx);
  1082. return -ENOMEM;
  1083. }
  1084. /* Setup request structure */
  1085. cc_req.user_cb = (void *)cc_hash_complete;
  1086. cc_req.user_arg = (void *)req;
  1087. if (state->xcbc_count && rem_cnt == 0) {
  1088. /* Load key for ECB decryption */
  1089. hw_desc_init(&desc[idx]);
  1090. set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
  1091. set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_DECRYPT);
  1092. set_din_type(&desc[idx], DMA_DLLI,
  1093. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
  1094. key_size, NS_BIT);
  1095. set_key_size_aes(&desc[idx], key_len);
  1096. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1097. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1098. idx++;
  1099. /* Initiate decryption of block state to previous
  1100. * block_state-XOR-M[n]
  1101. */
  1102. hw_desc_init(&desc[idx]);
  1103. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  1104. CC_AES_BLOCK_SIZE, NS_BIT);
  1105. set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
  1106. CC_AES_BLOCK_SIZE, NS_BIT, 0);
  1107. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  1108. idx++;
  1109. /* Memory Barrier: wait for axi write to complete */
  1110. hw_desc_init(&desc[idx]);
  1111. set_din_no_dma(&desc[idx], 0, 0xfffff0);
  1112. set_dout_no_dma(&desc[idx], 0, 0, 1);
  1113. idx++;
  1114. }
  1115. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
  1116. cc_setup_xcbc(req, desc, &idx);
  1117. else
  1118. cc_setup_cmac(req, desc, &idx);
  1119. if (state->xcbc_count == 0) {
  1120. hw_desc_init(&desc[idx]);
  1121. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1122. set_key_size_aes(&desc[idx], key_len);
  1123. set_cmac_size0_mode(&desc[idx]);
  1124. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1125. idx++;
  1126. } else if (rem_cnt > 0) {
  1127. cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
  1128. } else {
  1129. hw_desc_init(&desc[idx]);
  1130. set_din_const(&desc[idx], 0x00, CC_AES_BLOCK_SIZE);
  1131. set_flow_mode(&desc[idx], DIN_AES_DOUT);
  1132. idx++;
  1133. }
  1134. /* Get final MAC result */
  1135. hw_desc_init(&desc[idx]);
  1136. /* TODO */
  1137. set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
  1138. digestsize, NS_BIT, 1);
  1139. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1140. set_flow_mode(&desc[idx], S_AES_to_DOUT);
  1141. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1142. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1143. idx++;
  1144. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  1145. if (rc != -EINPROGRESS && rc != -EBUSY) {
  1146. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  1147. cc_unmap_hash_request(dev, state, req->src, true);
  1148. cc_unmap_result(dev, state, digestsize, req->result);
  1149. cc_unmap_req(dev, state, ctx);
  1150. }
  1151. return rc;
  1152. }
  1153. static int cc_mac_finup(struct ahash_request *req)
  1154. {
  1155. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1156. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1157. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1158. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1159. struct cc_crypto_req cc_req = {};
  1160. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  1161. int idx = 0;
  1162. int rc = 0;
  1163. u32 key_len = 0;
  1164. u32 digestsize = crypto_ahash_digestsize(tfm);
  1165. gfp_t flags = cc_gfp_flags(&req->base);
  1166. dev_dbg(dev, "===== finup xcbc(%d) ====\n", req->nbytes);
  1167. if (state->xcbc_count > 0 && req->nbytes == 0) {
  1168. dev_dbg(dev, "No data to update. Call to fdx_mac_final\n");
  1169. return cc_mac_final(req);
  1170. }
  1171. if (cc_map_req(dev, state, ctx)) {
  1172. dev_err(dev, "map_ahash_source() failed\n");
  1173. return -EINVAL;
  1174. }
  1175. if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
  1176. req->nbytes, 1, flags)) {
  1177. dev_err(dev, "map_ahash_request_final() failed\n");
  1178. cc_unmap_req(dev, state, ctx);
  1179. return -ENOMEM;
  1180. }
  1181. if (cc_map_result(dev, state, digestsize)) {
  1182. dev_err(dev, "map_ahash_digest() failed\n");
  1183. cc_unmap_hash_request(dev, state, req->src, true);
  1184. cc_unmap_req(dev, state, ctx);
  1185. return -ENOMEM;
  1186. }
  1187. /* Setup request structure */
  1188. cc_req.user_cb = (void *)cc_hash_complete;
  1189. cc_req.user_arg = (void *)req;
  1190. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
  1191. key_len = CC_AES_128_BIT_KEY_SIZE;
  1192. cc_setup_xcbc(req, desc, &idx);
  1193. } else {
  1194. key_len = ctx->key_params.keylen;
  1195. cc_setup_cmac(req, desc, &idx);
  1196. }
  1197. if (req->nbytes == 0) {
  1198. hw_desc_init(&desc[idx]);
  1199. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1200. set_key_size_aes(&desc[idx], key_len);
  1201. set_cmac_size0_mode(&desc[idx]);
  1202. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1203. idx++;
  1204. } else {
  1205. cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
  1206. }
  1207. /* Get final MAC result */
  1208. hw_desc_init(&desc[idx]);
  1209. /* TODO */
  1210. set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
  1211. digestsize, NS_BIT, 1);
  1212. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1213. set_flow_mode(&desc[idx], S_AES_to_DOUT);
  1214. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1215. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1216. idx++;
  1217. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  1218. if (rc != -EINPROGRESS && rc != -EBUSY) {
  1219. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  1220. cc_unmap_hash_request(dev, state, req->src, true);
  1221. cc_unmap_result(dev, state, digestsize, req->result);
  1222. cc_unmap_req(dev, state, ctx);
  1223. }
  1224. return rc;
  1225. }
  1226. static int cc_mac_digest(struct ahash_request *req)
  1227. {
  1228. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1229. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1230. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1231. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1232. u32 digestsize = crypto_ahash_digestsize(tfm);
  1233. struct cc_crypto_req cc_req = {};
  1234. struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
  1235. u32 key_len;
  1236. unsigned int idx = 0;
  1237. int rc;
  1238. gfp_t flags = cc_gfp_flags(&req->base);
  1239. dev_dbg(dev, "===== -digest mac (%d) ====\n", req->nbytes);
  1240. cc_init_req(dev, state, ctx);
  1241. if (cc_map_req(dev, state, ctx)) {
  1242. dev_err(dev, "map_ahash_source() failed\n");
  1243. return -ENOMEM;
  1244. }
  1245. if (cc_map_result(dev, state, digestsize)) {
  1246. dev_err(dev, "map_ahash_digest() failed\n");
  1247. cc_unmap_req(dev, state, ctx);
  1248. return -ENOMEM;
  1249. }
  1250. if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
  1251. req->nbytes, 1, flags)) {
  1252. dev_err(dev, "map_ahash_request_final() failed\n");
  1253. cc_unmap_req(dev, state, ctx);
  1254. return -ENOMEM;
  1255. }
  1256. /* Setup request structure */
  1257. cc_req.user_cb = (void *)cc_digest_complete;
  1258. cc_req.user_arg = (void *)req;
  1259. if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
  1260. key_len = CC_AES_128_BIT_KEY_SIZE;
  1261. cc_setup_xcbc(req, desc, &idx);
  1262. } else {
  1263. key_len = ctx->key_params.keylen;
  1264. cc_setup_cmac(req, desc, &idx);
  1265. }
  1266. if (req->nbytes == 0) {
  1267. hw_desc_init(&desc[idx]);
  1268. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1269. set_key_size_aes(&desc[idx], key_len);
  1270. set_cmac_size0_mode(&desc[idx]);
  1271. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1272. idx++;
  1273. } else {
  1274. cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
  1275. }
  1276. /* Get final MAC result */
  1277. hw_desc_init(&desc[idx]);
  1278. set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
  1279. CC_AES_BLOCK_SIZE, NS_BIT, 1);
  1280. set_queue_last_ind(ctx->drvdata, &desc[idx]);
  1281. set_flow_mode(&desc[idx], S_AES_to_DOUT);
  1282. set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
  1283. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1284. set_cipher_mode(&desc[idx], ctx->hw_mode);
  1285. idx++;
  1286. rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
  1287. if (rc != -EINPROGRESS && rc != -EBUSY) {
  1288. dev_err(dev, "send_request() failed (rc=%d)\n", rc);
  1289. cc_unmap_hash_request(dev, state, req->src, true);
  1290. cc_unmap_result(dev, state, digestsize, req->result);
  1291. cc_unmap_req(dev, state, ctx);
  1292. }
  1293. return rc;
  1294. }
  1295. static int cc_hash_export(struct ahash_request *req, void *out)
  1296. {
  1297. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1298. struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1299. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1300. u8 *curr_buff = cc_hash_buf(state);
  1301. u32 curr_buff_cnt = *cc_hash_buf_cnt(state);
  1302. const u32 tmp = CC_EXPORT_MAGIC;
  1303. memcpy(out, &tmp, sizeof(u32));
  1304. out += sizeof(u32);
  1305. memcpy(out, state->digest_buff, ctx->inter_digestsize);
  1306. out += ctx->inter_digestsize;
  1307. memcpy(out, state->digest_bytes_len, ctx->drvdata->hash_len_sz);
  1308. out += ctx->drvdata->hash_len_sz;
  1309. memcpy(out, &curr_buff_cnt, sizeof(u32));
  1310. out += sizeof(u32);
  1311. memcpy(out, curr_buff, curr_buff_cnt);
  1312. return 0;
  1313. }
  1314. static int cc_hash_import(struct ahash_request *req, const void *in)
  1315. {
  1316. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1317. struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1318. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1319. struct ahash_req_ctx *state = ahash_request_ctx(req);
  1320. u32 tmp;
  1321. memcpy(&tmp, in, sizeof(u32));
  1322. if (tmp != CC_EXPORT_MAGIC)
  1323. return -EINVAL;
  1324. in += sizeof(u32);
  1325. cc_init_req(dev, state, ctx);
  1326. memcpy(state->digest_buff, in, ctx->inter_digestsize);
  1327. in += ctx->inter_digestsize;
  1328. memcpy(state->digest_bytes_len, in, ctx->drvdata->hash_len_sz);
  1329. in += ctx->drvdata->hash_len_sz;
  1330. /* Sanity check the data as much as possible */
  1331. memcpy(&tmp, in, sizeof(u32));
  1332. if (tmp > CC_MAX_HASH_BLCK_SIZE)
  1333. return -EINVAL;
  1334. in += sizeof(u32);
  1335. state->buf_cnt[0] = tmp;
  1336. memcpy(state->buffers[0], in, tmp);
  1337. return 0;
  1338. }
  1339. struct cc_hash_template {
  1340. char name[CRYPTO_MAX_ALG_NAME];
  1341. char driver_name[CRYPTO_MAX_ALG_NAME];
  1342. char mac_name[CRYPTO_MAX_ALG_NAME];
  1343. char mac_driver_name[CRYPTO_MAX_ALG_NAME];
  1344. unsigned int blocksize;
  1345. bool synchronize;
  1346. struct ahash_alg template_ahash;
  1347. int hash_mode;
  1348. int hw_mode;
  1349. int inter_digestsize;
  1350. struct cc_drvdata *drvdata;
  1351. u32 min_hw_rev;
  1352. };
  1353. #define CC_STATE_SIZE(_x) \
  1354. ((_x) + HASH_MAX_LEN_SIZE + CC_MAX_HASH_BLCK_SIZE + (2 * sizeof(u32)))
  1355. /* hash descriptors */
  1356. static struct cc_hash_template driver_hash[] = {
  1357. //Asynchronize hash template
  1358. {
  1359. .name = "sha1",
  1360. .driver_name = "sha1-ccree",
  1361. .mac_name = "hmac(sha1)",
  1362. .mac_driver_name = "hmac-sha1-ccree",
  1363. .blocksize = SHA1_BLOCK_SIZE,
  1364. .synchronize = false,
  1365. .template_ahash = {
  1366. .init = cc_hash_init,
  1367. .update = cc_hash_update,
  1368. .final = cc_hash_final,
  1369. .finup = cc_hash_finup,
  1370. .digest = cc_hash_digest,
  1371. .export = cc_hash_export,
  1372. .import = cc_hash_import,
  1373. .setkey = cc_hash_setkey,
  1374. .halg = {
  1375. .digestsize = SHA1_DIGEST_SIZE,
  1376. .statesize = CC_STATE_SIZE(SHA1_DIGEST_SIZE),
  1377. },
  1378. },
  1379. .hash_mode = DRV_HASH_SHA1,
  1380. .hw_mode = DRV_HASH_HW_SHA1,
  1381. .inter_digestsize = SHA1_DIGEST_SIZE,
  1382. .min_hw_rev = CC_HW_REV_630,
  1383. },
  1384. {
  1385. .name = "sha256",
  1386. .driver_name = "sha256-ccree",
  1387. .mac_name = "hmac(sha256)",
  1388. .mac_driver_name = "hmac-sha256-ccree",
  1389. .blocksize = SHA256_BLOCK_SIZE,
  1390. .template_ahash = {
  1391. .init = cc_hash_init,
  1392. .update = cc_hash_update,
  1393. .final = cc_hash_final,
  1394. .finup = cc_hash_finup,
  1395. .digest = cc_hash_digest,
  1396. .export = cc_hash_export,
  1397. .import = cc_hash_import,
  1398. .setkey = cc_hash_setkey,
  1399. .halg = {
  1400. .digestsize = SHA256_DIGEST_SIZE,
  1401. .statesize = CC_STATE_SIZE(SHA256_DIGEST_SIZE)
  1402. },
  1403. },
  1404. .hash_mode = DRV_HASH_SHA256,
  1405. .hw_mode = DRV_HASH_HW_SHA256,
  1406. .inter_digestsize = SHA256_DIGEST_SIZE,
  1407. .min_hw_rev = CC_HW_REV_630,
  1408. },
  1409. {
  1410. .name = "sha224",
  1411. .driver_name = "sha224-ccree",
  1412. .mac_name = "hmac(sha224)",
  1413. .mac_driver_name = "hmac-sha224-ccree",
  1414. .blocksize = SHA224_BLOCK_SIZE,
  1415. .template_ahash = {
  1416. .init = cc_hash_init,
  1417. .update = cc_hash_update,
  1418. .final = cc_hash_final,
  1419. .finup = cc_hash_finup,
  1420. .digest = cc_hash_digest,
  1421. .export = cc_hash_export,
  1422. .import = cc_hash_import,
  1423. .setkey = cc_hash_setkey,
  1424. .halg = {
  1425. .digestsize = SHA224_DIGEST_SIZE,
  1426. .statesize = CC_STATE_SIZE(SHA224_DIGEST_SIZE),
  1427. },
  1428. },
  1429. .hash_mode = DRV_HASH_SHA224,
  1430. .hw_mode = DRV_HASH_HW_SHA256,
  1431. .inter_digestsize = SHA256_DIGEST_SIZE,
  1432. .min_hw_rev = CC_HW_REV_630,
  1433. },
  1434. {
  1435. .name = "sha384",
  1436. .driver_name = "sha384-ccree",
  1437. .mac_name = "hmac(sha384)",
  1438. .mac_driver_name = "hmac-sha384-ccree",
  1439. .blocksize = SHA384_BLOCK_SIZE,
  1440. .template_ahash = {
  1441. .init = cc_hash_init,
  1442. .update = cc_hash_update,
  1443. .final = cc_hash_final,
  1444. .finup = cc_hash_finup,
  1445. .digest = cc_hash_digest,
  1446. .export = cc_hash_export,
  1447. .import = cc_hash_import,
  1448. .setkey = cc_hash_setkey,
  1449. .halg = {
  1450. .digestsize = SHA384_DIGEST_SIZE,
  1451. .statesize = CC_STATE_SIZE(SHA384_DIGEST_SIZE),
  1452. },
  1453. },
  1454. .hash_mode = DRV_HASH_SHA384,
  1455. .hw_mode = DRV_HASH_HW_SHA512,
  1456. .inter_digestsize = SHA512_DIGEST_SIZE,
  1457. .min_hw_rev = CC_HW_REV_712,
  1458. },
  1459. {
  1460. .name = "sha512",
  1461. .driver_name = "sha512-ccree",
  1462. .mac_name = "hmac(sha512)",
  1463. .mac_driver_name = "hmac-sha512-ccree",
  1464. .blocksize = SHA512_BLOCK_SIZE,
  1465. .template_ahash = {
  1466. .init = cc_hash_init,
  1467. .update = cc_hash_update,
  1468. .final = cc_hash_final,
  1469. .finup = cc_hash_finup,
  1470. .digest = cc_hash_digest,
  1471. .export = cc_hash_export,
  1472. .import = cc_hash_import,
  1473. .setkey = cc_hash_setkey,
  1474. .halg = {
  1475. .digestsize = SHA512_DIGEST_SIZE,
  1476. .statesize = CC_STATE_SIZE(SHA512_DIGEST_SIZE),
  1477. },
  1478. },
  1479. .hash_mode = DRV_HASH_SHA512,
  1480. .hw_mode = DRV_HASH_HW_SHA512,
  1481. .inter_digestsize = SHA512_DIGEST_SIZE,
  1482. .min_hw_rev = CC_HW_REV_712,
  1483. },
  1484. {
  1485. .name = "md5",
  1486. .driver_name = "md5-ccree",
  1487. .mac_name = "hmac(md5)",
  1488. .mac_driver_name = "hmac-md5-ccree",
  1489. .blocksize = MD5_HMAC_BLOCK_SIZE,
  1490. .template_ahash = {
  1491. .init = cc_hash_init,
  1492. .update = cc_hash_update,
  1493. .final = cc_hash_final,
  1494. .finup = cc_hash_finup,
  1495. .digest = cc_hash_digest,
  1496. .export = cc_hash_export,
  1497. .import = cc_hash_import,
  1498. .setkey = cc_hash_setkey,
  1499. .halg = {
  1500. .digestsize = MD5_DIGEST_SIZE,
  1501. .statesize = CC_STATE_SIZE(MD5_DIGEST_SIZE),
  1502. },
  1503. },
  1504. .hash_mode = DRV_HASH_MD5,
  1505. .hw_mode = DRV_HASH_HW_MD5,
  1506. .inter_digestsize = MD5_DIGEST_SIZE,
  1507. .min_hw_rev = CC_HW_REV_630,
  1508. },
  1509. {
  1510. .mac_name = "xcbc(aes)",
  1511. .mac_driver_name = "xcbc-aes-ccree",
  1512. .blocksize = AES_BLOCK_SIZE,
  1513. .template_ahash = {
  1514. .init = cc_hash_init,
  1515. .update = cc_mac_update,
  1516. .final = cc_mac_final,
  1517. .finup = cc_mac_finup,
  1518. .digest = cc_mac_digest,
  1519. .setkey = cc_xcbc_setkey,
  1520. .export = cc_hash_export,
  1521. .import = cc_hash_import,
  1522. .halg = {
  1523. .digestsize = AES_BLOCK_SIZE,
  1524. .statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
  1525. },
  1526. },
  1527. .hash_mode = DRV_HASH_NULL,
  1528. .hw_mode = DRV_CIPHER_XCBC_MAC,
  1529. .inter_digestsize = AES_BLOCK_SIZE,
  1530. .min_hw_rev = CC_HW_REV_630,
  1531. },
  1532. {
  1533. .mac_name = "cmac(aes)",
  1534. .mac_driver_name = "cmac-aes-ccree",
  1535. .blocksize = AES_BLOCK_SIZE,
  1536. .template_ahash = {
  1537. .init = cc_hash_init,
  1538. .update = cc_mac_update,
  1539. .final = cc_mac_final,
  1540. .finup = cc_mac_finup,
  1541. .digest = cc_mac_digest,
  1542. .setkey = cc_cmac_setkey,
  1543. .export = cc_hash_export,
  1544. .import = cc_hash_import,
  1545. .halg = {
  1546. .digestsize = AES_BLOCK_SIZE,
  1547. .statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
  1548. },
  1549. },
  1550. .hash_mode = DRV_HASH_NULL,
  1551. .hw_mode = DRV_CIPHER_CMAC,
  1552. .inter_digestsize = AES_BLOCK_SIZE,
  1553. .min_hw_rev = CC_HW_REV_630,
  1554. },
  1555. };
  1556. static struct cc_hash_alg *cc_alloc_hash_alg(struct cc_hash_template *template,
  1557. struct device *dev, bool keyed)
  1558. {
  1559. struct cc_hash_alg *t_crypto_alg;
  1560. struct crypto_alg *alg;
  1561. struct ahash_alg *halg;
  1562. t_crypto_alg = kzalloc(sizeof(*t_crypto_alg), GFP_KERNEL);
  1563. if (!t_crypto_alg)
  1564. return ERR_PTR(-ENOMEM);
  1565. t_crypto_alg->ahash_alg = template->template_ahash;
  1566. halg = &t_crypto_alg->ahash_alg;
  1567. alg = &halg->halg.base;
  1568. if (keyed) {
  1569. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1570. template->mac_name);
  1571. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1572. template->mac_driver_name);
  1573. } else {
  1574. halg->setkey = NULL;
  1575. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1576. template->name);
  1577. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1578. template->driver_name);
  1579. }
  1580. alg->cra_module = THIS_MODULE;
  1581. alg->cra_ctxsize = sizeof(struct cc_hash_ctx);
  1582. alg->cra_priority = CC_CRA_PRIO;
  1583. alg->cra_blocksize = template->blocksize;
  1584. alg->cra_alignmask = 0;
  1585. alg->cra_exit = cc_cra_exit;
  1586. alg->cra_init = cc_cra_init;
  1587. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH |
  1588. CRYPTO_ALG_KERN_DRIVER_ONLY;
  1589. alg->cra_type = &crypto_ahash_type;
  1590. t_crypto_alg->hash_mode = template->hash_mode;
  1591. t_crypto_alg->hw_mode = template->hw_mode;
  1592. t_crypto_alg->inter_digestsize = template->inter_digestsize;
  1593. return t_crypto_alg;
  1594. }
  1595. int cc_init_hash_sram(struct cc_drvdata *drvdata)
  1596. {
  1597. struct cc_hash_handle *hash_handle = drvdata->hash_handle;
  1598. cc_sram_addr_t sram_buff_ofs = hash_handle->digest_len_sram_addr;
  1599. unsigned int larval_seq_len = 0;
  1600. struct cc_hw_desc larval_seq[CC_DIGEST_SIZE_MAX / sizeof(u32)];
  1601. bool large_sha_supported = (drvdata->hw_rev >= CC_HW_REV_712);
  1602. int rc = 0;
  1603. /* Copy-to-sram digest-len */
  1604. cc_set_sram_desc(digest_len_init, sram_buff_ofs,
  1605. ARRAY_SIZE(digest_len_init), larval_seq,
  1606. &larval_seq_len);
  1607. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1608. if (rc)
  1609. goto init_digest_const_err;
  1610. sram_buff_ofs += sizeof(digest_len_init);
  1611. larval_seq_len = 0;
  1612. if (large_sha_supported) {
  1613. /* Copy-to-sram digest-len for sha384/512 */
  1614. cc_set_sram_desc(digest_len_sha512_init, sram_buff_ofs,
  1615. ARRAY_SIZE(digest_len_sha512_init),
  1616. larval_seq, &larval_seq_len);
  1617. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1618. if (rc)
  1619. goto init_digest_const_err;
  1620. sram_buff_ofs += sizeof(digest_len_sha512_init);
  1621. larval_seq_len = 0;
  1622. }
  1623. /* The initial digests offset */
  1624. hash_handle->larval_digest_sram_addr = sram_buff_ofs;
  1625. /* Copy-to-sram initial SHA* digests */
  1626. cc_set_sram_desc(md5_init, sram_buff_ofs, ARRAY_SIZE(md5_init),
  1627. larval_seq, &larval_seq_len);
  1628. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1629. if (rc)
  1630. goto init_digest_const_err;
  1631. sram_buff_ofs += sizeof(md5_init);
  1632. larval_seq_len = 0;
  1633. cc_set_sram_desc(sha1_init, sram_buff_ofs,
  1634. ARRAY_SIZE(sha1_init), larval_seq,
  1635. &larval_seq_len);
  1636. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1637. if (rc)
  1638. goto init_digest_const_err;
  1639. sram_buff_ofs += sizeof(sha1_init);
  1640. larval_seq_len = 0;
  1641. cc_set_sram_desc(sha224_init, sram_buff_ofs,
  1642. ARRAY_SIZE(sha224_init), larval_seq,
  1643. &larval_seq_len);
  1644. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1645. if (rc)
  1646. goto init_digest_const_err;
  1647. sram_buff_ofs += sizeof(sha224_init);
  1648. larval_seq_len = 0;
  1649. cc_set_sram_desc(sha256_init, sram_buff_ofs,
  1650. ARRAY_SIZE(sha256_init), larval_seq,
  1651. &larval_seq_len);
  1652. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1653. if (rc)
  1654. goto init_digest_const_err;
  1655. sram_buff_ofs += sizeof(sha256_init);
  1656. larval_seq_len = 0;
  1657. if (large_sha_supported) {
  1658. cc_set_sram_desc((u32 *)sha384_init, sram_buff_ofs,
  1659. (ARRAY_SIZE(sha384_init) * 2), larval_seq,
  1660. &larval_seq_len);
  1661. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1662. if (rc)
  1663. goto init_digest_const_err;
  1664. sram_buff_ofs += sizeof(sha384_init);
  1665. larval_seq_len = 0;
  1666. cc_set_sram_desc((u32 *)sha512_init, sram_buff_ofs,
  1667. (ARRAY_SIZE(sha512_init) * 2), larval_seq,
  1668. &larval_seq_len);
  1669. rc = send_request_init(drvdata, larval_seq, larval_seq_len);
  1670. if (rc)
  1671. goto init_digest_const_err;
  1672. }
  1673. init_digest_const_err:
  1674. return rc;
  1675. }
  1676. static void __init cc_swap_dwords(u32 *buf, unsigned long size)
  1677. {
  1678. int i;
  1679. u32 tmp;
  1680. for (i = 0; i < size; i += 2) {
  1681. tmp = buf[i];
  1682. buf[i] = buf[i + 1];
  1683. buf[i + 1] = tmp;
  1684. }
  1685. }
  1686. /*
  1687. * Due to the way the HW works we need to swap every
  1688. * double word in the SHA384 and SHA512 larval hashes
  1689. */
  1690. void __init cc_hash_global_init(void)
  1691. {
  1692. cc_swap_dwords((u32 *)&sha384_init, (ARRAY_SIZE(sha384_init) * 2));
  1693. cc_swap_dwords((u32 *)&sha512_init, (ARRAY_SIZE(sha512_init) * 2));
  1694. }
  1695. int cc_hash_alloc(struct cc_drvdata *drvdata)
  1696. {
  1697. struct cc_hash_handle *hash_handle;
  1698. cc_sram_addr_t sram_buff;
  1699. u32 sram_size_to_alloc;
  1700. struct device *dev = drvdata_to_dev(drvdata);
  1701. int rc = 0;
  1702. int alg;
  1703. hash_handle = kzalloc(sizeof(*hash_handle), GFP_KERNEL);
  1704. if (!hash_handle)
  1705. return -ENOMEM;
  1706. INIT_LIST_HEAD(&hash_handle->hash_list);
  1707. drvdata->hash_handle = hash_handle;
  1708. sram_size_to_alloc = sizeof(digest_len_init) +
  1709. sizeof(md5_init) +
  1710. sizeof(sha1_init) +
  1711. sizeof(sha224_init) +
  1712. sizeof(sha256_init);
  1713. if (drvdata->hw_rev >= CC_HW_REV_712)
  1714. sram_size_to_alloc += sizeof(digest_len_sha512_init) +
  1715. sizeof(sha384_init) + sizeof(sha512_init);
  1716. sram_buff = cc_sram_alloc(drvdata, sram_size_to_alloc);
  1717. if (sram_buff == NULL_SRAM_ADDR) {
  1718. dev_err(dev, "SRAM pool exhausted\n");
  1719. rc = -ENOMEM;
  1720. goto fail;
  1721. }
  1722. /* The initial digest-len offset */
  1723. hash_handle->digest_len_sram_addr = sram_buff;
  1724. /*must be set before the alg registration as it is being used there*/
  1725. rc = cc_init_hash_sram(drvdata);
  1726. if (rc) {
  1727. dev_err(dev, "Init digest CONST failed (rc=%d)\n", rc);
  1728. goto fail;
  1729. }
  1730. /* ahash registration */
  1731. for (alg = 0; alg < ARRAY_SIZE(driver_hash); alg++) {
  1732. struct cc_hash_alg *t_alg;
  1733. int hw_mode = driver_hash[alg].hw_mode;
  1734. /* We either support both HASH and MAC or none */
  1735. if (driver_hash[alg].min_hw_rev > drvdata->hw_rev)
  1736. continue;
  1737. /* register hmac version */
  1738. t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, true);
  1739. if (IS_ERR(t_alg)) {
  1740. rc = PTR_ERR(t_alg);
  1741. dev_err(dev, "%s alg allocation failed\n",
  1742. driver_hash[alg].driver_name);
  1743. goto fail;
  1744. }
  1745. t_alg->drvdata = drvdata;
  1746. rc = crypto_register_ahash(&t_alg->ahash_alg);
  1747. if (rc) {
  1748. dev_err(dev, "%s alg registration failed\n",
  1749. driver_hash[alg].driver_name);
  1750. kfree(t_alg);
  1751. goto fail;
  1752. } else {
  1753. list_add_tail(&t_alg->entry, &hash_handle->hash_list);
  1754. }
  1755. if (hw_mode == DRV_CIPHER_XCBC_MAC ||
  1756. hw_mode == DRV_CIPHER_CMAC)
  1757. continue;
  1758. /* register hash version */
  1759. t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, false);
  1760. if (IS_ERR(t_alg)) {
  1761. rc = PTR_ERR(t_alg);
  1762. dev_err(dev, "%s alg allocation failed\n",
  1763. driver_hash[alg].driver_name);
  1764. goto fail;
  1765. }
  1766. t_alg->drvdata = drvdata;
  1767. rc = crypto_register_ahash(&t_alg->ahash_alg);
  1768. if (rc) {
  1769. dev_err(dev, "%s alg registration failed\n",
  1770. driver_hash[alg].driver_name);
  1771. kfree(t_alg);
  1772. goto fail;
  1773. } else {
  1774. list_add_tail(&t_alg->entry, &hash_handle->hash_list);
  1775. }
  1776. }
  1777. return 0;
  1778. fail:
  1779. kfree(drvdata->hash_handle);
  1780. drvdata->hash_handle = NULL;
  1781. return rc;
  1782. }
  1783. int cc_hash_free(struct cc_drvdata *drvdata)
  1784. {
  1785. struct cc_hash_alg *t_hash_alg, *hash_n;
  1786. struct cc_hash_handle *hash_handle = drvdata->hash_handle;
  1787. if (hash_handle) {
  1788. list_for_each_entry_safe(t_hash_alg, hash_n,
  1789. &hash_handle->hash_list, entry) {
  1790. crypto_unregister_ahash(&t_hash_alg->ahash_alg);
  1791. list_del(&t_hash_alg->entry);
  1792. kfree(t_hash_alg);
  1793. }
  1794. kfree(hash_handle);
  1795. drvdata->hash_handle = NULL;
  1796. }
  1797. return 0;
  1798. }
  1799. static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
  1800. unsigned int *seq_size)
  1801. {
  1802. unsigned int idx = *seq_size;
  1803. struct ahash_req_ctx *state = ahash_request_ctx(areq);
  1804. struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  1805. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1806. /* Setup XCBC MAC K1 */
  1807. hw_desc_init(&desc[idx]);
  1808. set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr +
  1809. XCBC_MAC_K1_OFFSET),
  1810. CC_AES_128_BIT_KEY_SIZE, NS_BIT);
  1811. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1812. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  1813. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1814. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  1815. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1816. idx++;
  1817. /* Setup XCBC MAC K2 */
  1818. hw_desc_init(&desc[idx]);
  1819. set_din_type(&desc[idx], DMA_DLLI,
  1820. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
  1821. CC_AES_128_BIT_KEY_SIZE, NS_BIT);
  1822. set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
  1823. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  1824. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1825. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  1826. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1827. idx++;
  1828. /* Setup XCBC MAC K3 */
  1829. hw_desc_init(&desc[idx]);
  1830. set_din_type(&desc[idx], DMA_DLLI,
  1831. (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
  1832. CC_AES_128_BIT_KEY_SIZE, NS_BIT);
  1833. set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
  1834. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  1835. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1836. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  1837. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1838. idx++;
  1839. /* Loading MAC state */
  1840. hw_desc_init(&desc[idx]);
  1841. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  1842. CC_AES_BLOCK_SIZE, NS_BIT);
  1843. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  1844. set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
  1845. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1846. set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
  1847. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1848. idx++;
  1849. *seq_size = idx;
  1850. }
  1851. static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
  1852. unsigned int *seq_size)
  1853. {
  1854. unsigned int idx = *seq_size;
  1855. struct ahash_req_ctx *state = ahash_request_ctx(areq);
  1856. struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  1857. struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1858. /* Setup CMAC Key */
  1859. hw_desc_init(&desc[idx]);
  1860. set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
  1861. ((ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
  1862. ctx->key_params.keylen), NS_BIT);
  1863. set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
  1864. set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
  1865. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1866. set_key_size_aes(&desc[idx], ctx->key_params.keylen);
  1867. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1868. idx++;
  1869. /* Load MAC state */
  1870. hw_desc_init(&desc[idx]);
  1871. set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
  1872. CC_AES_BLOCK_SIZE, NS_BIT);
  1873. set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
  1874. set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
  1875. set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
  1876. set_key_size_aes(&desc[idx], ctx->key_params.keylen);
  1877. set_flow_mode(&desc[idx], S_DIN_to_AES);
  1878. idx++;
  1879. *seq_size = idx;
  1880. }
  1881. static void cc_set_desc(struct ahash_req_ctx *areq_ctx,
  1882. struct cc_hash_ctx *ctx, unsigned int flow_mode,
  1883. struct cc_hw_desc desc[], bool is_not_last_data,
  1884. unsigned int *seq_size)
  1885. {
  1886. unsigned int idx = *seq_size;
  1887. struct device *dev = drvdata_to_dev(ctx->drvdata);
  1888. if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_DLLI) {
  1889. hw_desc_init(&desc[idx]);
  1890. set_din_type(&desc[idx], DMA_DLLI,
  1891. sg_dma_address(areq_ctx->curr_sg),
  1892. areq_ctx->curr_sg->length, NS_BIT);
  1893. set_flow_mode(&desc[idx], flow_mode);
  1894. idx++;
  1895. } else {
  1896. if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
  1897. dev_dbg(dev, " NULL mode\n");
  1898. /* nothing to build */
  1899. return;
  1900. }
  1901. /* bypass */
  1902. hw_desc_init(&desc[idx]);
  1903. set_din_type(&desc[idx], DMA_DLLI,
  1904. areq_ctx->mlli_params.mlli_dma_addr,
  1905. areq_ctx->mlli_params.mlli_len, NS_BIT);
  1906. set_dout_sram(&desc[idx], ctx->drvdata->mlli_sram_addr,
  1907. areq_ctx->mlli_params.mlli_len);
  1908. set_flow_mode(&desc[idx], BYPASS);
  1909. idx++;
  1910. /* process */
  1911. hw_desc_init(&desc[idx]);
  1912. set_din_type(&desc[idx], DMA_MLLI,
  1913. ctx->drvdata->mlli_sram_addr,
  1914. areq_ctx->mlli_nents, NS_BIT);
  1915. set_flow_mode(&desc[idx], flow_mode);
  1916. idx++;
  1917. }
  1918. if (is_not_last_data)
  1919. set_din_not_last_indication(&desc[(idx - 1)]);
  1920. /* return updated desc sequence size */
  1921. *seq_size = idx;
  1922. }
  1923. static const void *cc_larval_digest(struct device *dev, u32 mode)
  1924. {
  1925. switch (mode) {
  1926. case DRV_HASH_MD5:
  1927. return md5_init;
  1928. case DRV_HASH_SHA1:
  1929. return sha1_init;
  1930. case DRV_HASH_SHA224:
  1931. return sha224_init;
  1932. case DRV_HASH_SHA256:
  1933. return sha256_init;
  1934. case DRV_HASH_SHA384:
  1935. return sha384_init;
  1936. case DRV_HASH_SHA512:
  1937. return sha512_init;
  1938. default:
  1939. dev_err(dev, "Invalid hash mode (%d)\n", mode);
  1940. return md5_init;
  1941. }
  1942. }
  1943. /*!
  1944. * Gets the address of the initial digest in SRAM
  1945. * according to the given hash mode
  1946. *
  1947. * \param drvdata
  1948. * \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256
  1949. *
  1950. * \return u32 The address of the initial digest in SRAM
  1951. */
  1952. cc_sram_addr_t cc_larval_digest_addr(void *drvdata, u32 mode)
  1953. {
  1954. struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
  1955. struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
  1956. struct device *dev = drvdata_to_dev(_drvdata);
  1957. switch (mode) {
  1958. case DRV_HASH_NULL:
  1959. break; /*Ignore*/
  1960. case DRV_HASH_MD5:
  1961. return (hash_handle->larval_digest_sram_addr);
  1962. case DRV_HASH_SHA1:
  1963. return (hash_handle->larval_digest_sram_addr +
  1964. sizeof(md5_init));
  1965. case DRV_HASH_SHA224:
  1966. return (hash_handle->larval_digest_sram_addr +
  1967. sizeof(md5_init) +
  1968. sizeof(sha1_init));
  1969. case DRV_HASH_SHA256:
  1970. return (hash_handle->larval_digest_sram_addr +
  1971. sizeof(md5_init) +
  1972. sizeof(sha1_init) +
  1973. sizeof(sha224_init));
  1974. case DRV_HASH_SHA384:
  1975. return (hash_handle->larval_digest_sram_addr +
  1976. sizeof(md5_init) +
  1977. sizeof(sha1_init) +
  1978. sizeof(sha224_init) +
  1979. sizeof(sha256_init));
  1980. case DRV_HASH_SHA512:
  1981. return (hash_handle->larval_digest_sram_addr +
  1982. sizeof(md5_init) +
  1983. sizeof(sha1_init) +
  1984. sizeof(sha224_init) +
  1985. sizeof(sha256_init) +
  1986. sizeof(sha384_init));
  1987. default:
  1988. dev_err(dev, "Invalid hash mode (%d)\n", mode);
  1989. }
  1990. /*This is valid wrong value to avoid kernel crash*/
  1991. return hash_handle->larval_digest_sram_addr;
  1992. }
  1993. cc_sram_addr_t
  1994. cc_digest_len_addr(void *drvdata, u32 mode)
  1995. {
  1996. struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
  1997. struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
  1998. cc_sram_addr_t digest_len_addr = hash_handle->digest_len_sram_addr;
  1999. switch (mode) {
  2000. case DRV_HASH_SHA1:
  2001. case DRV_HASH_SHA224:
  2002. case DRV_HASH_SHA256:
  2003. case DRV_HASH_MD5:
  2004. return digest_len_addr;
  2005. #if (CC_DEV_SHA_MAX > 256)
  2006. case DRV_HASH_SHA384:
  2007. case DRV_HASH_SHA512:
  2008. return digest_len_addr + sizeof(digest_len_init);
  2009. #endif
  2010. default:
  2011. return digest_len_addr; /*to avoid kernel crash*/
  2012. }
  2013. }