null_blk.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955
  1. /*
  2. * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
  3. * Shaohua Li <shli@fb.com>
  4. */
  5. #include <linux/module.h>
  6. #include <linux/moduleparam.h>
  7. #include <linux/sched.h>
  8. #include <linux/fs.h>
  9. #include <linux/blkdev.h>
  10. #include <linux/init.h>
  11. #include <linux/slab.h>
  12. #include <linux/blk-mq.h>
  13. #include <linux/hrtimer.h>
  14. #include <linux/configfs.h>
  15. #include <linux/badblocks.h>
  16. #include <linux/fault-inject.h>
  17. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  18. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  19. #define SECTOR_MASK (PAGE_SECTORS - 1)
  20. #define FREE_BATCH 16
  21. #define TICKS_PER_SEC 50ULL
  22. #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
  23. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  24. static DECLARE_FAULT_ATTR(null_timeout_attr);
  25. static DECLARE_FAULT_ATTR(null_requeue_attr);
  26. #endif
  27. static inline u64 mb_per_tick(int mbps)
  28. {
  29. return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
  30. }
  31. struct nullb_cmd {
  32. struct list_head list;
  33. struct llist_node ll_list;
  34. struct __call_single_data csd;
  35. struct request *rq;
  36. struct bio *bio;
  37. unsigned int tag;
  38. blk_status_t error;
  39. struct nullb_queue *nq;
  40. struct hrtimer timer;
  41. };
  42. struct nullb_queue {
  43. unsigned long *tag_map;
  44. wait_queue_head_t wait;
  45. unsigned int queue_depth;
  46. struct nullb_device *dev;
  47. unsigned int requeue_selection;
  48. struct nullb_cmd *cmds;
  49. };
  50. /*
  51. * Status flags for nullb_device.
  52. *
  53. * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
  54. * UP: Device is currently on and visible in userspace.
  55. * THROTTLED: Device is being throttled.
  56. * CACHE: Device is using a write-back cache.
  57. */
  58. enum nullb_device_flags {
  59. NULLB_DEV_FL_CONFIGURED = 0,
  60. NULLB_DEV_FL_UP = 1,
  61. NULLB_DEV_FL_THROTTLED = 2,
  62. NULLB_DEV_FL_CACHE = 3,
  63. };
  64. #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
  65. /*
  66. * nullb_page is a page in memory for nullb devices.
  67. *
  68. * @page: The page holding the data.
  69. * @bitmap: The bitmap represents which sector in the page has data.
  70. * Each bit represents one block size. For example, sector 8
  71. * will use the 7th bit
  72. * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
  73. * page is being flushing to storage. FREE means the cache page is freed and
  74. * should be skipped from flushing to storage. Please see
  75. * null_make_cache_space
  76. */
  77. struct nullb_page {
  78. struct page *page;
  79. DECLARE_BITMAP(bitmap, MAP_SZ);
  80. };
  81. #define NULLB_PAGE_LOCK (MAP_SZ - 1)
  82. #define NULLB_PAGE_FREE (MAP_SZ - 2)
  83. struct nullb_device {
  84. struct nullb *nullb;
  85. struct config_item item;
  86. struct radix_tree_root data; /* data stored in the disk */
  87. struct radix_tree_root cache; /* disk cache data */
  88. unsigned long flags; /* device flags */
  89. unsigned int curr_cache;
  90. struct badblocks badblocks;
  91. unsigned long size; /* device size in MB */
  92. unsigned long completion_nsec; /* time in ns to complete a request */
  93. unsigned long cache_size; /* disk cache size in MB */
  94. unsigned int submit_queues; /* number of submission queues */
  95. unsigned int home_node; /* home node for the device */
  96. unsigned int queue_mode; /* block interface */
  97. unsigned int blocksize; /* block size */
  98. unsigned int irqmode; /* IRQ completion handler */
  99. unsigned int hw_queue_depth; /* queue depth */
  100. unsigned int index; /* index of the disk, only valid with a disk */
  101. unsigned int mbps; /* Bandwidth throttle cap (in MB/s) */
  102. bool blocking; /* blocking blk-mq device */
  103. bool use_per_node_hctx; /* use per-node allocation for hardware context */
  104. bool power; /* power on/off the device */
  105. bool memory_backed; /* if data is stored in memory */
  106. bool discard; /* if support discard */
  107. };
  108. struct nullb {
  109. struct nullb_device *dev;
  110. struct list_head list;
  111. unsigned int index;
  112. struct request_queue *q;
  113. struct gendisk *disk;
  114. struct blk_mq_tag_set *tag_set;
  115. struct blk_mq_tag_set __tag_set;
  116. unsigned int queue_depth;
  117. atomic_long_t cur_bytes;
  118. struct hrtimer bw_timer;
  119. unsigned long cache_flush_pos;
  120. spinlock_t lock;
  121. struct nullb_queue *queues;
  122. unsigned int nr_queues;
  123. char disk_name[DISK_NAME_LEN];
  124. };
  125. static LIST_HEAD(nullb_list);
  126. static struct mutex lock;
  127. static int null_major;
  128. static DEFINE_IDA(nullb_indexes);
  129. static struct blk_mq_tag_set tag_set;
  130. enum {
  131. NULL_IRQ_NONE = 0,
  132. NULL_IRQ_SOFTIRQ = 1,
  133. NULL_IRQ_TIMER = 2,
  134. };
  135. enum {
  136. NULL_Q_BIO = 0,
  137. NULL_Q_RQ = 1,
  138. NULL_Q_MQ = 2,
  139. };
  140. static int g_no_sched;
  141. module_param_named(no_sched, g_no_sched, int, 0444);
  142. MODULE_PARM_DESC(no_sched, "No io scheduler");
  143. static int g_submit_queues = 1;
  144. module_param_named(submit_queues, g_submit_queues, int, 0444);
  145. MODULE_PARM_DESC(submit_queues, "Number of submission queues");
  146. static int g_home_node = NUMA_NO_NODE;
  147. module_param_named(home_node, g_home_node, int, 0444);
  148. MODULE_PARM_DESC(home_node, "Home node for the device");
  149. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  150. static char g_timeout_str[80];
  151. module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
  152. static char g_requeue_str[80];
  153. module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
  154. #endif
  155. static int g_queue_mode = NULL_Q_MQ;
  156. static int null_param_store_val(const char *str, int *val, int min, int max)
  157. {
  158. int ret, new_val;
  159. ret = kstrtoint(str, 10, &new_val);
  160. if (ret)
  161. return -EINVAL;
  162. if (new_val < min || new_val > max)
  163. return -EINVAL;
  164. *val = new_val;
  165. return 0;
  166. }
  167. static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
  168. {
  169. return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
  170. }
  171. static const struct kernel_param_ops null_queue_mode_param_ops = {
  172. .set = null_set_queue_mode,
  173. .get = param_get_int,
  174. };
  175. device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
  176. MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
  177. static int g_gb = 250;
  178. module_param_named(gb, g_gb, int, 0444);
  179. MODULE_PARM_DESC(gb, "Size in GB");
  180. static int g_bs = 512;
  181. module_param_named(bs, g_bs, int, 0444);
  182. MODULE_PARM_DESC(bs, "Block size (in bytes)");
  183. static int nr_devices = 1;
  184. module_param(nr_devices, int, 0444);
  185. MODULE_PARM_DESC(nr_devices, "Number of devices to register");
  186. static bool g_blocking;
  187. module_param_named(blocking, g_blocking, bool, 0444);
  188. MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
  189. static bool shared_tags;
  190. module_param(shared_tags, bool, 0444);
  191. MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
  192. static int g_irqmode = NULL_IRQ_SOFTIRQ;
  193. static int null_set_irqmode(const char *str, const struct kernel_param *kp)
  194. {
  195. return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
  196. NULL_IRQ_TIMER);
  197. }
  198. static const struct kernel_param_ops null_irqmode_param_ops = {
  199. .set = null_set_irqmode,
  200. .get = param_get_int,
  201. };
  202. device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
  203. MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
  204. static unsigned long g_completion_nsec = 10000;
  205. module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
  206. MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
  207. static int g_hw_queue_depth = 64;
  208. module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
  209. MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
  210. static bool g_use_per_node_hctx;
  211. module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
  212. MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
  213. static struct nullb_device *null_alloc_dev(void);
  214. static void null_free_dev(struct nullb_device *dev);
  215. static void null_del_dev(struct nullb *nullb);
  216. static int null_add_dev(struct nullb_device *dev);
  217. static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
  218. static inline struct nullb_device *to_nullb_device(struct config_item *item)
  219. {
  220. return item ? container_of(item, struct nullb_device, item) : NULL;
  221. }
  222. static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
  223. {
  224. return snprintf(page, PAGE_SIZE, "%u\n", val);
  225. }
  226. static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
  227. char *page)
  228. {
  229. return snprintf(page, PAGE_SIZE, "%lu\n", val);
  230. }
  231. static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
  232. {
  233. return snprintf(page, PAGE_SIZE, "%u\n", val);
  234. }
  235. static ssize_t nullb_device_uint_attr_store(unsigned int *val,
  236. const char *page, size_t count)
  237. {
  238. unsigned int tmp;
  239. int result;
  240. result = kstrtouint(page, 0, &tmp);
  241. if (result)
  242. return result;
  243. *val = tmp;
  244. return count;
  245. }
  246. static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
  247. const char *page, size_t count)
  248. {
  249. int result;
  250. unsigned long tmp;
  251. result = kstrtoul(page, 0, &tmp);
  252. if (result)
  253. return result;
  254. *val = tmp;
  255. return count;
  256. }
  257. static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
  258. size_t count)
  259. {
  260. bool tmp;
  261. int result;
  262. result = kstrtobool(page, &tmp);
  263. if (result)
  264. return result;
  265. *val = tmp;
  266. return count;
  267. }
  268. /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
  269. #define NULLB_DEVICE_ATTR(NAME, TYPE) \
  270. static ssize_t \
  271. nullb_device_##NAME##_show(struct config_item *item, char *page) \
  272. { \
  273. return nullb_device_##TYPE##_attr_show( \
  274. to_nullb_device(item)->NAME, page); \
  275. } \
  276. static ssize_t \
  277. nullb_device_##NAME##_store(struct config_item *item, const char *page, \
  278. size_t count) \
  279. { \
  280. if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \
  281. return -EBUSY; \
  282. return nullb_device_##TYPE##_attr_store( \
  283. &to_nullb_device(item)->NAME, page, count); \
  284. } \
  285. CONFIGFS_ATTR(nullb_device_, NAME);
  286. NULLB_DEVICE_ATTR(size, ulong);
  287. NULLB_DEVICE_ATTR(completion_nsec, ulong);
  288. NULLB_DEVICE_ATTR(submit_queues, uint);
  289. NULLB_DEVICE_ATTR(home_node, uint);
  290. NULLB_DEVICE_ATTR(queue_mode, uint);
  291. NULLB_DEVICE_ATTR(blocksize, uint);
  292. NULLB_DEVICE_ATTR(irqmode, uint);
  293. NULLB_DEVICE_ATTR(hw_queue_depth, uint);
  294. NULLB_DEVICE_ATTR(index, uint);
  295. NULLB_DEVICE_ATTR(blocking, bool);
  296. NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
  297. NULLB_DEVICE_ATTR(memory_backed, bool);
  298. NULLB_DEVICE_ATTR(discard, bool);
  299. NULLB_DEVICE_ATTR(mbps, uint);
  300. NULLB_DEVICE_ATTR(cache_size, ulong);
  301. static ssize_t nullb_device_power_show(struct config_item *item, char *page)
  302. {
  303. return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
  304. }
  305. static ssize_t nullb_device_power_store(struct config_item *item,
  306. const char *page, size_t count)
  307. {
  308. struct nullb_device *dev = to_nullb_device(item);
  309. bool newp = false;
  310. ssize_t ret;
  311. ret = nullb_device_bool_attr_store(&newp, page, count);
  312. if (ret < 0)
  313. return ret;
  314. if (!dev->power && newp) {
  315. if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
  316. return count;
  317. if (null_add_dev(dev)) {
  318. clear_bit(NULLB_DEV_FL_UP, &dev->flags);
  319. return -ENOMEM;
  320. }
  321. set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
  322. dev->power = newp;
  323. } else if (dev->power && !newp) {
  324. mutex_lock(&lock);
  325. dev->power = newp;
  326. null_del_dev(dev->nullb);
  327. mutex_unlock(&lock);
  328. clear_bit(NULLB_DEV_FL_UP, &dev->flags);
  329. }
  330. return count;
  331. }
  332. CONFIGFS_ATTR(nullb_device_, power);
  333. static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
  334. {
  335. struct nullb_device *t_dev = to_nullb_device(item);
  336. return badblocks_show(&t_dev->badblocks, page, 0);
  337. }
  338. static ssize_t nullb_device_badblocks_store(struct config_item *item,
  339. const char *page, size_t count)
  340. {
  341. struct nullb_device *t_dev = to_nullb_device(item);
  342. char *orig, *buf, *tmp;
  343. u64 start, end;
  344. int ret;
  345. orig = kstrndup(page, count, GFP_KERNEL);
  346. if (!orig)
  347. return -ENOMEM;
  348. buf = strstrip(orig);
  349. ret = -EINVAL;
  350. if (buf[0] != '+' && buf[0] != '-')
  351. goto out;
  352. tmp = strchr(&buf[1], '-');
  353. if (!tmp)
  354. goto out;
  355. *tmp = '\0';
  356. ret = kstrtoull(buf + 1, 0, &start);
  357. if (ret)
  358. goto out;
  359. ret = kstrtoull(tmp + 1, 0, &end);
  360. if (ret)
  361. goto out;
  362. ret = -EINVAL;
  363. if (start > end)
  364. goto out;
  365. /* enable badblocks */
  366. cmpxchg(&t_dev->badblocks.shift, -1, 0);
  367. if (buf[0] == '+')
  368. ret = badblocks_set(&t_dev->badblocks, start,
  369. end - start + 1, 1);
  370. else
  371. ret = badblocks_clear(&t_dev->badblocks, start,
  372. end - start + 1);
  373. if (ret == 0)
  374. ret = count;
  375. out:
  376. kfree(orig);
  377. return ret;
  378. }
  379. CONFIGFS_ATTR(nullb_device_, badblocks);
  380. static struct configfs_attribute *nullb_device_attrs[] = {
  381. &nullb_device_attr_size,
  382. &nullb_device_attr_completion_nsec,
  383. &nullb_device_attr_submit_queues,
  384. &nullb_device_attr_home_node,
  385. &nullb_device_attr_queue_mode,
  386. &nullb_device_attr_blocksize,
  387. &nullb_device_attr_irqmode,
  388. &nullb_device_attr_hw_queue_depth,
  389. &nullb_device_attr_index,
  390. &nullb_device_attr_blocking,
  391. &nullb_device_attr_use_per_node_hctx,
  392. &nullb_device_attr_power,
  393. &nullb_device_attr_memory_backed,
  394. &nullb_device_attr_discard,
  395. &nullb_device_attr_mbps,
  396. &nullb_device_attr_cache_size,
  397. &nullb_device_attr_badblocks,
  398. NULL,
  399. };
  400. static void nullb_device_release(struct config_item *item)
  401. {
  402. struct nullb_device *dev = to_nullb_device(item);
  403. null_free_device_storage(dev, false);
  404. null_free_dev(dev);
  405. }
  406. static struct configfs_item_operations nullb_device_ops = {
  407. .release = nullb_device_release,
  408. };
  409. static const struct config_item_type nullb_device_type = {
  410. .ct_item_ops = &nullb_device_ops,
  411. .ct_attrs = nullb_device_attrs,
  412. .ct_owner = THIS_MODULE,
  413. };
  414. static struct
  415. config_item *nullb_group_make_item(struct config_group *group, const char *name)
  416. {
  417. struct nullb_device *dev;
  418. dev = null_alloc_dev();
  419. if (!dev)
  420. return ERR_PTR(-ENOMEM);
  421. config_item_init_type_name(&dev->item, name, &nullb_device_type);
  422. return &dev->item;
  423. }
  424. static void
  425. nullb_group_drop_item(struct config_group *group, struct config_item *item)
  426. {
  427. struct nullb_device *dev = to_nullb_device(item);
  428. if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
  429. mutex_lock(&lock);
  430. dev->power = false;
  431. null_del_dev(dev->nullb);
  432. mutex_unlock(&lock);
  433. }
  434. config_item_put(item);
  435. }
  436. static ssize_t memb_group_features_show(struct config_item *item, char *page)
  437. {
  438. return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks\n");
  439. }
  440. CONFIGFS_ATTR_RO(memb_group_, features);
  441. static struct configfs_attribute *nullb_group_attrs[] = {
  442. &memb_group_attr_features,
  443. NULL,
  444. };
  445. static struct configfs_group_operations nullb_group_ops = {
  446. .make_item = nullb_group_make_item,
  447. .drop_item = nullb_group_drop_item,
  448. };
  449. static const struct config_item_type nullb_group_type = {
  450. .ct_group_ops = &nullb_group_ops,
  451. .ct_attrs = nullb_group_attrs,
  452. .ct_owner = THIS_MODULE,
  453. };
  454. static struct configfs_subsystem nullb_subsys = {
  455. .su_group = {
  456. .cg_item = {
  457. .ci_namebuf = "nullb",
  458. .ci_type = &nullb_group_type,
  459. },
  460. },
  461. };
  462. static inline int null_cache_active(struct nullb *nullb)
  463. {
  464. return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
  465. }
  466. static struct nullb_device *null_alloc_dev(void)
  467. {
  468. struct nullb_device *dev;
  469. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  470. if (!dev)
  471. return NULL;
  472. INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
  473. INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
  474. if (badblocks_init(&dev->badblocks, 0)) {
  475. kfree(dev);
  476. return NULL;
  477. }
  478. dev->size = g_gb * 1024;
  479. dev->completion_nsec = g_completion_nsec;
  480. dev->submit_queues = g_submit_queues;
  481. dev->home_node = g_home_node;
  482. dev->queue_mode = g_queue_mode;
  483. dev->blocksize = g_bs;
  484. dev->irqmode = g_irqmode;
  485. dev->hw_queue_depth = g_hw_queue_depth;
  486. dev->blocking = g_blocking;
  487. dev->use_per_node_hctx = g_use_per_node_hctx;
  488. return dev;
  489. }
  490. static void null_free_dev(struct nullb_device *dev)
  491. {
  492. if (!dev)
  493. return;
  494. badblocks_exit(&dev->badblocks);
  495. kfree(dev);
  496. }
  497. static void put_tag(struct nullb_queue *nq, unsigned int tag)
  498. {
  499. clear_bit_unlock(tag, nq->tag_map);
  500. if (waitqueue_active(&nq->wait))
  501. wake_up(&nq->wait);
  502. }
  503. static unsigned int get_tag(struct nullb_queue *nq)
  504. {
  505. unsigned int tag;
  506. do {
  507. tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
  508. if (tag >= nq->queue_depth)
  509. return -1U;
  510. } while (test_and_set_bit_lock(tag, nq->tag_map));
  511. return tag;
  512. }
  513. static void free_cmd(struct nullb_cmd *cmd)
  514. {
  515. put_tag(cmd->nq, cmd->tag);
  516. }
  517. static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
  518. static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
  519. {
  520. struct nullb_cmd *cmd;
  521. unsigned int tag;
  522. tag = get_tag(nq);
  523. if (tag != -1U) {
  524. cmd = &nq->cmds[tag];
  525. cmd->tag = tag;
  526. cmd->nq = nq;
  527. if (nq->dev->irqmode == NULL_IRQ_TIMER) {
  528. hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
  529. HRTIMER_MODE_REL);
  530. cmd->timer.function = null_cmd_timer_expired;
  531. }
  532. return cmd;
  533. }
  534. return NULL;
  535. }
  536. static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
  537. {
  538. struct nullb_cmd *cmd;
  539. DEFINE_WAIT(wait);
  540. cmd = __alloc_cmd(nq);
  541. if (cmd || !can_wait)
  542. return cmd;
  543. do {
  544. prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
  545. cmd = __alloc_cmd(nq);
  546. if (cmd)
  547. break;
  548. io_schedule();
  549. } while (1);
  550. finish_wait(&nq->wait, &wait);
  551. return cmd;
  552. }
  553. static void end_cmd(struct nullb_cmd *cmd)
  554. {
  555. struct request_queue *q = NULL;
  556. int queue_mode = cmd->nq->dev->queue_mode;
  557. if (cmd->rq)
  558. q = cmd->rq->q;
  559. switch (queue_mode) {
  560. case NULL_Q_MQ:
  561. blk_mq_end_request(cmd->rq, cmd->error);
  562. return;
  563. case NULL_Q_RQ:
  564. INIT_LIST_HEAD(&cmd->rq->queuelist);
  565. blk_end_request_all(cmd->rq, cmd->error);
  566. break;
  567. case NULL_Q_BIO:
  568. cmd->bio->bi_status = cmd->error;
  569. bio_endio(cmd->bio);
  570. break;
  571. }
  572. free_cmd(cmd);
  573. /* Restart queue if needed, as we are freeing a tag */
  574. if (queue_mode == NULL_Q_RQ && blk_queue_stopped(q)) {
  575. unsigned long flags;
  576. spin_lock_irqsave(q->queue_lock, flags);
  577. blk_start_queue_async(q);
  578. spin_unlock_irqrestore(q->queue_lock, flags);
  579. }
  580. }
  581. static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
  582. {
  583. end_cmd(container_of(timer, struct nullb_cmd, timer));
  584. return HRTIMER_NORESTART;
  585. }
  586. static void null_cmd_end_timer(struct nullb_cmd *cmd)
  587. {
  588. ktime_t kt = cmd->nq->dev->completion_nsec;
  589. hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
  590. }
  591. static void null_softirq_done_fn(struct request *rq)
  592. {
  593. struct nullb *nullb = rq->q->queuedata;
  594. if (nullb->dev->queue_mode == NULL_Q_MQ)
  595. end_cmd(blk_mq_rq_to_pdu(rq));
  596. else
  597. end_cmd(rq->special);
  598. }
  599. static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
  600. {
  601. struct nullb_page *t_page;
  602. t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
  603. if (!t_page)
  604. goto out;
  605. t_page->page = alloc_pages(gfp_flags, 0);
  606. if (!t_page->page)
  607. goto out_freepage;
  608. memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
  609. return t_page;
  610. out_freepage:
  611. kfree(t_page);
  612. out:
  613. return NULL;
  614. }
  615. static void null_free_page(struct nullb_page *t_page)
  616. {
  617. __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
  618. if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
  619. return;
  620. __free_page(t_page->page);
  621. kfree(t_page);
  622. }
  623. static bool null_page_empty(struct nullb_page *page)
  624. {
  625. int size = MAP_SZ - 2;
  626. return find_first_bit(page->bitmap, size) == size;
  627. }
  628. static void null_free_sector(struct nullb *nullb, sector_t sector,
  629. bool is_cache)
  630. {
  631. unsigned int sector_bit;
  632. u64 idx;
  633. struct nullb_page *t_page, *ret;
  634. struct radix_tree_root *root;
  635. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  636. idx = sector >> PAGE_SECTORS_SHIFT;
  637. sector_bit = (sector & SECTOR_MASK);
  638. t_page = radix_tree_lookup(root, idx);
  639. if (t_page) {
  640. __clear_bit(sector_bit, t_page->bitmap);
  641. if (null_page_empty(t_page)) {
  642. ret = radix_tree_delete_item(root, idx, t_page);
  643. WARN_ON(ret != t_page);
  644. null_free_page(ret);
  645. if (is_cache)
  646. nullb->dev->curr_cache -= PAGE_SIZE;
  647. }
  648. }
  649. }
  650. static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
  651. struct nullb_page *t_page, bool is_cache)
  652. {
  653. struct radix_tree_root *root;
  654. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  655. if (radix_tree_insert(root, idx, t_page)) {
  656. null_free_page(t_page);
  657. t_page = radix_tree_lookup(root, idx);
  658. WARN_ON(!t_page || t_page->page->index != idx);
  659. } else if (is_cache)
  660. nullb->dev->curr_cache += PAGE_SIZE;
  661. return t_page;
  662. }
  663. static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
  664. {
  665. unsigned long pos = 0;
  666. int nr_pages;
  667. struct nullb_page *ret, *t_pages[FREE_BATCH];
  668. struct radix_tree_root *root;
  669. root = is_cache ? &dev->cache : &dev->data;
  670. do {
  671. int i;
  672. nr_pages = radix_tree_gang_lookup(root,
  673. (void **)t_pages, pos, FREE_BATCH);
  674. for (i = 0; i < nr_pages; i++) {
  675. pos = t_pages[i]->page->index;
  676. ret = radix_tree_delete_item(root, pos, t_pages[i]);
  677. WARN_ON(ret != t_pages[i]);
  678. null_free_page(ret);
  679. }
  680. pos++;
  681. } while (nr_pages == FREE_BATCH);
  682. if (is_cache)
  683. dev->curr_cache = 0;
  684. }
  685. static struct nullb_page *__null_lookup_page(struct nullb *nullb,
  686. sector_t sector, bool for_write, bool is_cache)
  687. {
  688. unsigned int sector_bit;
  689. u64 idx;
  690. struct nullb_page *t_page;
  691. struct radix_tree_root *root;
  692. idx = sector >> PAGE_SECTORS_SHIFT;
  693. sector_bit = (sector & SECTOR_MASK);
  694. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  695. t_page = radix_tree_lookup(root, idx);
  696. WARN_ON(t_page && t_page->page->index != idx);
  697. if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
  698. return t_page;
  699. return NULL;
  700. }
  701. static struct nullb_page *null_lookup_page(struct nullb *nullb,
  702. sector_t sector, bool for_write, bool ignore_cache)
  703. {
  704. struct nullb_page *page = NULL;
  705. if (!ignore_cache)
  706. page = __null_lookup_page(nullb, sector, for_write, true);
  707. if (page)
  708. return page;
  709. return __null_lookup_page(nullb, sector, for_write, false);
  710. }
  711. static struct nullb_page *null_insert_page(struct nullb *nullb,
  712. sector_t sector, bool ignore_cache)
  713. {
  714. u64 idx;
  715. struct nullb_page *t_page;
  716. t_page = null_lookup_page(nullb, sector, true, ignore_cache);
  717. if (t_page)
  718. return t_page;
  719. spin_unlock_irq(&nullb->lock);
  720. t_page = null_alloc_page(GFP_NOIO);
  721. if (!t_page)
  722. goto out_lock;
  723. if (radix_tree_preload(GFP_NOIO))
  724. goto out_freepage;
  725. spin_lock_irq(&nullb->lock);
  726. idx = sector >> PAGE_SECTORS_SHIFT;
  727. t_page->page->index = idx;
  728. t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
  729. radix_tree_preload_end();
  730. return t_page;
  731. out_freepage:
  732. null_free_page(t_page);
  733. out_lock:
  734. spin_lock_irq(&nullb->lock);
  735. return null_lookup_page(nullb, sector, true, ignore_cache);
  736. }
  737. static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
  738. {
  739. int i;
  740. unsigned int offset;
  741. u64 idx;
  742. struct nullb_page *t_page, *ret;
  743. void *dst, *src;
  744. idx = c_page->page->index;
  745. t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
  746. __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
  747. if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
  748. null_free_page(c_page);
  749. if (t_page && null_page_empty(t_page)) {
  750. ret = radix_tree_delete_item(&nullb->dev->data,
  751. idx, t_page);
  752. null_free_page(t_page);
  753. }
  754. return 0;
  755. }
  756. if (!t_page)
  757. return -ENOMEM;
  758. src = kmap_atomic(c_page->page);
  759. dst = kmap_atomic(t_page->page);
  760. for (i = 0; i < PAGE_SECTORS;
  761. i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
  762. if (test_bit(i, c_page->bitmap)) {
  763. offset = (i << SECTOR_SHIFT);
  764. memcpy(dst + offset, src + offset,
  765. nullb->dev->blocksize);
  766. __set_bit(i, t_page->bitmap);
  767. }
  768. }
  769. kunmap_atomic(dst);
  770. kunmap_atomic(src);
  771. ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
  772. null_free_page(ret);
  773. nullb->dev->curr_cache -= PAGE_SIZE;
  774. return 0;
  775. }
  776. static int null_make_cache_space(struct nullb *nullb, unsigned long n)
  777. {
  778. int i, err, nr_pages;
  779. struct nullb_page *c_pages[FREE_BATCH];
  780. unsigned long flushed = 0, one_round;
  781. again:
  782. if ((nullb->dev->cache_size * 1024 * 1024) >
  783. nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
  784. return 0;
  785. nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
  786. (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
  787. /*
  788. * nullb_flush_cache_page could unlock before using the c_pages. To
  789. * avoid race, we don't allow page free
  790. */
  791. for (i = 0; i < nr_pages; i++) {
  792. nullb->cache_flush_pos = c_pages[i]->page->index;
  793. /*
  794. * We found the page which is being flushed to disk by other
  795. * threads
  796. */
  797. if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
  798. c_pages[i] = NULL;
  799. else
  800. __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
  801. }
  802. one_round = 0;
  803. for (i = 0; i < nr_pages; i++) {
  804. if (c_pages[i] == NULL)
  805. continue;
  806. err = null_flush_cache_page(nullb, c_pages[i]);
  807. if (err)
  808. return err;
  809. one_round++;
  810. }
  811. flushed += one_round << PAGE_SHIFT;
  812. if (n > flushed) {
  813. if (nr_pages == 0)
  814. nullb->cache_flush_pos = 0;
  815. if (one_round == 0) {
  816. /* give other threads a chance */
  817. spin_unlock_irq(&nullb->lock);
  818. spin_lock_irq(&nullb->lock);
  819. }
  820. goto again;
  821. }
  822. return 0;
  823. }
  824. static int copy_to_nullb(struct nullb *nullb, struct page *source,
  825. unsigned int off, sector_t sector, size_t n, bool is_fua)
  826. {
  827. size_t temp, count = 0;
  828. unsigned int offset;
  829. struct nullb_page *t_page;
  830. void *dst, *src;
  831. while (count < n) {
  832. temp = min_t(size_t, nullb->dev->blocksize, n - count);
  833. if (null_cache_active(nullb) && !is_fua)
  834. null_make_cache_space(nullb, PAGE_SIZE);
  835. offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
  836. t_page = null_insert_page(nullb, sector,
  837. !null_cache_active(nullb) || is_fua);
  838. if (!t_page)
  839. return -ENOSPC;
  840. src = kmap_atomic(source);
  841. dst = kmap_atomic(t_page->page);
  842. memcpy(dst + offset, src + off + count, temp);
  843. kunmap_atomic(dst);
  844. kunmap_atomic(src);
  845. __set_bit(sector & SECTOR_MASK, t_page->bitmap);
  846. if (is_fua)
  847. null_free_sector(nullb, sector, true);
  848. count += temp;
  849. sector += temp >> SECTOR_SHIFT;
  850. }
  851. return 0;
  852. }
  853. static int copy_from_nullb(struct nullb *nullb, struct page *dest,
  854. unsigned int off, sector_t sector, size_t n)
  855. {
  856. size_t temp, count = 0;
  857. unsigned int offset;
  858. struct nullb_page *t_page;
  859. void *dst, *src;
  860. while (count < n) {
  861. temp = min_t(size_t, nullb->dev->blocksize, n - count);
  862. offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
  863. t_page = null_lookup_page(nullb, sector, false,
  864. !null_cache_active(nullb));
  865. dst = kmap_atomic(dest);
  866. if (!t_page) {
  867. memset(dst + off + count, 0, temp);
  868. goto next;
  869. }
  870. src = kmap_atomic(t_page->page);
  871. memcpy(dst + off + count, src + offset, temp);
  872. kunmap_atomic(src);
  873. next:
  874. kunmap_atomic(dst);
  875. count += temp;
  876. sector += temp >> SECTOR_SHIFT;
  877. }
  878. return 0;
  879. }
  880. static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
  881. {
  882. size_t temp;
  883. spin_lock_irq(&nullb->lock);
  884. while (n > 0) {
  885. temp = min_t(size_t, n, nullb->dev->blocksize);
  886. null_free_sector(nullb, sector, false);
  887. if (null_cache_active(nullb))
  888. null_free_sector(nullb, sector, true);
  889. sector += temp >> SECTOR_SHIFT;
  890. n -= temp;
  891. }
  892. spin_unlock_irq(&nullb->lock);
  893. }
  894. static int null_handle_flush(struct nullb *nullb)
  895. {
  896. int err;
  897. if (!null_cache_active(nullb))
  898. return 0;
  899. spin_lock_irq(&nullb->lock);
  900. while (true) {
  901. err = null_make_cache_space(nullb,
  902. nullb->dev->cache_size * 1024 * 1024);
  903. if (err || nullb->dev->curr_cache == 0)
  904. break;
  905. }
  906. WARN_ON(!radix_tree_empty(&nullb->dev->cache));
  907. spin_unlock_irq(&nullb->lock);
  908. return err;
  909. }
  910. static int null_transfer(struct nullb *nullb, struct page *page,
  911. unsigned int len, unsigned int off, bool is_write, sector_t sector,
  912. bool is_fua)
  913. {
  914. int err = 0;
  915. if (!is_write) {
  916. err = copy_from_nullb(nullb, page, off, sector, len);
  917. flush_dcache_page(page);
  918. } else {
  919. flush_dcache_page(page);
  920. err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
  921. }
  922. return err;
  923. }
  924. static int null_handle_rq(struct nullb_cmd *cmd)
  925. {
  926. struct request *rq = cmd->rq;
  927. struct nullb *nullb = cmd->nq->dev->nullb;
  928. int err;
  929. unsigned int len;
  930. sector_t sector;
  931. struct req_iterator iter;
  932. struct bio_vec bvec;
  933. sector = blk_rq_pos(rq);
  934. if (req_op(rq) == REQ_OP_DISCARD) {
  935. null_handle_discard(nullb, sector, blk_rq_bytes(rq));
  936. return 0;
  937. }
  938. spin_lock_irq(&nullb->lock);
  939. rq_for_each_segment(bvec, rq, iter) {
  940. len = bvec.bv_len;
  941. err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
  942. op_is_write(req_op(rq)), sector,
  943. req_op(rq) & REQ_FUA);
  944. if (err) {
  945. spin_unlock_irq(&nullb->lock);
  946. return err;
  947. }
  948. sector += len >> SECTOR_SHIFT;
  949. }
  950. spin_unlock_irq(&nullb->lock);
  951. return 0;
  952. }
  953. static int null_handle_bio(struct nullb_cmd *cmd)
  954. {
  955. struct bio *bio = cmd->bio;
  956. struct nullb *nullb = cmd->nq->dev->nullb;
  957. int err;
  958. unsigned int len;
  959. sector_t sector;
  960. struct bio_vec bvec;
  961. struct bvec_iter iter;
  962. sector = bio->bi_iter.bi_sector;
  963. if (bio_op(bio) == REQ_OP_DISCARD) {
  964. null_handle_discard(nullb, sector,
  965. bio_sectors(bio) << SECTOR_SHIFT);
  966. return 0;
  967. }
  968. spin_lock_irq(&nullb->lock);
  969. bio_for_each_segment(bvec, bio, iter) {
  970. len = bvec.bv_len;
  971. err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
  972. op_is_write(bio_op(bio)), sector,
  973. bio_op(bio) & REQ_FUA);
  974. if (err) {
  975. spin_unlock_irq(&nullb->lock);
  976. return err;
  977. }
  978. sector += len >> SECTOR_SHIFT;
  979. }
  980. spin_unlock_irq(&nullb->lock);
  981. return 0;
  982. }
  983. static void null_stop_queue(struct nullb *nullb)
  984. {
  985. struct request_queue *q = nullb->q;
  986. if (nullb->dev->queue_mode == NULL_Q_MQ)
  987. blk_mq_stop_hw_queues(q);
  988. else {
  989. spin_lock_irq(q->queue_lock);
  990. blk_stop_queue(q);
  991. spin_unlock_irq(q->queue_lock);
  992. }
  993. }
  994. static void null_restart_queue_async(struct nullb *nullb)
  995. {
  996. struct request_queue *q = nullb->q;
  997. unsigned long flags;
  998. if (nullb->dev->queue_mode == NULL_Q_MQ)
  999. blk_mq_start_stopped_hw_queues(q, true);
  1000. else {
  1001. spin_lock_irqsave(q->queue_lock, flags);
  1002. blk_start_queue_async(q);
  1003. spin_unlock_irqrestore(q->queue_lock, flags);
  1004. }
  1005. }
  1006. static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
  1007. {
  1008. struct nullb_device *dev = cmd->nq->dev;
  1009. struct nullb *nullb = dev->nullb;
  1010. int err = 0;
  1011. if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
  1012. struct request *rq = cmd->rq;
  1013. if (!hrtimer_active(&nullb->bw_timer))
  1014. hrtimer_restart(&nullb->bw_timer);
  1015. if (atomic_long_sub_return(blk_rq_bytes(rq),
  1016. &nullb->cur_bytes) < 0) {
  1017. null_stop_queue(nullb);
  1018. /* race with timer */
  1019. if (atomic_long_read(&nullb->cur_bytes) > 0)
  1020. null_restart_queue_async(nullb);
  1021. if (dev->queue_mode == NULL_Q_RQ) {
  1022. struct request_queue *q = nullb->q;
  1023. spin_lock_irq(q->queue_lock);
  1024. rq->rq_flags |= RQF_DONTPREP;
  1025. blk_requeue_request(q, rq);
  1026. spin_unlock_irq(q->queue_lock);
  1027. return BLK_STS_OK;
  1028. } else
  1029. /* requeue request */
  1030. return BLK_STS_DEV_RESOURCE;
  1031. }
  1032. }
  1033. if (nullb->dev->badblocks.shift != -1) {
  1034. int bad_sectors;
  1035. sector_t sector, size, first_bad;
  1036. bool is_flush = true;
  1037. if (dev->queue_mode == NULL_Q_BIO &&
  1038. bio_op(cmd->bio) != REQ_OP_FLUSH) {
  1039. is_flush = false;
  1040. sector = cmd->bio->bi_iter.bi_sector;
  1041. size = bio_sectors(cmd->bio);
  1042. }
  1043. if (dev->queue_mode != NULL_Q_BIO &&
  1044. req_op(cmd->rq) != REQ_OP_FLUSH) {
  1045. is_flush = false;
  1046. sector = blk_rq_pos(cmd->rq);
  1047. size = blk_rq_sectors(cmd->rq);
  1048. }
  1049. if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
  1050. size, &first_bad, &bad_sectors)) {
  1051. cmd->error = BLK_STS_IOERR;
  1052. goto out;
  1053. }
  1054. }
  1055. if (dev->memory_backed) {
  1056. if (dev->queue_mode == NULL_Q_BIO) {
  1057. if (bio_op(cmd->bio) == REQ_OP_FLUSH)
  1058. err = null_handle_flush(nullb);
  1059. else
  1060. err = null_handle_bio(cmd);
  1061. } else {
  1062. if (req_op(cmd->rq) == REQ_OP_FLUSH)
  1063. err = null_handle_flush(nullb);
  1064. else
  1065. err = null_handle_rq(cmd);
  1066. }
  1067. }
  1068. cmd->error = errno_to_blk_status(err);
  1069. out:
  1070. /* Complete IO by inline, softirq or timer */
  1071. switch (dev->irqmode) {
  1072. case NULL_IRQ_SOFTIRQ:
  1073. switch (dev->queue_mode) {
  1074. case NULL_Q_MQ:
  1075. blk_mq_complete_request(cmd->rq);
  1076. break;
  1077. case NULL_Q_RQ:
  1078. blk_complete_request(cmd->rq);
  1079. break;
  1080. case NULL_Q_BIO:
  1081. /*
  1082. * XXX: no proper submitting cpu information available.
  1083. */
  1084. end_cmd(cmd);
  1085. break;
  1086. }
  1087. break;
  1088. case NULL_IRQ_NONE:
  1089. end_cmd(cmd);
  1090. break;
  1091. case NULL_IRQ_TIMER:
  1092. null_cmd_end_timer(cmd);
  1093. break;
  1094. }
  1095. return BLK_STS_OK;
  1096. }
  1097. static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
  1098. {
  1099. struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
  1100. ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
  1101. unsigned int mbps = nullb->dev->mbps;
  1102. if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
  1103. return HRTIMER_NORESTART;
  1104. atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
  1105. null_restart_queue_async(nullb);
  1106. hrtimer_forward_now(&nullb->bw_timer, timer_interval);
  1107. return HRTIMER_RESTART;
  1108. }
  1109. static void nullb_setup_bwtimer(struct nullb *nullb)
  1110. {
  1111. ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
  1112. hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1113. nullb->bw_timer.function = nullb_bwtimer_fn;
  1114. atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
  1115. hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
  1116. }
  1117. static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
  1118. {
  1119. int index = 0;
  1120. if (nullb->nr_queues != 1)
  1121. index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
  1122. return &nullb->queues[index];
  1123. }
  1124. static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
  1125. {
  1126. struct nullb *nullb = q->queuedata;
  1127. struct nullb_queue *nq = nullb_to_queue(nullb);
  1128. struct nullb_cmd *cmd;
  1129. cmd = alloc_cmd(nq, 1);
  1130. cmd->bio = bio;
  1131. null_handle_cmd(cmd);
  1132. return BLK_QC_T_NONE;
  1133. }
  1134. static enum blk_eh_timer_return null_rq_timed_out_fn(struct request *rq)
  1135. {
  1136. pr_info("null: rq %p timed out\n", rq);
  1137. blk_mq_complete_request(rq);
  1138. return BLK_EH_DONE;
  1139. }
  1140. static int null_rq_prep_fn(struct request_queue *q, struct request *req)
  1141. {
  1142. struct nullb *nullb = q->queuedata;
  1143. struct nullb_queue *nq = nullb_to_queue(nullb);
  1144. struct nullb_cmd *cmd;
  1145. cmd = alloc_cmd(nq, 0);
  1146. if (cmd) {
  1147. cmd->rq = req;
  1148. req->special = cmd;
  1149. return BLKPREP_OK;
  1150. }
  1151. blk_stop_queue(q);
  1152. return BLKPREP_DEFER;
  1153. }
  1154. static bool should_timeout_request(struct request *rq)
  1155. {
  1156. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1157. if (g_timeout_str[0])
  1158. return should_fail(&null_timeout_attr, 1);
  1159. #endif
  1160. return false;
  1161. }
  1162. static bool should_requeue_request(struct request *rq)
  1163. {
  1164. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1165. if (g_requeue_str[0])
  1166. return should_fail(&null_requeue_attr, 1);
  1167. #endif
  1168. return false;
  1169. }
  1170. static void null_request_fn(struct request_queue *q)
  1171. {
  1172. struct request *rq;
  1173. while ((rq = blk_fetch_request(q)) != NULL) {
  1174. struct nullb_cmd *cmd = rq->special;
  1175. /* just ignore the request */
  1176. if (should_timeout_request(rq))
  1177. continue;
  1178. if (should_requeue_request(rq)) {
  1179. blk_requeue_request(q, rq);
  1180. continue;
  1181. }
  1182. spin_unlock_irq(q->queue_lock);
  1183. null_handle_cmd(cmd);
  1184. spin_lock_irq(q->queue_lock);
  1185. }
  1186. }
  1187. static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
  1188. {
  1189. pr_info("null: rq %p timed out\n", rq);
  1190. blk_mq_complete_request(rq);
  1191. return BLK_EH_DONE;
  1192. }
  1193. static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
  1194. const struct blk_mq_queue_data *bd)
  1195. {
  1196. struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
  1197. struct nullb_queue *nq = hctx->driver_data;
  1198. might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
  1199. if (nq->dev->irqmode == NULL_IRQ_TIMER) {
  1200. hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1201. cmd->timer.function = null_cmd_timer_expired;
  1202. }
  1203. cmd->rq = bd->rq;
  1204. cmd->nq = nq;
  1205. blk_mq_start_request(bd->rq);
  1206. if (should_requeue_request(bd->rq)) {
  1207. /*
  1208. * Alternate between hitting the core BUSY path, and the
  1209. * driver driven requeue path
  1210. */
  1211. nq->requeue_selection++;
  1212. if (nq->requeue_selection & 1)
  1213. return BLK_STS_RESOURCE;
  1214. else {
  1215. blk_mq_requeue_request(bd->rq, true);
  1216. return BLK_STS_OK;
  1217. }
  1218. }
  1219. if (should_timeout_request(bd->rq))
  1220. return BLK_STS_OK;
  1221. return null_handle_cmd(cmd);
  1222. }
  1223. static const struct blk_mq_ops null_mq_ops = {
  1224. .queue_rq = null_queue_rq,
  1225. .complete = null_softirq_done_fn,
  1226. .timeout = null_timeout_rq,
  1227. };
  1228. static void cleanup_queue(struct nullb_queue *nq)
  1229. {
  1230. kfree(nq->tag_map);
  1231. kfree(nq->cmds);
  1232. }
  1233. static void cleanup_queues(struct nullb *nullb)
  1234. {
  1235. int i;
  1236. for (i = 0; i < nullb->nr_queues; i++)
  1237. cleanup_queue(&nullb->queues[i]);
  1238. kfree(nullb->queues);
  1239. }
  1240. static void null_del_dev(struct nullb *nullb)
  1241. {
  1242. struct nullb_device *dev = nullb->dev;
  1243. ida_simple_remove(&nullb_indexes, nullb->index);
  1244. list_del_init(&nullb->list);
  1245. del_gendisk(nullb->disk);
  1246. if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
  1247. hrtimer_cancel(&nullb->bw_timer);
  1248. atomic_long_set(&nullb->cur_bytes, LONG_MAX);
  1249. null_restart_queue_async(nullb);
  1250. }
  1251. blk_cleanup_queue(nullb->q);
  1252. if (dev->queue_mode == NULL_Q_MQ &&
  1253. nullb->tag_set == &nullb->__tag_set)
  1254. blk_mq_free_tag_set(nullb->tag_set);
  1255. put_disk(nullb->disk);
  1256. cleanup_queues(nullb);
  1257. if (null_cache_active(nullb))
  1258. null_free_device_storage(nullb->dev, true);
  1259. kfree(nullb);
  1260. dev->nullb = NULL;
  1261. }
  1262. static void null_config_discard(struct nullb *nullb)
  1263. {
  1264. if (nullb->dev->discard == false)
  1265. return;
  1266. nullb->q->limits.discard_granularity = nullb->dev->blocksize;
  1267. nullb->q->limits.discard_alignment = nullb->dev->blocksize;
  1268. blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
  1269. blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
  1270. }
  1271. static int null_open(struct block_device *bdev, fmode_t mode)
  1272. {
  1273. return 0;
  1274. }
  1275. static void null_release(struct gendisk *disk, fmode_t mode)
  1276. {
  1277. }
  1278. static const struct block_device_operations null_fops = {
  1279. .owner = THIS_MODULE,
  1280. .open = null_open,
  1281. .release = null_release,
  1282. };
  1283. static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
  1284. {
  1285. BUG_ON(!nullb);
  1286. BUG_ON(!nq);
  1287. init_waitqueue_head(&nq->wait);
  1288. nq->queue_depth = nullb->queue_depth;
  1289. nq->dev = nullb->dev;
  1290. }
  1291. static void null_init_queues(struct nullb *nullb)
  1292. {
  1293. struct request_queue *q = nullb->q;
  1294. struct blk_mq_hw_ctx *hctx;
  1295. struct nullb_queue *nq;
  1296. int i;
  1297. queue_for_each_hw_ctx(q, hctx, i) {
  1298. if (!hctx->nr_ctx || !hctx->tags)
  1299. continue;
  1300. nq = &nullb->queues[i];
  1301. hctx->driver_data = nq;
  1302. null_init_queue(nullb, nq);
  1303. nullb->nr_queues++;
  1304. }
  1305. }
  1306. static int setup_commands(struct nullb_queue *nq)
  1307. {
  1308. struct nullb_cmd *cmd;
  1309. int i, tag_size;
  1310. nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
  1311. if (!nq->cmds)
  1312. return -ENOMEM;
  1313. tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
  1314. nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
  1315. if (!nq->tag_map) {
  1316. kfree(nq->cmds);
  1317. return -ENOMEM;
  1318. }
  1319. for (i = 0; i < nq->queue_depth; i++) {
  1320. cmd = &nq->cmds[i];
  1321. INIT_LIST_HEAD(&cmd->list);
  1322. cmd->ll_list.next = NULL;
  1323. cmd->tag = -1U;
  1324. }
  1325. return 0;
  1326. }
  1327. static int setup_queues(struct nullb *nullb)
  1328. {
  1329. nullb->queues = kcalloc(nullb->dev->submit_queues,
  1330. sizeof(struct nullb_queue),
  1331. GFP_KERNEL);
  1332. if (!nullb->queues)
  1333. return -ENOMEM;
  1334. nullb->nr_queues = 0;
  1335. nullb->queue_depth = nullb->dev->hw_queue_depth;
  1336. return 0;
  1337. }
  1338. static int init_driver_queues(struct nullb *nullb)
  1339. {
  1340. struct nullb_queue *nq;
  1341. int i, ret = 0;
  1342. for (i = 0; i < nullb->dev->submit_queues; i++) {
  1343. nq = &nullb->queues[i];
  1344. null_init_queue(nullb, nq);
  1345. ret = setup_commands(nq);
  1346. if (ret)
  1347. return ret;
  1348. nullb->nr_queues++;
  1349. }
  1350. return 0;
  1351. }
  1352. static int null_gendisk_register(struct nullb *nullb)
  1353. {
  1354. struct gendisk *disk;
  1355. sector_t size;
  1356. disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
  1357. if (!disk)
  1358. return -ENOMEM;
  1359. size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
  1360. set_capacity(disk, size >> 9);
  1361. disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
  1362. disk->major = null_major;
  1363. disk->first_minor = nullb->index;
  1364. disk->fops = &null_fops;
  1365. disk->private_data = nullb;
  1366. disk->queue = nullb->q;
  1367. strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
  1368. add_disk(disk);
  1369. return 0;
  1370. }
  1371. static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
  1372. {
  1373. set->ops = &null_mq_ops;
  1374. set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
  1375. g_submit_queues;
  1376. set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
  1377. g_hw_queue_depth;
  1378. set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
  1379. set->cmd_size = sizeof(struct nullb_cmd);
  1380. set->flags = BLK_MQ_F_SHOULD_MERGE;
  1381. if (g_no_sched)
  1382. set->flags |= BLK_MQ_F_NO_SCHED;
  1383. set->driver_data = NULL;
  1384. if ((nullb && nullb->dev->blocking) || g_blocking)
  1385. set->flags |= BLK_MQ_F_BLOCKING;
  1386. return blk_mq_alloc_tag_set(set);
  1387. }
  1388. static void null_validate_conf(struct nullb_device *dev)
  1389. {
  1390. dev->blocksize = round_down(dev->blocksize, 512);
  1391. dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
  1392. if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
  1393. if (dev->submit_queues != nr_online_nodes)
  1394. dev->submit_queues = nr_online_nodes;
  1395. } else if (dev->submit_queues > nr_cpu_ids)
  1396. dev->submit_queues = nr_cpu_ids;
  1397. else if (dev->submit_queues == 0)
  1398. dev->submit_queues = 1;
  1399. dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
  1400. dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
  1401. /* Do memory allocation, so set blocking */
  1402. if (dev->memory_backed)
  1403. dev->blocking = true;
  1404. else /* cache is meaningless */
  1405. dev->cache_size = 0;
  1406. dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
  1407. dev->cache_size);
  1408. dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
  1409. /* can not stop a queue */
  1410. if (dev->queue_mode == NULL_Q_BIO)
  1411. dev->mbps = 0;
  1412. }
  1413. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1414. static bool __null_setup_fault(struct fault_attr *attr, char *str)
  1415. {
  1416. if (!str[0])
  1417. return true;
  1418. if (!setup_fault_attr(attr, str))
  1419. return false;
  1420. attr->verbose = 0;
  1421. return true;
  1422. }
  1423. #endif
  1424. static bool null_setup_fault(void)
  1425. {
  1426. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1427. if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
  1428. return false;
  1429. if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
  1430. return false;
  1431. #endif
  1432. return true;
  1433. }
  1434. static int null_add_dev(struct nullb_device *dev)
  1435. {
  1436. struct nullb *nullb;
  1437. int rv;
  1438. null_validate_conf(dev);
  1439. nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
  1440. if (!nullb) {
  1441. rv = -ENOMEM;
  1442. goto out;
  1443. }
  1444. nullb->dev = dev;
  1445. dev->nullb = nullb;
  1446. spin_lock_init(&nullb->lock);
  1447. rv = setup_queues(nullb);
  1448. if (rv)
  1449. goto out_free_nullb;
  1450. if (dev->queue_mode == NULL_Q_MQ) {
  1451. if (shared_tags) {
  1452. nullb->tag_set = &tag_set;
  1453. rv = 0;
  1454. } else {
  1455. nullb->tag_set = &nullb->__tag_set;
  1456. rv = null_init_tag_set(nullb, nullb->tag_set);
  1457. }
  1458. if (rv)
  1459. goto out_cleanup_queues;
  1460. if (!null_setup_fault())
  1461. goto out_cleanup_queues;
  1462. nullb->tag_set->timeout = 5 * HZ;
  1463. nullb->q = blk_mq_init_queue(nullb->tag_set);
  1464. if (IS_ERR(nullb->q)) {
  1465. rv = -ENOMEM;
  1466. goto out_cleanup_tags;
  1467. }
  1468. null_init_queues(nullb);
  1469. } else if (dev->queue_mode == NULL_Q_BIO) {
  1470. nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node,
  1471. NULL);
  1472. if (!nullb->q) {
  1473. rv = -ENOMEM;
  1474. goto out_cleanup_queues;
  1475. }
  1476. blk_queue_make_request(nullb->q, null_queue_bio);
  1477. rv = init_driver_queues(nullb);
  1478. if (rv)
  1479. goto out_cleanup_blk_queue;
  1480. } else {
  1481. nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock,
  1482. dev->home_node);
  1483. if (!nullb->q) {
  1484. rv = -ENOMEM;
  1485. goto out_cleanup_queues;
  1486. }
  1487. if (!null_setup_fault())
  1488. goto out_cleanup_blk_queue;
  1489. blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
  1490. blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
  1491. blk_queue_rq_timed_out(nullb->q, null_rq_timed_out_fn);
  1492. nullb->q->rq_timeout = 5 * HZ;
  1493. rv = init_driver_queues(nullb);
  1494. if (rv)
  1495. goto out_cleanup_blk_queue;
  1496. }
  1497. if (dev->mbps) {
  1498. set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
  1499. nullb_setup_bwtimer(nullb);
  1500. }
  1501. if (dev->cache_size > 0) {
  1502. set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
  1503. blk_queue_write_cache(nullb->q, true, true);
  1504. blk_queue_flush_queueable(nullb->q, true);
  1505. }
  1506. nullb->q->queuedata = nullb;
  1507. blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
  1508. blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
  1509. mutex_lock(&lock);
  1510. nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
  1511. dev->index = nullb->index;
  1512. mutex_unlock(&lock);
  1513. blk_queue_logical_block_size(nullb->q, dev->blocksize);
  1514. blk_queue_physical_block_size(nullb->q, dev->blocksize);
  1515. null_config_discard(nullb);
  1516. sprintf(nullb->disk_name, "nullb%d", nullb->index);
  1517. rv = null_gendisk_register(nullb);
  1518. if (rv)
  1519. goto out_cleanup_blk_queue;
  1520. mutex_lock(&lock);
  1521. list_add_tail(&nullb->list, &nullb_list);
  1522. mutex_unlock(&lock);
  1523. return 0;
  1524. out_cleanup_blk_queue:
  1525. blk_cleanup_queue(nullb->q);
  1526. out_cleanup_tags:
  1527. if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
  1528. blk_mq_free_tag_set(nullb->tag_set);
  1529. out_cleanup_queues:
  1530. cleanup_queues(nullb);
  1531. out_free_nullb:
  1532. kfree(nullb);
  1533. out:
  1534. return rv;
  1535. }
  1536. static int __init null_init(void)
  1537. {
  1538. int ret = 0;
  1539. unsigned int i;
  1540. struct nullb *nullb;
  1541. struct nullb_device *dev;
  1542. if (g_bs > PAGE_SIZE) {
  1543. pr_warn("null_blk: invalid block size\n");
  1544. pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
  1545. g_bs = PAGE_SIZE;
  1546. }
  1547. if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
  1548. if (g_submit_queues != nr_online_nodes) {
  1549. pr_warn("null_blk: submit_queues param is set to %u.\n",
  1550. nr_online_nodes);
  1551. g_submit_queues = nr_online_nodes;
  1552. }
  1553. } else if (g_submit_queues > nr_cpu_ids)
  1554. g_submit_queues = nr_cpu_ids;
  1555. else if (g_submit_queues <= 0)
  1556. g_submit_queues = 1;
  1557. if (g_queue_mode == NULL_Q_MQ && shared_tags) {
  1558. ret = null_init_tag_set(NULL, &tag_set);
  1559. if (ret)
  1560. return ret;
  1561. }
  1562. config_group_init(&nullb_subsys.su_group);
  1563. mutex_init(&nullb_subsys.su_mutex);
  1564. ret = configfs_register_subsystem(&nullb_subsys);
  1565. if (ret)
  1566. goto err_tagset;
  1567. mutex_init(&lock);
  1568. null_major = register_blkdev(0, "nullb");
  1569. if (null_major < 0) {
  1570. ret = null_major;
  1571. goto err_conf;
  1572. }
  1573. for (i = 0; i < nr_devices; i++) {
  1574. dev = null_alloc_dev();
  1575. if (!dev) {
  1576. ret = -ENOMEM;
  1577. goto err_dev;
  1578. }
  1579. ret = null_add_dev(dev);
  1580. if (ret) {
  1581. null_free_dev(dev);
  1582. goto err_dev;
  1583. }
  1584. }
  1585. pr_info("null: module loaded\n");
  1586. return 0;
  1587. err_dev:
  1588. while (!list_empty(&nullb_list)) {
  1589. nullb = list_entry(nullb_list.next, struct nullb, list);
  1590. dev = nullb->dev;
  1591. null_del_dev(nullb);
  1592. null_free_dev(dev);
  1593. }
  1594. unregister_blkdev(null_major, "nullb");
  1595. err_conf:
  1596. configfs_unregister_subsystem(&nullb_subsys);
  1597. err_tagset:
  1598. if (g_queue_mode == NULL_Q_MQ && shared_tags)
  1599. blk_mq_free_tag_set(&tag_set);
  1600. return ret;
  1601. }
  1602. static void __exit null_exit(void)
  1603. {
  1604. struct nullb *nullb;
  1605. configfs_unregister_subsystem(&nullb_subsys);
  1606. unregister_blkdev(null_major, "nullb");
  1607. mutex_lock(&lock);
  1608. while (!list_empty(&nullb_list)) {
  1609. struct nullb_device *dev;
  1610. nullb = list_entry(nullb_list.next, struct nullb, list);
  1611. dev = nullb->dev;
  1612. null_del_dev(nullb);
  1613. null_free_dev(dev);
  1614. }
  1615. mutex_unlock(&lock);
  1616. if (g_queue_mode == NULL_Q_MQ && shared_tags)
  1617. blk_mq_free_tag_set(&tag_set);
  1618. }
  1619. module_init(null_init);
  1620. module_exit(null_exit);
  1621. MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
  1622. MODULE_LICENSE("GPL");