aes-ce-glue.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. /*
  2. * aes-ce-glue.c - wrapper code for ARMv8 AES
  3. *
  4. * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <asm/hwcap.h>
  11. #include <asm/neon.h>
  12. #include <asm/hwcap.h>
  13. #include <crypto/aes.h>
  14. #include <crypto/internal/simd.h>
  15. #include <crypto/internal/skcipher.h>
  16. #include <linux/cpufeature.h>
  17. #include <linux/module.h>
  18. #include <crypto/xts.h>
  19. MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
  20. MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  21. MODULE_LICENSE("GPL v2");
  22. /* defined in aes-ce-core.S */
  23. asmlinkage u32 ce_aes_sub(u32 input);
  24. asmlinkage void ce_aes_invert(void *dst, void *src);
  25. asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
  26. int rounds, int blocks);
  27. asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
  28. int rounds, int blocks);
  29. asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
  30. int rounds, int blocks, u8 iv[]);
  31. asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
  32. int rounds, int blocks, u8 iv[]);
  33. asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
  34. int rounds, int blocks, u8 ctr[]);
  35. asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
  36. int rounds, int blocks, u8 iv[],
  37. u8 const rk2[], int first);
  38. asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
  39. int rounds, int blocks, u8 iv[],
  40. u8 const rk2[], int first);
  41. struct aes_block {
  42. u8 b[AES_BLOCK_SIZE];
  43. };
  44. static int num_rounds(struct crypto_aes_ctx *ctx)
  45. {
  46. /*
  47. * # of rounds specified by AES:
  48. * 128 bit key 10 rounds
  49. * 192 bit key 12 rounds
  50. * 256 bit key 14 rounds
  51. * => n byte key => 6 + (n/4) rounds
  52. */
  53. return 6 + ctx->key_length / 4;
  54. }
  55. static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
  56. unsigned int key_len)
  57. {
  58. /*
  59. * The AES key schedule round constants
  60. */
  61. static u8 const rcon[] = {
  62. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
  63. };
  64. u32 kwords = key_len / sizeof(u32);
  65. struct aes_block *key_enc, *key_dec;
  66. int i, j;
  67. if (key_len != AES_KEYSIZE_128 &&
  68. key_len != AES_KEYSIZE_192 &&
  69. key_len != AES_KEYSIZE_256)
  70. return -EINVAL;
  71. memcpy(ctx->key_enc, in_key, key_len);
  72. ctx->key_length = key_len;
  73. kernel_neon_begin();
  74. for (i = 0; i < sizeof(rcon); i++) {
  75. u32 *rki = ctx->key_enc + (i * kwords);
  76. u32 *rko = rki + kwords;
  77. #ifndef CONFIG_CPU_BIG_ENDIAN
  78. rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
  79. rko[0] = rko[0] ^ rki[0] ^ rcon[i];
  80. #else
  81. rko[0] = rol32(ce_aes_sub(rki[kwords - 1]), 8);
  82. rko[0] = rko[0] ^ rki[0] ^ (rcon[i] << 24);
  83. #endif
  84. rko[1] = rko[0] ^ rki[1];
  85. rko[2] = rko[1] ^ rki[2];
  86. rko[3] = rko[2] ^ rki[3];
  87. if (key_len == AES_KEYSIZE_192) {
  88. if (i >= 7)
  89. break;
  90. rko[4] = rko[3] ^ rki[4];
  91. rko[5] = rko[4] ^ rki[5];
  92. } else if (key_len == AES_KEYSIZE_256) {
  93. if (i >= 6)
  94. break;
  95. rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
  96. rko[5] = rko[4] ^ rki[5];
  97. rko[6] = rko[5] ^ rki[6];
  98. rko[7] = rko[6] ^ rki[7];
  99. }
  100. }
  101. /*
  102. * Generate the decryption keys for the Equivalent Inverse Cipher.
  103. * This involves reversing the order of the round keys, and applying
  104. * the Inverse Mix Columns transformation on all but the first and
  105. * the last one.
  106. */
  107. key_enc = (struct aes_block *)ctx->key_enc;
  108. key_dec = (struct aes_block *)ctx->key_dec;
  109. j = num_rounds(ctx);
  110. key_dec[0] = key_enc[j];
  111. for (i = 1, j--; j > 0; i++, j--)
  112. ce_aes_invert(key_dec + i, key_enc + j);
  113. key_dec[i] = key_enc[0];
  114. kernel_neon_end();
  115. return 0;
  116. }
  117. static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
  118. unsigned int key_len)
  119. {
  120. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  121. int ret;
  122. ret = ce_aes_expandkey(ctx, in_key, key_len);
  123. if (!ret)
  124. return 0;
  125. crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  126. return -EINVAL;
  127. }
  128. struct crypto_aes_xts_ctx {
  129. struct crypto_aes_ctx key1;
  130. struct crypto_aes_ctx __aligned(8) key2;
  131. };
  132. static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
  133. unsigned int key_len)
  134. {
  135. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  136. int ret;
  137. ret = xts_verify_key(tfm, in_key, key_len);
  138. if (ret)
  139. return ret;
  140. ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
  141. if (!ret)
  142. ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
  143. key_len / 2);
  144. if (!ret)
  145. return 0;
  146. crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  147. return -EINVAL;
  148. }
  149. static int ecb_encrypt(struct skcipher_request *req)
  150. {
  151. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  152. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  153. struct skcipher_walk walk;
  154. unsigned int blocks;
  155. int err;
  156. err = skcipher_walk_virt(&walk, req, true);
  157. kernel_neon_begin();
  158. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  159. ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  160. (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
  161. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  162. }
  163. kernel_neon_end();
  164. return err;
  165. }
  166. static int ecb_decrypt(struct skcipher_request *req)
  167. {
  168. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  169. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  170. struct skcipher_walk walk;
  171. unsigned int blocks;
  172. int err;
  173. err = skcipher_walk_virt(&walk, req, true);
  174. kernel_neon_begin();
  175. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  176. ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  177. (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
  178. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  179. }
  180. kernel_neon_end();
  181. return err;
  182. }
  183. static int cbc_encrypt(struct skcipher_request *req)
  184. {
  185. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  186. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  187. struct skcipher_walk walk;
  188. unsigned int blocks;
  189. int err;
  190. err = skcipher_walk_virt(&walk, req, true);
  191. kernel_neon_begin();
  192. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  193. ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  194. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  195. walk.iv);
  196. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  197. }
  198. kernel_neon_end();
  199. return err;
  200. }
  201. static int cbc_decrypt(struct skcipher_request *req)
  202. {
  203. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  204. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  205. struct skcipher_walk walk;
  206. unsigned int blocks;
  207. int err;
  208. err = skcipher_walk_virt(&walk, req, true);
  209. kernel_neon_begin();
  210. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  211. ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  212. (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
  213. walk.iv);
  214. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  215. }
  216. kernel_neon_end();
  217. return err;
  218. }
  219. static int ctr_encrypt(struct skcipher_request *req)
  220. {
  221. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  222. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  223. struct skcipher_walk walk;
  224. int err, blocks;
  225. err = skcipher_walk_virt(&walk, req, true);
  226. kernel_neon_begin();
  227. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  228. ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  229. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  230. walk.iv);
  231. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  232. }
  233. if (walk.nbytes) {
  234. u8 __aligned(8) tail[AES_BLOCK_SIZE];
  235. unsigned int nbytes = walk.nbytes;
  236. u8 *tdst = walk.dst.virt.addr;
  237. u8 *tsrc = walk.src.virt.addr;
  238. /*
  239. * Tell aes_ctr_encrypt() to process a tail block.
  240. */
  241. blocks = -1;
  242. ce_aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc,
  243. num_rounds(ctx), blocks, walk.iv);
  244. crypto_xor_cpy(tdst, tsrc, tail, nbytes);
  245. err = skcipher_walk_done(&walk, 0);
  246. }
  247. kernel_neon_end();
  248. return err;
  249. }
  250. static int xts_encrypt(struct skcipher_request *req)
  251. {
  252. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  253. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  254. int err, first, rounds = num_rounds(&ctx->key1);
  255. struct skcipher_walk walk;
  256. unsigned int blocks;
  257. err = skcipher_walk_virt(&walk, req, true);
  258. kernel_neon_begin();
  259. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  260. ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  261. (u8 *)ctx->key1.key_enc, rounds, blocks,
  262. walk.iv, (u8 *)ctx->key2.key_enc, first);
  263. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  264. }
  265. kernel_neon_end();
  266. return err;
  267. }
  268. static int xts_decrypt(struct skcipher_request *req)
  269. {
  270. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  271. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  272. int err, first, rounds = num_rounds(&ctx->key1);
  273. struct skcipher_walk walk;
  274. unsigned int blocks;
  275. err = skcipher_walk_virt(&walk, req, true);
  276. kernel_neon_begin();
  277. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  278. ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  279. (u8 *)ctx->key1.key_dec, rounds, blocks,
  280. walk.iv, (u8 *)ctx->key2.key_enc, first);
  281. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  282. }
  283. kernel_neon_end();
  284. return err;
  285. }
  286. static struct skcipher_alg aes_algs[] = { {
  287. .base = {
  288. .cra_name = "__ecb(aes)",
  289. .cra_driver_name = "__ecb-aes-ce",
  290. .cra_priority = 300,
  291. .cra_flags = CRYPTO_ALG_INTERNAL,
  292. .cra_blocksize = AES_BLOCK_SIZE,
  293. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  294. .cra_module = THIS_MODULE,
  295. },
  296. .min_keysize = AES_MIN_KEY_SIZE,
  297. .max_keysize = AES_MAX_KEY_SIZE,
  298. .setkey = ce_aes_setkey,
  299. .encrypt = ecb_encrypt,
  300. .decrypt = ecb_decrypt,
  301. }, {
  302. .base = {
  303. .cra_name = "__cbc(aes)",
  304. .cra_driver_name = "__cbc-aes-ce",
  305. .cra_priority = 300,
  306. .cra_flags = CRYPTO_ALG_INTERNAL,
  307. .cra_blocksize = AES_BLOCK_SIZE,
  308. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  309. .cra_module = THIS_MODULE,
  310. },
  311. .min_keysize = AES_MIN_KEY_SIZE,
  312. .max_keysize = AES_MAX_KEY_SIZE,
  313. .ivsize = AES_BLOCK_SIZE,
  314. .setkey = ce_aes_setkey,
  315. .encrypt = cbc_encrypt,
  316. .decrypt = cbc_decrypt,
  317. }, {
  318. .base = {
  319. .cra_name = "__ctr(aes)",
  320. .cra_driver_name = "__ctr-aes-ce",
  321. .cra_priority = 300,
  322. .cra_flags = CRYPTO_ALG_INTERNAL,
  323. .cra_blocksize = 1,
  324. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  325. .cra_module = THIS_MODULE,
  326. },
  327. .min_keysize = AES_MIN_KEY_SIZE,
  328. .max_keysize = AES_MAX_KEY_SIZE,
  329. .ivsize = AES_BLOCK_SIZE,
  330. .chunksize = AES_BLOCK_SIZE,
  331. .setkey = ce_aes_setkey,
  332. .encrypt = ctr_encrypt,
  333. .decrypt = ctr_encrypt,
  334. }, {
  335. .base = {
  336. .cra_name = "__xts(aes)",
  337. .cra_driver_name = "__xts-aes-ce",
  338. .cra_priority = 300,
  339. .cra_flags = CRYPTO_ALG_INTERNAL,
  340. .cra_blocksize = AES_BLOCK_SIZE,
  341. .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
  342. .cra_module = THIS_MODULE,
  343. },
  344. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  345. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  346. .ivsize = AES_BLOCK_SIZE,
  347. .setkey = xts_set_key,
  348. .encrypt = xts_encrypt,
  349. .decrypt = xts_decrypt,
  350. } };
  351. static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
  352. static void aes_exit(void)
  353. {
  354. int i;
  355. for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++)
  356. simd_skcipher_free(aes_simd_algs[i]);
  357. crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  358. }
  359. static int __init aes_init(void)
  360. {
  361. struct simd_skcipher_alg *simd;
  362. const char *basename;
  363. const char *algname;
  364. const char *drvname;
  365. int err;
  366. int i;
  367. err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  368. if (err)
  369. return err;
  370. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  371. algname = aes_algs[i].base.cra_name + 2;
  372. drvname = aes_algs[i].base.cra_driver_name + 2;
  373. basename = aes_algs[i].base.cra_driver_name;
  374. simd = simd_skcipher_create_compat(algname, drvname, basename);
  375. err = PTR_ERR(simd);
  376. if (IS_ERR(simd))
  377. goto unregister_simds;
  378. aes_simd_algs[i] = simd;
  379. }
  380. return 0;
  381. unregister_simds:
  382. aes_exit();
  383. return err;
  384. }
  385. module_cpu_feature_match(AES, aes_init);
  386. module_exit(aes_exit);