signal.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. #ifndef _LINUX_SCHED_SIGNAL_H
  2. #define _LINUX_SCHED_SIGNAL_H
  3. #include <linux/rculist.h>
  4. #include <linux/signal.h>
  5. #include <linux/sched.h>
  6. #include <linux/sched/jobctl.h>
  7. #include <linux/sched/task.h>
  8. #include <linux/cred.h>
  9. /*
  10. * Types defining task->signal and task->sighand and APIs using them:
  11. */
  12. struct sighand_struct {
  13. atomic_t count;
  14. struct k_sigaction action[_NSIG];
  15. spinlock_t siglock;
  16. wait_queue_head_t signalfd_wqh;
  17. };
  18. /*
  19. * Per-process accounting stats:
  20. */
  21. struct pacct_struct {
  22. int ac_flag;
  23. long ac_exitcode;
  24. unsigned long ac_mem;
  25. u64 ac_utime, ac_stime;
  26. unsigned long ac_minflt, ac_majflt;
  27. };
  28. struct cpu_itimer {
  29. u64 expires;
  30. u64 incr;
  31. };
  32. /*
  33. * This is the atomic variant of task_cputime, which can be used for
  34. * storing and updating task_cputime statistics without locking.
  35. */
  36. struct task_cputime_atomic {
  37. atomic64_t utime;
  38. atomic64_t stime;
  39. atomic64_t sum_exec_runtime;
  40. };
  41. #define INIT_CPUTIME_ATOMIC \
  42. (struct task_cputime_atomic) { \
  43. .utime = ATOMIC64_INIT(0), \
  44. .stime = ATOMIC64_INIT(0), \
  45. .sum_exec_runtime = ATOMIC64_INIT(0), \
  46. }
  47. /**
  48. * struct thread_group_cputimer - thread group interval timer counts
  49. * @cputime_atomic: atomic thread group interval timers.
  50. * @running: true when there are timers running and
  51. * @cputime_atomic receives updates.
  52. * @checking_timer: true when a thread in the group is in the
  53. * process of checking for thread group timers.
  54. *
  55. * This structure contains the version of task_cputime, above, that is
  56. * used for thread group CPU timer calculations.
  57. */
  58. struct thread_group_cputimer {
  59. struct task_cputime_atomic cputime_atomic;
  60. bool running;
  61. bool checking_timer;
  62. };
  63. /*
  64. * NOTE! "signal_struct" does not have its own
  65. * locking, because a shared signal_struct always
  66. * implies a shared sighand_struct, so locking
  67. * sighand_struct is always a proper superset of
  68. * the locking of signal_struct.
  69. */
  70. struct signal_struct {
  71. atomic_t sigcnt;
  72. atomic_t live;
  73. int nr_threads;
  74. struct list_head thread_head;
  75. wait_queue_head_t wait_chldexit; /* for wait4() */
  76. /* current thread group signal load-balancing target: */
  77. struct task_struct *curr_target;
  78. /* shared signal handling: */
  79. struct sigpending shared_pending;
  80. /* thread group exit support */
  81. int group_exit_code;
  82. /* overloaded:
  83. * - notify group_exit_task when ->count is equal to notify_count
  84. * - everyone except group_exit_task is stopped during signal delivery
  85. * of fatal signals, group_exit_task processes the signal.
  86. */
  87. int notify_count;
  88. struct task_struct *group_exit_task;
  89. /* thread group stop support, overloads group_exit_code too */
  90. int group_stop_count;
  91. unsigned int flags; /* see SIGNAL_* flags below */
  92. /*
  93. * PR_SET_CHILD_SUBREAPER marks a process, like a service
  94. * manager, to re-parent orphan (double-forking) child processes
  95. * to this process instead of 'init'. The service manager is
  96. * able to receive SIGCHLD signals and is able to investigate
  97. * the process until it calls wait(). All children of this
  98. * process will inherit a flag if they should look for a
  99. * child_subreaper process at exit.
  100. */
  101. unsigned int is_child_subreaper:1;
  102. unsigned int has_child_subreaper:1;
  103. #ifdef CONFIG_POSIX_TIMERS
  104. /* POSIX.1b Interval Timers */
  105. int posix_timer_id;
  106. struct list_head posix_timers;
  107. /* ITIMER_REAL timer for the process */
  108. struct hrtimer real_timer;
  109. ktime_t it_real_incr;
  110. /*
  111. * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
  112. * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
  113. * values are defined to 0 and 1 respectively
  114. */
  115. struct cpu_itimer it[2];
  116. /*
  117. * Thread group totals for process CPU timers.
  118. * See thread_group_cputimer(), et al, for details.
  119. */
  120. struct thread_group_cputimer cputimer;
  121. /* Earliest-expiration cache. */
  122. struct task_cputime cputime_expires;
  123. struct list_head cpu_timers[3];
  124. #endif
  125. struct pid *leader_pid;
  126. #ifdef CONFIG_NO_HZ_FULL
  127. atomic_t tick_dep_mask;
  128. #endif
  129. struct pid *tty_old_pgrp;
  130. /* boolean value for session group leader */
  131. int leader;
  132. struct tty_struct *tty; /* NULL if no tty */
  133. #ifdef CONFIG_SCHED_AUTOGROUP
  134. struct autogroup *autogroup;
  135. #endif
  136. /*
  137. * Cumulative resource counters for dead threads in the group,
  138. * and for reaped dead child processes forked by this group.
  139. * Live threads maintain their own counters and add to these
  140. * in __exit_signal, except for the group leader.
  141. */
  142. seqlock_t stats_lock;
  143. u64 utime, stime, cutime, cstime;
  144. u64 gtime;
  145. u64 cgtime;
  146. struct prev_cputime prev_cputime;
  147. unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
  148. unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
  149. unsigned long inblock, oublock, cinblock, coublock;
  150. unsigned long maxrss, cmaxrss;
  151. struct task_io_accounting ioac;
  152. /*
  153. * Cumulative ns of schedule CPU time fo dead threads in the
  154. * group, not including a zombie group leader, (This only differs
  155. * from jiffies_to_ns(utime + stime) if sched_clock uses something
  156. * other than jiffies.)
  157. */
  158. unsigned long long sum_sched_runtime;
  159. /*
  160. * We don't bother to synchronize most readers of this at all,
  161. * because there is no reader checking a limit that actually needs
  162. * to get both rlim_cur and rlim_max atomically, and either one
  163. * alone is a single word that can safely be read normally.
  164. * getrlimit/setrlimit use task_lock(current->group_leader) to
  165. * protect this instead of the siglock, because they really
  166. * have no need to disable irqs.
  167. */
  168. struct rlimit rlim[RLIM_NLIMITS];
  169. #ifdef CONFIG_BSD_PROCESS_ACCT
  170. struct pacct_struct pacct; /* per-process accounting information */
  171. #endif
  172. #ifdef CONFIG_TASKSTATS
  173. struct taskstats *stats;
  174. #endif
  175. #ifdef CONFIG_AUDIT
  176. unsigned audit_tty;
  177. struct tty_audit_buf *tty_audit_buf;
  178. #endif
  179. /*
  180. * Thread is the potential origin of an oom condition; kill first on
  181. * oom
  182. */
  183. bool oom_flag_origin;
  184. short oom_score_adj; /* OOM kill score adjustment */
  185. short oom_score_adj_min; /* OOM kill score adjustment min value.
  186. * Only settable by CAP_SYS_RESOURCE. */
  187. struct mm_struct *oom_mm; /* recorded mm when the thread group got
  188. * killed by the oom killer */
  189. struct mutex cred_guard_mutex; /* guard against foreign influences on
  190. * credential calculations
  191. * (notably. ptrace) */
  192. } __randomize_layout;
  193. /*
  194. * Bits in flags field of signal_struct.
  195. */
  196. #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
  197. #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
  198. #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
  199. #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
  200. /*
  201. * Pending notifications to parent.
  202. */
  203. #define SIGNAL_CLD_STOPPED 0x00000010
  204. #define SIGNAL_CLD_CONTINUED 0x00000020
  205. #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
  206. #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
  207. #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
  208. SIGNAL_STOP_CONTINUED)
  209. static inline void signal_set_stop_flags(struct signal_struct *sig,
  210. unsigned int flags)
  211. {
  212. WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
  213. sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
  214. }
  215. /* If true, all threads except ->group_exit_task have pending SIGKILL */
  216. static inline int signal_group_exit(const struct signal_struct *sig)
  217. {
  218. return (sig->flags & SIGNAL_GROUP_EXIT) ||
  219. (sig->group_exit_task != NULL);
  220. }
  221. extern void flush_signals(struct task_struct *);
  222. extern void ignore_signals(struct task_struct *);
  223. extern void flush_signal_handlers(struct task_struct *, int force_default);
  224. extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
  225. static inline int kernel_dequeue_signal(siginfo_t *info)
  226. {
  227. struct task_struct *tsk = current;
  228. siginfo_t __info;
  229. int ret;
  230. spin_lock_irq(&tsk->sighand->siglock);
  231. ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
  232. spin_unlock_irq(&tsk->sighand->siglock);
  233. return ret;
  234. }
  235. static inline void kernel_signal_stop(void)
  236. {
  237. spin_lock_irq(&current->sighand->siglock);
  238. if (current->jobctl & JOBCTL_STOP_DEQUEUED)
  239. __set_current_state(TASK_STOPPED);
  240. spin_unlock_irq(&current->sighand->siglock);
  241. schedule();
  242. }
  243. extern int send_sig_info(int, struct siginfo *, struct task_struct *);
  244. extern int force_sigsegv(int, struct task_struct *);
  245. extern int force_sig_info(int, struct siginfo *, struct task_struct *);
  246. extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
  247. extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
  248. extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
  249. const struct cred *, u32);
  250. extern int kill_pgrp(struct pid *pid, int sig, int priv);
  251. extern int kill_pid(struct pid *pid, int sig, int priv);
  252. extern __must_check bool do_notify_parent(struct task_struct *, int);
  253. extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
  254. extern void force_sig(int, struct task_struct *);
  255. extern int send_sig(int, struct task_struct *, int);
  256. extern int zap_other_threads(struct task_struct *p);
  257. extern struct sigqueue *sigqueue_alloc(void);
  258. extern void sigqueue_free(struct sigqueue *);
  259. extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
  260. extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
  261. static inline int restart_syscall(void)
  262. {
  263. set_tsk_thread_flag(current, TIF_SIGPENDING);
  264. return -ERESTARTNOINTR;
  265. }
  266. static inline int signal_pending(struct task_struct *p)
  267. {
  268. return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
  269. }
  270. static inline int __fatal_signal_pending(struct task_struct *p)
  271. {
  272. return unlikely(sigismember(&p->pending.signal, SIGKILL));
  273. }
  274. static inline int fatal_signal_pending(struct task_struct *p)
  275. {
  276. return signal_pending(p) && __fatal_signal_pending(p);
  277. }
  278. static inline int signal_pending_state(long state, struct task_struct *p)
  279. {
  280. if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
  281. return 0;
  282. if (!signal_pending(p))
  283. return 0;
  284. return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
  285. }
  286. /*
  287. * Reevaluate whether the task has signals pending delivery.
  288. * Wake the task if so.
  289. * This is required every time the blocked sigset_t changes.
  290. * callers must hold sighand->siglock.
  291. */
  292. extern void recalc_sigpending_and_wake(struct task_struct *t);
  293. extern void recalc_sigpending(void);
  294. extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
  295. static inline void signal_wake_up(struct task_struct *t, bool resume)
  296. {
  297. signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
  298. }
  299. static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
  300. {
  301. signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
  302. }
  303. #ifdef TIF_RESTORE_SIGMASK
  304. /*
  305. * Legacy restore_sigmask accessors. These are inefficient on
  306. * SMP architectures because they require atomic operations.
  307. */
  308. /**
  309. * set_restore_sigmask() - make sure saved_sigmask processing gets done
  310. *
  311. * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
  312. * will run before returning to user mode, to process the flag. For
  313. * all callers, TIF_SIGPENDING is already set or it's no harm to set
  314. * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
  315. * arch code will notice on return to user mode, in case those bits
  316. * are scarce. We set TIF_SIGPENDING here to ensure that the arch
  317. * signal code always gets run when TIF_RESTORE_SIGMASK is set.
  318. */
  319. static inline void set_restore_sigmask(void)
  320. {
  321. set_thread_flag(TIF_RESTORE_SIGMASK);
  322. WARN_ON(!test_thread_flag(TIF_SIGPENDING));
  323. }
  324. static inline void clear_restore_sigmask(void)
  325. {
  326. clear_thread_flag(TIF_RESTORE_SIGMASK);
  327. }
  328. static inline bool test_restore_sigmask(void)
  329. {
  330. return test_thread_flag(TIF_RESTORE_SIGMASK);
  331. }
  332. static inline bool test_and_clear_restore_sigmask(void)
  333. {
  334. return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
  335. }
  336. #else /* TIF_RESTORE_SIGMASK */
  337. /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
  338. static inline void set_restore_sigmask(void)
  339. {
  340. current->restore_sigmask = true;
  341. WARN_ON(!test_thread_flag(TIF_SIGPENDING));
  342. }
  343. static inline void clear_restore_sigmask(void)
  344. {
  345. current->restore_sigmask = false;
  346. }
  347. static inline bool test_restore_sigmask(void)
  348. {
  349. return current->restore_sigmask;
  350. }
  351. static inline bool test_and_clear_restore_sigmask(void)
  352. {
  353. if (!current->restore_sigmask)
  354. return false;
  355. current->restore_sigmask = false;
  356. return true;
  357. }
  358. #endif
  359. static inline void restore_saved_sigmask(void)
  360. {
  361. if (test_and_clear_restore_sigmask())
  362. __set_current_blocked(&current->saved_sigmask);
  363. }
  364. static inline sigset_t *sigmask_to_save(void)
  365. {
  366. sigset_t *res = &current->blocked;
  367. if (unlikely(test_restore_sigmask()))
  368. res = &current->saved_sigmask;
  369. return res;
  370. }
  371. static inline int kill_cad_pid(int sig, int priv)
  372. {
  373. return kill_pid(cad_pid, sig, priv);
  374. }
  375. /* These can be the second arg to send_sig_info/send_group_sig_info. */
  376. #define SEND_SIG_NOINFO ((struct siginfo *) 0)
  377. #define SEND_SIG_PRIV ((struct siginfo *) 1)
  378. #define SEND_SIG_FORCED ((struct siginfo *) 2)
  379. /*
  380. * True if we are on the alternate signal stack.
  381. */
  382. static inline int on_sig_stack(unsigned long sp)
  383. {
  384. /*
  385. * If the signal stack is SS_AUTODISARM then, by construction, we
  386. * can't be on the signal stack unless user code deliberately set
  387. * SS_AUTODISARM when we were already on it.
  388. *
  389. * This improves reliability: if user state gets corrupted such that
  390. * the stack pointer points very close to the end of the signal stack,
  391. * then this check will enable the signal to be handled anyway.
  392. */
  393. if (current->sas_ss_flags & SS_AUTODISARM)
  394. return 0;
  395. #ifdef CONFIG_STACK_GROWSUP
  396. return sp >= current->sas_ss_sp &&
  397. sp - current->sas_ss_sp < current->sas_ss_size;
  398. #else
  399. return sp > current->sas_ss_sp &&
  400. sp - current->sas_ss_sp <= current->sas_ss_size;
  401. #endif
  402. }
  403. static inline int sas_ss_flags(unsigned long sp)
  404. {
  405. if (!current->sas_ss_size)
  406. return SS_DISABLE;
  407. return on_sig_stack(sp) ? SS_ONSTACK : 0;
  408. }
  409. static inline void sas_ss_reset(struct task_struct *p)
  410. {
  411. p->sas_ss_sp = 0;
  412. p->sas_ss_size = 0;
  413. p->sas_ss_flags = SS_DISABLE;
  414. }
  415. static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
  416. {
  417. if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
  418. #ifdef CONFIG_STACK_GROWSUP
  419. return current->sas_ss_sp;
  420. #else
  421. return current->sas_ss_sp + current->sas_ss_size;
  422. #endif
  423. return sp;
  424. }
  425. extern void __cleanup_sighand(struct sighand_struct *);
  426. extern void flush_itimer_signals(void);
  427. #define tasklist_empty() \
  428. list_empty(&init_task.tasks)
  429. #define next_task(p) \
  430. list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
  431. #define for_each_process(p) \
  432. for (p = &init_task ; (p = next_task(p)) != &init_task ; )
  433. extern bool current_is_single_threaded(void);
  434. /*
  435. * Careful: do_each_thread/while_each_thread is a double loop so
  436. * 'break' will not work as expected - use goto instead.
  437. */
  438. #define do_each_thread(g, t) \
  439. for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
  440. #define while_each_thread(g, t) \
  441. while ((t = next_thread(t)) != g)
  442. #define __for_each_thread(signal, t) \
  443. list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
  444. #define for_each_thread(p, t) \
  445. __for_each_thread((p)->signal, t)
  446. /* Careful: this is a double loop, 'break' won't work as expected. */
  447. #define for_each_process_thread(p, t) \
  448. for_each_process(p) for_each_thread(p, t)
  449. typedef int (*proc_visitor)(struct task_struct *p, void *data);
  450. void walk_process_tree(struct task_struct *top, proc_visitor, void *);
  451. static inline int get_nr_threads(struct task_struct *tsk)
  452. {
  453. return tsk->signal->nr_threads;
  454. }
  455. static inline bool thread_group_leader(struct task_struct *p)
  456. {
  457. return p->exit_signal >= 0;
  458. }
  459. /* Do to the insanities of de_thread it is possible for a process
  460. * to have the pid of the thread group leader without actually being
  461. * the thread group leader. For iteration through the pids in proc
  462. * all we care about is that we have a task with the appropriate
  463. * pid, we don't actually care if we have the right task.
  464. */
  465. static inline bool has_group_leader_pid(struct task_struct *p)
  466. {
  467. return task_pid(p) == p->signal->leader_pid;
  468. }
  469. static inline
  470. bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
  471. {
  472. return p1->signal == p2->signal;
  473. }
  474. static inline struct task_struct *next_thread(const struct task_struct *p)
  475. {
  476. return list_entry_rcu(p->thread_group.next,
  477. struct task_struct, thread_group);
  478. }
  479. static inline int thread_group_empty(struct task_struct *p)
  480. {
  481. return list_empty(&p->thread_group);
  482. }
  483. #define delay_group_leader(p) \
  484. (thread_group_leader(p) && !thread_group_empty(p))
  485. extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
  486. unsigned long *flags);
  487. static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
  488. unsigned long *flags)
  489. {
  490. struct sighand_struct *ret;
  491. ret = __lock_task_sighand(tsk, flags);
  492. (void)__cond_lock(&tsk->sighand->siglock, ret);
  493. return ret;
  494. }
  495. static inline void unlock_task_sighand(struct task_struct *tsk,
  496. unsigned long *flags)
  497. {
  498. spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
  499. }
  500. static inline unsigned long task_rlimit(const struct task_struct *tsk,
  501. unsigned int limit)
  502. {
  503. return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
  504. }
  505. static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
  506. unsigned int limit)
  507. {
  508. return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
  509. }
  510. static inline unsigned long rlimit(unsigned int limit)
  511. {
  512. return task_rlimit(current, limit);
  513. }
  514. static inline unsigned long rlimit_max(unsigned int limit)
  515. {
  516. return task_rlimit_max(current, limit);
  517. }
  518. #endif /* _LINUX_SCHED_SIGNAL_H */