intel_ringbuffer.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  52. {
  53. intel_ring_update_space(ringbuf);
  54. return ringbuf->space;
  55. }
  56. bool intel_ring_stopped(struct intel_engine_cs *ring)
  57. {
  58. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  59. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  60. }
  61. static void __intel_ring_advance(struct intel_engine_cs *ring)
  62. {
  63. struct intel_ringbuffer *ringbuf = ring->buffer;
  64. ringbuf->tail &= ringbuf->size - 1;
  65. if (intel_ring_stopped(ring))
  66. return;
  67. ring->write_tail(ring, ringbuf->tail);
  68. }
  69. static int
  70. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct intel_engine_cs *ring = req->ring;
  75. u32 cmd;
  76. int ret;
  77. cmd = MI_FLUSH;
  78. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  79. cmd |= MI_NO_WRITE_FLUSH;
  80. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  81. cmd |= MI_READ_FLUSH;
  82. ret = intel_ring_begin(req, 2);
  83. if (ret)
  84. return ret;
  85. intel_ring_emit(ring, cmd);
  86. intel_ring_emit(ring, MI_NOOP);
  87. intel_ring_advance(ring);
  88. return 0;
  89. }
  90. static int
  91. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  92. u32 invalidate_domains,
  93. u32 flush_domains)
  94. {
  95. struct intel_engine_cs *ring = req->ring;
  96. struct drm_device *dev = ring->dev;
  97. u32 cmd;
  98. int ret;
  99. /*
  100. * read/write caches:
  101. *
  102. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  103. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  104. * also flushed at 2d versus 3d pipeline switches.
  105. *
  106. * read-only caches:
  107. *
  108. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  109. * MI_READ_FLUSH is set, and is always flushed on 965.
  110. *
  111. * I915_GEM_DOMAIN_COMMAND may not exist?
  112. *
  113. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  114. * invalidated when MI_EXE_FLUSH is set.
  115. *
  116. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  117. * invalidated with every MI_FLUSH.
  118. *
  119. * TLBs:
  120. *
  121. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  122. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  123. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  124. * are flushed at any MI_FLUSH.
  125. */
  126. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  127. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  128. cmd &= ~MI_NO_WRITE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  130. cmd |= MI_EXE_FLUSH;
  131. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  132. (IS_G4X(dev) || IS_GEN5(dev)))
  133. cmd |= MI_INVALIDATE_ISP;
  134. ret = intel_ring_begin(req, 2);
  135. if (ret)
  136. return ret;
  137. intel_ring_emit(ring, cmd);
  138. intel_ring_emit(ring, MI_NOOP);
  139. intel_ring_advance(ring);
  140. return 0;
  141. }
  142. /**
  143. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  144. * implementing two workarounds on gen6. From section 1.4.7.1
  145. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  146. *
  147. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  148. * produced by non-pipelined state commands), software needs to first
  149. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  150. * 0.
  151. *
  152. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  153. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  154. *
  155. * And the workaround for these two requires this workaround first:
  156. *
  157. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  158. * BEFORE the pipe-control with a post-sync op and no write-cache
  159. * flushes.
  160. *
  161. * And this last workaround is tricky because of the requirements on
  162. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  163. * volume 2 part 1:
  164. *
  165. * "1 of the following must also be set:
  166. * - Render Target Cache Flush Enable ([12] of DW1)
  167. * - Depth Cache Flush Enable ([0] of DW1)
  168. * - Stall at Pixel Scoreboard ([1] of DW1)
  169. * - Depth Stall ([13] of DW1)
  170. * - Post-Sync Operation ([13] of DW1)
  171. * - Notify Enable ([8] of DW1)"
  172. *
  173. * The cache flushes require the workaround flush that triggered this
  174. * one, so we can't use it. Depth stall would trigger the same.
  175. * Post-sync nonzero is what triggered this second workaround, so we
  176. * can't use that one either. Notify enable is IRQs, which aren't
  177. * really our business. That leaves only stall at scoreboard.
  178. */
  179. static int
  180. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  181. {
  182. struct intel_engine_cs *ring = req->ring;
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(req, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(req, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. struct intel_engine_cs *ring = req->ring;
  213. u32 flags = 0;
  214. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  215. int ret;
  216. /* Force SNB workarounds for PIPE_CONTROL flushes */
  217. ret = intel_emit_post_sync_nonzero_flush(req);
  218. if (ret)
  219. return ret;
  220. /* Just flush everything. Experiments have shown that reducing the
  221. * number of bits based on the write domains has little performance
  222. * impact.
  223. */
  224. if (flush_domains) {
  225. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  226. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  227. /*
  228. * Ensure that any following seqno writes only happen
  229. * when the render cache is indeed flushed.
  230. */
  231. flags |= PIPE_CONTROL_CS_STALL;
  232. }
  233. if (invalidate_domains) {
  234. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  235. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  239. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  240. /*
  241. * TLB invalidate requires a post-sync write.
  242. */
  243. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  244. }
  245. ret = intel_ring_begin(req, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(ring, flags);
  250. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  251. intel_ring_emit(ring, 0);
  252. intel_ring_advance(ring);
  253. return 0;
  254. }
  255. static int
  256. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  257. {
  258. struct intel_engine_cs *ring = req->ring;
  259. int ret;
  260. ret = intel_ring_begin(req, 4);
  261. if (ret)
  262. return ret;
  263. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  264. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  265. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  266. intel_ring_emit(ring, 0);
  267. intel_ring_emit(ring, 0);
  268. intel_ring_advance(ring);
  269. return 0;
  270. }
  271. static int
  272. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  273. u32 invalidate_domains, u32 flush_domains)
  274. {
  275. struct intel_engine_cs *ring = req->ring;
  276. u32 flags = 0;
  277. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  278. int ret;
  279. /*
  280. * Ensure that any following seqno writes only happen when the render
  281. * cache is indeed flushed.
  282. *
  283. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  284. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  285. * don't try to be clever and just set it unconditionally.
  286. */
  287. flags |= PIPE_CONTROL_CS_STALL;
  288. /* Just flush everything. Experiments have shown that reducing the
  289. * number of bits based on the write domains has little performance
  290. * impact.
  291. */
  292. if (flush_domains) {
  293. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  294. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  295. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  296. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  297. }
  298. if (invalidate_domains) {
  299. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  300. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  312. /* Workaround: we must issue a pipe_control with CS-stall bit
  313. * set before a pipe_control command that has the state cache
  314. * invalidate bit set. */
  315. gen7_render_ring_cs_stall_wa(req);
  316. }
  317. ret = intel_ring_begin(req, 4);
  318. if (ret)
  319. return ret;
  320. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  321. intel_ring_emit(ring, flags);
  322. intel_ring_emit(ring, scratch_addr);
  323. intel_ring_emit(ring, 0);
  324. intel_ring_advance(ring);
  325. return 0;
  326. }
  327. static int
  328. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  329. u32 flags, u32 scratch_addr)
  330. {
  331. struct intel_engine_cs *ring = req->ring;
  332. int ret;
  333. ret = intel_ring_begin(req, 6);
  334. if (ret)
  335. return ret;
  336. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  337. intel_ring_emit(ring, flags);
  338. intel_ring_emit(ring, scratch_addr);
  339. intel_ring_emit(ring, 0);
  340. intel_ring_emit(ring, 0);
  341. intel_ring_emit(ring, 0);
  342. intel_ring_advance(ring);
  343. return 0;
  344. }
  345. static int
  346. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  347. u32 invalidate_domains, u32 flush_domains)
  348. {
  349. u32 flags = 0;
  350. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  351. int ret;
  352. flags |= PIPE_CONTROL_CS_STALL;
  353. if (flush_domains) {
  354. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  355. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  356. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  357. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  358. }
  359. if (invalidate_domains) {
  360. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  361. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_QW_WRITE;
  367. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  368. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  369. ret = gen8_emit_pipe_control(req,
  370. PIPE_CONTROL_CS_STALL |
  371. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  372. 0);
  373. if (ret)
  374. return ret;
  375. }
  376. return gen8_emit_pipe_control(req, flags, scratch_addr);
  377. }
  378. static void ring_write_tail(struct intel_engine_cs *ring,
  379. u32 value)
  380. {
  381. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  382. I915_WRITE_TAIL(ring, value);
  383. }
  384. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  385. {
  386. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  387. u64 acthd;
  388. if (INTEL_INFO(ring->dev)->gen >= 8)
  389. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  390. RING_ACTHD_UDW(ring->mmio_base));
  391. else if (INTEL_INFO(ring->dev)->gen >= 4)
  392. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  393. else
  394. acthd = I915_READ(ACTHD);
  395. return acthd;
  396. }
  397. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  398. {
  399. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  400. u32 addr;
  401. addr = dev_priv->status_page_dmah->busaddr;
  402. if (INTEL_INFO(ring->dev)->gen >= 4)
  403. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  404. I915_WRITE(HWS_PGA, addr);
  405. }
  406. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  407. {
  408. struct drm_device *dev = ring->dev;
  409. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  410. i915_reg_t mmio;
  411. /* The ring status page addresses are no longer next to the rest of
  412. * the ring registers as of gen7.
  413. */
  414. if (IS_GEN7(dev)) {
  415. switch (ring->id) {
  416. case RCS:
  417. mmio = RENDER_HWS_PGA_GEN7;
  418. break;
  419. case BCS:
  420. mmio = BLT_HWS_PGA_GEN7;
  421. break;
  422. /*
  423. * VCS2 actually doesn't exist on Gen7. Only shut up
  424. * gcc switch check warning
  425. */
  426. case VCS2:
  427. case VCS:
  428. mmio = BSD_HWS_PGA_GEN7;
  429. break;
  430. case VECS:
  431. mmio = VEBOX_HWS_PGA_GEN7;
  432. break;
  433. }
  434. } else if (IS_GEN6(ring->dev)) {
  435. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  436. } else {
  437. /* XXX: gen8 returns to sanity */
  438. mmio = RING_HWS_PGA(ring->mmio_base);
  439. }
  440. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  441. POSTING_READ(mmio);
  442. /*
  443. * Flush the TLB for this page
  444. *
  445. * FIXME: These two bits have disappeared on gen8, so a question
  446. * arises: do we still need this and if so how should we go about
  447. * invalidating the TLB?
  448. */
  449. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  450. i915_reg_t reg = RING_INSTPM(ring->mmio_base);
  451. /* ring should be idle before issuing a sync flush*/
  452. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  453. I915_WRITE(reg,
  454. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  455. INSTPM_SYNC_FLUSH));
  456. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  457. 1000))
  458. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  459. ring->name);
  460. }
  461. }
  462. static bool stop_ring(struct intel_engine_cs *ring)
  463. {
  464. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  465. if (!IS_GEN2(ring->dev)) {
  466. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  467. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  468. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  469. /* Sometimes we observe that the idle flag is not
  470. * set even though the ring is empty. So double
  471. * check before giving up.
  472. */
  473. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  474. return false;
  475. }
  476. }
  477. I915_WRITE_CTL(ring, 0);
  478. I915_WRITE_HEAD(ring, 0);
  479. ring->write_tail(ring, 0);
  480. if (!IS_GEN2(ring->dev)) {
  481. (void)I915_READ_CTL(ring);
  482. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  483. }
  484. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  485. }
  486. static int init_ring_common(struct intel_engine_cs *ring)
  487. {
  488. struct drm_device *dev = ring->dev;
  489. struct drm_i915_private *dev_priv = dev->dev_private;
  490. struct intel_ringbuffer *ringbuf = ring->buffer;
  491. struct drm_i915_gem_object *obj = ringbuf->obj;
  492. int ret = 0;
  493. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  494. if (!stop_ring(ring)) {
  495. /* G45 ring initialization often fails to reset head to zero */
  496. DRM_DEBUG_KMS("%s head not reset to zero "
  497. "ctl %08x head %08x tail %08x start %08x\n",
  498. ring->name,
  499. I915_READ_CTL(ring),
  500. I915_READ_HEAD(ring),
  501. I915_READ_TAIL(ring),
  502. I915_READ_START(ring));
  503. if (!stop_ring(ring)) {
  504. DRM_ERROR("failed to set %s head to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. ret = -EIO;
  512. goto out;
  513. }
  514. }
  515. if (I915_NEED_GFX_HWS(dev))
  516. intel_ring_setup_status_page(ring);
  517. else
  518. ring_setup_phys_status_page(ring);
  519. /* Enforce ordering by reading HEAD register back */
  520. I915_READ_HEAD(ring);
  521. /* Initialize the ring. This must happen _after_ we've cleared the ring
  522. * registers with the above sequence (the readback of the HEAD registers
  523. * also enforces ordering), otherwise the hw might lose the new ring
  524. * register values. */
  525. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  526. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  527. if (I915_READ_HEAD(ring))
  528. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  529. ring->name, I915_READ_HEAD(ring));
  530. I915_WRITE_HEAD(ring, 0);
  531. (void)I915_READ_HEAD(ring);
  532. I915_WRITE_CTL(ring,
  533. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  534. | RING_VALID);
  535. /* If the head is still not zero, the ring is dead */
  536. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  537. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  538. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  539. DRM_ERROR("%s initialization failed "
  540. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  541. ring->name,
  542. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  543. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  544. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  545. ret = -EIO;
  546. goto out;
  547. }
  548. ringbuf->last_retired_head = -1;
  549. ringbuf->head = I915_READ_HEAD(ring);
  550. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  551. intel_ring_update_space(ringbuf);
  552. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  553. out:
  554. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  555. return ret;
  556. }
  557. void
  558. intel_fini_pipe_control(struct intel_engine_cs *ring)
  559. {
  560. struct drm_device *dev = ring->dev;
  561. if (ring->scratch.obj == NULL)
  562. return;
  563. if (INTEL_INFO(dev)->gen >= 5) {
  564. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  565. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  566. }
  567. drm_gem_object_unreference(&ring->scratch.obj->base);
  568. ring->scratch.obj = NULL;
  569. }
  570. int
  571. intel_init_pipe_control(struct intel_engine_cs *ring)
  572. {
  573. int ret;
  574. WARN_ON(ring->scratch.obj);
  575. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  576. if (ring->scratch.obj == NULL) {
  577. DRM_ERROR("Failed to allocate seqno page\n");
  578. ret = -ENOMEM;
  579. goto err;
  580. }
  581. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  582. if (ret)
  583. goto err_unref;
  584. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  585. if (ret)
  586. goto err_unref;
  587. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  588. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  589. if (ring->scratch.cpu_page == NULL) {
  590. ret = -ENOMEM;
  591. goto err_unpin;
  592. }
  593. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  594. ring->name, ring->scratch.gtt_offset);
  595. return 0;
  596. err_unpin:
  597. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  598. err_unref:
  599. drm_gem_object_unreference(&ring->scratch.obj->base);
  600. err:
  601. return ret;
  602. }
  603. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  604. {
  605. int ret, i;
  606. struct intel_engine_cs *ring = req->ring;
  607. struct drm_device *dev = ring->dev;
  608. struct drm_i915_private *dev_priv = dev->dev_private;
  609. struct i915_workarounds *w = &dev_priv->workarounds;
  610. if (w->count == 0)
  611. return 0;
  612. ring->gpu_caches_dirty = true;
  613. ret = intel_ring_flush_all_caches(req);
  614. if (ret)
  615. return ret;
  616. ret = intel_ring_begin(req, (w->count * 2 + 2));
  617. if (ret)
  618. return ret;
  619. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  620. for (i = 0; i < w->count; i++) {
  621. intel_ring_emit_reg(ring, w->reg[i].addr);
  622. intel_ring_emit(ring, w->reg[i].value);
  623. }
  624. intel_ring_emit(ring, MI_NOOP);
  625. intel_ring_advance(ring);
  626. ring->gpu_caches_dirty = true;
  627. ret = intel_ring_flush_all_caches(req);
  628. if (ret)
  629. return ret;
  630. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  631. return 0;
  632. }
  633. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  634. {
  635. int ret;
  636. ret = intel_ring_workarounds_emit(req);
  637. if (ret != 0)
  638. return ret;
  639. ret = i915_gem_render_state_init(req);
  640. if (ret)
  641. DRM_ERROR("init render state: %d\n", ret);
  642. return ret;
  643. }
  644. static int wa_add(struct drm_i915_private *dev_priv,
  645. i915_reg_t addr,
  646. const u32 mask, const u32 val)
  647. {
  648. const u32 idx = dev_priv->workarounds.count;
  649. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  650. return -ENOSPC;
  651. dev_priv->workarounds.reg[idx].addr = addr;
  652. dev_priv->workarounds.reg[idx].value = val;
  653. dev_priv->workarounds.reg[idx].mask = mask;
  654. dev_priv->workarounds.count++;
  655. return 0;
  656. }
  657. #define WA_REG(addr, mask, val) do { \
  658. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  659. if (r) \
  660. return r; \
  661. } while (0)
  662. #define WA_SET_BIT_MASKED(addr, mask) \
  663. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  664. #define WA_CLR_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  666. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  667. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  668. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  669. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  670. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  671. static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
  672. {
  673. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  674. struct i915_workarounds *wa = &dev_priv->workarounds;
  675. const uint32_t index = wa->hw_whitelist_count[ring->id];
  676. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  677. return -EINVAL;
  678. WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
  679. i915_mmio_reg_offset(reg));
  680. wa->hw_whitelist_count[ring->id]++;
  681. return 0;
  682. }
  683. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  684. {
  685. struct drm_device *dev = ring->dev;
  686. struct drm_i915_private *dev_priv = dev->dev_private;
  687. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  688. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  689. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  690. /* WaDisablePartialInstShootdown:bdw,chv */
  691. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  692. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  693. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  694. * workaround for for a possible hang in the unlikely event a TLB
  695. * invalidation occurs during a PSD flush.
  696. */
  697. /* WaForceEnableNonCoherent:bdw,chv */
  698. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  699. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  700. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  701. HDC_FORCE_NON_COHERENT);
  702. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  703. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  704. * polygons in the same 8x4 pixel/sample area to be processed without
  705. * stalling waiting for the earlier ones to write to Hierarchical Z
  706. * buffer."
  707. *
  708. * This optimization is off by default for BDW and CHV; turn it on.
  709. */
  710. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  711. /* Wa4x4STCOptimizationDisable:bdw,chv */
  712. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  713. /*
  714. * BSpec recommends 8x4 when MSAA is used,
  715. * however in practice 16x4 seems fastest.
  716. *
  717. * Note that PS/WM thread counts depend on the WIZ hashing
  718. * disable bit, which we don't touch here, but it's good
  719. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  720. */
  721. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  722. GEN6_WIZ_HASHING_MASK,
  723. GEN6_WIZ_HASHING_16x4);
  724. return 0;
  725. }
  726. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  727. {
  728. int ret;
  729. struct drm_device *dev = ring->dev;
  730. struct drm_i915_private *dev_priv = dev->dev_private;
  731. ret = gen8_init_workarounds(ring);
  732. if (ret)
  733. return ret;
  734. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  735. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  736. /* WaDisableDopClockGating:bdw */
  737. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  738. DOP_CLOCK_GATING_DISABLE);
  739. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  740. GEN8_SAMPLER_POWER_BYPASS_DIS);
  741. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  742. /* WaForceContextSaveRestoreNonCoherent:bdw */
  743. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  744. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  745. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  746. return 0;
  747. }
  748. static int chv_init_workarounds(struct intel_engine_cs *ring)
  749. {
  750. int ret;
  751. struct drm_device *dev = ring->dev;
  752. struct drm_i915_private *dev_priv = dev->dev_private;
  753. ret = gen8_init_workarounds(ring);
  754. if (ret)
  755. return ret;
  756. /* WaDisableThreadStallDopClockGating:chv */
  757. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  758. /* Improve HiZ throughput on CHV. */
  759. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  760. return 0;
  761. }
  762. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  763. {
  764. struct drm_device *dev = ring->dev;
  765. struct drm_i915_private *dev_priv = dev->dev_private;
  766. uint32_t tmp;
  767. int ret;
  768. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  769. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  770. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  771. /* WaDisableKillLogic:bxt,skl */
  772. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  773. ECOCHK_DIS_TLB);
  774. /* WaDisablePartialInstShootdown:skl,bxt */
  775. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  776. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  777. /* Syncing dependencies between camera and graphics:skl,bxt */
  778. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  779. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  780. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  781. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  782. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  783. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  784. GEN9_DG_MIRROR_FIX_ENABLE);
  785. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  786. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  787. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  788. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  789. GEN9_RHWO_OPTIMIZATION_DISABLE);
  790. /*
  791. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  792. * but we do that in per ctx batchbuffer as there is an issue
  793. * with this register not getting restored on ctx restore
  794. */
  795. }
  796. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  797. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
  798. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  799. GEN9_ENABLE_YV12_BUGFIX);
  800. /* Wa4x4STCOptimizationDisable:skl,bxt */
  801. /* WaDisablePartialResolveInVc:skl,bxt */
  802. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  803. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  804. /* WaCcsTlbPrefetchDisable:skl,bxt */
  805. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  806. GEN9_CCS_TLB_PREFETCH_ENABLE);
  807. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  808. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  809. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  810. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  811. PIXEL_MASK_CAMMING_DISABLE);
  812. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  813. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  814. if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
  815. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  816. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  817. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  818. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  819. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  820. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  821. GEN8_SAMPLER_POWER_BYPASS_DIS);
  822. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  823. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  824. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
  825. ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
  826. if (ret)
  827. return ret;
  828. /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
  829. ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
  830. if (ret)
  831. return ret;
  832. return 0;
  833. }
  834. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  835. {
  836. struct drm_device *dev = ring->dev;
  837. struct drm_i915_private *dev_priv = dev->dev_private;
  838. u8 vals[3] = { 0, 0, 0 };
  839. unsigned int i;
  840. for (i = 0; i < 3; i++) {
  841. u8 ss;
  842. /*
  843. * Only consider slices where one, and only one, subslice has 7
  844. * EUs
  845. */
  846. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  847. continue;
  848. /*
  849. * subslice_7eu[i] != 0 (because of the check above) and
  850. * ss_max == 4 (maximum number of subslices possible per slice)
  851. *
  852. * -> 0 <= ss <= 3;
  853. */
  854. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  855. vals[i] = 3 - ss;
  856. }
  857. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  858. return 0;
  859. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  860. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  861. GEN9_IZ_HASHING_MASK(2) |
  862. GEN9_IZ_HASHING_MASK(1) |
  863. GEN9_IZ_HASHING_MASK(0),
  864. GEN9_IZ_HASHING(2, vals[2]) |
  865. GEN9_IZ_HASHING(1, vals[1]) |
  866. GEN9_IZ_HASHING(0, vals[0]));
  867. return 0;
  868. }
  869. static int skl_init_workarounds(struct intel_engine_cs *ring)
  870. {
  871. int ret;
  872. struct drm_device *dev = ring->dev;
  873. struct drm_i915_private *dev_priv = dev->dev_private;
  874. ret = gen9_init_workarounds(ring);
  875. if (ret)
  876. return ret;
  877. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  878. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  879. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  880. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  881. }
  882. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  883. * involving this register should also be added to WA batch as required.
  884. */
  885. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  886. /* WaDisableLSQCROPERFforOCL:skl */
  887. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  888. GEN8_LQSC_RO_PERF_DIS);
  889. /* WaEnableGapsTsvCreditFix:skl */
  890. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  891. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  892. GEN9_GAPS_TSV_CREDIT_DISABLE));
  893. }
  894. /* WaDisablePowerCompilerClockGating:skl */
  895. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  896. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  897. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  898. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
  899. /*
  900. *Use Force Non-Coherent whenever executing a 3D context. This
  901. * is a workaround for a possible hang in the unlikely event
  902. * a TLB invalidation occurs during a PSD flush.
  903. */
  904. /* WaForceEnableNonCoherent:skl */
  905. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  906. HDC_FORCE_NON_COHERENT);
  907. /* WaDisableHDCInvalidation:skl */
  908. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  909. BDW_DISABLE_HDC_INVALIDATION);
  910. }
  911. /* WaBarrierPerformanceFixDisable:skl */
  912. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  913. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  914. HDC_FENCE_DEST_SLM_DISABLE |
  915. HDC_BARRIER_PERFORMANCE_DISABLE);
  916. /* WaDisableSbeCacheDispatchPortSharing:skl */
  917. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  918. WA_SET_BIT_MASKED(
  919. GEN7_HALF_SLICE_CHICKEN1,
  920. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  921. return skl_tune_iz_hashing(ring);
  922. }
  923. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  924. {
  925. int ret;
  926. struct drm_device *dev = ring->dev;
  927. struct drm_i915_private *dev_priv = dev->dev_private;
  928. ret = gen9_init_workarounds(ring);
  929. if (ret)
  930. return ret;
  931. /* WaStoreMultiplePTEenable:bxt */
  932. /* This is a requirement according to Hardware specification */
  933. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  934. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  935. /* WaSetClckGatingDisableMedia:bxt */
  936. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  937. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  938. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  939. }
  940. /* WaDisableThreadStallDopClockGating:bxt */
  941. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  942. STALL_DOP_GATING_DISABLE);
  943. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  944. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  945. WA_SET_BIT_MASKED(
  946. GEN7_HALF_SLICE_CHICKEN1,
  947. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  948. }
  949. return 0;
  950. }
  951. int init_workarounds_ring(struct intel_engine_cs *ring)
  952. {
  953. struct drm_device *dev = ring->dev;
  954. struct drm_i915_private *dev_priv = dev->dev_private;
  955. WARN_ON(ring->id != RCS);
  956. dev_priv->workarounds.count = 0;
  957. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  958. if (IS_BROADWELL(dev))
  959. return bdw_init_workarounds(ring);
  960. if (IS_CHERRYVIEW(dev))
  961. return chv_init_workarounds(ring);
  962. if (IS_SKYLAKE(dev))
  963. return skl_init_workarounds(ring);
  964. if (IS_BROXTON(dev))
  965. return bxt_init_workarounds(ring);
  966. return 0;
  967. }
  968. static int init_render_ring(struct intel_engine_cs *ring)
  969. {
  970. struct drm_device *dev = ring->dev;
  971. struct drm_i915_private *dev_priv = dev->dev_private;
  972. int ret = init_ring_common(ring);
  973. if (ret)
  974. return ret;
  975. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  976. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  977. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  978. /* We need to disable the AsyncFlip performance optimisations in order
  979. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  980. * programmed to '1' on all products.
  981. *
  982. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  983. */
  984. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  985. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  986. /* Required for the hardware to program scanline values for waiting */
  987. /* WaEnableFlushTlbInvalidationMode:snb */
  988. if (INTEL_INFO(dev)->gen == 6)
  989. I915_WRITE(GFX_MODE,
  990. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  991. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  992. if (IS_GEN7(dev))
  993. I915_WRITE(GFX_MODE_GEN7,
  994. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  995. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  996. if (IS_GEN6(dev)) {
  997. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  998. * "If this bit is set, STCunit will have LRA as replacement
  999. * policy. [...] This bit must be reset. LRA replacement
  1000. * policy is not supported."
  1001. */
  1002. I915_WRITE(CACHE_MODE_0,
  1003. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1004. }
  1005. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1006. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1007. if (HAS_L3_DPF(dev))
  1008. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1009. return init_workarounds_ring(ring);
  1010. }
  1011. static void render_ring_cleanup(struct intel_engine_cs *ring)
  1012. {
  1013. struct drm_device *dev = ring->dev;
  1014. struct drm_i915_private *dev_priv = dev->dev_private;
  1015. if (dev_priv->semaphore_obj) {
  1016. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1017. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1018. dev_priv->semaphore_obj = NULL;
  1019. }
  1020. intel_fini_pipe_control(ring);
  1021. }
  1022. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1023. unsigned int num_dwords)
  1024. {
  1025. #define MBOX_UPDATE_DWORDS 8
  1026. struct intel_engine_cs *signaller = signaller_req->ring;
  1027. struct drm_device *dev = signaller->dev;
  1028. struct drm_i915_private *dev_priv = dev->dev_private;
  1029. struct intel_engine_cs *waiter;
  1030. int i, ret, num_rings;
  1031. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1032. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1033. #undef MBOX_UPDATE_DWORDS
  1034. ret = intel_ring_begin(signaller_req, num_dwords);
  1035. if (ret)
  1036. return ret;
  1037. for_each_ring(waiter, dev_priv, i) {
  1038. u32 seqno;
  1039. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1040. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1041. continue;
  1042. seqno = i915_gem_request_get_seqno(signaller_req);
  1043. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1044. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1045. PIPE_CONTROL_QW_WRITE |
  1046. PIPE_CONTROL_FLUSH_ENABLE);
  1047. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1048. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1049. intel_ring_emit(signaller, seqno);
  1050. intel_ring_emit(signaller, 0);
  1051. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1052. MI_SEMAPHORE_TARGET(waiter->id));
  1053. intel_ring_emit(signaller, 0);
  1054. }
  1055. return 0;
  1056. }
  1057. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1058. unsigned int num_dwords)
  1059. {
  1060. #define MBOX_UPDATE_DWORDS 6
  1061. struct intel_engine_cs *signaller = signaller_req->ring;
  1062. struct drm_device *dev = signaller->dev;
  1063. struct drm_i915_private *dev_priv = dev->dev_private;
  1064. struct intel_engine_cs *waiter;
  1065. int i, ret, num_rings;
  1066. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1067. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1068. #undef MBOX_UPDATE_DWORDS
  1069. ret = intel_ring_begin(signaller_req, num_dwords);
  1070. if (ret)
  1071. return ret;
  1072. for_each_ring(waiter, dev_priv, i) {
  1073. u32 seqno;
  1074. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1075. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1076. continue;
  1077. seqno = i915_gem_request_get_seqno(signaller_req);
  1078. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1079. MI_FLUSH_DW_OP_STOREDW);
  1080. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1081. MI_FLUSH_DW_USE_GTT);
  1082. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1083. intel_ring_emit(signaller, seqno);
  1084. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1085. MI_SEMAPHORE_TARGET(waiter->id));
  1086. intel_ring_emit(signaller, 0);
  1087. }
  1088. return 0;
  1089. }
  1090. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1091. unsigned int num_dwords)
  1092. {
  1093. struct intel_engine_cs *signaller = signaller_req->ring;
  1094. struct drm_device *dev = signaller->dev;
  1095. struct drm_i915_private *dev_priv = dev->dev_private;
  1096. struct intel_engine_cs *useless;
  1097. int i, ret, num_rings;
  1098. #define MBOX_UPDATE_DWORDS 3
  1099. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1100. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1101. #undef MBOX_UPDATE_DWORDS
  1102. ret = intel_ring_begin(signaller_req, num_dwords);
  1103. if (ret)
  1104. return ret;
  1105. for_each_ring(useless, dev_priv, i) {
  1106. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
  1107. if (i915_mmio_reg_valid(mbox_reg)) {
  1108. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1109. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1110. intel_ring_emit_reg(signaller, mbox_reg);
  1111. intel_ring_emit(signaller, seqno);
  1112. }
  1113. }
  1114. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1115. if (num_rings % 2 == 0)
  1116. intel_ring_emit(signaller, MI_NOOP);
  1117. return 0;
  1118. }
  1119. /**
  1120. * gen6_add_request - Update the semaphore mailbox registers
  1121. *
  1122. * @request - request to write to the ring
  1123. *
  1124. * Update the mailbox registers in the *other* rings with the current seqno.
  1125. * This acts like a signal in the canonical semaphore.
  1126. */
  1127. static int
  1128. gen6_add_request(struct drm_i915_gem_request *req)
  1129. {
  1130. struct intel_engine_cs *ring = req->ring;
  1131. int ret;
  1132. if (ring->semaphore.signal)
  1133. ret = ring->semaphore.signal(req, 4);
  1134. else
  1135. ret = intel_ring_begin(req, 4);
  1136. if (ret)
  1137. return ret;
  1138. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1139. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1140. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1141. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1142. __intel_ring_advance(ring);
  1143. return 0;
  1144. }
  1145. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1146. u32 seqno)
  1147. {
  1148. struct drm_i915_private *dev_priv = dev->dev_private;
  1149. return dev_priv->last_seqno < seqno;
  1150. }
  1151. /**
  1152. * intel_ring_sync - sync the waiter to the signaller on seqno
  1153. *
  1154. * @waiter - ring that is waiting
  1155. * @signaller - ring which has, or will signal
  1156. * @seqno - seqno which the waiter will block on
  1157. */
  1158. static int
  1159. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1160. struct intel_engine_cs *signaller,
  1161. u32 seqno)
  1162. {
  1163. struct intel_engine_cs *waiter = waiter_req->ring;
  1164. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1165. int ret;
  1166. ret = intel_ring_begin(waiter_req, 4);
  1167. if (ret)
  1168. return ret;
  1169. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1170. MI_SEMAPHORE_GLOBAL_GTT |
  1171. MI_SEMAPHORE_POLL |
  1172. MI_SEMAPHORE_SAD_GTE_SDD);
  1173. intel_ring_emit(waiter, seqno);
  1174. intel_ring_emit(waiter,
  1175. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1176. intel_ring_emit(waiter,
  1177. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1178. intel_ring_advance(waiter);
  1179. return 0;
  1180. }
  1181. static int
  1182. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1183. struct intel_engine_cs *signaller,
  1184. u32 seqno)
  1185. {
  1186. struct intel_engine_cs *waiter = waiter_req->ring;
  1187. u32 dw1 = MI_SEMAPHORE_MBOX |
  1188. MI_SEMAPHORE_COMPARE |
  1189. MI_SEMAPHORE_REGISTER;
  1190. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1191. int ret;
  1192. /* Throughout all of the GEM code, seqno passed implies our current
  1193. * seqno is >= the last seqno executed. However for hardware the
  1194. * comparison is strictly greater than.
  1195. */
  1196. seqno -= 1;
  1197. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1198. ret = intel_ring_begin(waiter_req, 4);
  1199. if (ret)
  1200. return ret;
  1201. /* If seqno wrap happened, omit the wait with no-ops */
  1202. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1203. intel_ring_emit(waiter, dw1 | wait_mbox);
  1204. intel_ring_emit(waiter, seqno);
  1205. intel_ring_emit(waiter, 0);
  1206. intel_ring_emit(waiter, MI_NOOP);
  1207. } else {
  1208. intel_ring_emit(waiter, MI_NOOP);
  1209. intel_ring_emit(waiter, MI_NOOP);
  1210. intel_ring_emit(waiter, MI_NOOP);
  1211. intel_ring_emit(waiter, MI_NOOP);
  1212. }
  1213. intel_ring_advance(waiter);
  1214. return 0;
  1215. }
  1216. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1217. do { \
  1218. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1219. PIPE_CONTROL_DEPTH_STALL); \
  1220. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1221. intel_ring_emit(ring__, 0); \
  1222. intel_ring_emit(ring__, 0); \
  1223. } while (0)
  1224. static int
  1225. pc_render_add_request(struct drm_i915_gem_request *req)
  1226. {
  1227. struct intel_engine_cs *ring = req->ring;
  1228. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1229. int ret;
  1230. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1231. * incoherent with writes to memory, i.e. completely fubar,
  1232. * so we need to use PIPE_NOTIFY instead.
  1233. *
  1234. * However, we also need to workaround the qword write
  1235. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1236. * memory before requesting an interrupt.
  1237. */
  1238. ret = intel_ring_begin(req, 32);
  1239. if (ret)
  1240. return ret;
  1241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1242. PIPE_CONTROL_WRITE_FLUSH |
  1243. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1244. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1245. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1246. intel_ring_emit(ring, 0);
  1247. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1248. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1249. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1250. scratch_addr += 2 * CACHELINE_BYTES;
  1251. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1252. scratch_addr += 2 * CACHELINE_BYTES;
  1253. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1254. scratch_addr += 2 * CACHELINE_BYTES;
  1255. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1256. scratch_addr += 2 * CACHELINE_BYTES;
  1257. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1258. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1259. PIPE_CONTROL_WRITE_FLUSH |
  1260. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1261. PIPE_CONTROL_NOTIFY);
  1262. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1263. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1264. intel_ring_emit(ring, 0);
  1265. __intel_ring_advance(ring);
  1266. return 0;
  1267. }
  1268. static u32
  1269. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1270. {
  1271. /* Workaround to force correct ordering between irq and seqno writes on
  1272. * ivb (and maybe also on snb) by reading from a CS register (like
  1273. * ACTHD) before reading the status page. */
  1274. if (!lazy_coherency) {
  1275. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1276. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1277. }
  1278. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1279. }
  1280. static u32
  1281. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1282. {
  1283. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1284. }
  1285. static void
  1286. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1287. {
  1288. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1289. }
  1290. static u32
  1291. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1292. {
  1293. return ring->scratch.cpu_page[0];
  1294. }
  1295. static void
  1296. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1297. {
  1298. ring->scratch.cpu_page[0] = seqno;
  1299. }
  1300. static bool
  1301. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1302. {
  1303. struct drm_device *dev = ring->dev;
  1304. struct drm_i915_private *dev_priv = dev->dev_private;
  1305. unsigned long flags;
  1306. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1307. return false;
  1308. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1309. if (ring->irq_refcount++ == 0)
  1310. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1311. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1312. return true;
  1313. }
  1314. static void
  1315. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1316. {
  1317. struct drm_device *dev = ring->dev;
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. unsigned long flags;
  1320. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1321. if (--ring->irq_refcount == 0)
  1322. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1323. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1324. }
  1325. static bool
  1326. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1327. {
  1328. struct drm_device *dev = ring->dev;
  1329. struct drm_i915_private *dev_priv = dev->dev_private;
  1330. unsigned long flags;
  1331. if (!intel_irqs_enabled(dev_priv))
  1332. return false;
  1333. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1334. if (ring->irq_refcount++ == 0) {
  1335. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1336. I915_WRITE(IMR, dev_priv->irq_mask);
  1337. POSTING_READ(IMR);
  1338. }
  1339. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1340. return true;
  1341. }
  1342. static void
  1343. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1344. {
  1345. struct drm_device *dev = ring->dev;
  1346. struct drm_i915_private *dev_priv = dev->dev_private;
  1347. unsigned long flags;
  1348. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1349. if (--ring->irq_refcount == 0) {
  1350. dev_priv->irq_mask |= ring->irq_enable_mask;
  1351. I915_WRITE(IMR, dev_priv->irq_mask);
  1352. POSTING_READ(IMR);
  1353. }
  1354. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1355. }
  1356. static bool
  1357. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1358. {
  1359. struct drm_device *dev = ring->dev;
  1360. struct drm_i915_private *dev_priv = dev->dev_private;
  1361. unsigned long flags;
  1362. if (!intel_irqs_enabled(dev_priv))
  1363. return false;
  1364. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1365. if (ring->irq_refcount++ == 0) {
  1366. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1367. I915_WRITE16(IMR, dev_priv->irq_mask);
  1368. POSTING_READ16(IMR);
  1369. }
  1370. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1371. return true;
  1372. }
  1373. static void
  1374. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1375. {
  1376. struct drm_device *dev = ring->dev;
  1377. struct drm_i915_private *dev_priv = dev->dev_private;
  1378. unsigned long flags;
  1379. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1380. if (--ring->irq_refcount == 0) {
  1381. dev_priv->irq_mask |= ring->irq_enable_mask;
  1382. I915_WRITE16(IMR, dev_priv->irq_mask);
  1383. POSTING_READ16(IMR);
  1384. }
  1385. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1386. }
  1387. static int
  1388. bsd_ring_flush(struct drm_i915_gem_request *req,
  1389. u32 invalidate_domains,
  1390. u32 flush_domains)
  1391. {
  1392. struct intel_engine_cs *ring = req->ring;
  1393. int ret;
  1394. ret = intel_ring_begin(req, 2);
  1395. if (ret)
  1396. return ret;
  1397. intel_ring_emit(ring, MI_FLUSH);
  1398. intel_ring_emit(ring, MI_NOOP);
  1399. intel_ring_advance(ring);
  1400. return 0;
  1401. }
  1402. static int
  1403. i9xx_add_request(struct drm_i915_gem_request *req)
  1404. {
  1405. struct intel_engine_cs *ring = req->ring;
  1406. int ret;
  1407. ret = intel_ring_begin(req, 4);
  1408. if (ret)
  1409. return ret;
  1410. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1411. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1412. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1413. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1414. __intel_ring_advance(ring);
  1415. return 0;
  1416. }
  1417. static bool
  1418. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1419. {
  1420. struct drm_device *dev = ring->dev;
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. unsigned long flags;
  1423. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1424. return false;
  1425. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1426. if (ring->irq_refcount++ == 0) {
  1427. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1428. I915_WRITE_IMR(ring,
  1429. ~(ring->irq_enable_mask |
  1430. GT_PARITY_ERROR(dev)));
  1431. else
  1432. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1433. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1434. }
  1435. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1436. return true;
  1437. }
  1438. static void
  1439. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1440. {
  1441. struct drm_device *dev = ring->dev;
  1442. struct drm_i915_private *dev_priv = dev->dev_private;
  1443. unsigned long flags;
  1444. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1445. if (--ring->irq_refcount == 0) {
  1446. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1447. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1448. else
  1449. I915_WRITE_IMR(ring, ~0);
  1450. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1451. }
  1452. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1453. }
  1454. static bool
  1455. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1456. {
  1457. struct drm_device *dev = ring->dev;
  1458. struct drm_i915_private *dev_priv = dev->dev_private;
  1459. unsigned long flags;
  1460. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1461. return false;
  1462. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1463. if (ring->irq_refcount++ == 0) {
  1464. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1465. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1466. }
  1467. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1468. return true;
  1469. }
  1470. static void
  1471. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1472. {
  1473. struct drm_device *dev = ring->dev;
  1474. struct drm_i915_private *dev_priv = dev->dev_private;
  1475. unsigned long flags;
  1476. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1477. if (--ring->irq_refcount == 0) {
  1478. I915_WRITE_IMR(ring, ~0);
  1479. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1480. }
  1481. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1482. }
  1483. static bool
  1484. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1485. {
  1486. struct drm_device *dev = ring->dev;
  1487. struct drm_i915_private *dev_priv = dev->dev_private;
  1488. unsigned long flags;
  1489. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1490. return false;
  1491. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1492. if (ring->irq_refcount++ == 0) {
  1493. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1494. I915_WRITE_IMR(ring,
  1495. ~(ring->irq_enable_mask |
  1496. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1497. } else {
  1498. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1499. }
  1500. POSTING_READ(RING_IMR(ring->mmio_base));
  1501. }
  1502. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1503. return true;
  1504. }
  1505. static void
  1506. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1507. {
  1508. struct drm_device *dev = ring->dev;
  1509. struct drm_i915_private *dev_priv = dev->dev_private;
  1510. unsigned long flags;
  1511. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1512. if (--ring->irq_refcount == 0) {
  1513. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1514. I915_WRITE_IMR(ring,
  1515. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1516. } else {
  1517. I915_WRITE_IMR(ring, ~0);
  1518. }
  1519. POSTING_READ(RING_IMR(ring->mmio_base));
  1520. }
  1521. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1522. }
  1523. static int
  1524. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1525. u64 offset, u32 length,
  1526. unsigned dispatch_flags)
  1527. {
  1528. struct intel_engine_cs *ring = req->ring;
  1529. int ret;
  1530. ret = intel_ring_begin(req, 2);
  1531. if (ret)
  1532. return ret;
  1533. intel_ring_emit(ring,
  1534. MI_BATCH_BUFFER_START |
  1535. MI_BATCH_GTT |
  1536. (dispatch_flags & I915_DISPATCH_SECURE ?
  1537. 0 : MI_BATCH_NON_SECURE_I965));
  1538. intel_ring_emit(ring, offset);
  1539. intel_ring_advance(ring);
  1540. return 0;
  1541. }
  1542. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1543. #define I830_BATCH_LIMIT (256*1024)
  1544. #define I830_TLB_ENTRIES (2)
  1545. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1546. static int
  1547. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1548. u64 offset, u32 len,
  1549. unsigned dispatch_flags)
  1550. {
  1551. struct intel_engine_cs *ring = req->ring;
  1552. u32 cs_offset = ring->scratch.gtt_offset;
  1553. int ret;
  1554. ret = intel_ring_begin(req, 6);
  1555. if (ret)
  1556. return ret;
  1557. /* Evict the invalid PTE TLBs */
  1558. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1559. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1560. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1561. intel_ring_emit(ring, cs_offset);
  1562. intel_ring_emit(ring, 0xdeadbeef);
  1563. intel_ring_emit(ring, MI_NOOP);
  1564. intel_ring_advance(ring);
  1565. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1566. if (len > I830_BATCH_LIMIT)
  1567. return -ENOSPC;
  1568. ret = intel_ring_begin(req, 6 + 2);
  1569. if (ret)
  1570. return ret;
  1571. /* Blit the batch (which has now all relocs applied) to the
  1572. * stable batch scratch bo area (so that the CS never
  1573. * stumbles over its tlb invalidation bug) ...
  1574. */
  1575. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1576. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1577. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1578. intel_ring_emit(ring, cs_offset);
  1579. intel_ring_emit(ring, 4096);
  1580. intel_ring_emit(ring, offset);
  1581. intel_ring_emit(ring, MI_FLUSH);
  1582. intel_ring_emit(ring, MI_NOOP);
  1583. intel_ring_advance(ring);
  1584. /* ... and execute it. */
  1585. offset = cs_offset;
  1586. }
  1587. ret = intel_ring_begin(req, 2);
  1588. if (ret)
  1589. return ret;
  1590. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1591. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1592. 0 : MI_BATCH_NON_SECURE));
  1593. intel_ring_advance(ring);
  1594. return 0;
  1595. }
  1596. static int
  1597. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1598. u64 offset, u32 len,
  1599. unsigned dispatch_flags)
  1600. {
  1601. struct intel_engine_cs *ring = req->ring;
  1602. int ret;
  1603. ret = intel_ring_begin(req, 2);
  1604. if (ret)
  1605. return ret;
  1606. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1607. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1608. 0 : MI_BATCH_NON_SECURE));
  1609. intel_ring_advance(ring);
  1610. return 0;
  1611. }
  1612. static void cleanup_phys_status_page(struct intel_engine_cs *ring)
  1613. {
  1614. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1615. if (!dev_priv->status_page_dmah)
  1616. return;
  1617. drm_pci_free(ring->dev, dev_priv->status_page_dmah);
  1618. ring->status_page.page_addr = NULL;
  1619. }
  1620. static void cleanup_status_page(struct intel_engine_cs *ring)
  1621. {
  1622. struct drm_i915_gem_object *obj;
  1623. obj = ring->status_page.obj;
  1624. if (obj == NULL)
  1625. return;
  1626. kunmap(sg_page(obj->pages->sgl));
  1627. i915_gem_object_ggtt_unpin(obj);
  1628. drm_gem_object_unreference(&obj->base);
  1629. ring->status_page.obj = NULL;
  1630. }
  1631. static int init_status_page(struct intel_engine_cs *ring)
  1632. {
  1633. struct drm_i915_gem_object *obj = ring->status_page.obj;
  1634. if (obj == NULL) {
  1635. unsigned flags;
  1636. int ret;
  1637. obj = i915_gem_alloc_object(ring->dev, 4096);
  1638. if (obj == NULL) {
  1639. DRM_ERROR("Failed to allocate status page\n");
  1640. return -ENOMEM;
  1641. }
  1642. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1643. if (ret)
  1644. goto err_unref;
  1645. flags = 0;
  1646. if (!HAS_LLC(ring->dev))
  1647. /* On g33, we cannot place HWS above 256MiB, so
  1648. * restrict its pinning to the low mappable arena.
  1649. * Though this restriction is not documented for
  1650. * gen4, gen5, or byt, they also behave similarly
  1651. * and hang if the HWS is placed at the top of the
  1652. * GTT. To generalise, it appears that all !llc
  1653. * platforms have issues with us placing the HWS
  1654. * above the mappable region (even though we never
  1655. * actualy map it).
  1656. */
  1657. flags |= PIN_MAPPABLE;
  1658. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1659. if (ret) {
  1660. err_unref:
  1661. drm_gem_object_unreference(&obj->base);
  1662. return ret;
  1663. }
  1664. ring->status_page.obj = obj;
  1665. }
  1666. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1667. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1668. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1669. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1670. ring->name, ring->status_page.gfx_addr);
  1671. return 0;
  1672. }
  1673. static int init_phys_status_page(struct intel_engine_cs *ring)
  1674. {
  1675. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1676. if (!dev_priv->status_page_dmah) {
  1677. dev_priv->status_page_dmah =
  1678. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1679. if (!dev_priv->status_page_dmah)
  1680. return -ENOMEM;
  1681. }
  1682. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1683. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1684. return 0;
  1685. }
  1686. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1687. {
  1688. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1689. vunmap(ringbuf->virtual_start);
  1690. else
  1691. iounmap(ringbuf->virtual_start);
  1692. ringbuf->virtual_start = NULL;
  1693. ringbuf->vma = NULL;
  1694. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1695. }
  1696. static u32 *vmap_obj(struct drm_i915_gem_object *obj)
  1697. {
  1698. struct sg_page_iter sg_iter;
  1699. struct page **pages;
  1700. void *addr;
  1701. int i;
  1702. pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
  1703. if (pages == NULL)
  1704. return NULL;
  1705. i = 0;
  1706. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
  1707. pages[i++] = sg_page_iter_page(&sg_iter);
  1708. addr = vmap(pages, i, 0, PAGE_KERNEL);
  1709. drm_free_large(pages);
  1710. return addr;
  1711. }
  1712. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1713. struct intel_ringbuffer *ringbuf)
  1714. {
  1715. struct drm_i915_private *dev_priv = to_i915(dev);
  1716. struct drm_i915_gem_object *obj = ringbuf->obj;
  1717. int ret;
  1718. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1719. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
  1720. if (ret)
  1721. return ret;
  1722. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1723. if (ret) {
  1724. i915_gem_object_ggtt_unpin(obj);
  1725. return ret;
  1726. }
  1727. ringbuf->virtual_start = vmap_obj(obj);
  1728. if (ringbuf->virtual_start == NULL) {
  1729. i915_gem_object_ggtt_unpin(obj);
  1730. return -ENOMEM;
  1731. }
  1732. } else {
  1733. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1734. if (ret)
  1735. return ret;
  1736. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1737. if (ret) {
  1738. i915_gem_object_ggtt_unpin(obj);
  1739. return ret;
  1740. }
  1741. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1742. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1743. if (ringbuf->virtual_start == NULL) {
  1744. i915_gem_object_ggtt_unpin(obj);
  1745. return -EINVAL;
  1746. }
  1747. }
  1748. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1749. return 0;
  1750. }
  1751. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1752. {
  1753. drm_gem_object_unreference(&ringbuf->obj->base);
  1754. ringbuf->obj = NULL;
  1755. }
  1756. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1757. struct intel_ringbuffer *ringbuf)
  1758. {
  1759. struct drm_i915_gem_object *obj;
  1760. obj = NULL;
  1761. if (!HAS_LLC(dev))
  1762. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1763. if (obj == NULL)
  1764. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1765. if (obj == NULL)
  1766. return -ENOMEM;
  1767. /* mark ring buffers as read-only from GPU side by default */
  1768. obj->gt_ro = 1;
  1769. ringbuf->obj = obj;
  1770. return 0;
  1771. }
  1772. struct intel_ringbuffer *
  1773. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1774. {
  1775. struct intel_ringbuffer *ring;
  1776. int ret;
  1777. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1778. if (ring == NULL) {
  1779. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1780. engine->name);
  1781. return ERR_PTR(-ENOMEM);
  1782. }
  1783. ring->ring = engine;
  1784. list_add(&ring->link, &engine->buffers);
  1785. ring->size = size;
  1786. /* Workaround an erratum on the i830 which causes a hang if
  1787. * the TAIL pointer points to within the last 2 cachelines
  1788. * of the buffer.
  1789. */
  1790. ring->effective_size = size;
  1791. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1792. ring->effective_size -= 2 * CACHELINE_BYTES;
  1793. ring->last_retired_head = -1;
  1794. intel_ring_update_space(ring);
  1795. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1796. if (ret) {
  1797. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1798. engine->name, ret);
  1799. list_del(&ring->link);
  1800. kfree(ring);
  1801. return ERR_PTR(ret);
  1802. }
  1803. return ring;
  1804. }
  1805. void
  1806. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1807. {
  1808. intel_destroy_ringbuffer_obj(ring);
  1809. list_del(&ring->link);
  1810. kfree(ring);
  1811. }
  1812. static int intel_init_ring_buffer(struct drm_device *dev,
  1813. struct intel_engine_cs *ring)
  1814. {
  1815. struct intel_ringbuffer *ringbuf;
  1816. int ret;
  1817. WARN_ON(ring->buffer);
  1818. ring->dev = dev;
  1819. INIT_LIST_HEAD(&ring->active_list);
  1820. INIT_LIST_HEAD(&ring->request_list);
  1821. INIT_LIST_HEAD(&ring->execlist_queue);
  1822. INIT_LIST_HEAD(&ring->buffers);
  1823. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1824. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1825. init_waitqueue_head(&ring->irq_queue);
  1826. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1827. if (IS_ERR(ringbuf)) {
  1828. ret = PTR_ERR(ringbuf);
  1829. goto error;
  1830. }
  1831. ring->buffer = ringbuf;
  1832. if (I915_NEED_GFX_HWS(dev)) {
  1833. ret = init_status_page(ring);
  1834. if (ret)
  1835. goto error;
  1836. } else {
  1837. WARN_ON(ring->id != RCS);
  1838. ret = init_phys_status_page(ring);
  1839. if (ret)
  1840. goto error;
  1841. }
  1842. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1843. if (ret) {
  1844. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1845. ring->name, ret);
  1846. intel_destroy_ringbuffer_obj(ringbuf);
  1847. goto error;
  1848. }
  1849. ret = i915_cmd_parser_init_ring(ring);
  1850. if (ret)
  1851. goto error;
  1852. return 0;
  1853. error:
  1854. intel_cleanup_ring_buffer(ring);
  1855. return ret;
  1856. }
  1857. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1858. {
  1859. struct drm_i915_private *dev_priv;
  1860. if (!intel_ring_initialized(ring))
  1861. return;
  1862. dev_priv = to_i915(ring->dev);
  1863. if (ring->buffer) {
  1864. intel_stop_ring_buffer(ring);
  1865. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1866. intel_unpin_ringbuffer_obj(ring->buffer);
  1867. intel_ringbuffer_free(ring->buffer);
  1868. ring->buffer = NULL;
  1869. }
  1870. if (ring->cleanup)
  1871. ring->cleanup(ring);
  1872. if (I915_NEED_GFX_HWS(ring->dev)) {
  1873. cleanup_status_page(ring);
  1874. } else {
  1875. WARN_ON(ring->id != RCS);
  1876. cleanup_phys_status_page(ring);
  1877. }
  1878. i915_cmd_parser_fini_ring(ring);
  1879. i915_gem_batch_pool_fini(&ring->batch_pool);
  1880. ring->dev = NULL;
  1881. }
  1882. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1883. {
  1884. struct intel_ringbuffer *ringbuf = ring->buffer;
  1885. struct drm_i915_gem_request *request;
  1886. unsigned space;
  1887. int ret;
  1888. if (intel_ring_space(ringbuf) >= n)
  1889. return 0;
  1890. /* The whole point of reserving space is to not wait! */
  1891. WARN_ON(ringbuf->reserved_in_use);
  1892. list_for_each_entry(request, &ring->request_list, list) {
  1893. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1894. ringbuf->size);
  1895. if (space >= n)
  1896. break;
  1897. }
  1898. if (WARN_ON(&request->list == &ring->request_list))
  1899. return -ENOSPC;
  1900. ret = i915_wait_request(request);
  1901. if (ret)
  1902. return ret;
  1903. ringbuf->space = space;
  1904. return 0;
  1905. }
  1906. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1907. {
  1908. uint32_t __iomem *virt;
  1909. int rem = ringbuf->size - ringbuf->tail;
  1910. virt = ringbuf->virtual_start + ringbuf->tail;
  1911. rem /= 4;
  1912. while (rem--)
  1913. iowrite32(MI_NOOP, virt++);
  1914. ringbuf->tail = 0;
  1915. intel_ring_update_space(ringbuf);
  1916. }
  1917. int intel_ring_idle(struct intel_engine_cs *ring)
  1918. {
  1919. struct drm_i915_gem_request *req;
  1920. /* Wait upon the last request to be completed */
  1921. if (list_empty(&ring->request_list))
  1922. return 0;
  1923. req = list_entry(ring->request_list.prev,
  1924. struct drm_i915_gem_request,
  1925. list);
  1926. /* Make sure we do not trigger any retires */
  1927. return __i915_wait_request(req,
  1928. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1929. to_i915(ring->dev)->mm.interruptible,
  1930. NULL, NULL);
  1931. }
  1932. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1933. {
  1934. request->ringbuf = request->ring->buffer;
  1935. return 0;
  1936. }
  1937. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1938. {
  1939. /*
  1940. * The first call merely notes the reserve request and is common for
  1941. * all back ends. The subsequent localised _begin() call actually
  1942. * ensures that the reservation is available. Without the begin, if
  1943. * the request creator immediately submitted the request without
  1944. * adding any commands to it then there might not actually be
  1945. * sufficient room for the submission commands.
  1946. */
  1947. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1948. return intel_ring_begin(request, 0);
  1949. }
  1950. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1951. {
  1952. WARN_ON(ringbuf->reserved_size);
  1953. WARN_ON(ringbuf->reserved_in_use);
  1954. ringbuf->reserved_size = size;
  1955. }
  1956. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1957. {
  1958. WARN_ON(ringbuf->reserved_in_use);
  1959. ringbuf->reserved_size = 0;
  1960. ringbuf->reserved_in_use = false;
  1961. }
  1962. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1963. {
  1964. WARN_ON(ringbuf->reserved_in_use);
  1965. ringbuf->reserved_in_use = true;
  1966. ringbuf->reserved_tail = ringbuf->tail;
  1967. }
  1968. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1969. {
  1970. WARN_ON(!ringbuf->reserved_in_use);
  1971. if (ringbuf->tail > ringbuf->reserved_tail) {
  1972. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1973. "request reserved size too small: %d vs %d!\n",
  1974. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1975. } else {
  1976. /*
  1977. * The ring was wrapped while the reserved space was in use.
  1978. * That means that some unknown amount of the ring tail was
  1979. * no-op filled and skipped. Thus simply adding the ring size
  1980. * to the tail and doing the above space check will not work.
  1981. * Rather than attempt to track how much tail was skipped,
  1982. * it is much simpler to say that also skipping the sanity
  1983. * check every once in a while is not a big issue.
  1984. */
  1985. }
  1986. ringbuf->reserved_size = 0;
  1987. ringbuf->reserved_in_use = false;
  1988. }
  1989. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1990. {
  1991. struct intel_ringbuffer *ringbuf = ring->buffer;
  1992. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1993. int remain_actual = ringbuf->size - ringbuf->tail;
  1994. int ret, total_bytes, wait_bytes = 0;
  1995. bool need_wrap = false;
  1996. if (ringbuf->reserved_in_use)
  1997. total_bytes = bytes;
  1998. else
  1999. total_bytes = bytes + ringbuf->reserved_size;
  2000. if (unlikely(bytes > remain_usable)) {
  2001. /*
  2002. * Not enough space for the basic request. So need to flush
  2003. * out the remainder and then wait for base + reserved.
  2004. */
  2005. wait_bytes = remain_actual + total_bytes;
  2006. need_wrap = true;
  2007. } else {
  2008. if (unlikely(total_bytes > remain_usable)) {
  2009. /*
  2010. * The base request will fit but the reserved space
  2011. * falls off the end. So only need to to wait for the
  2012. * reserved size after flushing out the remainder.
  2013. */
  2014. wait_bytes = remain_actual + ringbuf->reserved_size;
  2015. need_wrap = true;
  2016. } else if (total_bytes > ringbuf->space) {
  2017. /* No wrapping required, just waiting. */
  2018. wait_bytes = total_bytes;
  2019. }
  2020. }
  2021. if (wait_bytes) {
  2022. ret = ring_wait_for_space(ring, wait_bytes);
  2023. if (unlikely(ret))
  2024. return ret;
  2025. if (need_wrap)
  2026. __wrap_ring_buffer(ringbuf);
  2027. }
  2028. return 0;
  2029. }
  2030. int intel_ring_begin(struct drm_i915_gem_request *req,
  2031. int num_dwords)
  2032. {
  2033. struct intel_engine_cs *ring;
  2034. struct drm_i915_private *dev_priv;
  2035. int ret;
  2036. WARN_ON(req == NULL);
  2037. ring = req->ring;
  2038. dev_priv = ring->dev->dev_private;
  2039. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  2040. dev_priv->mm.interruptible);
  2041. if (ret)
  2042. return ret;
  2043. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  2044. if (ret)
  2045. return ret;
  2046. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  2047. return 0;
  2048. }
  2049. /* Align the ring tail to a cacheline boundary */
  2050. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2051. {
  2052. struct intel_engine_cs *ring = req->ring;
  2053. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2054. int ret;
  2055. if (num_dwords == 0)
  2056. return 0;
  2057. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2058. ret = intel_ring_begin(req, num_dwords);
  2059. if (ret)
  2060. return ret;
  2061. while (num_dwords--)
  2062. intel_ring_emit(ring, MI_NOOP);
  2063. intel_ring_advance(ring);
  2064. return 0;
  2065. }
  2066. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  2067. {
  2068. struct drm_device *dev = ring->dev;
  2069. struct drm_i915_private *dev_priv = dev->dev_private;
  2070. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  2071. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  2072. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  2073. if (HAS_VEBOX(dev))
  2074. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  2075. }
  2076. ring->set_seqno(ring, seqno);
  2077. ring->hangcheck.seqno = seqno;
  2078. }
  2079. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  2080. u32 value)
  2081. {
  2082. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2083. /* Every tail move must follow the sequence below */
  2084. /* Disable notification that the ring is IDLE. The GT
  2085. * will then assume that it is busy and bring it out of rc6.
  2086. */
  2087. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2088. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2089. /* Clear the context id. Here be magic! */
  2090. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2091. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2092. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2093. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2094. 50))
  2095. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2096. /* Now that the ring is fully powered up, update the tail */
  2097. I915_WRITE_TAIL(ring, value);
  2098. POSTING_READ(RING_TAIL(ring->mmio_base));
  2099. /* Let the ring send IDLE messages to the GT again,
  2100. * and so let it sleep to conserve power when idle.
  2101. */
  2102. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2103. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2104. }
  2105. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2106. u32 invalidate, u32 flush)
  2107. {
  2108. struct intel_engine_cs *ring = req->ring;
  2109. uint32_t cmd;
  2110. int ret;
  2111. ret = intel_ring_begin(req, 4);
  2112. if (ret)
  2113. return ret;
  2114. cmd = MI_FLUSH_DW;
  2115. if (INTEL_INFO(ring->dev)->gen >= 8)
  2116. cmd += 1;
  2117. /* We always require a command barrier so that subsequent
  2118. * commands, such as breadcrumb interrupts, are strictly ordered
  2119. * wrt the contents of the write cache being flushed to memory
  2120. * (and thus being coherent from the CPU).
  2121. */
  2122. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2123. /*
  2124. * Bspec vol 1c.5 - video engine command streamer:
  2125. * "If ENABLED, all TLBs will be invalidated once the flush
  2126. * operation is complete. This bit is only valid when the
  2127. * Post-Sync Operation field is a value of 1h or 3h."
  2128. */
  2129. if (invalidate & I915_GEM_GPU_DOMAINS)
  2130. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2131. intel_ring_emit(ring, cmd);
  2132. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2133. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2134. intel_ring_emit(ring, 0); /* upper addr */
  2135. intel_ring_emit(ring, 0); /* value */
  2136. } else {
  2137. intel_ring_emit(ring, 0);
  2138. intel_ring_emit(ring, MI_NOOP);
  2139. }
  2140. intel_ring_advance(ring);
  2141. return 0;
  2142. }
  2143. static int
  2144. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2145. u64 offset, u32 len,
  2146. unsigned dispatch_flags)
  2147. {
  2148. struct intel_engine_cs *ring = req->ring;
  2149. bool ppgtt = USES_PPGTT(ring->dev) &&
  2150. !(dispatch_flags & I915_DISPATCH_SECURE);
  2151. int ret;
  2152. ret = intel_ring_begin(req, 4);
  2153. if (ret)
  2154. return ret;
  2155. /* FIXME(BDW): Address space and security selectors. */
  2156. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2157. (dispatch_flags & I915_DISPATCH_RS ?
  2158. MI_BATCH_RESOURCE_STREAMER : 0));
  2159. intel_ring_emit(ring, lower_32_bits(offset));
  2160. intel_ring_emit(ring, upper_32_bits(offset));
  2161. intel_ring_emit(ring, MI_NOOP);
  2162. intel_ring_advance(ring);
  2163. return 0;
  2164. }
  2165. static int
  2166. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2167. u64 offset, u32 len,
  2168. unsigned dispatch_flags)
  2169. {
  2170. struct intel_engine_cs *ring = req->ring;
  2171. int ret;
  2172. ret = intel_ring_begin(req, 2);
  2173. if (ret)
  2174. return ret;
  2175. intel_ring_emit(ring,
  2176. MI_BATCH_BUFFER_START |
  2177. (dispatch_flags & I915_DISPATCH_SECURE ?
  2178. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2179. (dispatch_flags & I915_DISPATCH_RS ?
  2180. MI_BATCH_RESOURCE_STREAMER : 0));
  2181. /* bit0-7 is the length on GEN6+ */
  2182. intel_ring_emit(ring, offset);
  2183. intel_ring_advance(ring);
  2184. return 0;
  2185. }
  2186. static int
  2187. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2188. u64 offset, u32 len,
  2189. unsigned dispatch_flags)
  2190. {
  2191. struct intel_engine_cs *ring = req->ring;
  2192. int ret;
  2193. ret = intel_ring_begin(req, 2);
  2194. if (ret)
  2195. return ret;
  2196. intel_ring_emit(ring,
  2197. MI_BATCH_BUFFER_START |
  2198. (dispatch_flags & I915_DISPATCH_SECURE ?
  2199. 0 : MI_BATCH_NON_SECURE_I965));
  2200. /* bit0-7 is the length on GEN6+ */
  2201. intel_ring_emit(ring, offset);
  2202. intel_ring_advance(ring);
  2203. return 0;
  2204. }
  2205. /* Blitter support (SandyBridge+) */
  2206. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2207. u32 invalidate, u32 flush)
  2208. {
  2209. struct intel_engine_cs *ring = req->ring;
  2210. struct drm_device *dev = ring->dev;
  2211. uint32_t cmd;
  2212. int ret;
  2213. ret = intel_ring_begin(req, 4);
  2214. if (ret)
  2215. return ret;
  2216. cmd = MI_FLUSH_DW;
  2217. if (INTEL_INFO(dev)->gen >= 8)
  2218. cmd += 1;
  2219. /* We always require a command barrier so that subsequent
  2220. * commands, such as breadcrumb interrupts, are strictly ordered
  2221. * wrt the contents of the write cache being flushed to memory
  2222. * (and thus being coherent from the CPU).
  2223. */
  2224. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2225. /*
  2226. * Bspec vol 1c.3 - blitter engine command streamer:
  2227. * "If ENABLED, all TLBs will be invalidated once the flush
  2228. * operation is complete. This bit is only valid when the
  2229. * Post-Sync Operation field is a value of 1h or 3h."
  2230. */
  2231. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2232. cmd |= MI_INVALIDATE_TLB;
  2233. intel_ring_emit(ring, cmd);
  2234. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2235. if (INTEL_INFO(dev)->gen >= 8) {
  2236. intel_ring_emit(ring, 0); /* upper addr */
  2237. intel_ring_emit(ring, 0); /* value */
  2238. } else {
  2239. intel_ring_emit(ring, 0);
  2240. intel_ring_emit(ring, MI_NOOP);
  2241. }
  2242. intel_ring_advance(ring);
  2243. return 0;
  2244. }
  2245. int intel_init_render_ring_buffer(struct drm_device *dev)
  2246. {
  2247. struct drm_i915_private *dev_priv = dev->dev_private;
  2248. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2249. struct drm_i915_gem_object *obj;
  2250. int ret;
  2251. ring->name = "render ring";
  2252. ring->id = RCS;
  2253. ring->exec_id = I915_EXEC_RENDER;
  2254. ring->mmio_base = RENDER_RING_BASE;
  2255. if (INTEL_INFO(dev)->gen >= 8) {
  2256. if (i915_semaphore_is_enabled(dev)) {
  2257. obj = i915_gem_alloc_object(dev, 4096);
  2258. if (obj == NULL) {
  2259. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2260. i915.semaphores = 0;
  2261. } else {
  2262. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2263. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2264. if (ret != 0) {
  2265. drm_gem_object_unreference(&obj->base);
  2266. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2267. i915.semaphores = 0;
  2268. } else
  2269. dev_priv->semaphore_obj = obj;
  2270. }
  2271. }
  2272. ring->init_context = intel_rcs_ctx_init;
  2273. ring->add_request = gen6_add_request;
  2274. ring->flush = gen8_render_ring_flush;
  2275. ring->irq_get = gen8_ring_get_irq;
  2276. ring->irq_put = gen8_ring_put_irq;
  2277. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2278. ring->get_seqno = gen6_ring_get_seqno;
  2279. ring->set_seqno = ring_set_seqno;
  2280. if (i915_semaphore_is_enabled(dev)) {
  2281. WARN_ON(!dev_priv->semaphore_obj);
  2282. ring->semaphore.sync_to = gen8_ring_sync;
  2283. ring->semaphore.signal = gen8_rcs_signal;
  2284. GEN8_RING_SEMAPHORE_INIT;
  2285. }
  2286. } else if (INTEL_INFO(dev)->gen >= 6) {
  2287. ring->init_context = intel_rcs_ctx_init;
  2288. ring->add_request = gen6_add_request;
  2289. ring->flush = gen7_render_ring_flush;
  2290. if (INTEL_INFO(dev)->gen == 6)
  2291. ring->flush = gen6_render_ring_flush;
  2292. ring->irq_get = gen6_ring_get_irq;
  2293. ring->irq_put = gen6_ring_put_irq;
  2294. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2295. ring->get_seqno = gen6_ring_get_seqno;
  2296. ring->set_seqno = ring_set_seqno;
  2297. if (i915_semaphore_is_enabled(dev)) {
  2298. ring->semaphore.sync_to = gen6_ring_sync;
  2299. ring->semaphore.signal = gen6_signal;
  2300. /*
  2301. * The current semaphore is only applied on pre-gen8
  2302. * platform. And there is no VCS2 ring on the pre-gen8
  2303. * platform. So the semaphore between RCS and VCS2 is
  2304. * initialized as INVALID. Gen8 will initialize the
  2305. * sema between VCS2 and RCS later.
  2306. */
  2307. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2308. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2309. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2310. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2311. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2312. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2313. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2314. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2315. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2316. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2317. }
  2318. } else if (IS_GEN5(dev)) {
  2319. ring->add_request = pc_render_add_request;
  2320. ring->flush = gen4_render_ring_flush;
  2321. ring->get_seqno = pc_render_get_seqno;
  2322. ring->set_seqno = pc_render_set_seqno;
  2323. ring->irq_get = gen5_ring_get_irq;
  2324. ring->irq_put = gen5_ring_put_irq;
  2325. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2326. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2327. } else {
  2328. ring->add_request = i9xx_add_request;
  2329. if (INTEL_INFO(dev)->gen < 4)
  2330. ring->flush = gen2_render_ring_flush;
  2331. else
  2332. ring->flush = gen4_render_ring_flush;
  2333. ring->get_seqno = ring_get_seqno;
  2334. ring->set_seqno = ring_set_seqno;
  2335. if (IS_GEN2(dev)) {
  2336. ring->irq_get = i8xx_ring_get_irq;
  2337. ring->irq_put = i8xx_ring_put_irq;
  2338. } else {
  2339. ring->irq_get = i9xx_ring_get_irq;
  2340. ring->irq_put = i9xx_ring_put_irq;
  2341. }
  2342. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2343. }
  2344. ring->write_tail = ring_write_tail;
  2345. if (IS_HASWELL(dev))
  2346. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2347. else if (IS_GEN8(dev))
  2348. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2349. else if (INTEL_INFO(dev)->gen >= 6)
  2350. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2351. else if (INTEL_INFO(dev)->gen >= 4)
  2352. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2353. else if (IS_I830(dev) || IS_845G(dev))
  2354. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2355. else
  2356. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2357. ring->init_hw = init_render_ring;
  2358. ring->cleanup = render_ring_cleanup;
  2359. /* Workaround batchbuffer to combat CS tlb bug. */
  2360. if (HAS_BROKEN_CS_TLB(dev)) {
  2361. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2362. if (obj == NULL) {
  2363. DRM_ERROR("Failed to allocate batch bo\n");
  2364. return -ENOMEM;
  2365. }
  2366. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2367. if (ret != 0) {
  2368. drm_gem_object_unreference(&obj->base);
  2369. DRM_ERROR("Failed to ping batch bo\n");
  2370. return ret;
  2371. }
  2372. ring->scratch.obj = obj;
  2373. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2374. }
  2375. ret = intel_init_ring_buffer(dev, ring);
  2376. if (ret)
  2377. return ret;
  2378. if (INTEL_INFO(dev)->gen >= 5) {
  2379. ret = intel_init_pipe_control(ring);
  2380. if (ret)
  2381. return ret;
  2382. }
  2383. return 0;
  2384. }
  2385. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2386. {
  2387. struct drm_i915_private *dev_priv = dev->dev_private;
  2388. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2389. ring->name = "bsd ring";
  2390. ring->id = VCS;
  2391. ring->exec_id = I915_EXEC_BSD;
  2392. ring->write_tail = ring_write_tail;
  2393. if (INTEL_INFO(dev)->gen >= 6) {
  2394. ring->mmio_base = GEN6_BSD_RING_BASE;
  2395. /* gen6 bsd needs a special wa for tail updates */
  2396. if (IS_GEN6(dev))
  2397. ring->write_tail = gen6_bsd_ring_write_tail;
  2398. ring->flush = gen6_bsd_ring_flush;
  2399. ring->add_request = gen6_add_request;
  2400. ring->get_seqno = gen6_ring_get_seqno;
  2401. ring->set_seqno = ring_set_seqno;
  2402. if (INTEL_INFO(dev)->gen >= 8) {
  2403. ring->irq_enable_mask =
  2404. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2405. ring->irq_get = gen8_ring_get_irq;
  2406. ring->irq_put = gen8_ring_put_irq;
  2407. ring->dispatch_execbuffer =
  2408. gen8_ring_dispatch_execbuffer;
  2409. if (i915_semaphore_is_enabled(dev)) {
  2410. ring->semaphore.sync_to = gen8_ring_sync;
  2411. ring->semaphore.signal = gen8_xcs_signal;
  2412. GEN8_RING_SEMAPHORE_INIT;
  2413. }
  2414. } else {
  2415. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2416. ring->irq_get = gen6_ring_get_irq;
  2417. ring->irq_put = gen6_ring_put_irq;
  2418. ring->dispatch_execbuffer =
  2419. gen6_ring_dispatch_execbuffer;
  2420. if (i915_semaphore_is_enabled(dev)) {
  2421. ring->semaphore.sync_to = gen6_ring_sync;
  2422. ring->semaphore.signal = gen6_signal;
  2423. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2424. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2425. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2426. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2427. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2428. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2429. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2430. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2431. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2432. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2433. }
  2434. }
  2435. } else {
  2436. ring->mmio_base = BSD_RING_BASE;
  2437. ring->flush = bsd_ring_flush;
  2438. ring->add_request = i9xx_add_request;
  2439. ring->get_seqno = ring_get_seqno;
  2440. ring->set_seqno = ring_set_seqno;
  2441. if (IS_GEN5(dev)) {
  2442. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2443. ring->irq_get = gen5_ring_get_irq;
  2444. ring->irq_put = gen5_ring_put_irq;
  2445. } else {
  2446. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2447. ring->irq_get = i9xx_ring_get_irq;
  2448. ring->irq_put = i9xx_ring_put_irq;
  2449. }
  2450. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2451. }
  2452. ring->init_hw = init_ring_common;
  2453. return intel_init_ring_buffer(dev, ring);
  2454. }
  2455. /**
  2456. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2457. */
  2458. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2459. {
  2460. struct drm_i915_private *dev_priv = dev->dev_private;
  2461. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2462. ring->name = "bsd2 ring";
  2463. ring->id = VCS2;
  2464. ring->exec_id = I915_EXEC_BSD;
  2465. ring->write_tail = ring_write_tail;
  2466. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2467. ring->flush = gen6_bsd_ring_flush;
  2468. ring->add_request = gen6_add_request;
  2469. ring->get_seqno = gen6_ring_get_seqno;
  2470. ring->set_seqno = ring_set_seqno;
  2471. ring->irq_enable_mask =
  2472. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2473. ring->irq_get = gen8_ring_get_irq;
  2474. ring->irq_put = gen8_ring_put_irq;
  2475. ring->dispatch_execbuffer =
  2476. gen8_ring_dispatch_execbuffer;
  2477. if (i915_semaphore_is_enabled(dev)) {
  2478. ring->semaphore.sync_to = gen8_ring_sync;
  2479. ring->semaphore.signal = gen8_xcs_signal;
  2480. GEN8_RING_SEMAPHORE_INIT;
  2481. }
  2482. ring->init_hw = init_ring_common;
  2483. return intel_init_ring_buffer(dev, ring);
  2484. }
  2485. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2486. {
  2487. struct drm_i915_private *dev_priv = dev->dev_private;
  2488. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2489. ring->name = "blitter ring";
  2490. ring->id = BCS;
  2491. ring->exec_id = I915_EXEC_BLT;
  2492. ring->mmio_base = BLT_RING_BASE;
  2493. ring->write_tail = ring_write_tail;
  2494. ring->flush = gen6_ring_flush;
  2495. ring->add_request = gen6_add_request;
  2496. ring->get_seqno = gen6_ring_get_seqno;
  2497. ring->set_seqno = ring_set_seqno;
  2498. if (INTEL_INFO(dev)->gen >= 8) {
  2499. ring->irq_enable_mask =
  2500. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2501. ring->irq_get = gen8_ring_get_irq;
  2502. ring->irq_put = gen8_ring_put_irq;
  2503. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2504. if (i915_semaphore_is_enabled(dev)) {
  2505. ring->semaphore.sync_to = gen8_ring_sync;
  2506. ring->semaphore.signal = gen8_xcs_signal;
  2507. GEN8_RING_SEMAPHORE_INIT;
  2508. }
  2509. } else {
  2510. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2511. ring->irq_get = gen6_ring_get_irq;
  2512. ring->irq_put = gen6_ring_put_irq;
  2513. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2514. if (i915_semaphore_is_enabled(dev)) {
  2515. ring->semaphore.signal = gen6_signal;
  2516. ring->semaphore.sync_to = gen6_ring_sync;
  2517. /*
  2518. * The current semaphore is only applied on pre-gen8
  2519. * platform. And there is no VCS2 ring on the pre-gen8
  2520. * platform. So the semaphore between BCS and VCS2 is
  2521. * initialized as INVALID. Gen8 will initialize the
  2522. * sema between BCS and VCS2 later.
  2523. */
  2524. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2525. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2526. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2527. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2528. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2529. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2530. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2531. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2532. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2533. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2534. }
  2535. }
  2536. ring->init_hw = init_ring_common;
  2537. return intel_init_ring_buffer(dev, ring);
  2538. }
  2539. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2540. {
  2541. struct drm_i915_private *dev_priv = dev->dev_private;
  2542. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2543. ring->name = "video enhancement ring";
  2544. ring->id = VECS;
  2545. ring->exec_id = I915_EXEC_VEBOX;
  2546. ring->mmio_base = VEBOX_RING_BASE;
  2547. ring->write_tail = ring_write_tail;
  2548. ring->flush = gen6_ring_flush;
  2549. ring->add_request = gen6_add_request;
  2550. ring->get_seqno = gen6_ring_get_seqno;
  2551. ring->set_seqno = ring_set_seqno;
  2552. if (INTEL_INFO(dev)->gen >= 8) {
  2553. ring->irq_enable_mask =
  2554. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2555. ring->irq_get = gen8_ring_get_irq;
  2556. ring->irq_put = gen8_ring_put_irq;
  2557. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2558. if (i915_semaphore_is_enabled(dev)) {
  2559. ring->semaphore.sync_to = gen8_ring_sync;
  2560. ring->semaphore.signal = gen8_xcs_signal;
  2561. GEN8_RING_SEMAPHORE_INIT;
  2562. }
  2563. } else {
  2564. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2565. ring->irq_get = hsw_vebox_get_irq;
  2566. ring->irq_put = hsw_vebox_put_irq;
  2567. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2568. if (i915_semaphore_is_enabled(dev)) {
  2569. ring->semaphore.sync_to = gen6_ring_sync;
  2570. ring->semaphore.signal = gen6_signal;
  2571. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2572. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2573. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2574. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2575. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2576. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2577. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2578. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2579. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2580. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2581. }
  2582. }
  2583. ring->init_hw = init_ring_common;
  2584. return intel_init_ring_buffer(dev, ring);
  2585. }
  2586. int
  2587. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2588. {
  2589. struct intel_engine_cs *ring = req->ring;
  2590. int ret;
  2591. if (!ring->gpu_caches_dirty)
  2592. return 0;
  2593. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2594. if (ret)
  2595. return ret;
  2596. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2597. ring->gpu_caches_dirty = false;
  2598. return 0;
  2599. }
  2600. int
  2601. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2602. {
  2603. struct intel_engine_cs *ring = req->ring;
  2604. uint32_t flush_domains;
  2605. int ret;
  2606. flush_domains = 0;
  2607. if (ring->gpu_caches_dirty)
  2608. flush_domains = I915_GEM_GPU_DOMAINS;
  2609. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2610. if (ret)
  2611. return ret;
  2612. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2613. ring->gpu_caches_dirty = false;
  2614. return 0;
  2615. }
  2616. void
  2617. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2618. {
  2619. int ret;
  2620. if (!intel_ring_initialized(ring))
  2621. return;
  2622. ret = intel_ring_idle(ring);
  2623. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2624. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2625. ring->name, ret);
  2626. stop_ring(ring);
  2627. }