intel_ringbuffer.c 90 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. bool intel_engine_stopped(struct intel_engine_cs *engine)
  56. {
  57. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  58. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  59. }
  60. static void __intel_ring_advance(struct intel_engine_cs *engine)
  61. {
  62. struct intel_ringbuffer *ringbuf = engine->buffer;
  63. ringbuf->tail &= ringbuf->size - 1;
  64. if (intel_engine_stopped(engine))
  65. return;
  66. engine->write_tail(engine, ringbuf->tail);
  67. }
  68. static int
  69. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  70. u32 invalidate_domains,
  71. u32 flush_domains)
  72. {
  73. struct intel_engine_cs *engine = req->engine;
  74. u32 cmd;
  75. int ret;
  76. cmd = MI_FLUSH;
  77. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  78. cmd |= MI_NO_WRITE_FLUSH;
  79. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  80. cmd |= MI_READ_FLUSH;
  81. ret = intel_ring_begin(req, 2);
  82. if (ret)
  83. return ret;
  84. intel_ring_emit(engine, cmd);
  85. intel_ring_emit(engine, MI_NOOP);
  86. intel_ring_advance(engine);
  87. return 0;
  88. }
  89. static int
  90. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  91. u32 invalidate_domains,
  92. u32 flush_domains)
  93. {
  94. struct intel_engine_cs *engine = req->engine;
  95. struct drm_device *dev = engine->dev;
  96. u32 cmd;
  97. int ret;
  98. /*
  99. * read/write caches:
  100. *
  101. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  102. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  103. * also flushed at 2d versus 3d pipeline switches.
  104. *
  105. * read-only caches:
  106. *
  107. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  108. * MI_READ_FLUSH is set, and is always flushed on 965.
  109. *
  110. * I915_GEM_DOMAIN_COMMAND may not exist?
  111. *
  112. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  113. * invalidated when MI_EXE_FLUSH is set.
  114. *
  115. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  116. * invalidated with every MI_FLUSH.
  117. *
  118. * TLBs:
  119. *
  120. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  121. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  122. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  123. * are flushed at any MI_FLUSH.
  124. */
  125. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  126. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  127. cmd &= ~MI_NO_WRITE_FLUSH;
  128. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  129. cmd |= MI_EXE_FLUSH;
  130. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  131. (IS_G4X(dev) || IS_GEN5(dev)))
  132. cmd |= MI_INVALIDATE_ISP;
  133. ret = intel_ring_begin(req, 2);
  134. if (ret)
  135. return ret;
  136. intel_ring_emit(engine, cmd);
  137. intel_ring_emit(engine, MI_NOOP);
  138. intel_ring_advance(engine);
  139. return 0;
  140. }
  141. /**
  142. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  143. * implementing two workarounds on gen6. From section 1.4.7.1
  144. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  145. *
  146. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  147. * produced by non-pipelined state commands), software needs to first
  148. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  149. * 0.
  150. *
  151. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  152. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  153. *
  154. * And the workaround for these two requires this workaround first:
  155. *
  156. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  157. * BEFORE the pipe-control with a post-sync op and no write-cache
  158. * flushes.
  159. *
  160. * And this last workaround is tricky because of the requirements on
  161. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  162. * volume 2 part 1:
  163. *
  164. * "1 of the following must also be set:
  165. * - Render Target Cache Flush Enable ([12] of DW1)
  166. * - Depth Cache Flush Enable ([0] of DW1)
  167. * - Stall at Pixel Scoreboard ([1] of DW1)
  168. * - Depth Stall ([13] of DW1)
  169. * - Post-Sync Operation ([13] of DW1)
  170. * - Notify Enable ([8] of DW1)"
  171. *
  172. * The cache flushes require the workaround flush that triggered this
  173. * one, so we can't use it. Depth stall would trigger the same.
  174. * Post-sync nonzero is what triggered this second workaround, so we
  175. * can't use that one either. Notify enable is IRQs, which aren't
  176. * really our business. That leaves only stall at scoreboard.
  177. */
  178. static int
  179. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  180. {
  181. struct intel_engine_cs *engine = req->engine;
  182. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  183. int ret;
  184. ret = intel_ring_begin(req, 6);
  185. if (ret)
  186. return ret;
  187. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  188. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  189. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  190. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  191. intel_ring_emit(engine, 0); /* low dword */
  192. intel_ring_emit(engine, 0); /* high dword */
  193. intel_ring_emit(engine, MI_NOOP);
  194. intel_ring_advance(engine);
  195. ret = intel_ring_begin(req, 6);
  196. if (ret)
  197. return ret;
  198. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  199. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  200. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(engine, 0);
  202. intel_ring_emit(engine, 0);
  203. intel_ring_emit(engine, MI_NOOP);
  204. intel_ring_advance(engine);
  205. return 0;
  206. }
  207. static int
  208. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  209. u32 invalidate_domains, u32 flush_domains)
  210. {
  211. struct intel_engine_cs *engine = req->engine;
  212. u32 flags = 0;
  213. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  214. int ret;
  215. /* Force SNB workarounds for PIPE_CONTROL flushes */
  216. ret = intel_emit_post_sync_nonzero_flush(req);
  217. if (ret)
  218. return ret;
  219. /* Just flush everything. Experiments have shown that reducing the
  220. * number of bits based on the write domains has little performance
  221. * impact.
  222. */
  223. if (flush_domains) {
  224. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  225. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  226. /*
  227. * Ensure that any following seqno writes only happen
  228. * when the render cache is indeed flushed.
  229. */
  230. flags |= PIPE_CONTROL_CS_STALL;
  231. }
  232. if (invalidate_domains) {
  233. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  234. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  239. /*
  240. * TLB invalidate requires a post-sync write.
  241. */
  242. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  243. }
  244. ret = intel_ring_begin(req, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(engine, flags);
  249. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  250. intel_ring_emit(engine, 0);
  251. intel_ring_advance(engine);
  252. return 0;
  253. }
  254. static int
  255. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  256. {
  257. struct intel_engine_cs *engine = req->engine;
  258. int ret;
  259. ret = intel_ring_begin(req, 4);
  260. if (ret)
  261. return ret;
  262. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  263. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  264. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  265. intel_ring_emit(engine, 0);
  266. intel_ring_emit(engine, 0);
  267. intel_ring_advance(engine);
  268. return 0;
  269. }
  270. static int
  271. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  272. u32 invalidate_domains, u32 flush_domains)
  273. {
  274. struct intel_engine_cs *engine = req->engine;
  275. u32 flags = 0;
  276. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  277. int ret;
  278. /*
  279. * Ensure that any following seqno writes only happen when the render
  280. * cache is indeed flushed.
  281. *
  282. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  283. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  284. * don't try to be clever and just set it unconditionally.
  285. */
  286. flags |= PIPE_CONTROL_CS_STALL;
  287. /* Just flush everything. Experiments have shown that reducing the
  288. * number of bits based on the write domains has little performance
  289. * impact.
  290. */
  291. if (flush_domains) {
  292. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  293. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  294. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  295. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  296. }
  297. if (invalidate_domains) {
  298. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  299. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  305. /*
  306. * TLB invalidate requires a post-sync write.
  307. */
  308. flags |= PIPE_CONTROL_QW_WRITE;
  309. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  310. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  311. /* Workaround: we must issue a pipe_control with CS-stall bit
  312. * set before a pipe_control command that has the state cache
  313. * invalidate bit set. */
  314. gen7_render_ring_cs_stall_wa(req);
  315. }
  316. ret = intel_ring_begin(req, 4);
  317. if (ret)
  318. return ret;
  319. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  320. intel_ring_emit(engine, flags);
  321. intel_ring_emit(engine, scratch_addr);
  322. intel_ring_emit(engine, 0);
  323. intel_ring_advance(engine);
  324. return 0;
  325. }
  326. static int
  327. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  328. u32 flags, u32 scratch_addr)
  329. {
  330. struct intel_engine_cs *engine = req->engine;
  331. int ret;
  332. ret = intel_ring_begin(req, 6);
  333. if (ret)
  334. return ret;
  335. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  336. intel_ring_emit(engine, flags);
  337. intel_ring_emit(engine, scratch_addr);
  338. intel_ring_emit(engine, 0);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_emit(engine, 0);
  341. intel_ring_advance(engine);
  342. return 0;
  343. }
  344. static int
  345. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  346. u32 invalidate_domains, u32 flush_domains)
  347. {
  348. u32 flags = 0;
  349. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  350. int ret;
  351. flags |= PIPE_CONTROL_CS_STALL;
  352. if (flush_domains) {
  353. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  354. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  355. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  356. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  357. }
  358. if (invalidate_domains) {
  359. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  360. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_QW_WRITE;
  366. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  367. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  368. ret = gen8_emit_pipe_control(req,
  369. PIPE_CONTROL_CS_STALL |
  370. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  371. 0);
  372. if (ret)
  373. return ret;
  374. }
  375. return gen8_emit_pipe_control(req, flags, scratch_addr);
  376. }
  377. static void ring_write_tail(struct intel_engine_cs *engine,
  378. u32 value)
  379. {
  380. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  381. I915_WRITE_TAIL(engine, value);
  382. }
  383. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  384. {
  385. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  386. u64 acthd;
  387. if (INTEL_INFO(engine->dev)->gen >= 8)
  388. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  389. RING_ACTHD_UDW(engine->mmio_base));
  390. else if (INTEL_INFO(engine->dev)->gen >= 4)
  391. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  392. else
  393. acthd = I915_READ(ACTHD);
  394. return acthd;
  395. }
  396. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  397. {
  398. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  399. u32 addr;
  400. addr = dev_priv->status_page_dmah->busaddr;
  401. if (INTEL_INFO(engine->dev)->gen >= 4)
  402. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  403. I915_WRITE(HWS_PGA, addr);
  404. }
  405. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  406. {
  407. struct drm_device *dev = engine->dev;
  408. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  409. i915_reg_t mmio;
  410. /* The ring status page addresses are no longer next to the rest of
  411. * the ring registers as of gen7.
  412. */
  413. if (IS_GEN7(dev)) {
  414. switch (engine->id) {
  415. case RCS:
  416. mmio = RENDER_HWS_PGA_GEN7;
  417. break;
  418. case BCS:
  419. mmio = BLT_HWS_PGA_GEN7;
  420. break;
  421. /*
  422. * VCS2 actually doesn't exist on Gen7. Only shut up
  423. * gcc switch check warning
  424. */
  425. case VCS2:
  426. case VCS:
  427. mmio = BSD_HWS_PGA_GEN7;
  428. break;
  429. case VECS:
  430. mmio = VEBOX_HWS_PGA_GEN7;
  431. break;
  432. }
  433. } else if (IS_GEN6(engine->dev)) {
  434. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  435. } else {
  436. /* XXX: gen8 returns to sanity */
  437. mmio = RING_HWS_PGA(engine->mmio_base);
  438. }
  439. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  440. POSTING_READ(mmio);
  441. /*
  442. * Flush the TLB for this page
  443. *
  444. * FIXME: These two bits have disappeared on gen8, so a question
  445. * arises: do we still need this and if so how should we go about
  446. * invalidating the TLB?
  447. */
  448. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  449. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  450. /* ring should be idle before issuing a sync flush*/
  451. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  452. I915_WRITE(reg,
  453. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  454. INSTPM_SYNC_FLUSH));
  455. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  456. 1000))
  457. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  458. engine->name);
  459. }
  460. }
  461. static bool stop_ring(struct intel_engine_cs *engine)
  462. {
  463. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  464. if (!IS_GEN2(engine->dev)) {
  465. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  466. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  467. DRM_ERROR("%s : timed out trying to stop ring\n",
  468. engine->name);
  469. /* Sometimes we observe that the idle flag is not
  470. * set even though the ring is empty. So double
  471. * check before giving up.
  472. */
  473. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  474. return false;
  475. }
  476. }
  477. I915_WRITE_CTL(engine, 0);
  478. I915_WRITE_HEAD(engine, 0);
  479. engine->write_tail(engine, 0);
  480. if (!IS_GEN2(engine->dev)) {
  481. (void)I915_READ_CTL(engine);
  482. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  483. }
  484. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  485. }
  486. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  487. {
  488. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  489. }
  490. static int init_ring_common(struct intel_engine_cs *engine)
  491. {
  492. struct drm_device *dev = engine->dev;
  493. struct drm_i915_private *dev_priv = dev->dev_private;
  494. struct intel_ringbuffer *ringbuf = engine->buffer;
  495. struct drm_i915_gem_object *obj = ringbuf->obj;
  496. int ret = 0;
  497. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  498. if (!stop_ring(engine)) {
  499. /* G45 ring initialization often fails to reset head to zero */
  500. DRM_DEBUG_KMS("%s head not reset to zero "
  501. "ctl %08x head %08x tail %08x start %08x\n",
  502. engine->name,
  503. I915_READ_CTL(engine),
  504. I915_READ_HEAD(engine),
  505. I915_READ_TAIL(engine),
  506. I915_READ_START(engine));
  507. if (!stop_ring(engine)) {
  508. DRM_ERROR("failed to set %s head to zero "
  509. "ctl %08x head %08x tail %08x start %08x\n",
  510. engine->name,
  511. I915_READ_CTL(engine),
  512. I915_READ_HEAD(engine),
  513. I915_READ_TAIL(engine),
  514. I915_READ_START(engine));
  515. ret = -EIO;
  516. goto out;
  517. }
  518. }
  519. if (I915_NEED_GFX_HWS(dev))
  520. intel_ring_setup_status_page(engine);
  521. else
  522. ring_setup_phys_status_page(engine);
  523. /* Enforce ordering by reading HEAD register back */
  524. I915_READ_HEAD(engine);
  525. /* Initialize the ring. This must happen _after_ we've cleared the ring
  526. * registers with the above sequence (the readback of the HEAD registers
  527. * also enforces ordering), otherwise the hw might lose the new ring
  528. * register values. */
  529. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  530. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  531. if (I915_READ_HEAD(engine))
  532. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  533. engine->name, I915_READ_HEAD(engine));
  534. I915_WRITE_HEAD(engine, 0);
  535. (void)I915_READ_HEAD(engine);
  536. I915_WRITE_CTL(engine,
  537. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  538. | RING_VALID);
  539. /* If the head is still not zero, the ring is dead */
  540. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  541. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  542. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  543. DRM_ERROR("%s initialization failed "
  544. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  545. engine->name,
  546. I915_READ_CTL(engine),
  547. I915_READ_CTL(engine) & RING_VALID,
  548. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  549. I915_READ_START(engine),
  550. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  551. ret = -EIO;
  552. goto out;
  553. }
  554. ringbuf->last_retired_head = -1;
  555. ringbuf->head = I915_READ_HEAD(engine);
  556. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  557. intel_ring_update_space(ringbuf);
  558. intel_engine_init_hangcheck(engine);
  559. out:
  560. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  561. return ret;
  562. }
  563. void
  564. intel_fini_pipe_control(struct intel_engine_cs *engine)
  565. {
  566. struct drm_device *dev = engine->dev;
  567. if (engine->scratch.obj == NULL)
  568. return;
  569. if (INTEL_INFO(dev)->gen >= 5) {
  570. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  571. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  572. }
  573. drm_gem_object_unreference(&engine->scratch.obj->base);
  574. engine->scratch.obj = NULL;
  575. }
  576. int
  577. intel_init_pipe_control(struct intel_engine_cs *engine)
  578. {
  579. int ret;
  580. WARN_ON(engine->scratch.obj);
  581. engine->scratch.obj = i915_gem_object_create(engine->dev, 4096);
  582. if (IS_ERR(engine->scratch.obj)) {
  583. DRM_ERROR("Failed to allocate seqno page\n");
  584. ret = PTR_ERR(engine->scratch.obj);
  585. engine->scratch.obj = NULL;
  586. goto err;
  587. }
  588. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  589. I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  596. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  597. if (engine->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. engine->name, engine->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&engine->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *engine = req->engine;
  615. struct drm_device *dev = engine->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (w->count == 0)
  619. return 0;
  620. engine->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit_reg(engine, w->reg[i].addr);
  630. intel_ring_emit(engine, w->reg[i].value);
  631. }
  632. intel_ring_emit(engine, MI_NOOP);
  633. intel_ring_advance(engine);
  634. engine->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. return ret;
  650. return 0;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. i915_reg_t addr,
  654. const u32 mask, const u32 val)
  655. {
  656. const u32 idx = dev_priv->workarounds.count;
  657. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  658. return -ENOSPC;
  659. dev_priv->workarounds.reg[idx].addr = addr;
  660. dev_priv->workarounds.reg[idx].value = val;
  661. dev_priv->workarounds.reg[idx].mask = mask;
  662. dev_priv->workarounds.count++;
  663. return 0;
  664. }
  665. #define WA_REG(addr, mask, val) do { \
  666. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  667. if (r) \
  668. return r; \
  669. } while (0)
  670. #define WA_SET_BIT_MASKED(addr, mask) \
  671. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  672. #define WA_CLR_BIT_MASKED(addr, mask) \
  673. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  674. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  675. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  676. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  677. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  678. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  679. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  680. i915_reg_t reg)
  681. {
  682. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  683. struct i915_workarounds *wa = &dev_priv->workarounds;
  684. const uint32_t index = wa->hw_whitelist_count[engine->id];
  685. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  686. return -EINVAL;
  687. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  688. i915_mmio_reg_offset(reg));
  689. wa->hw_whitelist_count[engine->id]++;
  690. return 0;
  691. }
  692. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  693. {
  694. struct drm_device *dev = engine->dev;
  695. struct drm_i915_private *dev_priv = dev->dev_private;
  696. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  697. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  698. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  699. /* WaDisablePartialInstShootdown:bdw,chv */
  700. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  701. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  702. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  703. * workaround for for a possible hang in the unlikely event a TLB
  704. * invalidation occurs during a PSD flush.
  705. */
  706. /* WaForceEnableNonCoherent:bdw,chv */
  707. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  708. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  709. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  710. HDC_FORCE_NON_COHERENT);
  711. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  712. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  713. * polygons in the same 8x4 pixel/sample area to be processed without
  714. * stalling waiting for the earlier ones to write to Hierarchical Z
  715. * buffer."
  716. *
  717. * This optimization is off by default for BDW and CHV; turn it on.
  718. */
  719. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  720. /* Wa4x4STCOptimizationDisable:bdw,chv */
  721. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  722. /*
  723. * BSpec recommends 8x4 when MSAA is used,
  724. * however in practice 16x4 seems fastest.
  725. *
  726. * Note that PS/WM thread counts depend on the WIZ hashing
  727. * disable bit, which we don't touch here, but it's good
  728. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  729. */
  730. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  731. GEN6_WIZ_HASHING_MASK,
  732. GEN6_WIZ_HASHING_16x4);
  733. return 0;
  734. }
  735. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  736. {
  737. int ret;
  738. struct drm_device *dev = engine->dev;
  739. struct drm_i915_private *dev_priv = dev->dev_private;
  740. ret = gen8_init_workarounds(engine);
  741. if (ret)
  742. return ret;
  743. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  744. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  745. /* WaDisableDopClockGating:bdw */
  746. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  747. DOP_CLOCK_GATING_DISABLE);
  748. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  749. GEN8_SAMPLER_POWER_BYPASS_DIS);
  750. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  751. /* WaForceContextSaveRestoreNonCoherent:bdw */
  752. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  753. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  754. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  755. return 0;
  756. }
  757. static int chv_init_workarounds(struct intel_engine_cs *engine)
  758. {
  759. int ret;
  760. struct drm_device *dev = engine->dev;
  761. struct drm_i915_private *dev_priv = dev->dev_private;
  762. ret = gen8_init_workarounds(engine);
  763. if (ret)
  764. return ret;
  765. /* WaDisableThreadStallDopClockGating:chv */
  766. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  767. /* Improve HiZ throughput on CHV. */
  768. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  769. return 0;
  770. }
  771. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  772. {
  773. struct drm_device *dev = engine->dev;
  774. struct drm_i915_private *dev_priv = dev->dev_private;
  775. uint32_t tmp;
  776. int ret;
  777. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  778. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  779. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  780. /* WaDisableKillLogic:bxt,skl */
  781. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  782. ECOCHK_DIS_TLB);
  783. /* WaClearFlowControlGpgpuContextSave:skl,bxt */
  784. /* WaDisablePartialInstShootdown:skl,bxt */
  785. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  786. FLOW_CONTROL_ENABLE |
  787. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  788. /* Syncing dependencies between camera and graphics:skl,bxt */
  789. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  790. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  791. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  792. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  793. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  794. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  795. GEN9_DG_MIRROR_FIX_ENABLE);
  796. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  797. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  798. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  799. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  800. GEN9_RHWO_OPTIMIZATION_DISABLE);
  801. /*
  802. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  803. * but we do that in per ctx batchbuffer as there is an issue
  804. * with this register not getting restored on ctx restore
  805. */
  806. }
  807. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  808. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
  809. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  810. GEN9_ENABLE_YV12_BUGFIX |
  811. GEN9_ENABLE_GPGPU_PREEMPTION);
  812. /* Wa4x4STCOptimizationDisable:skl,bxt */
  813. /* WaDisablePartialResolveInVc:skl,bxt */
  814. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  815. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  816. /* WaCcsTlbPrefetchDisable:skl,bxt */
  817. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  818. GEN9_CCS_TLB_PREFETCH_ENABLE);
  819. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  820. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  821. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  822. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  823. PIXEL_MASK_CAMMING_DISABLE);
  824. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  825. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  826. if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
  827. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  828. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  829. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  830. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  831. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  832. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  833. GEN8_SAMPLER_POWER_BYPASS_DIS);
  834. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  835. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  836. /* WaOCLCoherentLineFlush:skl,bxt */
  837. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  838. GEN8_LQSC_FLUSH_COHERENT_LINES));
  839. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
  840. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  841. if (ret)
  842. return ret;
  843. /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
  844. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  845. if (ret)
  846. return ret;
  847. return 0;
  848. }
  849. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  850. {
  851. struct drm_device *dev = engine->dev;
  852. struct drm_i915_private *dev_priv = dev->dev_private;
  853. u8 vals[3] = { 0, 0, 0 };
  854. unsigned int i;
  855. for (i = 0; i < 3; i++) {
  856. u8 ss;
  857. /*
  858. * Only consider slices where one, and only one, subslice has 7
  859. * EUs
  860. */
  861. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  862. continue;
  863. /*
  864. * subslice_7eu[i] != 0 (because of the check above) and
  865. * ss_max == 4 (maximum number of subslices possible per slice)
  866. *
  867. * -> 0 <= ss <= 3;
  868. */
  869. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  870. vals[i] = 3 - ss;
  871. }
  872. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  873. return 0;
  874. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  875. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  876. GEN9_IZ_HASHING_MASK(2) |
  877. GEN9_IZ_HASHING_MASK(1) |
  878. GEN9_IZ_HASHING_MASK(0),
  879. GEN9_IZ_HASHING(2, vals[2]) |
  880. GEN9_IZ_HASHING(1, vals[1]) |
  881. GEN9_IZ_HASHING(0, vals[0]));
  882. return 0;
  883. }
  884. static int skl_init_workarounds(struct intel_engine_cs *engine)
  885. {
  886. int ret;
  887. struct drm_device *dev = engine->dev;
  888. struct drm_i915_private *dev_priv = dev->dev_private;
  889. ret = gen9_init_workarounds(engine);
  890. if (ret)
  891. return ret;
  892. /*
  893. * Actual WA is to disable percontext preemption granularity control
  894. * until D0 which is the default case so this is equivalent to
  895. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  896. */
  897. if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
  898. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  899. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  900. }
  901. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  902. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  903. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  904. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  905. }
  906. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  907. * involving this register should also be added to WA batch as required.
  908. */
  909. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  910. /* WaDisableLSQCROPERFforOCL:skl */
  911. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  912. GEN8_LQSC_RO_PERF_DIS);
  913. /* WaEnableGapsTsvCreditFix:skl */
  914. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  915. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  916. GEN9_GAPS_TSV_CREDIT_DISABLE));
  917. }
  918. /* WaDisablePowerCompilerClockGating:skl */
  919. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  920. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  921. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  922. /* This is tied to WaForceContextSaveRestoreNonCoherent */
  923. if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
  924. /*
  925. *Use Force Non-Coherent whenever executing a 3D context. This
  926. * is a workaround for a possible hang in the unlikely event
  927. * a TLB invalidation occurs during a PSD flush.
  928. */
  929. /* WaForceEnableNonCoherent:skl */
  930. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  931. HDC_FORCE_NON_COHERENT);
  932. /* WaDisableHDCInvalidation:skl */
  933. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  934. BDW_DISABLE_HDC_INVALIDATION);
  935. }
  936. /* WaBarrierPerformanceFixDisable:skl */
  937. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  938. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  939. HDC_FENCE_DEST_SLM_DISABLE |
  940. HDC_BARRIER_PERFORMANCE_DISABLE);
  941. /* WaDisableSbeCacheDispatchPortSharing:skl */
  942. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  943. WA_SET_BIT_MASKED(
  944. GEN7_HALF_SLICE_CHICKEN1,
  945. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  946. /* WaDisableLSQCROPERFforOCL:skl */
  947. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  948. if (ret)
  949. return ret;
  950. return skl_tune_iz_hashing(engine);
  951. }
  952. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  953. {
  954. int ret;
  955. struct drm_device *dev = engine->dev;
  956. struct drm_i915_private *dev_priv = dev->dev_private;
  957. ret = gen9_init_workarounds(engine);
  958. if (ret)
  959. return ret;
  960. /* WaStoreMultiplePTEenable:bxt */
  961. /* This is a requirement according to Hardware specification */
  962. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  963. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  964. /* WaSetClckGatingDisableMedia:bxt */
  965. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  966. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  967. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  968. }
  969. /* WaDisableThreadStallDopClockGating:bxt */
  970. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  971. STALL_DOP_GATING_DISABLE);
  972. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  973. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  974. WA_SET_BIT_MASKED(
  975. GEN7_HALF_SLICE_CHICKEN1,
  976. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  977. }
  978. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  979. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  980. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  981. /* WaDisableLSQCROPERFforOCL:bxt */
  982. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  983. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  984. if (ret)
  985. return ret;
  986. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  987. if (ret)
  988. return ret;
  989. }
  990. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  991. if (IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  992. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  993. L3_HIGH_PRIO_CREDITS(2));
  994. return 0;
  995. }
  996. int init_workarounds_ring(struct intel_engine_cs *engine)
  997. {
  998. struct drm_device *dev = engine->dev;
  999. struct drm_i915_private *dev_priv = dev->dev_private;
  1000. WARN_ON(engine->id != RCS);
  1001. dev_priv->workarounds.count = 0;
  1002. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1003. if (IS_BROADWELL(dev))
  1004. return bdw_init_workarounds(engine);
  1005. if (IS_CHERRYVIEW(dev))
  1006. return chv_init_workarounds(engine);
  1007. if (IS_SKYLAKE(dev))
  1008. return skl_init_workarounds(engine);
  1009. if (IS_BROXTON(dev))
  1010. return bxt_init_workarounds(engine);
  1011. return 0;
  1012. }
  1013. static int init_render_ring(struct intel_engine_cs *engine)
  1014. {
  1015. struct drm_device *dev = engine->dev;
  1016. struct drm_i915_private *dev_priv = dev->dev_private;
  1017. int ret = init_ring_common(engine);
  1018. if (ret)
  1019. return ret;
  1020. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1021. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  1022. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1023. /* We need to disable the AsyncFlip performance optimisations in order
  1024. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1025. * programmed to '1' on all products.
  1026. *
  1027. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1028. */
  1029. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1030. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1031. /* Required for the hardware to program scanline values for waiting */
  1032. /* WaEnableFlushTlbInvalidationMode:snb */
  1033. if (INTEL_INFO(dev)->gen == 6)
  1034. I915_WRITE(GFX_MODE,
  1035. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1036. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1037. if (IS_GEN7(dev))
  1038. I915_WRITE(GFX_MODE_GEN7,
  1039. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1040. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1041. if (IS_GEN6(dev)) {
  1042. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1043. * "If this bit is set, STCunit will have LRA as replacement
  1044. * policy. [...] This bit must be reset. LRA replacement
  1045. * policy is not supported."
  1046. */
  1047. I915_WRITE(CACHE_MODE_0,
  1048. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1049. }
  1050. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1051. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1052. if (HAS_L3_DPF(dev))
  1053. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1054. return init_workarounds_ring(engine);
  1055. }
  1056. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1057. {
  1058. struct drm_device *dev = engine->dev;
  1059. struct drm_i915_private *dev_priv = dev->dev_private;
  1060. if (dev_priv->semaphore_obj) {
  1061. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1062. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1063. dev_priv->semaphore_obj = NULL;
  1064. }
  1065. intel_fini_pipe_control(engine);
  1066. }
  1067. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1068. unsigned int num_dwords)
  1069. {
  1070. #define MBOX_UPDATE_DWORDS 8
  1071. struct intel_engine_cs *signaller = signaller_req->engine;
  1072. struct drm_device *dev = signaller->dev;
  1073. struct drm_i915_private *dev_priv = dev->dev_private;
  1074. struct intel_engine_cs *waiter;
  1075. enum intel_engine_id id;
  1076. int ret, num_rings;
  1077. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1078. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1079. #undef MBOX_UPDATE_DWORDS
  1080. ret = intel_ring_begin(signaller_req, num_dwords);
  1081. if (ret)
  1082. return ret;
  1083. for_each_engine_id(waiter, dev_priv, id) {
  1084. u32 seqno;
  1085. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1086. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1087. continue;
  1088. seqno = i915_gem_request_get_seqno(signaller_req);
  1089. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1090. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1091. PIPE_CONTROL_QW_WRITE |
  1092. PIPE_CONTROL_CS_STALL);
  1093. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1094. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1095. intel_ring_emit(signaller, seqno);
  1096. intel_ring_emit(signaller, 0);
  1097. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1098. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1099. intel_ring_emit(signaller, 0);
  1100. }
  1101. return 0;
  1102. }
  1103. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1104. unsigned int num_dwords)
  1105. {
  1106. #define MBOX_UPDATE_DWORDS 6
  1107. struct intel_engine_cs *signaller = signaller_req->engine;
  1108. struct drm_device *dev = signaller->dev;
  1109. struct drm_i915_private *dev_priv = dev->dev_private;
  1110. struct intel_engine_cs *waiter;
  1111. enum intel_engine_id id;
  1112. int ret, num_rings;
  1113. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1114. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1115. #undef MBOX_UPDATE_DWORDS
  1116. ret = intel_ring_begin(signaller_req, num_dwords);
  1117. if (ret)
  1118. return ret;
  1119. for_each_engine_id(waiter, dev_priv, id) {
  1120. u32 seqno;
  1121. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1122. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1123. continue;
  1124. seqno = i915_gem_request_get_seqno(signaller_req);
  1125. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1126. MI_FLUSH_DW_OP_STOREDW);
  1127. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1128. MI_FLUSH_DW_USE_GTT);
  1129. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1130. intel_ring_emit(signaller, seqno);
  1131. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1132. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1133. intel_ring_emit(signaller, 0);
  1134. }
  1135. return 0;
  1136. }
  1137. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1138. unsigned int num_dwords)
  1139. {
  1140. struct intel_engine_cs *signaller = signaller_req->engine;
  1141. struct drm_device *dev = signaller->dev;
  1142. struct drm_i915_private *dev_priv = dev->dev_private;
  1143. struct intel_engine_cs *useless;
  1144. enum intel_engine_id id;
  1145. int ret, num_rings;
  1146. #define MBOX_UPDATE_DWORDS 3
  1147. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1148. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1149. #undef MBOX_UPDATE_DWORDS
  1150. ret = intel_ring_begin(signaller_req, num_dwords);
  1151. if (ret)
  1152. return ret;
  1153. for_each_engine_id(useless, dev_priv, id) {
  1154. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1155. if (i915_mmio_reg_valid(mbox_reg)) {
  1156. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1157. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1158. intel_ring_emit_reg(signaller, mbox_reg);
  1159. intel_ring_emit(signaller, seqno);
  1160. }
  1161. }
  1162. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1163. if (num_rings % 2 == 0)
  1164. intel_ring_emit(signaller, MI_NOOP);
  1165. return 0;
  1166. }
  1167. /**
  1168. * gen6_add_request - Update the semaphore mailbox registers
  1169. *
  1170. * @request - request to write to the ring
  1171. *
  1172. * Update the mailbox registers in the *other* rings with the current seqno.
  1173. * This acts like a signal in the canonical semaphore.
  1174. */
  1175. static int
  1176. gen6_add_request(struct drm_i915_gem_request *req)
  1177. {
  1178. struct intel_engine_cs *engine = req->engine;
  1179. int ret;
  1180. if (engine->semaphore.signal)
  1181. ret = engine->semaphore.signal(req, 4);
  1182. else
  1183. ret = intel_ring_begin(req, 4);
  1184. if (ret)
  1185. return ret;
  1186. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1187. intel_ring_emit(engine,
  1188. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1189. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1190. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1191. __intel_ring_advance(engine);
  1192. return 0;
  1193. }
  1194. static int
  1195. gen8_render_add_request(struct drm_i915_gem_request *req)
  1196. {
  1197. struct intel_engine_cs *engine = req->engine;
  1198. int ret;
  1199. if (engine->semaphore.signal)
  1200. ret = engine->semaphore.signal(req, 8);
  1201. else
  1202. ret = intel_ring_begin(req, 8);
  1203. if (ret)
  1204. return ret;
  1205. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1206. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1207. PIPE_CONTROL_CS_STALL |
  1208. PIPE_CONTROL_QW_WRITE));
  1209. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1210. intel_ring_emit(engine, 0);
  1211. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1212. /* We're thrashing one dword of HWS. */
  1213. intel_ring_emit(engine, 0);
  1214. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1215. intel_ring_emit(engine, MI_NOOP);
  1216. __intel_ring_advance(engine);
  1217. return 0;
  1218. }
  1219. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1220. u32 seqno)
  1221. {
  1222. struct drm_i915_private *dev_priv = dev->dev_private;
  1223. return dev_priv->last_seqno < seqno;
  1224. }
  1225. /**
  1226. * intel_ring_sync - sync the waiter to the signaller on seqno
  1227. *
  1228. * @waiter - ring that is waiting
  1229. * @signaller - ring which has, or will signal
  1230. * @seqno - seqno which the waiter will block on
  1231. */
  1232. static int
  1233. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1234. struct intel_engine_cs *signaller,
  1235. u32 seqno)
  1236. {
  1237. struct intel_engine_cs *waiter = waiter_req->engine;
  1238. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1239. struct i915_hw_ppgtt *ppgtt;
  1240. int ret;
  1241. ret = intel_ring_begin(waiter_req, 4);
  1242. if (ret)
  1243. return ret;
  1244. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1245. MI_SEMAPHORE_GLOBAL_GTT |
  1246. MI_SEMAPHORE_SAD_GTE_SDD);
  1247. intel_ring_emit(waiter, seqno);
  1248. intel_ring_emit(waiter,
  1249. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1250. intel_ring_emit(waiter,
  1251. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1252. intel_ring_advance(waiter);
  1253. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1254. * pagetables and we must reload them before executing the batch.
  1255. * We do this on the i915_switch_context() following the wait and
  1256. * before the dispatch.
  1257. */
  1258. ppgtt = waiter_req->ctx->ppgtt;
  1259. if (ppgtt && waiter_req->engine->id != RCS)
  1260. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1261. return 0;
  1262. }
  1263. static int
  1264. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1265. struct intel_engine_cs *signaller,
  1266. u32 seqno)
  1267. {
  1268. struct intel_engine_cs *waiter = waiter_req->engine;
  1269. u32 dw1 = MI_SEMAPHORE_MBOX |
  1270. MI_SEMAPHORE_COMPARE |
  1271. MI_SEMAPHORE_REGISTER;
  1272. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1273. int ret;
  1274. /* Throughout all of the GEM code, seqno passed implies our current
  1275. * seqno is >= the last seqno executed. However for hardware the
  1276. * comparison is strictly greater than.
  1277. */
  1278. seqno -= 1;
  1279. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1280. ret = intel_ring_begin(waiter_req, 4);
  1281. if (ret)
  1282. return ret;
  1283. /* If seqno wrap happened, omit the wait with no-ops */
  1284. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1285. intel_ring_emit(waiter, dw1 | wait_mbox);
  1286. intel_ring_emit(waiter, seqno);
  1287. intel_ring_emit(waiter, 0);
  1288. intel_ring_emit(waiter, MI_NOOP);
  1289. } else {
  1290. intel_ring_emit(waiter, MI_NOOP);
  1291. intel_ring_emit(waiter, MI_NOOP);
  1292. intel_ring_emit(waiter, MI_NOOP);
  1293. intel_ring_emit(waiter, MI_NOOP);
  1294. }
  1295. intel_ring_advance(waiter);
  1296. return 0;
  1297. }
  1298. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1299. do { \
  1300. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1301. PIPE_CONTROL_DEPTH_STALL); \
  1302. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1303. intel_ring_emit(ring__, 0); \
  1304. intel_ring_emit(ring__, 0); \
  1305. } while (0)
  1306. static int
  1307. pc_render_add_request(struct drm_i915_gem_request *req)
  1308. {
  1309. struct intel_engine_cs *engine = req->engine;
  1310. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1311. int ret;
  1312. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1313. * incoherent with writes to memory, i.e. completely fubar,
  1314. * so we need to use PIPE_NOTIFY instead.
  1315. *
  1316. * However, we also need to workaround the qword write
  1317. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1318. * memory before requesting an interrupt.
  1319. */
  1320. ret = intel_ring_begin(req, 32);
  1321. if (ret)
  1322. return ret;
  1323. intel_ring_emit(engine,
  1324. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1325. PIPE_CONTROL_WRITE_FLUSH |
  1326. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1327. intel_ring_emit(engine,
  1328. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1329. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1330. intel_ring_emit(engine, 0);
  1331. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1332. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1333. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1334. scratch_addr += 2 * CACHELINE_BYTES;
  1335. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1336. scratch_addr += 2 * CACHELINE_BYTES;
  1337. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1338. scratch_addr += 2 * CACHELINE_BYTES;
  1339. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1340. scratch_addr += 2 * CACHELINE_BYTES;
  1341. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1342. intel_ring_emit(engine,
  1343. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1344. PIPE_CONTROL_WRITE_FLUSH |
  1345. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1346. PIPE_CONTROL_NOTIFY);
  1347. intel_ring_emit(engine,
  1348. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1349. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1350. intel_ring_emit(engine, 0);
  1351. __intel_ring_advance(engine);
  1352. return 0;
  1353. }
  1354. static void
  1355. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1356. {
  1357. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1358. /* Workaround to force correct ordering between irq and seqno writes on
  1359. * ivb (and maybe also on snb) by reading from a CS register (like
  1360. * ACTHD) before reading the status page.
  1361. *
  1362. * Note that this effectively stalls the read by the time it takes to
  1363. * do a memory transaction, which more or less ensures that the write
  1364. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1365. * Alternatively we could delay the interrupt from the CS ring to give
  1366. * the write time to land, but that would incur a delay after every
  1367. * batch i.e. much more frequent than a delay when waiting for the
  1368. * interrupt (with the same net latency).
  1369. *
  1370. * Also note that to prevent whole machine hangs on gen7, we have to
  1371. * take the spinlock to guard against concurrent cacheline access.
  1372. */
  1373. spin_lock_irq(&dev_priv->uncore.lock);
  1374. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1375. spin_unlock_irq(&dev_priv->uncore.lock);
  1376. }
  1377. static u32
  1378. ring_get_seqno(struct intel_engine_cs *engine)
  1379. {
  1380. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1381. }
  1382. static void
  1383. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1384. {
  1385. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1386. }
  1387. static u32
  1388. pc_render_get_seqno(struct intel_engine_cs *engine)
  1389. {
  1390. return engine->scratch.cpu_page[0];
  1391. }
  1392. static void
  1393. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1394. {
  1395. engine->scratch.cpu_page[0] = seqno;
  1396. }
  1397. static bool
  1398. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1399. {
  1400. struct drm_device *dev = engine->dev;
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. unsigned long flags;
  1403. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1404. return false;
  1405. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1406. if (engine->irq_refcount++ == 0)
  1407. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1408. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1409. return true;
  1410. }
  1411. static void
  1412. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1413. {
  1414. struct drm_device *dev = engine->dev;
  1415. struct drm_i915_private *dev_priv = dev->dev_private;
  1416. unsigned long flags;
  1417. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1418. if (--engine->irq_refcount == 0)
  1419. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1420. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1421. }
  1422. static bool
  1423. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1424. {
  1425. struct drm_device *dev = engine->dev;
  1426. struct drm_i915_private *dev_priv = dev->dev_private;
  1427. unsigned long flags;
  1428. if (!intel_irqs_enabled(dev_priv))
  1429. return false;
  1430. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1431. if (engine->irq_refcount++ == 0) {
  1432. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1433. I915_WRITE(IMR, dev_priv->irq_mask);
  1434. POSTING_READ(IMR);
  1435. }
  1436. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1437. return true;
  1438. }
  1439. static void
  1440. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1441. {
  1442. struct drm_device *dev = engine->dev;
  1443. struct drm_i915_private *dev_priv = dev->dev_private;
  1444. unsigned long flags;
  1445. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1446. if (--engine->irq_refcount == 0) {
  1447. dev_priv->irq_mask |= engine->irq_enable_mask;
  1448. I915_WRITE(IMR, dev_priv->irq_mask);
  1449. POSTING_READ(IMR);
  1450. }
  1451. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1452. }
  1453. static bool
  1454. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1455. {
  1456. struct drm_device *dev = engine->dev;
  1457. struct drm_i915_private *dev_priv = dev->dev_private;
  1458. unsigned long flags;
  1459. if (!intel_irqs_enabled(dev_priv))
  1460. return false;
  1461. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1462. if (engine->irq_refcount++ == 0) {
  1463. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1464. I915_WRITE16(IMR, dev_priv->irq_mask);
  1465. POSTING_READ16(IMR);
  1466. }
  1467. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1468. return true;
  1469. }
  1470. static void
  1471. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1472. {
  1473. struct drm_device *dev = engine->dev;
  1474. struct drm_i915_private *dev_priv = dev->dev_private;
  1475. unsigned long flags;
  1476. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1477. if (--engine->irq_refcount == 0) {
  1478. dev_priv->irq_mask |= engine->irq_enable_mask;
  1479. I915_WRITE16(IMR, dev_priv->irq_mask);
  1480. POSTING_READ16(IMR);
  1481. }
  1482. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1483. }
  1484. static int
  1485. bsd_ring_flush(struct drm_i915_gem_request *req,
  1486. u32 invalidate_domains,
  1487. u32 flush_domains)
  1488. {
  1489. struct intel_engine_cs *engine = req->engine;
  1490. int ret;
  1491. ret = intel_ring_begin(req, 2);
  1492. if (ret)
  1493. return ret;
  1494. intel_ring_emit(engine, MI_FLUSH);
  1495. intel_ring_emit(engine, MI_NOOP);
  1496. intel_ring_advance(engine);
  1497. return 0;
  1498. }
  1499. static int
  1500. i9xx_add_request(struct drm_i915_gem_request *req)
  1501. {
  1502. struct intel_engine_cs *engine = req->engine;
  1503. int ret;
  1504. ret = intel_ring_begin(req, 4);
  1505. if (ret)
  1506. return ret;
  1507. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1508. intel_ring_emit(engine,
  1509. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1510. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1511. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1512. __intel_ring_advance(engine);
  1513. return 0;
  1514. }
  1515. static bool
  1516. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1517. {
  1518. struct drm_device *dev = engine->dev;
  1519. struct drm_i915_private *dev_priv = dev->dev_private;
  1520. unsigned long flags;
  1521. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1522. return false;
  1523. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1524. if (engine->irq_refcount++ == 0) {
  1525. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1526. I915_WRITE_IMR(engine,
  1527. ~(engine->irq_enable_mask |
  1528. GT_PARITY_ERROR(dev)));
  1529. else
  1530. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1531. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1532. }
  1533. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1534. return true;
  1535. }
  1536. static void
  1537. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1538. {
  1539. struct drm_device *dev = engine->dev;
  1540. struct drm_i915_private *dev_priv = dev->dev_private;
  1541. unsigned long flags;
  1542. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1543. if (--engine->irq_refcount == 0) {
  1544. if (HAS_L3_DPF(dev) && engine->id == RCS)
  1545. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
  1546. else
  1547. I915_WRITE_IMR(engine, ~0);
  1548. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1549. }
  1550. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1551. }
  1552. static bool
  1553. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1554. {
  1555. struct drm_device *dev = engine->dev;
  1556. struct drm_i915_private *dev_priv = dev->dev_private;
  1557. unsigned long flags;
  1558. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1559. return false;
  1560. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1561. if (engine->irq_refcount++ == 0) {
  1562. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1563. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1564. }
  1565. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1566. return true;
  1567. }
  1568. static void
  1569. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1570. {
  1571. struct drm_device *dev = engine->dev;
  1572. struct drm_i915_private *dev_priv = dev->dev_private;
  1573. unsigned long flags;
  1574. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1575. if (--engine->irq_refcount == 0) {
  1576. I915_WRITE_IMR(engine, ~0);
  1577. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1578. }
  1579. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1580. }
  1581. static bool
  1582. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1583. {
  1584. struct drm_device *dev = engine->dev;
  1585. struct drm_i915_private *dev_priv = dev->dev_private;
  1586. unsigned long flags;
  1587. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1588. return false;
  1589. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1590. if (engine->irq_refcount++ == 0) {
  1591. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1592. I915_WRITE_IMR(engine,
  1593. ~(engine->irq_enable_mask |
  1594. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1595. } else {
  1596. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1597. }
  1598. POSTING_READ(RING_IMR(engine->mmio_base));
  1599. }
  1600. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1601. return true;
  1602. }
  1603. static void
  1604. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1605. {
  1606. struct drm_device *dev = engine->dev;
  1607. struct drm_i915_private *dev_priv = dev->dev_private;
  1608. unsigned long flags;
  1609. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1610. if (--engine->irq_refcount == 0) {
  1611. if (HAS_L3_DPF(dev) && engine->id == RCS) {
  1612. I915_WRITE_IMR(engine,
  1613. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1614. } else {
  1615. I915_WRITE_IMR(engine, ~0);
  1616. }
  1617. POSTING_READ(RING_IMR(engine->mmio_base));
  1618. }
  1619. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1620. }
  1621. static int
  1622. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1623. u64 offset, u32 length,
  1624. unsigned dispatch_flags)
  1625. {
  1626. struct intel_engine_cs *engine = req->engine;
  1627. int ret;
  1628. ret = intel_ring_begin(req, 2);
  1629. if (ret)
  1630. return ret;
  1631. intel_ring_emit(engine,
  1632. MI_BATCH_BUFFER_START |
  1633. MI_BATCH_GTT |
  1634. (dispatch_flags & I915_DISPATCH_SECURE ?
  1635. 0 : MI_BATCH_NON_SECURE_I965));
  1636. intel_ring_emit(engine, offset);
  1637. intel_ring_advance(engine);
  1638. return 0;
  1639. }
  1640. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1641. #define I830_BATCH_LIMIT (256*1024)
  1642. #define I830_TLB_ENTRIES (2)
  1643. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1644. static int
  1645. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1646. u64 offset, u32 len,
  1647. unsigned dispatch_flags)
  1648. {
  1649. struct intel_engine_cs *engine = req->engine;
  1650. u32 cs_offset = engine->scratch.gtt_offset;
  1651. int ret;
  1652. ret = intel_ring_begin(req, 6);
  1653. if (ret)
  1654. return ret;
  1655. /* Evict the invalid PTE TLBs */
  1656. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1657. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1658. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1659. intel_ring_emit(engine, cs_offset);
  1660. intel_ring_emit(engine, 0xdeadbeef);
  1661. intel_ring_emit(engine, MI_NOOP);
  1662. intel_ring_advance(engine);
  1663. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1664. if (len > I830_BATCH_LIMIT)
  1665. return -ENOSPC;
  1666. ret = intel_ring_begin(req, 6 + 2);
  1667. if (ret)
  1668. return ret;
  1669. /* Blit the batch (which has now all relocs applied) to the
  1670. * stable batch scratch bo area (so that the CS never
  1671. * stumbles over its tlb invalidation bug) ...
  1672. */
  1673. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1674. intel_ring_emit(engine,
  1675. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1676. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1677. intel_ring_emit(engine, cs_offset);
  1678. intel_ring_emit(engine, 4096);
  1679. intel_ring_emit(engine, offset);
  1680. intel_ring_emit(engine, MI_FLUSH);
  1681. intel_ring_emit(engine, MI_NOOP);
  1682. intel_ring_advance(engine);
  1683. /* ... and execute it. */
  1684. offset = cs_offset;
  1685. }
  1686. ret = intel_ring_begin(req, 2);
  1687. if (ret)
  1688. return ret;
  1689. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1690. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1691. 0 : MI_BATCH_NON_SECURE));
  1692. intel_ring_advance(engine);
  1693. return 0;
  1694. }
  1695. static int
  1696. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1697. u64 offset, u32 len,
  1698. unsigned dispatch_flags)
  1699. {
  1700. struct intel_engine_cs *engine = req->engine;
  1701. int ret;
  1702. ret = intel_ring_begin(req, 2);
  1703. if (ret)
  1704. return ret;
  1705. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1706. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1707. 0 : MI_BATCH_NON_SECURE));
  1708. intel_ring_advance(engine);
  1709. return 0;
  1710. }
  1711. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1712. {
  1713. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  1714. if (!dev_priv->status_page_dmah)
  1715. return;
  1716. drm_pci_free(engine->dev, dev_priv->status_page_dmah);
  1717. engine->status_page.page_addr = NULL;
  1718. }
  1719. static void cleanup_status_page(struct intel_engine_cs *engine)
  1720. {
  1721. struct drm_i915_gem_object *obj;
  1722. obj = engine->status_page.obj;
  1723. if (obj == NULL)
  1724. return;
  1725. kunmap(sg_page(obj->pages->sgl));
  1726. i915_gem_object_ggtt_unpin(obj);
  1727. drm_gem_object_unreference(&obj->base);
  1728. engine->status_page.obj = NULL;
  1729. }
  1730. static int init_status_page(struct intel_engine_cs *engine)
  1731. {
  1732. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1733. if (obj == NULL) {
  1734. unsigned flags;
  1735. int ret;
  1736. obj = i915_gem_object_create(engine->dev, 4096);
  1737. if (IS_ERR(obj)) {
  1738. DRM_ERROR("Failed to allocate status page\n");
  1739. return PTR_ERR(obj);
  1740. }
  1741. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1742. if (ret)
  1743. goto err_unref;
  1744. flags = 0;
  1745. if (!HAS_LLC(engine->dev))
  1746. /* On g33, we cannot place HWS above 256MiB, so
  1747. * restrict its pinning to the low mappable arena.
  1748. * Though this restriction is not documented for
  1749. * gen4, gen5, or byt, they also behave similarly
  1750. * and hang if the HWS is placed at the top of the
  1751. * GTT. To generalise, it appears that all !llc
  1752. * platforms have issues with us placing the HWS
  1753. * above the mappable region (even though we never
  1754. * actualy map it).
  1755. */
  1756. flags |= PIN_MAPPABLE;
  1757. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1758. if (ret) {
  1759. err_unref:
  1760. drm_gem_object_unreference(&obj->base);
  1761. return ret;
  1762. }
  1763. engine->status_page.obj = obj;
  1764. }
  1765. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1766. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1767. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1768. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1769. engine->name, engine->status_page.gfx_addr);
  1770. return 0;
  1771. }
  1772. static int init_phys_status_page(struct intel_engine_cs *engine)
  1773. {
  1774. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  1775. if (!dev_priv->status_page_dmah) {
  1776. dev_priv->status_page_dmah =
  1777. drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
  1778. if (!dev_priv->status_page_dmah)
  1779. return -ENOMEM;
  1780. }
  1781. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1782. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1783. return 0;
  1784. }
  1785. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1786. {
  1787. GEM_BUG_ON(ringbuf->vma == NULL);
  1788. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1789. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1790. i915_gem_object_unpin_map(ringbuf->obj);
  1791. else
  1792. i915_vma_unpin_iomap(ringbuf->vma);
  1793. ringbuf->virtual_start = NULL;
  1794. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1795. ringbuf->vma = NULL;
  1796. }
  1797. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1798. struct intel_ringbuffer *ringbuf)
  1799. {
  1800. struct drm_i915_private *dev_priv = to_i915(dev);
  1801. struct drm_i915_gem_object *obj = ringbuf->obj;
  1802. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1803. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1804. void *addr;
  1805. int ret;
  1806. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1807. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1808. if (ret)
  1809. return ret;
  1810. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1811. if (ret)
  1812. goto err_unpin;
  1813. addr = i915_gem_object_pin_map(obj);
  1814. if (IS_ERR(addr)) {
  1815. ret = PTR_ERR(addr);
  1816. goto err_unpin;
  1817. }
  1818. } else {
  1819. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1820. flags | PIN_MAPPABLE);
  1821. if (ret)
  1822. return ret;
  1823. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1824. if (ret)
  1825. goto err_unpin;
  1826. /* Access through the GTT requires the device to be awake. */
  1827. assert_rpm_wakelock_held(dev_priv);
  1828. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1829. if (IS_ERR(addr)) {
  1830. ret = PTR_ERR(addr);
  1831. goto err_unpin;
  1832. }
  1833. }
  1834. ringbuf->virtual_start = addr;
  1835. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1836. return 0;
  1837. err_unpin:
  1838. i915_gem_object_ggtt_unpin(obj);
  1839. return ret;
  1840. }
  1841. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1842. {
  1843. drm_gem_object_unreference(&ringbuf->obj->base);
  1844. ringbuf->obj = NULL;
  1845. }
  1846. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1847. struct intel_ringbuffer *ringbuf)
  1848. {
  1849. struct drm_i915_gem_object *obj;
  1850. obj = NULL;
  1851. if (!HAS_LLC(dev))
  1852. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1853. if (obj == NULL)
  1854. obj = i915_gem_object_create(dev, ringbuf->size);
  1855. if (IS_ERR(obj))
  1856. return PTR_ERR(obj);
  1857. /* mark ring buffers as read-only from GPU side by default */
  1858. obj->gt_ro = 1;
  1859. ringbuf->obj = obj;
  1860. return 0;
  1861. }
  1862. struct intel_ringbuffer *
  1863. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1864. {
  1865. struct intel_ringbuffer *ring;
  1866. int ret;
  1867. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1868. if (ring == NULL) {
  1869. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1870. engine->name);
  1871. return ERR_PTR(-ENOMEM);
  1872. }
  1873. ring->engine = engine;
  1874. list_add(&ring->link, &engine->buffers);
  1875. ring->size = size;
  1876. /* Workaround an erratum on the i830 which causes a hang if
  1877. * the TAIL pointer points to within the last 2 cachelines
  1878. * of the buffer.
  1879. */
  1880. ring->effective_size = size;
  1881. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1882. ring->effective_size -= 2 * CACHELINE_BYTES;
  1883. ring->last_retired_head = -1;
  1884. intel_ring_update_space(ring);
  1885. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1886. if (ret) {
  1887. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1888. engine->name, ret);
  1889. list_del(&ring->link);
  1890. kfree(ring);
  1891. return ERR_PTR(ret);
  1892. }
  1893. return ring;
  1894. }
  1895. void
  1896. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1897. {
  1898. intel_destroy_ringbuffer_obj(ring);
  1899. list_del(&ring->link);
  1900. kfree(ring);
  1901. }
  1902. static int intel_init_ring_buffer(struct drm_device *dev,
  1903. struct intel_engine_cs *engine)
  1904. {
  1905. struct intel_ringbuffer *ringbuf;
  1906. int ret;
  1907. WARN_ON(engine->buffer);
  1908. engine->dev = dev;
  1909. INIT_LIST_HEAD(&engine->active_list);
  1910. INIT_LIST_HEAD(&engine->request_list);
  1911. INIT_LIST_HEAD(&engine->execlist_queue);
  1912. INIT_LIST_HEAD(&engine->buffers);
  1913. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1914. memset(engine->semaphore.sync_seqno, 0,
  1915. sizeof(engine->semaphore.sync_seqno));
  1916. init_waitqueue_head(&engine->irq_queue);
  1917. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1918. if (IS_ERR(ringbuf)) {
  1919. ret = PTR_ERR(ringbuf);
  1920. goto error;
  1921. }
  1922. engine->buffer = ringbuf;
  1923. if (I915_NEED_GFX_HWS(dev)) {
  1924. ret = init_status_page(engine);
  1925. if (ret)
  1926. goto error;
  1927. } else {
  1928. WARN_ON(engine->id != RCS);
  1929. ret = init_phys_status_page(engine);
  1930. if (ret)
  1931. goto error;
  1932. }
  1933. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1934. if (ret) {
  1935. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1936. engine->name, ret);
  1937. intel_destroy_ringbuffer_obj(ringbuf);
  1938. goto error;
  1939. }
  1940. ret = i915_cmd_parser_init_ring(engine);
  1941. if (ret)
  1942. goto error;
  1943. return 0;
  1944. error:
  1945. intel_cleanup_engine(engine);
  1946. return ret;
  1947. }
  1948. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1949. {
  1950. struct drm_i915_private *dev_priv;
  1951. if (!intel_engine_initialized(engine))
  1952. return;
  1953. dev_priv = to_i915(engine->dev);
  1954. if (engine->buffer) {
  1955. intel_stop_engine(engine);
  1956. WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1957. intel_unpin_ringbuffer_obj(engine->buffer);
  1958. intel_ringbuffer_free(engine->buffer);
  1959. engine->buffer = NULL;
  1960. }
  1961. if (engine->cleanup)
  1962. engine->cleanup(engine);
  1963. if (I915_NEED_GFX_HWS(engine->dev)) {
  1964. cleanup_status_page(engine);
  1965. } else {
  1966. WARN_ON(engine->id != RCS);
  1967. cleanup_phys_status_page(engine);
  1968. }
  1969. i915_cmd_parser_fini_ring(engine);
  1970. i915_gem_batch_pool_fini(&engine->batch_pool);
  1971. engine->dev = NULL;
  1972. }
  1973. int intel_engine_idle(struct intel_engine_cs *engine)
  1974. {
  1975. struct drm_i915_gem_request *req;
  1976. /* Wait upon the last request to be completed */
  1977. if (list_empty(&engine->request_list))
  1978. return 0;
  1979. req = list_entry(engine->request_list.prev,
  1980. struct drm_i915_gem_request,
  1981. list);
  1982. /* Make sure we do not trigger any retires */
  1983. return __i915_wait_request(req,
  1984. req->i915->mm.interruptible,
  1985. NULL, NULL);
  1986. }
  1987. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1988. {
  1989. int ret;
  1990. /* Flush enough space to reduce the likelihood of waiting after
  1991. * we start building the request - in which case we will just
  1992. * have to repeat work.
  1993. */
  1994. request->reserved_space += LEGACY_REQUEST_SIZE;
  1995. request->ringbuf = request->engine->buffer;
  1996. ret = intel_ring_begin(request, 0);
  1997. if (ret)
  1998. return ret;
  1999. request->reserved_space -= LEGACY_REQUEST_SIZE;
  2000. return 0;
  2001. }
  2002. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  2003. {
  2004. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2005. struct intel_engine_cs *engine = req->engine;
  2006. struct drm_i915_gem_request *target;
  2007. intel_ring_update_space(ringbuf);
  2008. if (ringbuf->space >= bytes)
  2009. return 0;
  2010. /*
  2011. * Space is reserved in the ringbuffer for finalising the request,
  2012. * as that cannot be allowed to fail. During request finalisation,
  2013. * reserved_space is set to 0 to stop the overallocation and the
  2014. * assumption is that then we never need to wait (which has the
  2015. * risk of failing with EINTR).
  2016. *
  2017. * See also i915_gem_request_alloc() and i915_add_request().
  2018. */
  2019. GEM_BUG_ON(!req->reserved_space);
  2020. list_for_each_entry(target, &engine->request_list, list) {
  2021. unsigned space;
  2022. /*
  2023. * The request queue is per-engine, so can contain requests
  2024. * from multiple ringbuffers. Here, we must ignore any that
  2025. * aren't from the ringbuffer we're considering.
  2026. */
  2027. if (target->ringbuf != ringbuf)
  2028. continue;
  2029. /* Would completion of this request free enough space? */
  2030. space = __intel_ring_space(target->postfix, ringbuf->tail,
  2031. ringbuf->size);
  2032. if (space >= bytes)
  2033. break;
  2034. }
  2035. if (WARN_ON(&target->list == &engine->request_list))
  2036. return -ENOSPC;
  2037. return i915_wait_request(target);
  2038. }
  2039. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  2040. {
  2041. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2042. int remain_actual = ringbuf->size - ringbuf->tail;
  2043. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2044. int bytes = num_dwords * sizeof(u32);
  2045. int total_bytes, wait_bytes;
  2046. bool need_wrap = false;
  2047. total_bytes = bytes + req->reserved_space;
  2048. if (unlikely(bytes > remain_usable)) {
  2049. /*
  2050. * Not enough space for the basic request. So need to flush
  2051. * out the remainder and then wait for base + reserved.
  2052. */
  2053. wait_bytes = remain_actual + total_bytes;
  2054. need_wrap = true;
  2055. } else if (unlikely(total_bytes > remain_usable)) {
  2056. /*
  2057. * The base request will fit but the reserved space
  2058. * falls off the end. So we don't need an immediate wrap
  2059. * and only need to effectively wait for the reserved
  2060. * size space from the start of ringbuffer.
  2061. */
  2062. wait_bytes = remain_actual + req->reserved_space;
  2063. } else {
  2064. /* No wrapping required, just waiting. */
  2065. wait_bytes = total_bytes;
  2066. }
  2067. if (wait_bytes > ringbuf->space) {
  2068. int ret = wait_for_space(req, wait_bytes);
  2069. if (unlikely(ret))
  2070. return ret;
  2071. intel_ring_update_space(ringbuf);
  2072. }
  2073. if (unlikely(need_wrap)) {
  2074. GEM_BUG_ON(remain_actual > ringbuf->space);
  2075. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2076. /* Fill the tail with MI_NOOP */
  2077. memset(ringbuf->virtual_start + ringbuf->tail,
  2078. 0, remain_actual);
  2079. ringbuf->tail = 0;
  2080. ringbuf->space -= remain_actual;
  2081. }
  2082. ringbuf->space -= bytes;
  2083. GEM_BUG_ON(ringbuf->space < 0);
  2084. return 0;
  2085. }
  2086. /* Align the ring tail to a cacheline boundary */
  2087. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2088. {
  2089. struct intel_engine_cs *engine = req->engine;
  2090. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2091. int ret;
  2092. if (num_dwords == 0)
  2093. return 0;
  2094. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2095. ret = intel_ring_begin(req, num_dwords);
  2096. if (ret)
  2097. return ret;
  2098. while (num_dwords--)
  2099. intel_ring_emit(engine, MI_NOOP);
  2100. intel_ring_advance(engine);
  2101. return 0;
  2102. }
  2103. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2104. {
  2105. struct drm_i915_private *dev_priv = to_i915(engine->dev);
  2106. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2107. * so long as the semaphore value in the register/page is greater
  2108. * than the sync value), so whenever we reset the seqno,
  2109. * so long as we reset the tracking semaphore value to 0, it will
  2110. * always be before the next request's seqno. If we don't reset
  2111. * the semaphore value, then when the seqno moves backwards all
  2112. * future waits will complete instantly (causing rendering corruption).
  2113. */
  2114. if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
  2115. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2116. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2117. if (HAS_VEBOX(dev_priv))
  2118. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2119. }
  2120. if (dev_priv->semaphore_obj) {
  2121. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2122. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2123. void *semaphores = kmap(page);
  2124. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2125. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2126. kunmap(page);
  2127. }
  2128. memset(engine->semaphore.sync_seqno, 0,
  2129. sizeof(engine->semaphore.sync_seqno));
  2130. engine->set_seqno(engine, seqno);
  2131. engine->last_submitted_seqno = seqno;
  2132. engine->hangcheck.seqno = seqno;
  2133. }
  2134. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2135. u32 value)
  2136. {
  2137. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  2138. /* Every tail move must follow the sequence below */
  2139. /* Disable notification that the ring is IDLE. The GT
  2140. * will then assume that it is busy and bring it out of rc6.
  2141. */
  2142. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2143. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2144. /* Clear the context id. Here be magic! */
  2145. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2146. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2147. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2148. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2149. 50))
  2150. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2151. /* Now that the ring is fully powered up, update the tail */
  2152. I915_WRITE_TAIL(engine, value);
  2153. POSTING_READ(RING_TAIL(engine->mmio_base));
  2154. /* Let the ring send IDLE messages to the GT again,
  2155. * and so let it sleep to conserve power when idle.
  2156. */
  2157. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2158. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2159. }
  2160. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2161. u32 invalidate, u32 flush)
  2162. {
  2163. struct intel_engine_cs *engine = req->engine;
  2164. uint32_t cmd;
  2165. int ret;
  2166. ret = intel_ring_begin(req, 4);
  2167. if (ret)
  2168. return ret;
  2169. cmd = MI_FLUSH_DW;
  2170. if (INTEL_INFO(engine->dev)->gen >= 8)
  2171. cmd += 1;
  2172. /* We always require a command barrier so that subsequent
  2173. * commands, such as breadcrumb interrupts, are strictly ordered
  2174. * wrt the contents of the write cache being flushed to memory
  2175. * (and thus being coherent from the CPU).
  2176. */
  2177. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2178. /*
  2179. * Bspec vol 1c.5 - video engine command streamer:
  2180. * "If ENABLED, all TLBs will be invalidated once the flush
  2181. * operation is complete. This bit is only valid when the
  2182. * Post-Sync Operation field is a value of 1h or 3h."
  2183. */
  2184. if (invalidate & I915_GEM_GPU_DOMAINS)
  2185. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2186. intel_ring_emit(engine, cmd);
  2187. intel_ring_emit(engine,
  2188. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2189. if (INTEL_INFO(engine->dev)->gen >= 8) {
  2190. intel_ring_emit(engine, 0); /* upper addr */
  2191. intel_ring_emit(engine, 0); /* value */
  2192. } else {
  2193. intel_ring_emit(engine, 0);
  2194. intel_ring_emit(engine, MI_NOOP);
  2195. }
  2196. intel_ring_advance(engine);
  2197. return 0;
  2198. }
  2199. static int
  2200. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2201. u64 offset, u32 len,
  2202. unsigned dispatch_flags)
  2203. {
  2204. struct intel_engine_cs *engine = req->engine;
  2205. bool ppgtt = USES_PPGTT(engine->dev) &&
  2206. !(dispatch_flags & I915_DISPATCH_SECURE);
  2207. int ret;
  2208. ret = intel_ring_begin(req, 4);
  2209. if (ret)
  2210. return ret;
  2211. /* FIXME(BDW): Address space and security selectors. */
  2212. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2213. (dispatch_flags & I915_DISPATCH_RS ?
  2214. MI_BATCH_RESOURCE_STREAMER : 0));
  2215. intel_ring_emit(engine, lower_32_bits(offset));
  2216. intel_ring_emit(engine, upper_32_bits(offset));
  2217. intel_ring_emit(engine, MI_NOOP);
  2218. intel_ring_advance(engine);
  2219. return 0;
  2220. }
  2221. static int
  2222. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2223. u64 offset, u32 len,
  2224. unsigned dispatch_flags)
  2225. {
  2226. struct intel_engine_cs *engine = req->engine;
  2227. int ret;
  2228. ret = intel_ring_begin(req, 2);
  2229. if (ret)
  2230. return ret;
  2231. intel_ring_emit(engine,
  2232. MI_BATCH_BUFFER_START |
  2233. (dispatch_flags & I915_DISPATCH_SECURE ?
  2234. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2235. (dispatch_flags & I915_DISPATCH_RS ?
  2236. MI_BATCH_RESOURCE_STREAMER : 0));
  2237. /* bit0-7 is the length on GEN6+ */
  2238. intel_ring_emit(engine, offset);
  2239. intel_ring_advance(engine);
  2240. return 0;
  2241. }
  2242. static int
  2243. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2244. u64 offset, u32 len,
  2245. unsigned dispatch_flags)
  2246. {
  2247. struct intel_engine_cs *engine = req->engine;
  2248. int ret;
  2249. ret = intel_ring_begin(req, 2);
  2250. if (ret)
  2251. return ret;
  2252. intel_ring_emit(engine,
  2253. MI_BATCH_BUFFER_START |
  2254. (dispatch_flags & I915_DISPATCH_SECURE ?
  2255. 0 : MI_BATCH_NON_SECURE_I965));
  2256. /* bit0-7 is the length on GEN6+ */
  2257. intel_ring_emit(engine, offset);
  2258. intel_ring_advance(engine);
  2259. return 0;
  2260. }
  2261. /* Blitter support (SandyBridge+) */
  2262. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2263. u32 invalidate, u32 flush)
  2264. {
  2265. struct intel_engine_cs *engine = req->engine;
  2266. struct drm_device *dev = engine->dev;
  2267. uint32_t cmd;
  2268. int ret;
  2269. ret = intel_ring_begin(req, 4);
  2270. if (ret)
  2271. return ret;
  2272. cmd = MI_FLUSH_DW;
  2273. if (INTEL_INFO(dev)->gen >= 8)
  2274. cmd += 1;
  2275. /* We always require a command barrier so that subsequent
  2276. * commands, such as breadcrumb interrupts, are strictly ordered
  2277. * wrt the contents of the write cache being flushed to memory
  2278. * (and thus being coherent from the CPU).
  2279. */
  2280. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2281. /*
  2282. * Bspec vol 1c.3 - blitter engine command streamer:
  2283. * "If ENABLED, all TLBs will be invalidated once the flush
  2284. * operation is complete. This bit is only valid when the
  2285. * Post-Sync Operation field is a value of 1h or 3h."
  2286. */
  2287. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2288. cmd |= MI_INVALIDATE_TLB;
  2289. intel_ring_emit(engine, cmd);
  2290. intel_ring_emit(engine,
  2291. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2292. if (INTEL_INFO(dev)->gen >= 8) {
  2293. intel_ring_emit(engine, 0); /* upper addr */
  2294. intel_ring_emit(engine, 0); /* value */
  2295. } else {
  2296. intel_ring_emit(engine, 0);
  2297. intel_ring_emit(engine, MI_NOOP);
  2298. }
  2299. intel_ring_advance(engine);
  2300. return 0;
  2301. }
  2302. int intel_init_render_ring_buffer(struct drm_device *dev)
  2303. {
  2304. struct drm_i915_private *dev_priv = dev->dev_private;
  2305. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2306. struct drm_i915_gem_object *obj;
  2307. int ret;
  2308. engine->name = "render ring";
  2309. engine->id = RCS;
  2310. engine->exec_id = I915_EXEC_RENDER;
  2311. engine->hw_id = 0;
  2312. engine->mmio_base = RENDER_RING_BASE;
  2313. if (INTEL_INFO(dev)->gen >= 8) {
  2314. if (i915_semaphore_is_enabled(dev)) {
  2315. obj = i915_gem_object_create(dev, 4096);
  2316. if (IS_ERR(obj)) {
  2317. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2318. i915.semaphores = 0;
  2319. } else {
  2320. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2321. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2322. if (ret != 0) {
  2323. drm_gem_object_unreference(&obj->base);
  2324. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2325. i915.semaphores = 0;
  2326. } else
  2327. dev_priv->semaphore_obj = obj;
  2328. }
  2329. }
  2330. engine->init_context = intel_rcs_ctx_init;
  2331. engine->add_request = gen8_render_add_request;
  2332. engine->flush = gen8_render_ring_flush;
  2333. engine->irq_get = gen8_ring_get_irq;
  2334. engine->irq_put = gen8_ring_put_irq;
  2335. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2336. engine->get_seqno = ring_get_seqno;
  2337. engine->set_seqno = ring_set_seqno;
  2338. if (i915_semaphore_is_enabled(dev)) {
  2339. WARN_ON(!dev_priv->semaphore_obj);
  2340. engine->semaphore.sync_to = gen8_ring_sync;
  2341. engine->semaphore.signal = gen8_rcs_signal;
  2342. GEN8_RING_SEMAPHORE_INIT(engine);
  2343. }
  2344. } else if (INTEL_INFO(dev)->gen >= 6) {
  2345. engine->init_context = intel_rcs_ctx_init;
  2346. engine->add_request = gen6_add_request;
  2347. engine->flush = gen7_render_ring_flush;
  2348. if (INTEL_INFO(dev)->gen == 6)
  2349. engine->flush = gen6_render_ring_flush;
  2350. engine->irq_get = gen6_ring_get_irq;
  2351. engine->irq_put = gen6_ring_put_irq;
  2352. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2353. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2354. engine->get_seqno = ring_get_seqno;
  2355. engine->set_seqno = ring_set_seqno;
  2356. if (i915_semaphore_is_enabled(dev)) {
  2357. engine->semaphore.sync_to = gen6_ring_sync;
  2358. engine->semaphore.signal = gen6_signal;
  2359. /*
  2360. * The current semaphore is only applied on pre-gen8
  2361. * platform. And there is no VCS2 ring on the pre-gen8
  2362. * platform. So the semaphore between RCS and VCS2 is
  2363. * initialized as INVALID. Gen8 will initialize the
  2364. * sema between VCS2 and RCS later.
  2365. */
  2366. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2367. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2368. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2369. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2370. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2371. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2372. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2373. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2374. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2375. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2376. }
  2377. } else if (IS_GEN5(dev)) {
  2378. engine->add_request = pc_render_add_request;
  2379. engine->flush = gen4_render_ring_flush;
  2380. engine->get_seqno = pc_render_get_seqno;
  2381. engine->set_seqno = pc_render_set_seqno;
  2382. engine->irq_get = gen5_ring_get_irq;
  2383. engine->irq_put = gen5_ring_put_irq;
  2384. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2385. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2386. } else {
  2387. engine->add_request = i9xx_add_request;
  2388. if (INTEL_INFO(dev)->gen < 4)
  2389. engine->flush = gen2_render_ring_flush;
  2390. else
  2391. engine->flush = gen4_render_ring_flush;
  2392. engine->get_seqno = ring_get_seqno;
  2393. engine->set_seqno = ring_set_seqno;
  2394. if (IS_GEN2(dev)) {
  2395. engine->irq_get = i8xx_ring_get_irq;
  2396. engine->irq_put = i8xx_ring_put_irq;
  2397. } else {
  2398. engine->irq_get = i9xx_ring_get_irq;
  2399. engine->irq_put = i9xx_ring_put_irq;
  2400. }
  2401. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2402. }
  2403. engine->write_tail = ring_write_tail;
  2404. if (IS_HASWELL(dev))
  2405. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2406. else if (IS_GEN8(dev))
  2407. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2408. else if (INTEL_INFO(dev)->gen >= 6)
  2409. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2410. else if (INTEL_INFO(dev)->gen >= 4)
  2411. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2412. else if (IS_I830(dev) || IS_845G(dev))
  2413. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2414. else
  2415. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2416. engine->init_hw = init_render_ring;
  2417. engine->cleanup = render_ring_cleanup;
  2418. /* Workaround batchbuffer to combat CS tlb bug. */
  2419. if (HAS_BROKEN_CS_TLB(dev)) {
  2420. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2421. if (IS_ERR(obj)) {
  2422. DRM_ERROR("Failed to allocate batch bo\n");
  2423. return PTR_ERR(obj);
  2424. }
  2425. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2426. if (ret != 0) {
  2427. drm_gem_object_unreference(&obj->base);
  2428. DRM_ERROR("Failed to ping batch bo\n");
  2429. return ret;
  2430. }
  2431. engine->scratch.obj = obj;
  2432. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2433. }
  2434. ret = intel_init_ring_buffer(dev, engine);
  2435. if (ret)
  2436. return ret;
  2437. if (INTEL_INFO(dev)->gen >= 5) {
  2438. ret = intel_init_pipe_control(engine);
  2439. if (ret)
  2440. return ret;
  2441. }
  2442. return 0;
  2443. }
  2444. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2445. {
  2446. struct drm_i915_private *dev_priv = dev->dev_private;
  2447. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2448. engine->name = "bsd ring";
  2449. engine->id = VCS;
  2450. engine->exec_id = I915_EXEC_BSD;
  2451. engine->hw_id = 1;
  2452. engine->write_tail = ring_write_tail;
  2453. if (INTEL_INFO(dev)->gen >= 6) {
  2454. engine->mmio_base = GEN6_BSD_RING_BASE;
  2455. /* gen6 bsd needs a special wa for tail updates */
  2456. if (IS_GEN6(dev))
  2457. engine->write_tail = gen6_bsd_ring_write_tail;
  2458. engine->flush = gen6_bsd_ring_flush;
  2459. engine->add_request = gen6_add_request;
  2460. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2461. engine->get_seqno = ring_get_seqno;
  2462. engine->set_seqno = ring_set_seqno;
  2463. if (INTEL_INFO(dev)->gen >= 8) {
  2464. engine->irq_enable_mask =
  2465. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2466. engine->irq_get = gen8_ring_get_irq;
  2467. engine->irq_put = gen8_ring_put_irq;
  2468. engine->dispatch_execbuffer =
  2469. gen8_ring_dispatch_execbuffer;
  2470. if (i915_semaphore_is_enabled(dev)) {
  2471. engine->semaphore.sync_to = gen8_ring_sync;
  2472. engine->semaphore.signal = gen8_xcs_signal;
  2473. GEN8_RING_SEMAPHORE_INIT(engine);
  2474. }
  2475. } else {
  2476. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2477. engine->irq_get = gen6_ring_get_irq;
  2478. engine->irq_put = gen6_ring_put_irq;
  2479. engine->dispatch_execbuffer =
  2480. gen6_ring_dispatch_execbuffer;
  2481. if (i915_semaphore_is_enabled(dev)) {
  2482. engine->semaphore.sync_to = gen6_ring_sync;
  2483. engine->semaphore.signal = gen6_signal;
  2484. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2485. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2486. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2487. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2488. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2489. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2490. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2491. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2492. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2493. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2494. }
  2495. }
  2496. } else {
  2497. engine->mmio_base = BSD_RING_BASE;
  2498. engine->flush = bsd_ring_flush;
  2499. engine->add_request = i9xx_add_request;
  2500. engine->get_seqno = ring_get_seqno;
  2501. engine->set_seqno = ring_set_seqno;
  2502. if (IS_GEN5(dev)) {
  2503. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2504. engine->irq_get = gen5_ring_get_irq;
  2505. engine->irq_put = gen5_ring_put_irq;
  2506. } else {
  2507. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2508. engine->irq_get = i9xx_ring_get_irq;
  2509. engine->irq_put = i9xx_ring_put_irq;
  2510. }
  2511. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2512. }
  2513. engine->init_hw = init_ring_common;
  2514. return intel_init_ring_buffer(dev, engine);
  2515. }
  2516. /**
  2517. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2518. */
  2519. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2520. {
  2521. struct drm_i915_private *dev_priv = dev->dev_private;
  2522. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2523. engine->name = "bsd2 ring";
  2524. engine->id = VCS2;
  2525. engine->exec_id = I915_EXEC_BSD;
  2526. engine->hw_id = 4;
  2527. engine->write_tail = ring_write_tail;
  2528. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2529. engine->flush = gen6_bsd_ring_flush;
  2530. engine->add_request = gen6_add_request;
  2531. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2532. engine->get_seqno = ring_get_seqno;
  2533. engine->set_seqno = ring_set_seqno;
  2534. engine->irq_enable_mask =
  2535. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2536. engine->irq_get = gen8_ring_get_irq;
  2537. engine->irq_put = gen8_ring_put_irq;
  2538. engine->dispatch_execbuffer =
  2539. gen8_ring_dispatch_execbuffer;
  2540. if (i915_semaphore_is_enabled(dev)) {
  2541. engine->semaphore.sync_to = gen8_ring_sync;
  2542. engine->semaphore.signal = gen8_xcs_signal;
  2543. GEN8_RING_SEMAPHORE_INIT(engine);
  2544. }
  2545. engine->init_hw = init_ring_common;
  2546. return intel_init_ring_buffer(dev, engine);
  2547. }
  2548. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2549. {
  2550. struct drm_i915_private *dev_priv = dev->dev_private;
  2551. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2552. engine->name = "blitter ring";
  2553. engine->id = BCS;
  2554. engine->exec_id = I915_EXEC_BLT;
  2555. engine->hw_id = 2;
  2556. engine->mmio_base = BLT_RING_BASE;
  2557. engine->write_tail = ring_write_tail;
  2558. engine->flush = gen6_ring_flush;
  2559. engine->add_request = gen6_add_request;
  2560. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2561. engine->get_seqno = ring_get_seqno;
  2562. engine->set_seqno = ring_set_seqno;
  2563. if (INTEL_INFO(dev)->gen >= 8) {
  2564. engine->irq_enable_mask =
  2565. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2566. engine->irq_get = gen8_ring_get_irq;
  2567. engine->irq_put = gen8_ring_put_irq;
  2568. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2569. if (i915_semaphore_is_enabled(dev)) {
  2570. engine->semaphore.sync_to = gen8_ring_sync;
  2571. engine->semaphore.signal = gen8_xcs_signal;
  2572. GEN8_RING_SEMAPHORE_INIT(engine);
  2573. }
  2574. } else {
  2575. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2576. engine->irq_get = gen6_ring_get_irq;
  2577. engine->irq_put = gen6_ring_put_irq;
  2578. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2579. if (i915_semaphore_is_enabled(dev)) {
  2580. engine->semaphore.signal = gen6_signal;
  2581. engine->semaphore.sync_to = gen6_ring_sync;
  2582. /*
  2583. * The current semaphore is only applied on pre-gen8
  2584. * platform. And there is no VCS2 ring on the pre-gen8
  2585. * platform. So the semaphore between BCS and VCS2 is
  2586. * initialized as INVALID. Gen8 will initialize the
  2587. * sema between BCS and VCS2 later.
  2588. */
  2589. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2590. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2591. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2592. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2593. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2594. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2595. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2596. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2597. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2598. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2599. }
  2600. }
  2601. engine->init_hw = init_ring_common;
  2602. return intel_init_ring_buffer(dev, engine);
  2603. }
  2604. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2605. {
  2606. struct drm_i915_private *dev_priv = dev->dev_private;
  2607. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2608. engine->name = "video enhancement ring";
  2609. engine->id = VECS;
  2610. engine->exec_id = I915_EXEC_VEBOX;
  2611. engine->hw_id = 3;
  2612. engine->mmio_base = VEBOX_RING_BASE;
  2613. engine->write_tail = ring_write_tail;
  2614. engine->flush = gen6_ring_flush;
  2615. engine->add_request = gen6_add_request;
  2616. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2617. engine->get_seqno = ring_get_seqno;
  2618. engine->set_seqno = ring_set_seqno;
  2619. if (INTEL_INFO(dev)->gen >= 8) {
  2620. engine->irq_enable_mask =
  2621. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2622. engine->irq_get = gen8_ring_get_irq;
  2623. engine->irq_put = gen8_ring_put_irq;
  2624. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2625. if (i915_semaphore_is_enabled(dev)) {
  2626. engine->semaphore.sync_to = gen8_ring_sync;
  2627. engine->semaphore.signal = gen8_xcs_signal;
  2628. GEN8_RING_SEMAPHORE_INIT(engine);
  2629. }
  2630. } else {
  2631. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2632. engine->irq_get = hsw_vebox_get_irq;
  2633. engine->irq_put = hsw_vebox_put_irq;
  2634. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2635. if (i915_semaphore_is_enabled(dev)) {
  2636. engine->semaphore.sync_to = gen6_ring_sync;
  2637. engine->semaphore.signal = gen6_signal;
  2638. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2639. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2640. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2641. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2642. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2643. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2644. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2645. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2646. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2647. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2648. }
  2649. }
  2650. engine->init_hw = init_ring_common;
  2651. return intel_init_ring_buffer(dev, engine);
  2652. }
  2653. int
  2654. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2655. {
  2656. struct intel_engine_cs *engine = req->engine;
  2657. int ret;
  2658. if (!engine->gpu_caches_dirty)
  2659. return 0;
  2660. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2661. if (ret)
  2662. return ret;
  2663. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2664. engine->gpu_caches_dirty = false;
  2665. return 0;
  2666. }
  2667. int
  2668. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2669. {
  2670. struct intel_engine_cs *engine = req->engine;
  2671. uint32_t flush_domains;
  2672. int ret;
  2673. flush_domains = 0;
  2674. if (engine->gpu_caches_dirty)
  2675. flush_domains = I915_GEM_GPU_DOMAINS;
  2676. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2677. if (ret)
  2678. return ret;
  2679. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2680. engine->gpu_caches_dirty = false;
  2681. return 0;
  2682. }
  2683. void
  2684. intel_stop_engine(struct intel_engine_cs *engine)
  2685. {
  2686. int ret;
  2687. if (!intel_engine_initialized(engine))
  2688. return;
  2689. ret = intel_engine_idle(engine);
  2690. if (ret)
  2691. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2692. engine->name, ret);
  2693. stop_ring(engine);
  2694. }