disk-io.c 120 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static const struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  72. * is complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct btrfs_end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. enum btrfs_wq_endio_type metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. static struct kmem_cache *btrfs_end_io_wq_cache;
  86. int __init btrfs_end_io_wq_init(void)
  87. {
  88. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  89. sizeof(struct btrfs_end_io_wq),
  90. 0,
  91. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  92. NULL);
  93. if (!btrfs_end_io_wq_cache)
  94. return -ENOMEM;
  95. return 0;
  96. }
  97. void btrfs_end_io_wq_exit(void)
  98. {
  99. if (btrfs_end_io_wq_cache)
  100. kmem_cache_destroy(btrfs_end_io_wq_cache);
  101. }
  102. /*
  103. * async submit bios are used to offload expensive checksumming
  104. * onto the worker threads. They checksum file and metadata bios
  105. * just before they are sent down the IO stack.
  106. */
  107. struct async_submit_bio {
  108. struct inode *inode;
  109. struct bio *bio;
  110. struct list_head list;
  111. extent_submit_bio_hook_t *submit_bio_start;
  112. extent_submit_bio_hook_t *submit_bio_done;
  113. int rw;
  114. int mirror_num;
  115. unsigned long bio_flags;
  116. /*
  117. * bio_offset is optional, can be used if the pages in the bio
  118. * can't tell us where in the file the bio should go
  119. */
  120. u64 bio_offset;
  121. struct btrfs_work work;
  122. int error;
  123. };
  124. /*
  125. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  126. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  127. * the level the eb occupies in the tree.
  128. *
  129. * Different roots are used for different purposes and may nest inside each
  130. * other and they require separate keysets. As lockdep keys should be
  131. * static, assign keysets according to the purpose of the root as indicated
  132. * by btrfs_root->objectid. This ensures that all special purpose roots
  133. * have separate keysets.
  134. *
  135. * Lock-nesting across peer nodes is always done with the immediate parent
  136. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  137. * subclass to avoid triggering lockdep warning in such cases.
  138. *
  139. * The key is set by the readpage_end_io_hook after the buffer has passed
  140. * csum validation but before the pages are unlocked. It is also set by
  141. * btrfs_init_new_buffer on freshly allocated blocks.
  142. *
  143. * We also add a check to make sure the highest level of the tree is the
  144. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  145. * needs update as well.
  146. */
  147. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  148. # if BTRFS_MAX_LEVEL != 8
  149. # error
  150. # endif
  151. static struct btrfs_lockdep_keyset {
  152. u64 id; /* root objectid */
  153. const char *name_stem; /* lock name stem */
  154. char names[BTRFS_MAX_LEVEL + 1][20];
  155. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  156. } btrfs_lockdep_keysets[] = {
  157. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  158. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  159. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  160. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  161. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  162. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  163. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  164. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  165. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  166. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  167. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  168. { .id = 0, .name_stem = "tree" },
  169. };
  170. void __init btrfs_init_lockdep(void)
  171. {
  172. int i, j;
  173. /* initialize lockdep class names */
  174. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  175. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  176. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  177. snprintf(ks->names[j], sizeof(ks->names[j]),
  178. "btrfs-%s-%02d", ks->name_stem, j);
  179. }
  180. }
  181. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  182. int level)
  183. {
  184. struct btrfs_lockdep_keyset *ks;
  185. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  186. /* find the matching keyset, id 0 is the default entry */
  187. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  188. if (ks->id == objectid)
  189. break;
  190. lockdep_set_class_and_name(&eb->lock,
  191. &ks->keys[level], ks->names[level]);
  192. }
  193. #endif
  194. /*
  195. * extents on the btree inode are pretty simple, there's one extent
  196. * that covers the entire device
  197. */
  198. static struct extent_map *btree_get_extent(struct inode *inode,
  199. struct page *page, size_t pg_offset, u64 start, u64 len,
  200. int create)
  201. {
  202. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  203. struct extent_map *em;
  204. int ret;
  205. read_lock(&em_tree->lock);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (em) {
  208. em->bdev =
  209. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. read_unlock(&em_tree->lock);
  211. goto out;
  212. }
  213. read_unlock(&em_tree->lock);
  214. em = alloc_extent_map();
  215. if (!em) {
  216. em = ERR_PTR(-ENOMEM);
  217. goto out;
  218. }
  219. em->start = 0;
  220. em->len = (u64)-1;
  221. em->block_len = (u64)-1;
  222. em->block_start = 0;
  223. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  224. write_lock(&em_tree->lock);
  225. ret = add_extent_mapping(em_tree, em, 0);
  226. if (ret == -EEXIST) {
  227. free_extent_map(em);
  228. em = lookup_extent_mapping(em_tree, start, len);
  229. if (!em)
  230. em = ERR_PTR(-EIO);
  231. } else if (ret) {
  232. free_extent_map(em);
  233. em = ERR_PTR(ret);
  234. }
  235. write_unlock(&em_tree->lock);
  236. out:
  237. return em;
  238. }
  239. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  240. {
  241. return btrfs_crc32c(seed, data, len);
  242. }
  243. void btrfs_csum_final(u32 crc, char *result)
  244. {
  245. put_unaligned_le32(~crc, result);
  246. }
  247. /*
  248. * compute the csum for a btree block, and either verify it or write it
  249. * into the csum field of the block.
  250. */
  251. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  252. struct extent_buffer *buf,
  253. int verify)
  254. {
  255. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  256. char *result = NULL;
  257. unsigned long len;
  258. unsigned long cur_len;
  259. unsigned long offset = BTRFS_CSUM_SIZE;
  260. char *kaddr;
  261. unsigned long map_start;
  262. unsigned long map_len;
  263. int err;
  264. u32 crc = ~(u32)0;
  265. unsigned long inline_result;
  266. len = buf->len - offset;
  267. while (len > 0) {
  268. err = map_private_extent_buffer(buf, offset, 32,
  269. &kaddr, &map_start, &map_len);
  270. if (err)
  271. return 1;
  272. cur_len = min(len, map_len - (offset - map_start));
  273. crc = btrfs_csum_data(kaddr + offset - map_start,
  274. crc, cur_len);
  275. len -= cur_len;
  276. offset += cur_len;
  277. }
  278. if (csum_size > sizeof(inline_result)) {
  279. result = kzalloc(csum_size, GFP_NOFS);
  280. if (!result)
  281. return 1;
  282. } else {
  283. result = (char *)&inline_result;
  284. }
  285. btrfs_csum_final(crc, result);
  286. if (verify) {
  287. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  288. u32 val;
  289. u32 found = 0;
  290. memcpy(&found, result, csum_size);
  291. read_extent_buffer(buf, &val, 0, csum_size);
  292. btrfs_warn_rl(fs_info,
  293. "%s checksum verify failed on %llu wanted %X found %X "
  294. "level %d",
  295. fs_info->sb->s_id, buf->start,
  296. val, found, btrfs_header_level(buf));
  297. if (result != (char *)&inline_result)
  298. kfree(result);
  299. return 1;
  300. }
  301. } else {
  302. write_extent_buffer(buf, result, 0, csum_size);
  303. }
  304. if (result != (char *)&inline_result)
  305. kfree(result);
  306. return 0;
  307. }
  308. /*
  309. * we can't consider a given block up to date unless the transid of the
  310. * block matches the transid in the parent node's pointer. This is how we
  311. * detect blocks that either didn't get written at all or got written
  312. * in the wrong place.
  313. */
  314. static int verify_parent_transid(struct extent_io_tree *io_tree,
  315. struct extent_buffer *eb, u64 parent_transid,
  316. int atomic)
  317. {
  318. struct extent_state *cached_state = NULL;
  319. int ret;
  320. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  321. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  322. return 0;
  323. if (atomic)
  324. return -EAGAIN;
  325. if (need_lock) {
  326. btrfs_tree_read_lock(eb);
  327. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  328. }
  329. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  330. 0, &cached_state);
  331. if (extent_buffer_uptodate(eb) &&
  332. btrfs_header_generation(eb) == parent_transid) {
  333. ret = 0;
  334. goto out;
  335. }
  336. btrfs_err_rl(eb->fs_info,
  337. "parent transid verify failed on %llu wanted %llu found %llu",
  338. eb->start,
  339. parent_transid, btrfs_header_generation(eb));
  340. ret = 1;
  341. /*
  342. * Things reading via commit roots that don't have normal protection,
  343. * like send, can have a really old block in cache that may point at a
  344. * block that has been free'd and re-allocated. So don't clear uptodate
  345. * if we find an eb that is under IO (dirty/writeback) because we could
  346. * end up reading in the stale data and then writing it back out and
  347. * making everybody very sad.
  348. */
  349. if (!extent_buffer_under_io(eb))
  350. clear_extent_buffer_uptodate(eb);
  351. out:
  352. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  353. &cached_state, GFP_NOFS);
  354. if (need_lock)
  355. btrfs_tree_read_unlock_blocking(eb);
  356. return ret;
  357. }
  358. /*
  359. * Return 0 if the superblock checksum type matches the checksum value of that
  360. * algorithm. Pass the raw disk superblock data.
  361. */
  362. static int btrfs_check_super_csum(char *raw_disk_sb)
  363. {
  364. struct btrfs_super_block *disk_sb =
  365. (struct btrfs_super_block *)raw_disk_sb;
  366. u16 csum_type = btrfs_super_csum_type(disk_sb);
  367. int ret = 0;
  368. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  369. u32 crc = ~(u32)0;
  370. const int csum_size = sizeof(crc);
  371. char result[csum_size];
  372. /*
  373. * The super_block structure does not span the whole
  374. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  375. * is filled with zeros and is included in the checkum.
  376. */
  377. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  378. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  379. btrfs_csum_final(crc, result);
  380. if (memcmp(raw_disk_sb, result, csum_size))
  381. ret = 1;
  382. }
  383. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  384. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  385. csum_type);
  386. ret = 1;
  387. }
  388. return ret;
  389. }
  390. /*
  391. * helper to read a given tree block, doing retries as required when
  392. * the checksums don't match and we have alternate mirrors to try.
  393. */
  394. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  395. struct extent_buffer *eb,
  396. u64 start, u64 parent_transid)
  397. {
  398. struct extent_io_tree *io_tree;
  399. int failed = 0;
  400. int ret;
  401. int num_copies = 0;
  402. int mirror_num = 0;
  403. int failed_mirror = 0;
  404. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  405. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  406. while (1) {
  407. ret = read_extent_buffer_pages(io_tree, eb, start,
  408. WAIT_COMPLETE,
  409. btree_get_extent, mirror_num);
  410. if (!ret) {
  411. if (!verify_parent_transid(io_tree, eb,
  412. parent_transid, 0))
  413. break;
  414. else
  415. ret = -EIO;
  416. }
  417. /*
  418. * This buffer's crc is fine, but its contents are corrupted, so
  419. * there is no reason to read the other copies, they won't be
  420. * any less wrong.
  421. */
  422. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  423. break;
  424. num_copies = btrfs_num_copies(root->fs_info,
  425. eb->start, eb->len);
  426. if (num_copies == 1)
  427. break;
  428. if (!failed_mirror) {
  429. failed = 1;
  430. failed_mirror = eb->read_mirror;
  431. }
  432. mirror_num++;
  433. if (mirror_num == failed_mirror)
  434. mirror_num++;
  435. if (mirror_num > num_copies)
  436. break;
  437. }
  438. if (failed && !ret && failed_mirror)
  439. repair_eb_io_failure(root, eb, failed_mirror);
  440. return ret;
  441. }
  442. /*
  443. * checksum a dirty tree block before IO. This has extra checks to make sure
  444. * we only fill in the checksum field in the first page of a multi-page block
  445. */
  446. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  447. {
  448. u64 start = page_offset(page);
  449. u64 found_start;
  450. struct extent_buffer *eb;
  451. eb = (struct extent_buffer *)page->private;
  452. if (page != eb->pages[0])
  453. return 0;
  454. found_start = btrfs_header_bytenr(eb);
  455. if (WARN_ON(found_start != start || !PageUptodate(page)))
  456. return 0;
  457. csum_tree_block(fs_info, eb, 0);
  458. return 0;
  459. }
  460. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  461. struct extent_buffer *eb)
  462. {
  463. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  464. u8 fsid[BTRFS_UUID_SIZE];
  465. int ret = 1;
  466. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  467. while (fs_devices) {
  468. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  469. ret = 0;
  470. break;
  471. }
  472. fs_devices = fs_devices->seed;
  473. }
  474. return ret;
  475. }
  476. #define CORRUPT(reason, eb, root, slot) \
  477. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  478. "root=%llu, slot=%d", reason, \
  479. btrfs_header_bytenr(eb), root->objectid, slot)
  480. static noinline int check_leaf(struct btrfs_root *root,
  481. struct extent_buffer *leaf)
  482. {
  483. struct btrfs_key key;
  484. struct btrfs_key leaf_key;
  485. u32 nritems = btrfs_header_nritems(leaf);
  486. int slot;
  487. if (nritems == 0)
  488. return 0;
  489. /* Check the 0 item */
  490. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  491. BTRFS_LEAF_DATA_SIZE(root)) {
  492. CORRUPT("invalid item offset size pair", leaf, root, 0);
  493. return -EIO;
  494. }
  495. /*
  496. * Check to make sure each items keys are in the correct order and their
  497. * offsets make sense. We only have to loop through nritems-1 because
  498. * we check the current slot against the next slot, which verifies the
  499. * next slot's offset+size makes sense and that the current's slot
  500. * offset is correct.
  501. */
  502. for (slot = 0; slot < nritems - 1; slot++) {
  503. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  504. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  505. /* Make sure the keys are in the right order */
  506. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  507. CORRUPT("bad key order", leaf, root, slot);
  508. return -EIO;
  509. }
  510. /*
  511. * Make sure the offset and ends are right, remember that the
  512. * item data starts at the end of the leaf and grows towards the
  513. * front.
  514. */
  515. if (btrfs_item_offset_nr(leaf, slot) !=
  516. btrfs_item_end_nr(leaf, slot + 1)) {
  517. CORRUPT("slot offset bad", leaf, root, slot);
  518. return -EIO;
  519. }
  520. /*
  521. * Check to make sure that we don't point outside of the leaf,
  522. * just incase all the items are consistent to eachother, but
  523. * all point outside of the leaf.
  524. */
  525. if (btrfs_item_end_nr(leaf, slot) >
  526. BTRFS_LEAF_DATA_SIZE(root)) {
  527. CORRUPT("slot end outside of leaf", leaf, root, slot);
  528. return -EIO;
  529. }
  530. }
  531. return 0;
  532. }
  533. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  534. u64 phy_offset, struct page *page,
  535. u64 start, u64 end, int mirror)
  536. {
  537. u64 found_start;
  538. int found_level;
  539. struct extent_buffer *eb;
  540. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  541. int ret = 0;
  542. int reads_done;
  543. if (!page->private)
  544. goto out;
  545. eb = (struct extent_buffer *)page->private;
  546. /* the pending IO might have been the only thing that kept this buffer
  547. * in memory. Make sure we have a ref for all this other checks
  548. */
  549. extent_buffer_get(eb);
  550. reads_done = atomic_dec_and_test(&eb->io_pages);
  551. if (!reads_done)
  552. goto err;
  553. eb->read_mirror = mirror;
  554. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. found_start = btrfs_header_bytenr(eb);
  559. if (found_start != eb->start) {
  560. btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
  561. found_start, eb->start);
  562. ret = -EIO;
  563. goto err;
  564. }
  565. if (check_tree_block_fsid(root->fs_info, eb)) {
  566. btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
  567. eb->start);
  568. ret = -EIO;
  569. goto err;
  570. }
  571. found_level = btrfs_header_level(eb);
  572. if (found_level >= BTRFS_MAX_LEVEL) {
  573. btrfs_err(root->fs_info, "bad tree block level %d",
  574. (int)btrfs_header_level(eb));
  575. ret = -EIO;
  576. goto err;
  577. }
  578. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  579. eb, found_level);
  580. ret = csum_tree_block(root->fs_info, eb, 1);
  581. if (ret) {
  582. ret = -EIO;
  583. goto err;
  584. }
  585. /*
  586. * If this is a leaf block and it is corrupt, set the corrupt bit so
  587. * that we don't try and read the other copies of this block, just
  588. * return -EIO.
  589. */
  590. if (found_level == 0 && check_leaf(root, eb)) {
  591. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  592. ret = -EIO;
  593. }
  594. if (!ret)
  595. set_extent_buffer_uptodate(eb);
  596. err:
  597. if (reads_done &&
  598. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  599. btree_readahead_hook(root, eb, eb->start, ret);
  600. if (ret) {
  601. /*
  602. * our io error hook is going to dec the io pages
  603. * again, we have to make sure it has something
  604. * to decrement
  605. */
  606. atomic_inc(&eb->io_pages);
  607. clear_extent_buffer_uptodate(eb);
  608. }
  609. free_extent_buffer(eb);
  610. out:
  611. return ret;
  612. }
  613. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  614. {
  615. struct extent_buffer *eb;
  616. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  617. eb = (struct extent_buffer *)page->private;
  618. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  619. eb->read_mirror = failed_mirror;
  620. atomic_dec(&eb->io_pages);
  621. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  622. btree_readahead_hook(root, eb, eb->start, -EIO);
  623. return -EIO; /* we fixed nothing */
  624. }
  625. static void end_workqueue_bio(struct bio *bio)
  626. {
  627. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  628. struct btrfs_fs_info *fs_info;
  629. struct btrfs_workqueue *wq;
  630. btrfs_work_func_t func;
  631. fs_info = end_io_wq->info;
  632. end_io_wq->error = bio->bi_error;
  633. if (bio->bi_rw & REQ_WRITE) {
  634. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  635. wq = fs_info->endio_meta_write_workers;
  636. func = btrfs_endio_meta_write_helper;
  637. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  638. wq = fs_info->endio_freespace_worker;
  639. func = btrfs_freespace_write_helper;
  640. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  641. wq = fs_info->endio_raid56_workers;
  642. func = btrfs_endio_raid56_helper;
  643. } else {
  644. wq = fs_info->endio_write_workers;
  645. func = btrfs_endio_write_helper;
  646. }
  647. } else {
  648. if (unlikely(end_io_wq->metadata ==
  649. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  650. wq = fs_info->endio_repair_workers;
  651. func = btrfs_endio_repair_helper;
  652. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  653. wq = fs_info->endio_raid56_workers;
  654. func = btrfs_endio_raid56_helper;
  655. } else if (end_io_wq->metadata) {
  656. wq = fs_info->endio_meta_workers;
  657. func = btrfs_endio_meta_helper;
  658. } else {
  659. wq = fs_info->endio_workers;
  660. func = btrfs_endio_helper;
  661. }
  662. }
  663. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  664. btrfs_queue_work(wq, &end_io_wq->work);
  665. }
  666. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  667. enum btrfs_wq_endio_type metadata)
  668. {
  669. struct btrfs_end_io_wq *end_io_wq;
  670. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  671. if (!end_io_wq)
  672. return -ENOMEM;
  673. end_io_wq->private = bio->bi_private;
  674. end_io_wq->end_io = bio->bi_end_io;
  675. end_io_wq->info = info;
  676. end_io_wq->error = 0;
  677. end_io_wq->bio = bio;
  678. end_io_wq->metadata = metadata;
  679. bio->bi_private = end_io_wq;
  680. bio->bi_end_io = end_workqueue_bio;
  681. return 0;
  682. }
  683. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  684. {
  685. unsigned long limit = min_t(unsigned long,
  686. info->thread_pool_size,
  687. info->fs_devices->open_devices);
  688. return 256 * limit;
  689. }
  690. static void run_one_async_start(struct btrfs_work *work)
  691. {
  692. struct async_submit_bio *async;
  693. int ret;
  694. async = container_of(work, struct async_submit_bio, work);
  695. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  696. async->mirror_num, async->bio_flags,
  697. async->bio_offset);
  698. if (ret)
  699. async->error = ret;
  700. }
  701. static void run_one_async_done(struct btrfs_work *work)
  702. {
  703. struct btrfs_fs_info *fs_info;
  704. struct async_submit_bio *async;
  705. int limit;
  706. async = container_of(work, struct async_submit_bio, work);
  707. fs_info = BTRFS_I(async->inode)->root->fs_info;
  708. limit = btrfs_async_submit_limit(fs_info);
  709. limit = limit * 2 / 3;
  710. /*
  711. * atomic_dec_return implies a barrier for waitqueue_active
  712. */
  713. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  714. waitqueue_active(&fs_info->async_submit_wait))
  715. wake_up(&fs_info->async_submit_wait);
  716. /* If an error occured we just want to clean up the bio and move on */
  717. if (async->error) {
  718. async->bio->bi_error = async->error;
  719. bio_endio(async->bio);
  720. return;
  721. }
  722. async->submit_bio_done(async->inode, async->rw, async->bio,
  723. async->mirror_num, async->bio_flags,
  724. async->bio_offset);
  725. }
  726. static void run_one_async_free(struct btrfs_work *work)
  727. {
  728. struct async_submit_bio *async;
  729. async = container_of(work, struct async_submit_bio, work);
  730. kfree(async);
  731. }
  732. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  733. int rw, struct bio *bio, int mirror_num,
  734. unsigned long bio_flags,
  735. u64 bio_offset,
  736. extent_submit_bio_hook_t *submit_bio_start,
  737. extent_submit_bio_hook_t *submit_bio_done)
  738. {
  739. struct async_submit_bio *async;
  740. async = kmalloc(sizeof(*async), GFP_NOFS);
  741. if (!async)
  742. return -ENOMEM;
  743. async->inode = inode;
  744. async->rw = rw;
  745. async->bio = bio;
  746. async->mirror_num = mirror_num;
  747. async->submit_bio_start = submit_bio_start;
  748. async->submit_bio_done = submit_bio_done;
  749. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  750. run_one_async_done, run_one_async_free);
  751. async->bio_flags = bio_flags;
  752. async->bio_offset = bio_offset;
  753. async->error = 0;
  754. atomic_inc(&fs_info->nr_async_submits);
  755. if (rw & REQ_SYNC)
  756. btrfs_set_work_high_priority(&async->work);
  757. btrfs_queue_work(fs_info->workers, &async->work);
  758. while (atomic_read(&fs_info->async_submit_draining) &&
  759. atomic_read(&fs_info->nr_async_submits)) {
  760. wait_event(fs_info->async_submit_wait,
  761. (atomic_read(&fs_info->nr_async_submits) == 0));
  762. }
  763. return 0;
  764. }
  765. static int btree_csum_one_bio(struct bio *bio)
  766. {
  767. struct bio_vec *bvec;
  768. struct btrfs_root *root;
  769. int i, ret = 0;
  770. bio_for_each_segment_all(bvec, bio, i) {
  771. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  772. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  773. if (ret)
  774. break;
  775. }
  776. return ret;
  777. }
  778. static int __btree_submit_bio_start(struct inode *inode, int rw,
  779. struct bio *bio, int mirror_num,
  780. unsigned long bio_flags,
  781. u64 bio_offset)
  782. {
  783. /*
  784. * when we're called for a write, we're already in the async
  785. * submission context. Just jump into btrfs_map_bio
  786. */
  787. return btree_csum_one_bio(bio);
  788. }
  789. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  790. int mirror_num, unsigned long bio_flags,
  791. u64 bio_offset)
  792. {
  793. int ret;
  794. /*
  795. * when we're called for a write, we're already in the async
  796. * submission context. Just jump into btrfs_map_bio
  797. */
  798. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  799. if (ret) {
  800. bio->bi_error = ret;
  801. bio_endio(bio);
  802. }
  803. return ret;
  804. }
  805. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  806. {
  807. if (bio_flags & EXTENT_BIO_TREE_LOG)
  808. return 0;
  809. #ifdef CONFIG_X86
  810. if (static_cpu_has_safe(X86_FEATURE_XMM4_2))
  811. return 0;
  812. #endif
  813. return 1;
  814. }
  815. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  816. int mirror_num, unsigned long bio_flags,
  817. u64 bio_offset)
  818. {
  819. int async = check_async_write(inode, bio_flags);
  820. int ret;
  821. if (!(rw & REQ_WRITE)) {
  822. /*
  823. * called for a read, do the setup so that checksum validation
  824. * can happen in the async kernel threads
  825. */
  826. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  827. bio, BTRFS_WQ_ENDIO_METADATA);
  828. if (ret)
  829. goto out_w_error;
  830. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  831. mirror_num, 0);
  832. } else if (!async) {
  833. ret = btree_csum_one_bio(bio);
  834. if (ret)
  835. goto out_w_error;
  836. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  837. mirror_num, 0);
  838. } else {
  839. /*
  840. * kthread helpers are used to submit writes so that
  841. * checksumming can happen in parallel across all CPUs
  842. */
  843. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  844. inode, rw, bio, mirror_num, 0,
  845. bio_offset,
  846. __btree_submit_bio_start,
  847. __btree_submit_bio_done);
  848. }
  849. if (ret)
  850. goto out_w_error;
  851. return 0;
  852. out_w_error:
  853. bio->bi_error = ret;
  854. bio_endio(bio);
  855. return ret;
  856. }
  857. #ifdef CONFIG_MIGRATION
  858. static int btree_migratepage(struct address_space *mapping,
  859. struct page *newpage, struct page *page,
  860. enum migrate_mode mode)
  861. {
  862. /*
  863. * we can't safely write a btree page from here,
  864. * we haven't done the locking hook
  865. */
  866. if (PageDirty(page))
  867. return -EAGAIN;
  868. /*
  869. * Buffers may be managed in a filesystem specific way.
  870. * We must have no buffers or drop them.
  871. */
  872. if (page_has_private(page) &&
  873. !try_to_release_page(page, GFP_KERNEL))
  874. return -EAGAIN;
  875. return migrate_page(mapping, newpage, page, mode);
  876. }
  877. #endif
  878. static int btree_writepages(struct address_space *mapping,
  879. struct writeback_control *wbc)
  880. {
  881. struct btrfs_fs_info *fs_info;
  882. int ret;
  883. if (wbc->sync_mode == WB_SYNC_NONE) {
  884. if (wbc->for_kupdate)
  885. return 0;
  886. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  887. /* this is a bit racy, but that's ok */
  888. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  889. BTRFS_DIRTY_METADATA_THRESH);
  890. if (ret < 0)
  891. return 0;
  892. }
  893. return btree_write_cache_pages(mapping, wbc);
  894. }
  895. static int btree_readpage(struct file *file, struct page *page)
  896. {
  897. struct extent_io_tree *tree;
  898. tree = &BTRFS_I(page->mapping->host)->io_tree;
  899. return extent_read_full_page(tree, page, btree_get_extent, 0);
  900. }
  901. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  902. {
  903. if (PageWriteback(page) || PageDirty(page))
  904. return 0;
  905. return try_release_extent_buffer(page);
  906. }
  907. static void btree_invalidatepage(struct page *page, unsigned int offset,
  908. unsigned int length)
  909. {
  910. struct extent_io_tree *tree;
  911. tree = &BTRFS_I(page->mapping->host)->io_tree;
  912. extent_invalidatepage(tree, page, offset);
  913. btree_releasepage(page, GFP_NOFS);
  914. if (PagePrivate(page)) {
  915. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  916. "page private not zero on page %llu",
  917. (unsigned long long)page_offset(page));
  918. ClearPagePrivate(page);
  919. set_page_private(page, 0);
  920. page_cache_release(page);
  921. }
  922. }
  923. static int btree_set_page_dirty(struct page *page)
  924. {
  925. #ifdef DEBUG
  926. struct extent_buffer *eb;
  927. BUG_ON(!PagePrivate(page));
  928. eb = (struct extent_buffer *)page->private;
  929. BUG_ON(!eb);
  930. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  931. BUG_ON(!atomic_read(&eb->refs));
  932. btrfs_assert_tree_locked(eb);
  933. #endif
  934. return __set_page_dirty_nobuffers(page);
  935. }
  936. static const struct address_space_operations btree_aops = {
  937. .readpage = btree_readpage,
  938. .writepages = btree_writepages,
  939. .releasepage = btree_releasepage,
  940. .invalidatepage = btree_invalidatepage,
  941. #ifdef CONFIG_MIGRATION
  942. .migratepage = btree_migratepage,
  943. #endif
  944. .set_page_dirty = btree_set_page_dirty,
  945. };
  946. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  947. {
  948. struct extent_buffer *buf = NULL;
  949. struct inode *btree_inode = root->fs_info->btree_inode;
  950. buf = btrfs_find_create_tree_block(root, bytenr);
  951. if (!buf)
  952. return;
  953. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  954. buf, 0, WAIT_NONE, btree_get_extent, 0);
  955. free_extent_buffer(buf);
  956. }
  957. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  958. int mirror_num, struct extent_buffer **eb)
  959. {
  960. struct extent_buffer *buf = NULL;
  961. struct inode *btree_inode = root->fs_info->btree_inode;
  962. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  963. int ret;
  964. buf = btrfs_find_create_tree_block(root, bytenr);
  965. if (!buf)
  966. return 0;
  967. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  968. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  969. btree_get_extent, mirror_num);
  970. if (ret) {
  971. free_extent_buffer(buf);
  972. return ret;
  973. }
  974. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  975. free_extent_buffer(buf);
  976. return -EIO;
  977. } else if (extent_buffer_uptodate(buf)) {
  978. *eb = buf;
  979. } else {
  980. free_extent_buffer(buf);
  981. }
  982. return 0;
  983. }
  984. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  985. u64 bytenr)
  986. {
  987. return find_extent_buffer(fs_info, bytenr);
  988. }
  989. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  990. u64 bytenr)
  991. {
  992. if (btrfs_test_is_dummy_root(root))
  993. return alloc_test_extent_buffer(root->fs_info, bytenr);
  994. return alloc_extent_buffer(root->fs_info, bytenr);
  995. }
  996. int btrfs_write_tree_block(struct extent_buffer *buf)
  997. {
  998. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  999. buf->start + buf->len - 1);
  1000. }
  1001. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1002. {
  1003. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1004. buf->start, buf->start + buf->len - 1);
  1005. }
  1006. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1007. u64 parent_transid)
  1008. {
  1009. struct extent_buffer *buf = NULL;
  1010. int ret;
  1011. buf = btrfs_find_create_tree_block(root, bytenr);
  1012. if (!buf)
  1013. return ERR_PTR(-ENOMEM);
  1014. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1015. if (ret) {
  1016. free_extent_buffer(buf);
  1017. return ERR_PTR(ret);
  1018. }
  1019. return buf;
  1020. }
  1021. void clean_tree_block(struct btrfs_trans_handle *trans,
  1022. struct btrfs_fs_info *fs_info,
  1023. struct extent_buffer *buf)
  1024. {
  1025. if (btrfs_header_generation(buf) ==
  1026. fs_info->running_transaction->transid) {
  1027. btrfs_assert_tree_locked(buf);
  1028. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1029. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1030. -buf->len,
  1031. fs_info->dirty_metadata_batch);
  1032. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1033. btrfs_set_lock_blocking(buf);
  1034. clear_extent_buffer_dirty(buf);
  1035. }
  1036. }
  1037. }
  1038. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1039. {
  1040. struct btrfs_subvolume_writers *writers;
  1041. int ret;
  1042. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1043. if (!writers)
  1044. return ERR_PTR(-ENOMEM);
  1045. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1046. if (ret < 0) {
  1047. kfree(writers);
  1048. return ERR_PTR(ret);
  1049. }
  1050. init_waitqueue_head(&writers->wait);
  1051. return writers;
  1052. }
  1053. static void
  1054. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1055. {
  1056. percpu_counter_destroy(&writers->counter);
  1057. kfree(writers);
  1058. }
  1059. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1060. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1061. u64 objectid)
  1062. {
  1063. root->node = NULL;
  1064. root->commit_root = NULL;
  1065. root->sectorsize = sectorsize;
  1066. root->nodesize = nodesize;
  1067. root->stripesize = stripesize;
  1068. root->state = 0;
  1069. root->orphan_cleanup_state = 0;
  1070. root->objectid = objectid;
  1071. root->last_trans = 0;
  1072. root->highest_objectid = 0;
  1073. root->nr_delalloc_inodes = 0;
  1074. root->nr_ordered_extents = 0;
  1075. root->name = NULL;
  1076. root->inode_tree = RB_ROOT;
  1077. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1078. root->block_rsv = NULL;
  1079. root->orphan_block_rsv = NULL;
  1080. INIT_LIST_HEAD(&root->dirty_list);
  1081. INIT_LIST_HEAD(&root->root_list);
  1082. INIT_LIST_HEAD(&root->delalloc_inodes);
  1083. INIT_LIST_HEAD(&root->delalloc_root);
  1084. INIT_LIST_HEAD(&root->ordered_extents);
  1085. INIT_LIST_HEAD(&root->ordered_root);
  1086. INIT_LIST_HEAD(&root->logged_list[0]);
  1087. INIT_LIST_HEAD(&root->logged_list[1]);
  1088. spin_lock_init(&root->orphan_lock);
  1089. spin_lock_init(&root->inode_lock);
  1090. spin_lock_init(&root->delalloc_lock);
  1091. spin_lock_init(&root->ordered_extent_lock);
  1092. spin_lock_init(&root->accounting_lock);
  1093. spin_lock_init(&root->log_extents_lock[0]);
  1094. spin_lock_init(&root->log_extents_lock[1]);
  1095. mutex_init(&root->objectid_mutex);
  1096. mutex_init(&root->log_mutex);
  1097. mutex_init(&root->ordered_extent_mutex);
  1098. mutex_init(&root->delalloc_mutex);
  1099. init_waitqueue_head(&root->log_writer_wait);
  1100. init_waitqueue_head(&root->log_commit_wait[0]);
  1101. init_waitqueue_head(&root->log_commit_wait[1]);
  1102. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1103. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1104. atomic_set(&root->log_commit[0], 0);
  1105. atomic_set(&root->log_commit[1], 0);
  1106. atomic_set(&root->log_writers, 0);
  1107. atomic_set(&root->log_batch, 0);
  1108. atomic_set(&root->orphan_inodes, 0);
  1109. atomic_set(&root->refs, 1);
  1110. atomic_set(&root->will_be_snapshoted, 0);
  1111. atomic_set(&root->qgroup_meta_rsv, 0);
  1112. root->log_transid = 0;
  1113. root->log_transid_committed = -1;
  1114. root->last_log_commit = 0;
  1115. if (fs_info)
  1116. extent_io_tree_init(&root->dirty_log_pages,
  1117. fs_info->btree_inode->i_mapping);
  1118. memset(&root->root_key, 0, sizeof(root->root_key));
  1119. memset(&root->root_item, 0, sizeof(root->root_item));
  1120. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1121. if (fs_info)
  1122. root->defrag_trans_start = fs_info->generation;
  1123. else
  1124. root->defrag_trans_start = 0;
  1125. root->root_key.objectid = objectid;
  1126. root->anon_dev = 0;
  1127. spin_lock_init(&root->root_item_lock);
  1128. }
  1129. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1130. {
  1131. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1132. if (root)
  1133. root->fs_info = fs_info;
  1134. return root;
  1135. }
  1136. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1137. /* Should only be used by the testing infrastructure */
  1138. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1139. {
  1140. struct btrfs_root *root;
  1141. root = btrfs_alloc_root(NULL);
  1142. if (!root)
  1143. return ERR_PTR(-ENOMEM);
  1144. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1145. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1146. root->alloc_bytenr = 0;
  1147. return root;
  1148. }
  1149. #endif
  1150. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1151. struct btrfs_fs_info *fs_info,
  1152. u64 objectid)
  1153. {
  1154. struct extent_buffer *leaf;
  1155. struct btrfs_root *tree_root = fs_info->tree_root;
  1156. struct btrfs_root *root;
  1157. struct btrfs_key key;
  1158. int ret = 0;
  1159. uuid_le uuid;
  1160. root = btrfs_alloc_root(fs_info);
  1161. if (!root)
  1162. return ERR_PTR(-ENOMEM);
  1163. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1164. tree_root->stripesize, root, fs_info, objectid);
  1165. root->root_key.objectid = objectid;
  1166. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1167. root->root_key.offset = 0;
  1168. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1169. if (IS_ERR(leaf)) {
  1170. ret = PTR_ERR(leaf);
  1171. leaf = NULL;
  1172. goto fail;
  1173. }
  1174. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1175. btrfs_set_header_bytenr(leaf, leaf->start);
  1176. btrfs_set_header_generation(leaf, trans->transid);
  1177. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1178. btrfs_set_header_owner(leaf, objectid);
  1179. root->node = leaf;
  1180. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1181. BTRFS_FSID_SIZE);
  1182. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1183. btrfs_header_chunk_tree_uuid(leaf),
  1184. BTRFS_UUID_SIZE);
  1185. btrfs_mark_buffer_dirty(leaf);
  1186. root->commit_root = btrfs_root_node(root);
  1187. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1188. root->root_item.flags = 0;
  1189. root->root_item.byte_limit = 0;
  1190. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1191. btrfs_set_root_generation(&root->root_item, trans->transid);
  1192. btrfs_set_root_level(&root->root_item, 0);
  1193. btrfs_set_root_refs(&root->root_item, 1);
  1194. btrfs_set_root_used(&root->root_item, leaf->len);
  1195. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1196. btrfs_set_root_dirid(&root->root_item, 0);
  1197. uuid_le_gen(&uuid);
  1198. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1199. root->root_item.drop_level = 0;
  1200. key.objectid = objectid;
  1201. key.type = BTRFS_ROOT_ITEM_KEY;
  1202. key.offset = 0;
  1203. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1204. if (ret)
  1205. goto fail;
  1206. btrfs_tree_unlock(leaf);
  1207. return root;
  1208. fail:
  1209. if (leaf) {
  1210. btrfs_tree_unlock(leaf);
  1211. free_extent_buffer(root->commit_root);
  1212. free_extent_buffer(leaf);
  1213. }
  1214. kfree(root);
  1215. return ERR_PTR(ret);
  1216. }
  1217. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1218. struct btrfs_fs_info *fs_info)
  1219. {
  1220. struct btrfs_root *root;
  1221. struct btrfs_root *tree_root = fs_info->tree_root;
  1222. struct extent_buffer *leaf;
  1223. root = btrfs_alloc_root(fs_info);
  1224. if (!root)
  1225. return ERR_PTR(-ENOMEM);
  1226. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1227. tree_root->stripesize, root, fs_info,
  1228. BTRFS_TREE_LOG_OBJECTID);
  1229. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1230. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1231. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1232. /*
  1233. * DON'T set REF_COWS for log trees
  1234. *
  1235. * log trees do not get reference counted because they go away
  1236. * before a real commit is actually done. They do store pointers
  1237. * to file data extents, and those reference counts still get
  1238. * updated (along with back refs to the log tree).
  1239. */
  1240. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1241. NULL, 0, 0, 0);
  1242. if (IS_ERR(leaf)) {
  1243. kfree(root);
  1244. return ERR_CAST(leaf);
  1245. }
  1246. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1247. btrfs_set_header_bytenr(leaf, leaf->start);
  1248. btrfs_set_header_generation(leaf, trans->transid);
  1249. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1250. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1251. root->node = leaf;
  1252. write_extent_buffer(root->node, root->fs_info->fsid,
  1253. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1254. btrfs_mark_buffer_dirty(root->node);
  1255. btrfs_tree_unlock(root->node);
  1256. return root;
  1257. }
  1258. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1259. struct btrfs_fs_info *fs_info)
  1260. {
  1261. struct btrfs_root *log_root;
  1262. log_root = alloc_log_tree(trans, fs_info);
  1263. if (IS_ERR(log_root))
  1264. return PTR_ERR(log_root);
  1265. WARN_ON(fs_info->log_root_tree);
  1266. fs_info->log_root_tree = log_root;
  1267. return 0;
  1268. }
  1269. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1270. struct btrfs_root *root)
  1271. {
  1272. struct btrfs_root *log_root;
  1273. struct btrfs_inode_item *inode_item;
  1274. log_root = alloc_log_tree(trans, root->fs_info);
  1275. if (IS_ERR(log_root))
  1276. return PTR_ERR(log_root);
  1277. log_root->last_trans = trans->transid;
  1278. log_root->root_key.offset = root->root_key.objectid;
  1279. inode_item = &log_root->root_item.inode;
  1280. btrfs_set_stack_inode_generation(inode_item, 1);
  1281. btrfs_set_stack_inode_size(inode_item, 3);
  1282. btrfs_set_stack_inode_nlink(inode_item, 1);
  1283. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1284. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1285. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1286. WARN_ON(root->log_root);
  1287. root->log_root = log_root;
  1288. root->log_transid = 0;
  1289. root->log_transid_committed = -1;
  1290. root->last_log_commit = 0;
  1291. return 0;
  1292. }
  1293. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1294. struct btrfs_key *key)
  1295. {
  1296. struct btrfs_root *root;
  1297. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1298. struct btrfs_path *path;
  1299. u64 generation;
  1300. int ret;
  1301. path = btrfs_alloc_path();
  1302. if (!path)
  1303. return ERR_PTR(-ENOMEM);
  1304. root = btrfs_alloc_root(fs_info);
  1305. if (!root) {
  1306. ret = -ENOMEM;
  1307. goto alloc_fail;
  1308. }
  1309. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1310. tree_root->stripesize, root, fs_info, key->objectid);
  1311. ret = btrfs_find_root(tree_root, key, path,
  1312. &root->root_item, &root->root_key);
  1313. if (ret) {
  1314. if (ret > 0)
  1315. ret = -ENOENT;
  1316. goto find_fail;
  1317. }
  1318. generation = btrfs_root_generation(&root->root_item);
  1319. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1320. generation);
  1321. if (IS_ERR(root->node)) {
  1322. ret = PTR_ERR(root->node);
  1323. goto find_fail;
  1324. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1325. ret = -EIO;
  1326. free_extent_buffer(root->node);
  1327. goto find_fail;
  1328. }
  1329. root->commit_root = btrfs_root_node(root);
  1330. out:
  1331. btrfs_free_path(path);
  1332. return root;
  1333. find_fail:
  1334. kfree(root);
  1335. alloc_fail:
  1336. root = ERR_PTR(ret);
  1337. goto out;
  1338. }
  1339. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1340. struct btrfs_key *location)
  1341. {
  1342. struct btrfs_root *root;
  1343. root = btrfs_read_tree_root(tree_root, location);
  1344. if (IS_ERR(root))
  1345. return root;
  1346. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1347. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1348. btrfs_check_and_init_root_item(&root->root_item);
  1349. }
  1350. return root;
  1351. }
  1352. int btrfs_init_fs_root(struct btrfs_root *root)
  1353. {
  1354. int ret;
  1355. struct btrfs_subvolume_writers *writers;
  1356. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1357. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1358. GFP_NOFS);
  1359. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1360. ret = -ENOMEM;
  1361. goto fail;
  1362. }
  1363. writers = btrfs_alloc_subvolume_writers();
  1364. if (IS_ERR(writers)) {
  1365. ret = PTR_ERR(writers);
  1366. goto fail;
  1367. }
  1368. root->subv_writers = writers;
  1369. btrfs_init_free_ino_ctl(root);
  1370. spin_lock_init(&root->ino_cache_lock);
  1371. init_waitqueue_head(&root->ino_cache_wait);
  1372. ret = get_anon_bdev(&root->anon_dev);
  1373. if (ret)
  1374. goto free_writers;
  1375. return 0;
  1376. free_writers:
  1377. btrfs_free_subvolume_writers(root->subv_writers);
  1378. fail:
  1379. kfree(root->free_ino_ctl);
  1380. kfree(root->free_ino_pinned);
  1381. return ret;
  1382. }
  1383. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1384. u64 root_id)
  1385. {
  1386. struct btrfs_root *root;
  1387. spin_lock(&fs_info->fs_roots_radix_lock);
  1388. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1389. (unsigned long)root_id);
  1390. spin_unlock(&fs_info->fs_roots_radix_lock);
  1391. return root;
  1392. }
  1393. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1394. struct btrfs_root *root)
  1395. {
  1396. int ret;
  1397. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1398. if (ret)
  1399. return ret;
  1400. spin_lock(&fs_info->fs_roots_radix_lock);
  1401. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1402. (unsigned long)root->root_key.objectid,
  1403. root);
  1404. if (ret == 0)
  1405. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1406. spin_unlock(&fs_info->fs_roots_radix_lock);
  1407. radix_tree_preload_end();
  1408. return ret;
  1409. }
  1410. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1411. struct btrfs_key *location,
  1412. bool check_ref)
  1413. {
  1414. struct btrfs_root *root;
  1415. struct btrfs_path *path;
  1416. struct btrfs_key key;
  1417. int ret;
  1418. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1419. return fs_info->tree_root;
  1420. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1421. return fs_info->extent_root;
  1422. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1423. return fs_info->chunk_root;
  1424. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1425. return fs_info->dev_root;
  1426. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1427. return fs_info->csum_root;
  1428. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1429. return fs_info->quota_root ? fs_info->quota_root :
  1430. ERR_PTR(-ENOENT);
  1431. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1432. return fs_info->uuid_root ? fs_info->uuid_root :
  1433. ERR_PTR(-ENOENT);
  1434. again:
  1435. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1436. if (root) {
  1437. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1438. return ERR_PTR(-ENOENT);
  1439. return root;
  1440. }
  1441. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1442. if (IS_ERR(root))
  1443. return root;
  1444. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1445. ret = -ENOENT;
  1446. goto fail;
  1447. }
  1448. ret = btrfs_init_fs_root(root);
  1449. if (ret)
  1450. goto fail;
  1451. path = btrfs_alloc_path();
  1452. if (!path) {
  1453. ret = -ENOMEM;
  1454. goto fail;
  1455. }
  1456. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1457. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1458. key.offset = location->objectid;
  1459. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1460. btrfs_free_path(path);
  1461. if (ret < 0)
  1462. goto fail;
  1463. if (ret == 0)
  1464. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1465. ret = btrfs_insert_fs_root(fs_info, root);
  1466. if (ret) {
  1467. if (ret == -EEXIST) {
  1468. free_fs_root(root);
  1469. goto again;
  1470. }
  1471. goto fail;
  1472. }
  1473. return root;
  1474. fail:
  1475. free_fs_root(root);
  1476. return ERR_PTR(ret);
  1477. }
  1478. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1479. {
  1480. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1481. int ret = 0;
  1482. struct btrfs_device *device;
  1483. struct backing_dev_info *bdi;
  1484. rcu_read_lock();
  1485. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1486. if (!device->bdev)
  1487. continue;
  1488. bdi = blk_get_backing_dev_info(device->bdev);
  1489. if (bdi_congested(bdi, bdi_bits)) {
  1490. ret = 1;
  1491. break;
  1492. }
  1493. }
  1494. rcu_read_unlock();
  1495. return ret;
  1496. }
  1497. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1498. {
  1499. int err;
  1500. err = bdi_setup_and_register(bdi, "btrfs");
  1501. if (err)
  1502. return err;
  1503. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1504. bdi->congested_fn = btrfs_congested_fn;
  1505. bdi->congested_data = info;
  1506. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1507. return 0;
  1508. }
  1509. /*
  1510. * called by the kthread helper functions to finally call the bio end_io
  1511. * functions. This is where read checksum verification actually happens
  1512. */
  1513. static void end_workqueue_fn(struct btrfs_work *work)
  1514. {
  1515. struct bio *bio;
  1516. struct btrfs_end_io_wq *end_io_wq;
  1517. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1518. bio = end_io_wq->bio;
  1519. bio->bi_error = end_io_wq->error;
  1520. bio->bi_private = end_io_wq->private;
  1521. bio->bi_end_io = end_io_wq->end_io;
  1522. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1523. bio_endio(bio);
  1524. }
  1525. static int cleaner_kthread(void *arg)
  1526. {
  1527. struct btrfs_root *root = arg;
  1528. int again;
  1529. struct btrfs_trans_handle *trans;
  1530. set_freezable();
  1531. do {
  1532. again = 0;
  1533. /* Make the cleaner go to sleep early. */
  1534. if (btrfs_need_cleaner_sleep(root))
  1535. goto sleep;
  1536. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1537. goto sleep;
  1538. /*
  1539. * Avoid the problem that we change the status of the fs
  1540. * during the above check and trylock.
  1541. */
  1542. if (btrfs_need_cleaner_sleep(root)) {
  1543. mutex_unlock(&root->fs_info->cleaner_mutex);
  1544. goto sleep;
  1545. }
  1546. btrfs_run_delayed_iputs(root);
  1547. again = btrfs_clean_one_deleted_snapshot(root);
  1548. mutex_unlock(&root->fs_info->cleaner_mutex);
  1549. /*
  1550. * The defragger has dealt with the R/O remount and umount,
  1551. * needn't do anything special here.
  1552. */
  1553. btrfs_run_defrag_inodes(root->fs_info);
  1554. /*
  1555. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1556. * with relocation (btrfs_relocate_chunk) and relocation
  1557. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1558. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1559. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1560. * unused block groups.
  1561. */
  1562. btrfs_delete_unused_bgs(root->fs_info);
  1563. sleep:
  1564. if (!try_to_freeze() && !again) {
  1565. set_current_state(TASK_INTERRUPTIBLE);
  1566. if (!kthread_should_stop())
  1567. schedule();
  1568. __set_current_state(TASK_RUNNING);
  1569. }
  1570. } while (!kthread_should_stop());
  1571. /*
  1572. * Transaction kthread is stopped before us and wakes us up.
  1573. * However we might have started a new transaction and COWed some
  1574. * tree blocks when deleting unused block groups for example. So
  1575. * make sure we commit the transaction we started to have a clean
  1576. * shutdown when evicting the btree inode - if it has dirty pages
  1577. * when we do the final iput() on it, eviction will trigger a
  1578. * writeback for it which will fail with null pointer dereferences
  1579. * since work queues and other resources were already released and
  1580. * destroyed by the time the iput/eviction/writeback is made.
  1581. */
  1582. trans = btrfs_attach_transaction(root);
  1583. if (IS_ERR(trans)) {
  1584. if (PTR_ERR(trans) != -ENOENT)
  1585. btrfs_err(root->fs_info,
  1586. "cleaner transaction attach returned %ld",
  1587. PTR_ERR(trans));
  1588. } else {
  1589. int ret;
  1590. ret = btrfs_commit_transaction(trans, root);
  1591. if (ret)
  1592. btrfs_err(root->fs_info,
  1593. "cleaner open transaction commit returned %d",
  1594. ret);
  1595. }
  1596. return 0;
  1597. }
  1598. static int transaction_kthread(void *arg)
  1599. {
  1600. struct btrfs_root *root = arg;
  1601. struct btrfs_trans_handle *trans;
  1602. struct btrfs_transaction *cur;
  1603. u64 transid;
  1604. unsigned long now;
  1605. unsigned long delay;
  1606. bool cannot_commit;
  1607. do {
  1608. cannot_commit = false;
  1609. delay = HZ * root->fs_info->commit_interval;
  1610. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1611. spin_lock(&root->fs_info->trans_lock);
  1612. cur = root->fs_info->running_transaction;
  1613. if (!cur) {
  1614. spin_unlock(&root->fs_info->trans_lock);
  1615. goto sleep;
  1616. }
  1617. now = get_seconds();
  1618. if (cur->state < TRANS_STATE_BLOCKED &&
  1619. (now < cur->start_time ||
  1620. now - cur->start_time < root->fs_info->commit_interval)) {
  1621. spin_unlock(&root->fs_info->trans_lock);
  1622. delay = HZ * 5;
  1623. goto sleep;
  1624. }
  1625. transid = cur->transid;
  1626. spin_unlock(&root->fs_info->trans_lock);
  1627. /* If the file system is aborted, this will always fail. */
  1628. trans = btrfs_attach_transaction(root);
  1629. if (IS_ERR(trans)) {
  1630. if (PTR_ERR(trans) != -ENOENT)
  1631. cannot_commit = true;
  1632. goto sleep;
  1633. }
  1634. if (transid == trans->transid) {
  1635. btrfs_commit_transaction(trans, root);
  1636. } else {
  1637. btrfs_end_transaction(trans, root);
  1638. }
  1639. sleep:
  1640. wake_up_process(root->fs_info->cleaner_kthread);
  1641. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1642. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1643. &root->fs_info->fs_state)))
  1644. btrfs_cleanup_transaction(root);
  1645. if (!try_to_freeze()) {
  1646. set_current_state(TASK_INTERRUPTIBLE);
  1647. if (!kthread_should_stop() &&
  1648. (!btrfs_transaction_blocked(root->fs_info) ||
  1649. cannot_commit))
  1650. schedule_timeout(delay);
  1651. __set_current_state(TASK_RUNNING);
  1652. }
  1653. } while (!kthread_should_stop());
  1654. return 0;
  1655. }
  1656. /*
  1657. * this will find the highest generation in the array of
  1658. * root backups. The index of the highest array is returned,
  1659. * or -1 if we can't find anything.
  1660. *
  1661. * We check to make sure the array is valid by comparing the
  1662. * generation of the latest root in the array with the generation
  1663. * in the super block. If they don't match we pitch it.
  1664. */
  1665. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1666. {
  1667. u64 cur;
  1668. int newest_index = -1;
  1669. struct btrfs_root_backup *root_backup;
  1670. int i;
  1671. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1672. root_backup = info->super_copy->super_roots + i;
  1673. cur = btrfs_backup_tree_root_gen(root_backup);
  1674. if (cur == newest_gen)
  1675. newest_index = i;
  1676. }
  1677. /* check to see if we actually wrapped around */
  1678. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1679. root_backup = info->super_copy->super_roots;
  1680. cur = btrfs_backup_tree_root_gen(root_backup);
  1681. if (cur == newest_gen)
  1682. newest_index = 0;
  1683. }
  1684. return newest_index;
  1685. }
  1686. /*
  1687. * find the oldest backup so we know where to store new entries
  1688. * in the backup array. This will set the backup_root_index
  1689. * field in the fs_info struct
  1690. */
  1691. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1692. u64 newest_gen)
  1693. {
  1694. int newest_index = -1;
  1695. newest_index = find_newest_super_backup(info, newest_gen);
  1696. /* if there was garbage in there, just move along */
  1697. if (newest_index == -1) {
  1698. info->backup_root_index = 0;
  1699. } else {
  1700. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1701. }
  1702. }
  1703. /*
  1704. * copy all the root pointers into the super backup array.
  1705. * this will bump the backup pointer by one when it is
  1706. * done
  1707. */
  1708. static void backup_super_roots(struct btrfs_fs_info *info)
  1709. {
  1710. int next_backup;
  1711. struct btrfs_root_backup *root_backup;
  1712. int last_backup;
  1713. next_backup = info->backup_root_index;
  1714. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1715. BTRFS_NUM_BACKUP_ROOTS;
  1716. /*
  1717. * just overwrite the last backup if we're at the same generation
  1718. * this happens only at umount
  1719. */
  1720. root_backup = info->super_for_commit->super_roots + last_backup;
  1721. if (btrfs_backup_tree_root_gen(root_backup) ==
  1722. btrfs_header_generation(info->tree_root->node))
  1723. next_backup = last_backup;
  1724. root_backup = info->super_for_commit->super_roots + next_backup;
  1725. /*
  1726. * make sure all of our padding and empty slots get zero filled
  1727. * regardless of which ones we use today
  1728. */
  1729. memset(root_backup, 0, sizeof(*root_backup));
  1730. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1731. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1732. btrfs_set_backup_tree_root_gen(root_backup,
  1733. btrfs_header_generation(info->tree_root->node));
  1734. btrfs_set_backup_tree_root_level(root_backup,
  1735. btrfs_header_level(info->tree_root->node));
  1736. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1737. btrfs_set_backup_chunk_root_gen(root_backup,
  1738. btrfs_header_generation(info->chunk_root->node));
  1739. btrfs_set_backup_chunk_root_level(root_backup,
  1740. btrfs_header_level(info->chunk_root->node));
  1741. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1742. btrfs_set_backup_extent_root_gen(root_backup,
  1743. btrfs_header_generation(info->extent_root->node));
  1744. btrfs_set_backup_extent_root_level(root_backup,
  1745. btrfs_header_level(info->extent_root->node));
  1746. /*
  1747. * we might commit during log recovery, which happens before we set
  1748. * the fs_root. Make sure it is valid before we fill it in.
  1749. */
  1750. if (info->fs_root && info->fs_root->node) {
  1751. btrfs_set_backup_fs_root(root_backup,
  1752. info->fs_root->node->start);
  1753. btrfs_set_backup_fs_root_gen(root_backup,
  1754. btrfs_header_generation(info->fs_root->node));
  1755. btrfs_set_backup_fs_root_level(root_backup,
  1756. btrfs_header_level(info->fs_root->node));
  1757. }
  1758. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1759. btrfs_set_backup_dev_root_gen(root_backup,
  1760. btrfs_header_generation(info->dev_root->node));
  1761. btrfs_set_backup_dev_root_level(root_backup,
  1762. btrfs_header_level(info->dev_root->node));
  1763. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1764. btrfs_set_backup_csum_root_gen(root_backup,
  1765. btrfs_header_generation(info->csum_root->node));
  1766. btrfs_set_backup_csum_root_level(root_backup,
  1767. btrfs_header_level(info->csum_root->node));
  1768. btrfs_set_backup_total_bytes(root_backup,
  1769. btrfs_super_total_bytes(info->super_copy));
  1770. btrfs_set_backup_bytes_used(root_backup,
  1771. btrfs_super_bytes_used(info->super_copy));
  1772. btrfs_set_backup_num_devices(root_backup,
  1773. btrfs_super_num_devices(info->super_copy));
  1774. /*
  1775. * if we don't copy this out to the super_copy, it won't get remembered
  1776. * for the next commit
  1777. */
  1778. memcpy(&info->super_copy->super_roots,
  1779. &info->super_for_commit->super_roots,
  1780. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1781. }
  1782. /*
  1783. * this copies info out of the root backup array and back into
  1784. * the in-memory super block. It is meant to help iterate through
  1785. * the array, so you send it the number of backups you've already
  1786. * tried and the last backup index you used.
  1787. *
  1788. * this returns -1 when it has tried all the backups
  1789. */
  1790. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1791. struct btrfs_super_block *super,
  1792. int *num_backups_tried, int *backup_index)
  1793. {
  1794. struct btrfs_root_backup *root_backup;
  1795. int newest = *backup_index;
  1796. if (*num_backups_tried == 0) {
  1797. u64 gen = btrfs_super_generation(super);
  1798. newest = find_newest_super_backup(info, gen);
  1799. if (newest == -1)
  1800. return -1;
  1801. *backup_index = newest;
  1802. *num_backups_tried = 1;
  1803. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1804. /* we've tried all the backups, all done */
  1805. return -1;
  1806. } else {
  1807. /* jump to the next oldest backup */
  1808. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1809. BTRFS_NUM_BACKUP_ROOTS;
  1810. *backup_index = newest;
  1811. *num_backups_tried += 1;
  1812. }
  1813. root_backup = super->super_roots + newest;
  1814. btrfs_set_super_generation(super,
  1815. btrfs_backup_tree_root_gen(root_backup));
  1816. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1817. btrfs_set_super_root_level(super,
  1818. btrfs_backup_tree_root_level(root_backup));
  1819. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1820. /*
  1821. * fixme: the total bytes and num_devices need to match or we should
  1822. * need a fsck
  1823. */
  1824. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1825. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1826. return 0;
  1827. }
  1828. /* helper to cleanup workers */
  1829. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1830. {
  1831. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1832. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1833. btrfs_destroy_workqueue(fs_info->workers);
  1834. btrfs_destroy_workqueue(fs_info->endio_workers);
  1835. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1836. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1837. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1838. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1839. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1840. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1841. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1842. btrfs_destroy_workqueue(fs_info->submit_workers);
  1843. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1844. btrfs_destroy_workqueue(fs_info->caching_workers);
  1845. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1846. btrfs_destroy_workqueue(fs_info->flush_workers);
  1847. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1848. btrfs_destroy_workqueue(fs_info->extent_workers);
  1849. }
  1850. static void free_root_extent_buffers(struct btrfs_root *root)
  1851. {
  1852. if (root) {
  1853. free_extent_buffer(root->node);
  1854. free_extent_buffer(root->commit_root);
  1855. root->node = NULL;
  1856. root->commit_root = NULL;
  1857. }
  1858. }
  1859. /* helper to cleanup tree roots */
  1860. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1861. {
  1862. free_root_extent_buffers(info->tree_root);
  1863. free_root_extent_buffers(info->dev_root);
  1864. free_root_extent_buffers(info->extent_root);
  1865. free_root_extent_buffers(info->csum_root);
  1866. free_root_extent_buffers(info->quota_root);
  1867. free_root_extent_buffers(info->uuid_root);
  1868. if (chunk_root)
  1869. free_root_extent_buffers(info->chunk_root);
  1870. }
  1871. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1872. {
  1873. int ret;
  1874. struct btrfs_root *gang[8];
  1875. int i;
  1876. while (!list_empty(&fs_info->dead_roots)) {
  1877. gang[0] = list_entry(fs_info->dead_roots.next,
  1878. struct btrfs_root, root_list);
  1879. list_del(&gang[0]->root_list);
  1880. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1881. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1882. } else {
  1883. free_extent_buffer(gang[0]->node);
  1884. free_extent_buffer(gang[0]->commit_root);
  1885. btrfs_put_fs_root(gang[0]);
  1886. }
  1887. }
  1888. while (1) {
  1889. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1890. (void **)gang, 0,
  1891. ARRAY_SIZE(gang));
  1892. if (!ret)
  1893. break;
  1894. for (i = 0; i < ret; i++)
  1895. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1896. }
  1897. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1898. btrfs_free_log_root_tree(NULL, fs_info);
  1899. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1900. fs_info->pinned_extents);
  1901. }
  1902. }
  1903. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1904. {
  1905. mutex_init(&fs_info->scrub_lock);
  1906. atomic_set(&fs_info->scrubs_running, 0);
  1907. atomic_set(&fs_info->scrub_pause_req, 0);
  1908. atomic_set(&fs_info->scrubs_paused, 0);
  1909. atomic_set(&fs_info->scrub_cancel_req, 0);
  1910. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1911. fs_info->scrub_workers_refcnt = 0;
  1912. }
  1913. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1914. {
  1915. spin_lock_init(&fs_info->balance_lock);
  1916. mutex_init(&fs_info->balance_mutex);
  1917. atomic_set(&fs_info->balance_running, 0);
  1918. atomic_set(&fs_info->balance_pause_req, 0);
  1919. atomic_set(&fs_info->balance_cancel_req, 0);
  1920. fs_info->balance_ctl = NULL;
  1921. init_waitqueue_head(&fs_info->balance_wait_q);
  1922. }
  1923. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1924. struct btrfs_root *tree_root)
  1925. {
  1926. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1927. set_nlink(fs_info->btree_inode, 1);
  1928. /*
  1929. * we set the i_size on the btree inode to the max possible int.
  1930. * the real end of the address space is determined by all of
  1931. * the devices in the system
  1932. */
  1933. fs_info->btree_inode->i_size = OFFSET_MAX;
  1934. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1935. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1936. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1937. fs_info->btree_inode->i_mapping);
  1938. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1939. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1940. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1941. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1942. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1943. sizeof(struct btrfs_key));
  1944. set_bit(BTRFS_INODE_DUMMY,
  1945. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1946. btrfs_insert_inode_hash(fs_info->btree_inode);
  1947. }
  1948. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1949. {
  1950. fs_info->dev_replace.lock_owner = 0;
  1951. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1952. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1953. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1954. mutex_init(&fs_info->dev_replace.lock);
  1955. init_waitqueue_head(&fs_info->replace_wait);
  1956. }
  1957. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1958. {
  1959. spin_lock_init(&fs_info->qgroup_lock);
  1960. mutex_init(&fs_info->qgroup_ioctl_lock);
  1961. fs_info->qgroup_tree = RB_ROOT;
  1962. fs_info->qgroup_op_tree = RB_ROOT;
  1963. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1964. fs_info->qgroup_seq = 1;
  1965. fs_info->quota_enabled = 0;
  1966. fs_info->pending_quota_state = 0;
  1967. fs_info->qgroup_ulist = NULL;
  1968. mutex_init(&fs_info->qgroup_rescan_lock);
  1969. }
  1970. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1971. struct btrfs_fs_devices *fs_devices)
  1972. {
  1973. int max_active = fs_info->thread_pool_size;
  1974. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1975. fs_info->workers =
  1976. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  1977. max_active, 16);
  1978. fs_info->delalloc_workers =
  1979. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  1980. fs_info->flush_workers =
  1981. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  1982. fs_info->caching_workers =
  1983. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  1984. /*
  1985. * a higher idle thresh on the submit workers makes it much more
  1986. * likely that bios will be send down in a sane order to the
  1987. * devices
  1988. */
  1989. fs_info->submit_workers =
  1990. btrfs_alloc_workqueue("submit", flags,
  1991. min_t(u64, fs_devices->num_devices,
  1992. max_active), 64);
  1993. fs_info->fixup_workers =
  1994. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  1995. /*
  1996. * endios are largely parallel and should have a very
  1997. * low idle thresh
  1998. */
  1999. fs_info->endio_workers =
  2000. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2001. fs_info->endio_meta_workers =
  2002. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2003. fs_info->endio_meta_write_workers =
  2004. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2005. fs_info->endio_raid56_workers =
  2006. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2007. fs_info->endio_repair_workers =
  2008. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2009. fs_info->rmw_workers =
  2010. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2011. fs_info->endio_write_workers =
  2012. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2013. fs_info->endio_freespace_worker =
  2014. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2015. fs_info->delayed_workers =
  2016. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2017. fs_info->readahead_workers =
  2018. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2019. fs_info->qgroup_rescan_workers =
  2020. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2021. fs_info->extent_workers =
  2022. btrfs_alloc_workqueue("extent-refs", flags,
  2023. min_t(u64, fs_devices->num_devices,
  2024. max_active), 8);
  2025. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2026. fs_info->submit_workers && fs_info->flush_workers &&
  2027. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2028. fs_info->endio_meta_write_workers &&
  2029. fs_info->endio_repair_workers &&
  2030. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2031. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2032. fs_info->caching_workers && fs_info->readahead_workers &&
  2033. fs_info->fixup_workers && fs_info->delayed_workers &&
  2034. fs_info->extent_workers &&
  2035. fs_info->qgroup_rescan_workers)) {
  2036. return -ENOMEM;
  2037. }
  2038. return 0;
  2039. }
  2040. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2041. struct btrfs_fs_devices *fs_devices)
  2042. {
  2043. int ret;
  2044. struct btrfs_root *tree_root = fs_info->tree_root;
  2045. struct btrfs_root *log_tree_root;
  2046. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2047. u64 bytenr = btrfs_super_log_root(disk_super);
  2048. if (fs_devices->rw_devices == 0) {
  2049. btrfs_warn(fs_info, "log replay required on RO media");
  2050. return -EIO;
  2051. }
  2052. log_tree_root = btrfs_alloc_root(fs_info);
  2053. if (!log_tree_root)
  2054. return -ENOMEM;
  2055. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2056. tree_root->stripesize, log_tree_root, fs_info,
  2057. BTRFS_TREE_LOG_OBJECTID);
  2058. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2059. fs_info->generation + 1);
  2060. if (IS_ERR(log_tree_root->node)) {
  2061. btrfs_warn(fs_info, "failed to read log tree");
  2062. ret = PTR_ERR(log_tree_root->node);
  2063. kfree(log_tree_root);
  2064. return ret;
  2065. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2066. btrfs_err(fs_info, "failed to read log tree");
  2067. free_extent_buffer(log_tree_root->node);
  2068. kfree(log_tree_root);
  2069. return -EIO;
  2070. }
  2071. /* returns with log_tree_root freed on success */
  2072. ret = btrfs_recover_log_trees(log_tree_root);
  2073. if (ret) {
  2074. btrfs_std_error(tree_root->fs_info, ret,
  2075. "Failed to recover log tree");
  2076. free_extent_buffer(log_tree_root->node);
  2077. kfree(log_tree_root);
  2078. return ret;
  2079. }
  2080. if (fs_info->sb->s_flags & MS_RDONLY) {
  2081. ret = btrfs_commit_super(tree_root);
  2082. if (ret)
  2083. return ret;
  2084. }
  2085. return 0;
  2086. }
  2087. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2088. struct btrfs_root *tree_root)
  2089. {
  2090. struct btrfs_root *root;
  2091. struct btrfs_key location;
  2092. int ret;
  2093. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2094. location.type = BTRFS_ROOT_ITEM_KEY;
  2095. location.offset = 0;
  2096. root = btrfs_read_tree_root(tree_root, &location);
  2097. if (IS_ERR(root))
  2098. return PTR_ERR(root);
  2099. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2100. fs_info->extent_root = root;
  2101. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2102. root = btrfs_read_tree_root(tree_root, &location);
  2103. if (IS_ERR(root))
  2104. return PTR_ERR(root);
  2105. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2106. fs_info->dev_root = root;
  2107. btrfs_init_devices_late(fs_info);
  2108. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2109. root = btrfs_read_tree_root(tree_root, &location);
  2110. if (IS_ERR(root))
  2111. return PTR_ERR(root);
  2112. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2113. fs_info->csum_root = root;
  2114. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2115. root = btrfs_read_tree_root(tree_root, &location);
  2116. if (!IS_ERR(root)) {
  2117. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2118. fs_info->quota_enabled = 1;
  2119. fs_info->pending_quota_state = 1;
  2120. fs_info->quota_root = root;
  2121. }
  2122. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2123. root = btrfs_read_tree_root(tree_root, &location);
  2124. if (IS_ERR(root)) {
  2125. ret = PTR_ERR(root);
  2126. if (ret != -ENOENT)
  2127. return ret;
  2128. } else {
  2129. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2130. fs_info->uuid_root = root;
  2131. }
  2132. return 0;
  2133. }
  2134. int open_ctree(struct super_block *sb,
  2135. struct btrfs_fs_devices *fs_devices,
  2136. char *options)
  2137. {
  2138. u32 sectorsize;
  2139. u32 nodesize;
  2140. u32 stripesize;
  2141. u64 generation;
  2142. u64 features;
  2143. struct btrfs_key location;
  2144. struct buffer_head *bh;
  2145. struct btrfs_super_block *disk_super;
  2146. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2147. struct btrfs_root *tree_root;
  2148. struct btrfs_root *chunk_root;
  2149. int ret;
  2150. int err = -EINVAL;
  2151. int num_backups_tried = 0;
  2152. int backup_index = 0;
  2153. int max_active;
  2154. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  2155. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  2156. if (!tree_root || !chunk_root) {
  2157. err = -ENOMEM;
  2158. goto fail;
  2159. }
  2160. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2161. if (ret) {
  2162. err = ret;
  2163. goto fail;
  2164. }
  2165. ret = setup_bdi(fs_info, &fs_info->bdi);
  2166. if (ret) {
  2167. err = ret;
  2168. goto fail_srcu;
  2169. }
  2170. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2171. if (ret) {
  2172. err = ret;
  2173. goto fail_bdi;
  2174. }
  2175. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2176. (1 + ilog2(nr_cpu_ids));
  2177. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2178. if (ret) {
  2179. err = ret;
  2180. goto fail_dirty_metadata_bytes;
  2181. }
  2182. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2183. if (ret) {
  2184. err = ret;
  2185. goto fail_delalloc_bytes;
  2186. }
  2187. fs_info->btree_inode = new_inode(sb);
  2188. if (!fs_info->btree_inode) {
  2189. err = -ENOMEM;
  2190. goto fail_bio_counter;
  2191. }
  2192. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2193. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2194. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2195. INIT_LIST_HEAD(&fs_info->trans_list);
  2196. INIT_LIST_HEAD(&fs_info->dead_roots);
  2197. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2198. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2199. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2200. spin_lock_init(&fs_info->delalloc_root_lock);
  2201. spin_lock_init(&fs_info->trans_lock);
  2202. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2203. spin_lock_init(&fs_info->delayed_iput_lock);
  2204. spin_lock_init(&fs_info->defrag_inodes_lock);
  2205. spin_lock_init(&fs_info->free_chunk_lock);
  2206. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2207. spin_lock_init(&fs_info->super_lock);
  2208. spin_lock_init(&fs_info->qgroup_op_lock);
  2209. spin_lock_init(&fs_info->buffer_lock);
  2210. spin_lock_init(&fs_info->unused_bgs_lock);
  2211. rwlock_init(&fs_info->tree_mod_log_lock);
  2212. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2213. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2214. mutex_init(&fs_info->reloc_mutex);
  2215. mutex_init(&fs_info->delalloc_root_mutex);
  2216. seqlock_init(&fs_info->profiles_lock);
  2217. init_rwsem(&fs_info->delayed_iput_sem);
  2218. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2219. INIT_LIST_HEAD(&fs_info->space_info);
  2220. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2221. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2222. btrfs_mapping_init(&fs_info->mapping_tree);
  2223. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2224. BTRFS_BLOCK_RSV_GLOBAL);
  2225. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2226. BTRFS_BLOCK_RSV_DELALLOC);
  2227. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2228. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2229. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2230. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2231. BTRFS_BLOCK_RSV_DELOPS);
  2232. atomic_set(&fs_info->nr_async_submits, 0);
  2233. atomic_set(&fs_info->async_delalloc_pages, 0);
  2234. atomic_set(&fs_info->async_submit_draining, 0);
  2235. atomic_set(&fs_info->nr_async_bios, 0);
  2236. atomic_set(&fs_info->defrag_running, 0);
  2237. atomic_set(&fs_info->qgroup_op_seq, 0);
  2238. atomic64_set(&fs_info->tree_mod_seq, 0);
  2239. fs_info->sb = sb;
  2240. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2241. fs_info->metadata_ratio = 0;
  2242. fs_info->defrag_inodes = RB_ROOT;
  2243. fs_info->free_chunk_space = 0;
  2244. fs_info->tree_mod_log = RB_ROOT;
  2245. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2246. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2247. /* readahead state */
  2248. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2249. spin_lock_init(&fs_info->reada_lock);
  2250. fs_info->thread_pool_size = min_t(unsigned long,
  2251. num_online_cpus() + 2, 8);
  2252. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2253. spin_lock_init(&fs_info->ordered_root_lock);
  2254. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2255. GFP_NOFS);
  2256. if (!fs_info->delayed_root) {
  2257. err = -ENOMEM;
  2258. goto fail_iput;
  2259. }
  2260. btrfs_init_delayed_root(fs_info->delayed_root);
  2261. btrfs_init_scrub(fs_info);
  2262. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2263. fs_info->check_integrity_print_mask = 0;
  2264. #endif
  2265. btrfs_init_balance(fs_info);
  2266. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2267. sb->s_blocksize = 4096;
  2268. sb->s_blocksize_bits = blksize_bits(4096);
  2269. sb->s_bdi = &fs_info->bdi;
  2270. btrfs_init_btree_inode(fs_info, tree_root);
  2271. spin_lock_init(&fs_info->block_group_cache_lock);
  2272. fs_info->block_group_cache_tree = RB_ROOT;
  2273. fs_info->first_logical_byte = (u64)-1;
  2274. extent_io_tree_init(&fs_info->freed_extents[0],
  2275. fs_info->btree_inode->i_mapping);
  2276. extent_io_tree_init(&fs_info->freed_extents[1],
  2277. fs_info->btree_inode->i_mapping);
  2278. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2279. fs_info->do_barriers = 1;
  2280. mutex_init(&fs_info->ordered_operations_mutex);
  2281. mutex_init(&fs_info->tree_log_mutex);
  2282. mutex_init(&fs_info->chunk_mutex);
  2283. mutex_init(&fs_info->transaction_kthread_mutex);
  2284. mutex_init(&fs_info->cleaner_mutex);
  2285. mutex_init(&fs_info->volume_mutex);
  2286. mutex_init(&fs_info->ro_block_group_mutex);
  2287. init_rwsem(&fs_info->commit_root_sem);
  2288. init_rwsem(&fs_info->cleanup_work_sem);
  2289. init_rwsem(&fs_info->subvol_sem);
  2290. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2291. btrfs_init_dev_replace_locks(fs_info);
  2292. btrfs_init_qgroup(fs_info);
  2293. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2294. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2295. init_waitqueue_head(&fs_info->transaction_throttle);
  2296. init_waitqueue_head(&fs_info->transaction_wait);
  2297. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2298. init_waitqueue_head(&fs_info->async_submit_wait);
  2299. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2300. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2301. if (ret) {
  2302. err = ret;
  2303. goto fail_alloc;
  2304. }
  2305. __setup_root(4096, 4096, 4096, tree_root,
  2306. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2307. invalidate_bdev(fs_devices->latest_bdev);
  2308. /*
  2309. * Read super block and check the signature bytes only
  2310. */
  2311. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2312. if (IS_ERR(bh)) {
  2313. err = PTR_ERR(bh);
  2314. goto fail_alloc;
  2315. }
  2316. /*
  2317. * We want to check superblock checksum, the type is stored inside.
  2318. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2319. */
  2320. if (btrfs_check_super_csum(bh->b_data)) {
  2321. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2322. err = -EINVAL;
  2323. goto fail_alloc;
  2324. }
  2325. /*
  2326. * super_copy is zeroed at allocation time and we never touch the
  2327. * following bytes up to INFO_SIZE, the checksum is calculated from
  2328. * the whole block of INFO_SIZE
  2329. */
  2330. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2331. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2332. sizeof(*fs_info->super_for_commit));
  2333. brelse(bh);
  2334. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2335. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2336. if (ret) {
  2337. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2338. err = -EINVAL;
  2339. goto fail_alloc;
  2340. }
  2341. disk_super = fs_info->super_copy;
  2342. if (!btrfs_super_root(disk_super))
  2343. goto fail_alloc;
  2344. /* check FS state, whether FS is broken. */
  2345. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2346. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2347. /*
  2348. * run through our array of backup supers and setup
  2349. * our ring pointer to the oldest one
  2350. */
  2351. generation = btrfs_super_generation(disk_super);
  2352. find_oldest_super_backup(fs_info, generation);
  2353. /*
  2354. * In the long term, we'll store the compression type in the super
  2355. * block, and it'll be used for per file compression control.
  2356. */
  2357. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2358. ret = btrfs_parse_options(tree_root, options);
  2359. if (ret) {
  2360. err = ret;
  2361. goto fail_alloc;
  2362. }
  2363. features = btrfs_super_incompat_flags(disk_super) &
  2364. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2365. if (features) {
  2366. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2367. "unsupported optional features (%Lx).\n",
  2368. features);
  2369. err = -EINVAL;
  2370. goto fail_alloc;
  2371. }
  2372. /*
  2373. * Leafsize and nodesize were always equal, this is only a sanity check.
  2374. */
  2375. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2376. btrfs_super_nodesize(disk_super)) {
  2377. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2378. "blocksizes don't match. node %d leaf %d\n",
  2379. btrfs_super_nodesize(disk_super),
  2380. le32_to_cpu(disk_super->__unused_leafsize));
  2381. err = -EINVAL;
  2382. goto fail_alloc;
  2383. }
  2384. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2385. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2386. "blocksize (%d) was too large\n",
  2387. btrfs_super_nodesize(disk_super));
  2388. err = -EINVAL;
  2389. goto fail_alloc;
  2390. }
  2391. features = btrfs_super_incompat_flags(disk_super);
  2392. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2393. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2394. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2395. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2396. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2397. /*
  2398. * flag our filesystem as having big metadata blocks if
  2399. * they are bigger than the page size
  2400. */
  2401. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2402. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2403. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2404. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2405. }
  2406. nodesize = btrfs_super_nodesize(disk_super);
  2407. sectorsize = btrfs_super_sectorsize(disk_super);
  2408. stripesize = btrfs_super_stripesize(disk_super);
  2409. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2410. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2411. /*
  2412. * mixed block groups end up with duplicate but slightly offset
  2413. * extent buffers for the same range. It leads to corruptions
  2414. */
  2415. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2416. (sectorsize != nodesize)) {
  2417. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2418. "are not allowed for mixed block groups on %s\n",
  2419. sb->s_id);
  2420. goto fail_alloc;
  2421. }
  2422. /*
  2423. * Needn't use the lock because there is no other task which will
  2424. * update the flag.
  2425. */
  2426. btrfs_set_super_incompat_flags(disk_super, features);
  2427. features = btrfs_super_compat_ro_flags(disk_super) &
  2428. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2429. if (!(sb->s_flags & MS_RDONLY) && features) {
  2430. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2431. "unsupported option features (%Lx).\n",
  2432. features);
  2433. err = -EINVAL;
  2434. goto fail_alloc;
  2435. }
  2436. max_active = fs_info->thread_pool_size;
  2437. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2438. if (ret) {
  2439. err = ret;
  2440. goto fail_sb_buffer;
  2441. }
  2442. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2443. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2444. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2445. tree_root->nodesize = nodesize;
  2446. tree_root->sectorsize = sectorsize;
  2447. tree_root->stripesize = stripesize;
  2448. sb->s_blocksize = sectorsize;
  2449. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2450. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2451. printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
  2452. goto fail_sb_buffer;
  2453. }
  2454. if (sectorsize != PAGE_SIZE) {
  2455. printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
  2456. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2457. goto fail_sb_buffer;
  2458. }
  2459. mutex_lock(&fs_info->chunk_mutex);
  2460. ret = btrfs_read_sys_array(tree_root);
  2461. mutex_unlock(&fs_info->chunk_mutex);
  2462. if (ret) {
  2463. printk(KERN_ERR "BTRFS: failed to read the system "
  2464. "array on %s\n", sb->s_id);
  2465. goto fail_sb_buffer;
  2466. }
  2467. generation = btrfs_super_chunk_root_generation(disk_super);
  2468. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2469. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2470. chunk_root->node = read_tree_block(chunk_root,
  2471. btrfs_super_chunk_root(disk_super),
  2472. generation);
  2473. if (IS_ERR(chunk_root->node) ||
  2474. !extent_buffer_uptodate(chunk_root->node)) {
  2475. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2476. sb->s_id);
  2477. if (!IS_ERR(chunk_root->node))
  2478. free_extent_buffer(chunk_root->node);
  2479. chunk_root->node = NULL;
  2480. goto fail_tree_roots;
  2481. }
  2482. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2483. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2484. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2485. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2486. ret = btrfs_read_chunk_tree(chunk_root);
  2487. if (ret) {
  2488. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2489. sb->s_id);
  2490. goto fail_tree_roots;
  2491. }
  2492. /*
  2493. * keep the device that is marked to be the target device for the
  2494. * dev_replace procedure
  2495. */
  2496. btrfs_close_extra_devices(fs_devices, 0);
  2497. if (!fs_devices->latest_bdev) {
  2498. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2499. sb->s_id);
  2500. goto fail_tree_roots;
  2501. }
  2502. retry_root_backup:
  2503. generation = btrfs_super_generation(disk_super);
  2504. tree_root->node = read_tree_block(tree_root,
  2505. btrfs_super_root(disk_super),
  2506. generation);
  2507. if (IS_ERR(tree_root->node) ||
  2508. !extent_buffer_uptodate(tree_root->node)) {
  2509. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2510. sb->s_id);
  2511. if (!IS_ERR(tree_root->node))
  2512. free_extent_buffer(tree_root->node);
  2513. tree_root->node = NULL;
  2514. goto recovery_tree_root;
  2515. }
  2516. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2517. tree_root->commit_root = btrfs_root_node(tree_root);
  2518. btrfs_set_root_refs(&tree_root->root_item, 1);
  2519. ret = btrfs_read_roots(fs_info, tree_root);
  2520. if (ret)
  2521. goto recovery_tree_root;
  2522. fs_info->generation = generation;
  2523. fs_info->last_trans_committed = generation;
  2524. ret = btrfs_recover_balance(fs_info);
  2525. if (ret) {
  2526. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2527. goto fail_block_groups;
  2528. }
  2529. ret = btrfs_init_dev_stats(fs_info);
  2530. if (ret) {
  2531. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2532. ret);
  2533. goto fail_block_groups;
  2534. }
  2535. ret = btrfs_init_dev_replace(fs_info);
  2536. if (ret) {
  2537. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2538. goto fail_block_groups;
  2539. }
  2540. btrfs_close_extra_devices(fs_devices, 1);
  2541. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2542. if (ret) {
  2543. pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
  2544. goto fail_block_groups;
  2545. }
  2546. ret = btrfs_sysfs_add_device(fs_devices);
  2547. if (ret) {
  2548. pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
  2549. goto fail_fsdev_sysfs;
  2550. }
  2551. ret = btrfs_sysfs_add_mounted(fs_info);
  2552. if (ret) {
  2553. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2554. goto fail_fsdev_sysfs;
  2555. }
  2556. ret = btrfs_init_space_info(fs_info);
  2557. if (ret) {
  2558. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2559. goto fail_sysfs;
  2560. }
  2561. ret = btrfs_read_block_groups(fs_info->extent_root);
  2562. if (ret) {
  2563. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2564. goto fail_sysfs;
  2565. }
  2566. fs_info->num_tolerated_disk_barrier_failures =
  2567. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2568. if (fs_info->fs_devices->missing_devices >
  2569. fs_info->num_tolerated_disk_barrier_failures &&
  2570. !(sb->s_flags & MS_RDONLY)) {
  2571. pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
  2572. fs_info->fs_devices->missing_devices,
  2573. fs_info->num_tolerated_disk_barrier_failures);
  2574. goto fail_sysfs;
  2575. }
  2576. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2577. "btrfs-cleaner");
  2578. if (IS_ERR(fs_info->cleaner_kthread))
  2579. goto fail_sysfs;
  2580. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2581. tree_root,
  2582. "btrfs-transaction");
  2583. if (IS_ERR(fs_info->transaction_kthread))
  2584. goto fail_cleaner;
  2585. if (!btrfs_test_opt(tree_root, SSD) &&
  2586. !btrfs_test_opt(tree_root, NOSSD) &&
  2587. !fs_info->fs_devices->rotating) {
  2588. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2589. "mode\n");
  2590. btrfs_set_opt(fs_info->mount_opt, SSD);
  2591. }
  2592. /*
  2593. * Mount does not set all options immediatelly, we can do it now and do
  2594. * not have to wait for transaction commit
  2595. */
  2596. btrfs_apply_pending_changes(fs_info);
  2597. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2598. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2599. ret = btrfsic_mount(tree_root, fs_devices,
  2600. btrfs_test_opt(tree_root,
  2601. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2602. 1 : 0,
  2603. fs_info->check_integrity_print_mask);
  2604. if (ret)
  2605. printk(KERN_WARNING "BTRFS: failed to initialize"
  2606. " integrity check module %s\n", sb->s_id);
  2607. }
  2608. #endif
  2609. ret = btrfs_read_qgroup_config(fs_info);
  2610. if (ret)
  2611. goto fail_trans_kthread;
  2612. /* do not make disk changes in broken FS */
  2613. if (btrfs_super_log_root(disk_super) != 0) {
  2614. ret = btrfs_replay_log(fs_info, fs_devices);
  2615. if (ret) {
  2616. err = ret;
  2617. goto fail_qgroup;
  2618. }
  2619. }
  2620. ret = btrfs_find_orphan_roots(tree_root);
  2621. if (ret)
  2622. goto fail_qgroup;
  2623. if (!(sb->s_flags & MS_RDONLY)) {
  2624. ret = btrfs_cleanup_fs_roots(fs_info);
  2625. if (ret)
  2626. goto fail_qgroup;
  2627. mutex_lock(&fs_info->cleaner_mutex);
  2628. ret = btrfs_recover_relocation(tree_root);
  2629. mutex_unlock(&fs_info->cleaner_mutex);
  2630. if (ret < 0) {
  2631. printk(KERN_WARNING
  2632. "BTRFS: failed to recover relocation\n");
  2633. err = -EINVAL;
  2634. goto fail_qgroup;
  2635. }
  2636. }
  2637. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2638. location.type = BTRFS_ROOT_ITEM_KEY;
  2639. location.offset = 0;
  2640. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2641. if (IS_ERR(fs_info->fs_root)) {
  2642. err = PTR_ERR(fs_info->fs_root);
  2643. goto fail_qgroup;
  2644. }
  2645. if (sb->s_flags & MS_RDONLY)
  2646. return 0;
  2647. down_read(&fs_info->cleanup_work_sem);
  2648. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2649. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2650. up_read(&fs_info->cleanup_work_sem);
  2651. close_ctree(tree_root);
  2652. return ret;
  2653. }
  2654. up_read(&fs_info->cleanup_work_sem);
  2655. ret = btrfs_resume_balance_async(fs_info);
  2656. if (ret) {
  2657. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2658. close_ctree(tree_root);
  2659. return ret;
  2660. }
  2661. ret = btrfs_resume_dev_replace_async(fs_info);
  2662. if (ret) {
  2663. pr_warn("BTRFS: failed to resume dev_replace\n");
  2664. close_ctree(tree_root);
  2665. return ret;
  2666. }
  2667. btrfs_qgroup_rescan_resume(fs_info);
  2668. if (!fs_info->uuid_root) {
  2669. pr_info("BTRFS: creating UUID tree\n");
  2670. ret = btrfs_create_uuid_tree(fs_info);
  2671. if (ret) {
  2672. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2673. ret);
  2674. close_ctree(tree_root);
  2675. return ret;
  2676. }
  2677. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2678. fs_info->generation !=
  2679. btrfs_super_uuid_tree_generation(disk_super)) {
  2680. pr_info("BTRFS: checking UUID tree\n");
  2681. ret = btrfs_check_uuid_tree(fs_info);
  2682. if (ret) {
  2683. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2684. ret);
  2685. close_ctree(tree_root);
  2686. return ret;
  2687. }
  2688. } else {
  2689. fs_info->update_uuid_tree_gen = 1;
  2690. }
  2691. fs_info->open = 1;
  2692. return 0;
  2693. fail_qgroup:
  2694. btrfs_free_qgroup_config(fs_info);
  2695. fail_trans_kthread:
  2696. kthread_stop(fs_info->transaction_kthread);
  2697. btrfs_cleanup_transaction(fs_info->tree_root);
  2698. btrfs_free_fs_roots(fs_info);
  2699. fail_cleaner:
  2700. kthread_stop(fs_info->cleaner_kthread);
  2701. /*
  2702. * make sure we're done with the btree inode before we stop our
  2703. * kthreads
  2704. */
  2705. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2706. fail_sysfs:
  2707. btrfs_sysfs_remove_mounted(fs_info);
  2708. fail_fsdev_sysfs:
  2709. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2710. fail_block_groups:
  2711. btrfs_put_block_group_cache(fs_info);
  2712. btrfs_free_block_groups(fs_info);
  2713. fail_tree_roots:
  2714. free_root_pointers(fs_info, 1);
  2715. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2716. fail_sb_buffer:
  2717. btrfs_stop_all_workers(fs_info);
  2718. fail_alloc:
  2719. fail_iput:
  2720. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2721. iput(fs_info->btree_inode);
  2722. fail_bio_counter:
  2723. percpu_counter_destroy(&fs_info->bio_counter);
  2724. fail_delalloc_bytes:
  2725. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2726. fail_dirty_metadata_bytes:
  2727. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2728. fail_bdi:
  2729. bdi_destroy(&fs_info->bdi);
  2730. fail_srcu:
  2731. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2732. fail:
  2733. btrfs_free_stripe_hash_table(fs_info);
  2734. btrfs_close_devices(fs_info->fs_devices);
  2735. return err;
  2736. recovery_tree_root:
  2737. if (!btrfs_test_opt(tree_root, RECOVERY))
  2738. goto fail_tree_roots;
  2739. free_root_pointers(fs_info, 0);
  2740. /* don't use the log in recovery mode, it won't be valid */
  2741. btrfs_set_super_log_root(disk_super, 0);
  2742. /* we can't trust the free space cache either */
  2743. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2744. ret = next_root_backup(fs_info, fs_info->super_copy,
  2745. &num_backups_tried, &backup_index);
  2746. if (ret == -1)
  2747. goto fail_block_groups;
  2748. goto retry_root_backup;
  2749. }
  2750. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2751. {
  2752. if (uptodate) {
  2753. set_buffer_uptodate(bh);
  2754. } else {
  2755. struct btrfs_device *device = (struct btrfs_device *)
  2756. bh->b_private;
  2757. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2758. "lost page write due to IO error on %s",
  2759. rcu_str_deref(device->name));
  2760. /* note, we dont' set_buffer_write_io_error because we have
  2761. * our own ways of dealing with the IO errors
  2762. */
  2763. clear_buffer_uptodate(bh);
  2764. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2765. }
  2766. unlock_buffer(bh);
  2767. put_bh(bh);
  2768. }
  2769. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2770. struct buffer_head **bh_ret)
  2771. {
  2772. struct buffer_head *bh;
  2773. struct btrfs_super_block *super;
  2774. u64 bytenr;
  2775. bytenr = btrfs_sb_offset(copy_num);
  2776. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2777. return -EINVAL;
  2778. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2779. /*
  2780. * If we fail to read from the underlying devices, as of now
  2781. * the best option we have is to mark it EIO.
  2782. */
  2783. if (!bh)
  2784. return -EIO;
  2785. super = (struct btrfs_super_block *)bh->b_data;
  2786. if (btrfs_super_bytenr(super) != bytenr ||
  2787. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2788. brelse(bh);
  2789. return -EINVAL;
  2790. }
  2791. *bh_ret = bh;
  2792. return 0;
  2793. }
  2794. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2795. {
  2796. struct buffer_head *bh;
  2797. struct buffer_head *latest = NULL;
  2798. struct btrfs_super_block *super;
  2799. int i;
  2800. u64 transid = 0;
  2801. int ret = -EINVAL;
  2802. /* we would like to check all the supers, but that would make
  2803. * a btrfs mount succeed after a mkfs from a different FS.
  2804. * So, we need to add a special mount option to scan for
  2805. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2806. */
  2807. for (i = 0; i < 1; i++) {
  2808. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2809. if (ret)
  2810. continue;
  2811. super = (struct btrfs_super_block *)bh->b_data;
  2812. if (!latest || btrfs_super_generation(super) > transid) {
  2813. brelse(latest);
  2814. latest = bh;
  2815. transid = btrfs_super_generation(super);
  2816. } else {
  2817. brelse(bh);
  2818. }
  2819. }
  2820. if (!latest)
  2821. return ERR_PTR(ret);
  2822. return latest;
  2823. }
  2824. /*
  2825. * this should be called twice, once with wait == 0 and
  2826. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2827. * we write are pinned.
  2828. *
  2829. * They are released when wait == 1 is done.
  2830. * max_mirrors must be the same for both runs, and it indicates how
  2831. * many supers on this one device should be written.
  2832. *
  2833. * max_mirrors == 0 means to write them all.
  2834. */
  2835. static int write_dev_supers(struct btrfs_device *device,
  2836. struct btrfs_super_block *sb,
  2837. int do_barriers, int wait, int max_mirrors)
  2838. {
  2839. struct buffer_head *bh;
  2840. int i;
  2841. int ret;
  2842. int errors = 0;
  2843. u32 crc;
  2844. u64 bytenr;
  2845. if (max_mirrors == 0)
  2846. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2847. for (i = 0; i < max_mirrors; i++) {
  2848. bytenr = btrfs_sb_offset(i);
  2849. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2850. device->commit_total_bytes)
  2851. break;
  2852. if (wait) {
  2853. bh = __find_get_block(device->bdev, bytenr / 4096,
  2854. BTRFS_SUPER_INFO_SIZE);
  2855. if (!bh) {
  2856. errors++;
  2857. continue;
  2858. }
  2859. wait_on_buffer(bh);
  2860. if (!buffer_uptodate(bh))
  2861. errors++;
  2862. /* drop our reference */
  2863. brelse(bh);
  2864. /* drop the reference from the wait == 0 run */
  2865. brelse(bh);
  2866. continue;
  2867. } else {
  2868. btrfs_set_super_bytenr(sb, bytenr);
  2869. crc = ~(u32)0;
  2870. crc = btrfs_csum_data((char *)sb +
  2871. BTRFS_CSUM_SIZE, crc,
  2872. BTRFS_SUPER_INFO_SIZE -
  2873. BTRFS_CSUM_SIZE);
  2874. btrfs_csum_final(crc, sb->csum);
  2875. /*
  2876. * one reference for us, and we leave it for the
  2877. * caller
  2878. */
  2879. bh = __getblk(device->bdev, bytenr / 4096,
  2880. BTRFS_SUPER_INFO_SIZE);
  2881. if (!bh) {
  2882. btrfs_err(device->dev_root->fs_info,
  2883. "couldn't get super buffer head for bytenr %llu",
  2884. bytenr);
  2885. errors++;
  2886. continue;
  2887. }
  2888. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2889. /* one reference for submit_bh */
  2890. get_bh(bh);
  2891. set_buffer_uptodate(bh);
  2892. lock_buffer(bh);
  2893. bh->b_end_io = btrfs_end_buffer_write_sync;
  2894. bh->b_private = device;
  2895. }
  2896. /*
  2897. * we fua the first super. The others we allow
  2898. * to go down lazy.
  2899. */
  2900. if (i == 0)
  2901. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2902. else
  2903. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2904. if (ret)
  2905. errors++;
  2906. }
  2907. return errors < i ? 0 : -1;
  2908. }
  2909. /*
  2910. * endio for the write_dev_flush, this will wake anyone waiting
  2911. * for the barrier when it is done
  2912. */
  2913. static void btrfs_end_empty_barrier(struct bio *bio)
  2914. {
  2915. if (bio->bi_private)
  2916. complete(bio->bi_private);
  2917. bio_put(bio);
  2918. }
  2919. /*
  2920. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2921. * sent down. With wait == 1, it waits for the previous flush.
  2922. *
  2923. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2924. * capable
  2925. */
  2926. static int write_dev_flush(struct btrfs_device *device, int wait)
  2927. {
  2928. struct bio *bio;
  2929. int ret = 0;
  2930. if (device->nobarriers)
  2931. return 0;
  2932. if (wait) {
  2933. bio = device->flush_bio;
  2934. if (!bio)
  2935. return 0;
  2936. wait_for_completion(&device->flush_wait);
  2937. if (bio->bi_error) {
  2938. ret = bio->bi_error;
  2939. btrfs_dev_stat_inc_and_print(device,
  2940. BTRFS_DEV_STAT_FLUSH_ERRS);
  2941. }
  2942. /* drop the reference from the wait == 0 run */
  2943. bio_put(bio);
  2944. device->flush_bio = NULL;
  2945. return ret;
  2946. }
  2947. /*
  2948. * one reference for us, and we leave it for the
  2949. * caller
  2950. */
  2951. device->flush_bio = NULL;
  2952. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2953. if (!bio)
  2954. return -ENOMEM;
  2955. bio->bi_end_io = btrfs_end_empty_barrier;
  2956. bio->bi_bdev = device->bdev;
  2957. init_completion(&device->flush_wait);
  2958. bio->bi_private = &device->flush_wait;
  2959. device->flush_bio = bio;
  2960. bio_get(bio);
  2961. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2962. return 0;
  2963. }
  2964. /*
  2965. * send an empty flush down to each device in parallel,
  2966. * then wait for them
  2967. */
  2968. static int barrier_all_devices(struct btrfs_fs_info *info)
  2969. {
  2970. struct list_head *head;
  2971. struct btrfs_device *dev;
  2972. int errors_send = 0;
  2973. int errors_wait = 0;
  2974. int ret;
  2975. /* send down all the barriers */
  2976. head = &info->fs_devices->devices;
  2977. list_for_each_entry_rcu(dev, head, dev_list) {
  2978. if (dev->missing)
  2979. continue;
  2980. if (!dev->bdev) {
  2981. errors_send++;
  2982. continue;
  2983. }
  2984. if (!dev->in_fs_metadata || !dev->writeable)
  2985. continue;
  2986. ret = write_dev_flush(dev, 0);
  2987. if (ret)
  2988. errors_send++;
  2989. }
  2990. /* wait for all the barriers */
  2991. list_for_each_entry_rcu(dev, head, dev_list) {
  2992. if (dev->missing)
  2993. continue;
  2994. if (!dev->bdev) {
  2995. errors_wait++;
  2996. continue;
  2997. }
  2998. if (!dev->in_fs_metadata || !dev->writeable)
  2999. continue;
  3000. ret = write_dev_flush(dev, 1);
  3001. if (ret)
  3002. errors_wait++;
  3003. }
  3004. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3005. errors_wait > info->num_tolerated_disk_barrier_failures)
  3006. return -EIO;
  3007. return 0;
  3008. }
  3009. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3010. {
  3011. int raid_type;
  3012. int min_tolerated = INT_MAX;
  3013. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3014. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3015. min_tolerated = min(min_tolerated,
  3016. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3017. tolerated_failures);
  3018. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3019. if (raid_type == BTRFS_RAID_SINGLE)
  3020. continue;
  3021. if (!(flags & btrfs_raid_group[raid_type]))
  3022. continue;
  3023. min_tolerated = min(min_tolerated,
  3024. btrfs_raid_array[raid_type].
  3025. tolerated_failures);
  3026. }
  3027. if (min_tolerated == INT_MAX) {
  3028. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  3029. min_tolerated = 0;
  3030. }
  3031. return min_tolerated;
  3032. }
  3033. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3034. struct btrfs_fs_info *fs_info)
  3035. {
  3036. struct btrfs_ioctl_space_info space;
  3037. struct btrfs_space_info *sinfo;
  3038. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3039. BTRFS_BLOCK_GROUP_SYSTEM,
  3040. BTRFS_BLOCK_GROUP_METADATA,
  3041. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3042. int i;
  3043. int c;
  3044. int num_tolerated_disk_barrier_failures =
  3045. (int)fs_info->fs_devices->num_devices;
  3046. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3047. struct btrfs_space_info *tmp;
  3048. sinfo = NULL;
  3049. rcu_read_lock();
  3050. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3051. if (tmp->flags == types[i]) {
  3052. sinfo = tmp;
  3053. break;
  3054. }
  3055. }
  3056. rcu_read_unlock();
  3057. if (!sinfo)
  3058. continue;
  3059. down_read(&sinfo->groups_sem);
  3060. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3061. u64 flags;
  3062. if (list_empty(&sinfo->block_groups[c]))
  3063. continue;
  3064. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3065. &space);
  3066. if (space.total_bytes == 0 || space.used_bytes == 0)
  3067. continue;
  3068. flags = space.flags;
  3069. num_tolerated_disk_barrier_failures = min(
  3070. num_tolerated_disk_barrier_failures,
  3071. btrfs_get_num_tolerated_disk_barrier_failures(
  3072. flags));
  3073. }
  3074. up_read(&sinfo->groups_sem);
  3075. }
  3076. return num_tolerated_disk_barrier_failures;
  3077. }
  3078. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3079. {
  3080. struct list_head *head;
  3081. struct btrfs_device *dev;
  3082. struct btrfs_super_block *sb;
  3083. struct btrfs_dev_item *dev_item;
  3084. int ret;
  3085. int do_barriers;
  3086. int max_errors;
  3087. int total_errors = 0;
  3088. u64 flags;
  3089. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3090. backup_super_roots(root->fs_info);
  3091. sb = root->fs_info->super_for_commit;
  3092. dev_item = &sb->dev_item;
  3093. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3094. head = &root->fs_info->fs_devices->devices;
  3095. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3096. if (do_barriers) {
  3097. ret = barrier_all_devices(root->fs_info);
  3098. if (ret) {
  3099. mutex_unlock(
  3100. &root->fs_info->fs_devices->device_list_mutex);
  3101. btrfs_std_error(root->fs_info, ret,
  3102. "errors while submitting device barriers.");
  3103. return ret;
  3104. }
  3105. }
  3106. list_for_each_entry_rcu(dev, head, dev_list) {
  3107. if (!dev->bdev) {
  3108. total_errors++;
  3109. continue;
  3110. }
  3111. if (!dev->in_fs_metadata || !dev->writeable)
  3112. continue;
  3113. btrfs_set_stack_device_generation(dev_item, 0);
  3114. btrfs_set_stack_device_type(dev_item, dev->type);
  3115. btrfs_set_stack_device_id(dev_item, dev->devid);
  3116. btrfs_set_stack_device_total_bytes(dev_item,
  3117. dev->commit_total_bytes);
  3118. btrfs_set_stack_device_bytes_used(dev_item,
  3119. dev->commit_bytes_used);
  3120. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3121. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3122. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3123. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3124. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3125. flags = btrfs_super_flags(sb);
  3126. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3127. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3128. if (ret)
  3129. total_errors++;
  3130. }
  3131. if (total_errors > max_errors) {
  3132. btrfs_err(root->fs_info, "%d errors while writing supers",
  3133. total_errors);
  3134. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3135. /* FUA is masked off if unsupported and can't be the reason */
  3136. btrfs_std_error(root->fs_info, -EIO,
  3137. "%d errors while writing supers", total_errors);
  3138. return -EIO;
  3139. }
  3140. total_errors = 0;
  3141. list_for_each_entry_rcu(dev, head, dev_list) {
  3142. if (!dev->bdev)
  3143. continue;
  3144. if (!dev->in_fs_metadata || !dev->writeable)
  3145. continue;
  3146. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3147. if (ret)
  3148. total_errors++;
  3149. }
  3150. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3151. if (total_errors > max_errors) {
  3152. btrfs_std_error(root->fs_info, -EIO,
  3153. "%d errors while writing supers", total_errors);
  3154. return -EIO;
  3155. }
  3156. return 0;
  3157. }
  3158. int write_ctree_super(struct btrfs_trans_handle *trans,
  3159. struct btrfs_root *root, int max_mirrors)
  3160. {
  3161. return write_all_supers(root, max_mirrors);
  3162. }
  3163. /* Drop a fs root from the radix tree and free it. */
  3164. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3165. struct btrfs_root *root)
  3166. {
  3167. spin_lock(&fs_info->fs_roots_radix_lock);
  3168. radix_tree_delete(&fs_info->fs_roots_radix,
  3169. (unsigned long)root->root_key.objectid);
  3170. spin_unlock(&fs_info->fs_roots_radix_lock);
  3171. if (btrfs_root_refs(&root->root_item) == 0)
  3172. synchronize_srcu(&fs_info->subvol_srcu);
  3173. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3174. btrfs_free_log(NULL, root);
  3175. if (root->free_ino_pinned)
  3176. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3177. if (root->free_ino_ctl)
  3178. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3179. free_fs_root(root);
  3180. }
  3181. static void free_fs_root(struct btrfs_root *root)
  3182. {
  3183. iput(root->ino_cache_inode);
  3184. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3185. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3186. root->orphan_block_rsv = NULL;
  3187. if (root->anon_dev)
  3188. free_anon_bdev(root->anon_dev);
  3189. if (root->subv_writers)
  3190. btrfs_free_subvolume_writers(root->subv_writers);
  3191. free_extent_buffer(root->node);
  3192. free_extent_buffer(root->commit_root);
  3193. kfree(root->free_ino_ctl);
  3194. kfree(root->free_ino_pinned);
  3195. kfree(root->name);
  3196. btrfs_put_fs_root(root);
  3197. }
  3198. void btrfs_free_fs_root(struct btrfs_root *root)
  3199. {
  3200. free_fs_root(root);
  3201. }
  3202. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3203. {
  3204. u64 root_objectid = 0;
  3205. struct btrfs_root *gang[8];
  3206. int i = 0;
  3207. int err = 0;
  3208. unsigned int ret = 0;
  3209. int index;
  3210. while (1) {
  3211. index = srcu_read_lock(&fs_info->subvol_srcu);
  3212. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3213. (void **)gang, root_objectid,
  3214. ARRAY_SIZE(gang));
  3215. if (!ret) {
  3216. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3217. break;
  3218. }
  3219. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3220. for (i = 0; i < ret; i++) {
  3221. /* Avoid to grab roots in dead_roots */
  3222. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3223. gang[i] = NULL;
  3224. continue;
  3225. }
  3226. /* grab all the search result for later use */
  3227. gang[i] = btrfs_grab_fs_root(gang[i]);
  3228. }
  3229. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3230. for (i = 0; i < ret; i++) {
  3231. if (!gang[i])
  3232. continue;
  3233. root_objectid = gang[i]->root_key.objectid;
  3234. err = btrfs_orphan_cleanup(gang[i]);
  3235. if (err)
  3236. break;
  3237. btrfs_put_fs_root(gang[i]);
  3238. }
  3239. root_objectid++;
  3240. }
  3241. /* release the uncleaned roots due to error */
  3242. for (; i < ret; i++) {
  3243. if (gang[i])
  3244. btrfs_put_fs_root(gang[i]);
  3245. }
  3246. return err;
  3247. }
  3248. int btrfs_commit_super(struct btrfs_root *root)
  3249. {
  3250. struct btrfs_trans_handle *trans;
  3251. mutex_lock(&root->fs_info->cleaner_mutex);
  3252. btrfs_run_delayed_iputs(root);
  3253. mutex_unlock(&root->fs_info->cleaner_mutex);
  3254. wake_up_process(root->fs_info->cleaner_kthread);
  3255. /* wait until ongoing cleanup work done */
  3256. down_write(&root->fs_info->cleanup_work_sem);
  3257. up_write(&root->fs_info->cleanup_work_sem);
  3258. trans = btrfs_join_transaction(root);
  3259. if (IS_ERR(trans))
  3260. return PTR_ERR(trans);
  3261. return btrfs_commit_transaction(trans, root);
  3262. }
  3263. void close_ctree(struct btrfs_root *root)
  3264. {
  3265. struct btrfs_fs_info *fs_info = root->fs_info;
  3266. int ret;
  3267. fs_info->closing = 1;
  3268. smp_mb();
  3269. /* wait for the qgroup rescan worker to stop */
  3270. btrfs_qgroup_wait_for_completion(fs_info);
  3271. /* wait for the uuid_scan task to finish */
  3272. down(&fs_info->uuid_tree_rescan_sem);
  3273. /* avoid complains from lockdep et al., set sem back to initial state */
  3274. up(&fs_info->uuid_tree_rescan_sem);
  3275. /* pause restriper - we want to resume on mount */
  3276. btrfs_pause_balance(fs_info);
  3277. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3278. btrfs_scrub_cancel(fs_info);
  3279. /* wait for any defraggers to finish */
  3280. wait_event(fs_info->transaction_wait,
  3281. (atomic_read(&fs_info->defrag_running) == 0));
  3282. /* clear out the rbtree of defraggable inodes */
  3283. btrfs_cleanup_defrag_inodes(fs_info);
  3284. cancel_work_sync(&fs_info->async_reclaim_work);
  3285. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3286. /*
  3287. * If the cleaner thread is stopped and there are
  3288. * block groups queued for removal, the deletion will be
  3289. * skipped when we quit the cleaner thread.
  3290. */
  3291. btrfs_delete_unused_bgs(root->fs_info);
  3292. ret = btrfs_commit_super(root);
  3293. if (ret)
  3294. btrfs_err(fs_info, "commit super ret %d", ret);
  3295. }
  3296. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3297. btrfs_error_commit_super(root);
  3298. kthread_stop(fs_info->transaction_kthread);
  3299. kthread_stop(fs_info->cleaner_kthread);
  3300. fs_info->closing = 2;
  3301. smp_mb();
  3302. btrfs_free_qgroup_config(fs_info);
  3303. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3304. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3305. percpu_counter_sum(&fs_info->delalloc_bytes));
  3306. }
  3307. btrfs_sysfs_remove_mounted(fs_info);
  3308. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3309. btrfs_free_fs_roots(fs_info);
  3310. btrfs_put_block_group_cache(fs_info);
  3311. btrfs_free_block_groups(fs_info);
  3312. /*
  3313. * we must make sure there is not any read request to
  3314. * submit after we stopping all workers.
  3315. */
  3316. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3317. btrfs_stop_all_workers(fs_info);
  3318. fs_info->open = 0;
  3319. free_root_pointers(fs_info, 1);
  3320. iput(fs_info->btree_inode);
  3321. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3322. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3323. btrfsic_unmount(root, fs_info->fs_devices);
  3324. #endif
  3325. btrfs_close_devices(fs_info->fs_devices);
  3326. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3327. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3328. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3329. percpu_counter_destroy(&fs_info->bio_counter);
  3330. bdi_destroy(&fs_info->bdi);
  3331. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3332. btrfs_free_stripe_hash_table(fs_info);
  3333. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3334. root->orphan_block_rsv = NULL;
  3335. lock_chunks(root);
  3336. while (!list_empty(&fs_info->pinned_chunks)) {
  3337. struct extent_map *em;
  3338. em = list_first_entry(&fs_info->pinned_chunks,
  3339. struct extent_map, list);
  3340. list_del_init(&em->list);
  3341. free_extent_map(em);
  3342. }
  3343. unlock_chunks(root);
  3344. }
  3345. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3346. int atomic)
  3347. {
  3348. int ret;
  3349. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3350. ret = extent_buffer_uptodate(buf);
  3351. if (!ret)
  3352. return ret;
  3353. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3354. parent_transid, atomic);
  3355. if (ret == -EAGAIN)
  3356. return ret;
  3357. return !ret;
  3358. }
  3359. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3360. {
  3361. return set_extent_buffer_uptodate(buf);
  3362. }
  3363. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3364. {
  3365. struct btrfs_root *root;
  3366. u64 transid = btrfs_header_generation(buf);
  3367. int was_dirty;
  3368. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3369. /*
  3370. * This is a fast path so only do this check if we have sanity tests
  3371. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3372. * outside of the sanity tests.
  3373. */
  3374. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3375. return;
  3376. #endif
  3377. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3378. btrfs_assert_tree_locked(buf);
  3379. if (transid != root->fs_info->generation)
  3380. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3381. "found %llu running %llu\n",
  3382. buf->start, transid, root->fs_info->generation);
  3383. was_dirty = set_extent_buffer_dirty(buf);
  3384. if (!was_dirty)
  3385. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3386. buf->len,
  3387. root->fs_info->dirty_metadata_batch);
  3388. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3389. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3390. btrfs_print_leaf(root, buf);
  3391. ASSERT(0);
  3392. }
  3393. #endif
  3394. }
  3395. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3396. int flush_delayed)
  3397. {
  3398. /*
  3399. * looks as though older kernels can get into trouble with
  3400. * this code, they end up stuck in balance_dirty_pages forever
  3401. */
  3402. int ret;
  3403. if (current->flags & PF_MEMALLOC)
  3404. return;
  3405. if (flush_delayed)
  3406. btrfs_balance_delayed_items(root);
  3407. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3408. BTRFS_DIRTY_METADATA_THRESH);
  3409. if (ret > 0) {
  3410. balance_dirty_pages_ratelimited(
  3411. root->fs_info->btree_inode->i_mapping);
  3412. }
  3413. return;
  3414. }
  3415. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3416. {
  3417. __btrfs_btree_balance_dirty(root, 1);
  3418. }
  3419. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3420. {
  3421. __btrfs_btree_balance_dirty(root, 0);
  3422. }
  3423. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3424. {
  3425. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3426. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3427. }
  3428. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3429. int read_only)
  3430. {
  3431. struct btrfs_super_block *sb = fs_info->super_copy;
  3432. int ret = 0;
  3433. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3434. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3435. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3436. ret = -EINVAL;
  3437. }
  3438. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3439. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3440. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3441. ret = -EINVAL;
  3442. }
  3443. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3444. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3445. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3446. ret = -EINVAL;
  3447. }
  3448. /*
  3449. * The common minimum, we don't know if we can trust the nodesize/sectorsize
  3450. * items yet, they'll be verified later. Issue just a warning.
  3451. */
  3452. if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
  3453. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3454. btrfs_super_root(sb));
  3455. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
  3456. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3457. btrfs_super_chunk_root(sb));
  3458. if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
  3459. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3460. btrfs_super_log_root(sb));
  3461. /*
  3462. * Check the lower bound, the alignment and other constraints are
  3463. * checked later.
  3464. */
  3465. if (btrfs_super_nodesize(sb) < 4096) {
  3466. printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
  3467. btrfs_super_nodesize(sb));
  3468. ret = -EINVAL;
  3469. }
  3470. if (btrfs_super_sectorsize(sb) < 4096) {
  3471. printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
  3472. btrfs_super_sectorsize(sb));
  3473. ret = -EINVAL;
  3474. }
  3475. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3476. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3477. fs_info->fsid, sb->dev_item.fsid);
  3478. ret = -EINVAL;
  3479. }
  3480. /*
  3481. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3482. * done later
  3483. */
  3484. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3485. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3486. btrfs_super_num_devices(sb));
  3487. if (btrfs_super_num_devices(sb) == 0) {
  3488. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3489. ret = -EINVAL;
  3490. }
  3491. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3492. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3493. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3494. ret = -EINVAL;
  3495. }
  3496. /*
  3497. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3498. * and one chunk
  3499. */
  3500. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3501. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3502. btrfs_super_sys_array_size(sb),
  3503. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3504. ret = -EINVAL;
  3505. }
  3506. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3507. + sizeof(struct btrfs_chunk)) {
  3508. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3509. btrfs_super_sys_array_size(sb),
  3510. sizeof(struct btrfs_disk_key)
  3511. + sizeof(struct btrfs_chunk));
  3512. ret = -EINVAL;
  3513. }
  3514. /*
  3515. * The generation is a global counter, we'll trust it more than the others
  3516. * but it's still possible that it's the one that's wrong.
  3517. */
  3518. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3519. printk(KERN_WARNING
  3520. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3521. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3522. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3523. && btrfs_super_cache_generation(sb) != (u64)-1)
  3524. printk(KERN_WARNING
  3525. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3526. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3527. return ret;
  3528. }
  3529. static void btrfs_error_commit_super(struct btrfs_root *root)
  3530. {
  3531. mutex_lock(&root->fs_info->cleaner_mutex);
  3532. btrfs_run_delayed_iputs(root);
  3533. mutex_unlock(&root->fs_info->cleaner_mutex);
  3534. down_write(&root->fs_info->cleanup_work_sem);
  3535. up_write(&root->fs_info->cleanup_work_sem);
  3536. /* cleanup FS via transaction */
  3537. btrfs_cleanup_transaction(root);
  3538. }
  3539. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3540. {
  3541. struct btrfs_ordered_extent *ordered;
  3542. spin_lock(&root->ordered_extent_lock);
  3543. /*
  3544. * This will just short circuit the ordered completion stuff which will
  3545. * make sure the ordered extent gets properly cleaned up.
  3546. */
  3547. list_for_each_entry(ordered, &root->ordered_extents,
  3548. root_extent_list)
  3549. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3550. spin_unlock(&root->ordered_extent_lock);
  3551. }
  3552. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3553. {
  3554. struct btrfs_root *root;
  3555. struct list_head splice;
  3556. INIT_LIST_HEAD(&splice);
  3557. spin_lock(&fs_info->ordered_root_lock);
  3558. list_splice_init(&fs_info->ordered_roots, &splice);
  3559. while (!list_empty(&splice)) {
  3560. root = list_first_entry(&splice, struct btrfs_root,
  3561. ordered_root);
  3562. list_move_tail(&root->ordered_root,
  3563. &fs_info->ordered_roots);
  3564. spin_unlock(&fs_info->ordered_root_lock);
  3565. btrfs_destroy_ordered_extents(root);
  3566. cond_resched();
  3567. spin_lock(&fs_info->ordered_root_lock);
  3568. }
  3569. spin_unlock(&fs_info->ordered_root_lock);
  3570. }
  3571. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3572. struct btrfs_root *root)
  3573. {
  3574. struct rb_node *node;
  3575. struct btrfs_delayed_ref_root *delayed_refs;
  3576. struct btrfs_delayed_ref_node *ref;
  3577. int ret = 0;
  3578. delayed_refs = &trans->delayed_refs;
  3579. spin_lock(&delayed_refs->lock);
  3580. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3581. spin_unlock(&delayed_refs->lock);
  3582. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3583. return ret;
  3584. }
  3585. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3586. struct btrfs_delayed_ref_head *head;
  3587. struct btrfs_delayed_ref_node *tmp;
  3588. bool pin_bytes = false;
  3589. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3590. href_node);
  3591. if (!mutex_trylock(&head->mutex)) {
  3592. atomic_inc(&head->node.refs);
  3593. spin_unlock(&delayed_refs->lock);
  3594. mutex_lock(&head->mutex);
  3595. mutex_unlock(&head->mutex);
  3596. btrfs_put_delayed_ref(&head->node);
  3597. spin_lock(&delayed_refs->lock);
  3598. continue;
  3599. }
  3600. spin_lock(&head->lock);
  3601. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3602. list) {
  3603. ref->in_tree = 0;
  3604. list_del(&ref->list);
  3605. atomic_dec(&delayed_refs->num_entries);
  3606. btrfs_put_delayed_ref(ref);
  3607. }
  3608. if (head->must_insert_reserved)
  3609. pin_bytes = true;
  3610. btrfs_free_delayed_extent_op(head->extent_op);
  3611. delayed_refs->num_heads--;
  3612. if (head->processing == 0)
  3613. delayed_refs->num_heads_ready--;
  3614. atomic_dec(&delayed_refs->num_entries);
  3615. head->node.in_tree = 0;
  3616. rb_erase(&head->href_node, &delayed_refs->href_root);
  3617. spin_unlock(&head->lock);
  3618. spin_unlock(&delayed_refs->lock);
  3619. mutex_unlock(&head->mutex);
  3620. if (pin_bytes)
  3621. btrfs_pin_extent(root, head->node.bytenr,
  3622. head->node.num_bytes, 1);
  3623. btrfs_put_delayed_ref(&head->node);
  3624. cond_resched();
  3625. spin_lock(&delayed_refs->lock);
  3626. }
  3627. spin_unlock(&delayed_refs->lock);
  3628. return ret;
  3629. }
  3630. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3631. {
  3632. struct btrfs_inode *btrfs_inode;
  3633. struct list_head splice;
  3634. INIT_LIST_HEAD(&splice);
  3635. spin_lock(&root->delalloc_lock);
  3636. list_splice_init(&root->delalloc_inodes, &splice);
  3637. while (!list_empty(&splice)) {
  3638. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3639. delalloc_inodes);
  3640. list_del_init(&btrfs_inode->delalloc_inodes);
  3641. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3642. &btrfs_inode->runtime_flags);
  3643. spin_unlock(&root->delalloc_lock);
  3644. btrfs_invalidate_inodes(btrfs_inode->root);
  3645. spin_lock(&root->delalloc_lock);
  3646. }
  3647. spin_unlock(&root->delalloc_lock);
  3648. }
  3649. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3650. {
  3651. struct btrfs_root *root;
  3652. struct list_head splice;
  3653. INIT_LIST_HEAD(&splice);
  3654. spin_lock(&fs_info->delalloc_root_lock);
  3655. list_splice_init(&fs_info->delalloc_roots, &splice);
  3656. while (!list_empty(&splice)) {
  3657. root = list_first_entry(&splice, struct btrfs_root,
  3658. delalloc_root);
  3659. list_del_init(&root->delalloc_root);
  3660. root = btrfs_grab_fs_root(root);
  3661. BUG_ON(!root);
  3662. spin_unlock(&fs_info->delalloc_root_lock);
  3663. btrfs_destroy_delalloc_inodes(root);
  3664. btrfs_put_fs_root(root);
  3665. spin_lock(&fs_info->delalloc_root_lock);
  3666. }
  3667. spin_unlock(&fs_info->delalloc_root_lock);
  3668. }
  3669. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3670. struct extent_io_tree *dirty_pages,
  3671. int mark)
  3672. {
  3673. int ret;
  3674. struct extent_buffer *eb;
  3675. u64 start = 0;
  3676. u64 end;
  3677. while (1) {
  3678. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3679. mark, NULL);
  3680. if (ret)
  3681. break;
  3682. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3683. while (start <= end) {
  3684. eb = btrfs_find_tree_block(root->fs_info, start);
  3685. start += root->nodesize;
  3686. if (!eb)
  3687. continue;
  3688. wait_on_extent_buffer_writeback(eb);
  3689. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3690. &eb->bflags))
  3691. clear_extent_buffer_dirty(eb);
  3692. free_extent_buffer_stale(eb);
  3693. }
  3694. }
  3695. return ret;
  3696. }
  3697. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3698. struct extent_io_tree *pinned_extents)
  3699. {
  3700. struct extent_io_tree *unpin;
  3701. u64 start;
  3702. u64 end;
  3703. int ret;
  3704. bool loop = true;
  3705. unpin = pinned_extents;
  3706. again:
  3707. while (1) {
  3708. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3709. EXTENT_DIRTY, NULL);
  3710. if (ret)
  3711. break;
  3712. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3713. btrfs_error_unpin_extent_range(root, start, end);
  3714. cond_resched();
  3715. }
  3716. if (loop) {
  3717. if (unpin == &root->fs_info->freed_extents[0])
  3718. unpin = &root->fs_info->freed_extents[1];
  3719. else
  3720. unpin = &root->fs_info->freed_extents[0];
  3721. loop = false;
  3722. goto again;
  3723. }
  3724. return 0;
  3725. }
  3726. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3727. struct btrfs_root *root)
  3728. {
  3729. btrfs_destroy_delayed_refs(cur_trans, root);
  3730. cur_trans->state = TRANS_STATE_COMMIT_START;
  3731. wake_up(&root->fs_info->transaction_blocked_wait);
  3732. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3733. wake_up(&root->fs_info->transaction_wait);
  3734. btrfs_destroy_delayed_inodes(root);
  3735. btrfs_assert_delayed_root_empty(root);
  3736. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3737. EXTENT_DIRTY);
  3738. btrfs_destroy_pinned_extent(root,
  3739. root->fs_info->pinned_extents);
  3740. cur_trans->state =TRANS_STATE_COMPLETED;
  3741. wake_up(&cur_trans->commit_wait);
  3742. /*
  3743. memset(cur_trans, 0, sizeof(*cur_trans));
  3744. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3745. */
  3746. }
  3747. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3748. {
  3749. struct btrfs_transaction *t;
  3750. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3751. spin_lock(&root->fs_info->trans_lock);
  3752. while (!list_empty(&root->fs_info->trans_list)) {
  3753. t = list_first_entry(&root->fs_info->trans_list,
  3754. struct btrfs_transaction, list);
  3755. if (t->state >= TRANS_STATE_COMMIT_START) {
  3756. atomic_inc(&t->use_count);
  3757. spin_unlock(&root->fs_info->trans_lock);
  3758. btrfs_wait_for_commit(root, t->transid);
  3759. btrfs_put_transaction(t);
  3760. spin_lock(&root->fs_info->trans_lock);
  3761. continue;
  3762. }
  3763. if (t == root->fs_info->running_transaction) {
  3764. t->state = TRANS_STATE_COMMIT_DOING;
  3765. spin_unlock(&root->fs_info->trans_lock);
  3766. /*
  3767. * We wait for 0 num_writers since we don't hold a trans
  3768. * handle open currently for this transaction.
  3769. */
  3770. wait_event(t->writer_wait,
  3771. atomic_read(&t->num_writers) == 0);
  3772. } else {
  3773. spin_unlock(&root->fs_info->trans_lock);
  3774. }
  3775. btrfs_cleanup_one_transaction(t, root);
  3776. spin_lock(&root->fs_info->trans_lock);
  3777. if (t == root->fs_info->running_transaction)
  3778. root->fs_info->running_transaction = NULL;
  3779. list_del_init(&t->list);
  3780. spin_unlock(&root->fs_info->trans_lock);
  3781. btrfs_put_transaction(t);
  3782. trace_btrfs_transaction_commit(root);
  3783. spin_lock(&root->fs_info->trans_lock);
  3784. }
  3785. spin_unlock(&root->fs_info->trans_lock);
  3786. btrfs_destroy_all_ordered_extents(root->fs_info);
  3787. btrfs_destroy_delayed_inodes(root);
  3788. btrfs_assert_delayed_root_empty(root);
  3789. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3790. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3791. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3792. return 0;
  3793. }
  3794. static const struct extent_io_ops btree_extent_io_ops = {
  3795. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3796. .readpage_io_failed_hook = btree_io_failed_hook,
  3797. .submit_bio_hook = btree_submit_bio_hook,
  3798. /* note we're sharing with inode.c for the merge bio hook */
  3799. .merge_bio_hook = btrfs_merge_bio_hook,
  3800. };