spi-fsl-dspi.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152
  1. /*
  2. * drivers/spi/spi-fsl-dspi.c
  3. *
  4. * Copyright 2013 Freescale Semiconductor, Inc.
  5. *
  6. * Freescale DSPI driver
  7. * This file contains a driver for the Freescale DSPI
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/err.h>
  20. #include <linux/errno.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/kernel.h>
  24. #include <linux/math64.h>
  25. #include <linux/module.h>
  26. #include <linux/of.h>
  27. #include <linux/of_device.h>
  28. #include <linux/pinctrl/consumer.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/regmap.h>
  32. #include <linux/sched.h>
  33. #include <linux/spi/spi.h>
  34. #include <linux/spi/spi-fsl-dspi.h>
  35. #include <linux/spi/spi_bitbang.h>
  36. #include <linux/time.h>
  37. #define DRIVER_NAME "fsl-dspi"
  38. #define DSPI_FIFO_SIZE 4
  39. #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
  40. #define SPI_MCR 0x00
  41. #define SPI_MCR_MASTER (1 << 31)
  42. #define SPI_MCR_PCSIS (0x3F << 16)
  43. #define SPI_MCR_CLR_TXF (1 << 11)
  44. #define SPI_MCR_CLR_RXF (1 << 10)
  45. #define SPI_TCR 0x08
  46. #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16)
  47. #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
  48. #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
  49. #define SPI_CTAR_CPOL(x) ((x) << 26)
  50. #define SPI_CTAR_CPHA(x) ((x) << 25)
  51. #define SPI_CTAR_LSBFE(x) ((x) << 24)
  52. #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
  53. #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
  54. #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
  55. #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
  56. #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
  57. #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
  58. #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
  59. #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
  60. #define SPI_CTAR_SCALE_BITS 0xf
  61. #define SPI_CTAR0_SLAVE 0x0c
  62. #define SPI_SR 0x2c
  63. #define SPI_SR_EOQF 0x10000000
  64. #define SPI_SR_TCFQF 0x80000000
  65. #define SPI_SR_CLEAR 0xdaad0000
  66. #define SPI_RSER_TFFFE BIT(25)
  67. #define SPI_RSER_TFFFD BIT(24)
  68. #define SPI_RSER_RFDFE BIT(17)
  69. #define SPI_RSER_RFDFD BIT(16)
  70. #define SPI_RSER 0x30
  71. #define SPI_RSER_EOQFE 0x10000000
  72. #define SPI_RSER_TCFQE 0x80000000
  73. #define SPI_PUSHR 0x34
  74. #define SPI_PUSHR_CMD_CONT (1 << 15)
  75. #define SPI_PUSHR_CONT (SPI_PUSHR_CMD_CONT << 16)
  76. #define SPI_PUSHR_CMD_CTAS(x) (((x) & 0x0003) << 12)
  77. #define SPI_PUSHR_CTAS(x) (SPI_PUSHR_CMD_CTAS(x) << 16)
  78. #define SPI_PUSHR_CMD_EOQ (1 << 11)
  79. #define SPI_PUSHR_EOQ (SPI_PUSHR_CMD_EOQ << 16)
  80. #define SPI_PUSHR_CMD_CTCNT (1 << 10)
  81. #define SPI_PUSHR_CTCNT (SPI_PUSHR_CMD_CTCNT << 16)
  82. #define SPI_PUSHR_CMD_PCS(x) ((1 << x) & 0x003f)
  83. #define SPI_PUSHR_PCS(x) (SPI_PUSHR_CMD_PCS(x) << 16)
  84. #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
  85. #define SPI_PUSHR_SLAVE 0x34
  86. #define SPI_POPR 0x38
  87. #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
  88. #define SPI_TXFR0 0x3c
  89. #define SPI_TXFR1 0x40
  90. #define SPI_TXFR2 0x44
  91. #define SPI_TXFR3 0x48
  92. #define SPI_RXFR0 0x7c
  93. #define SPI_RXFR1 0x80
  94. #define SPI_RXFR2 0x84
  95. #define SPI_RXFR3 0x88
  96. #define SPI_CTARE(x) (0x11c + (((x) & 0x3) * 4))
  97. #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
  98. #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
  99. #define SPI_SREX 0x13c
  100. #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
  101. #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
  102. #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
  103. #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
  104. #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
  105. #define SPI_FRAME_EBITS_MASK SPI_CTARE_FMSZE(1)
  106. /* Register offsets for regmap_pushr */
  107. #define PUSHR_CMD 0x0
  108. #define PUSHR_TX 0x2
  109. #define SPI_CS_INIT 0x01
  110. #define SPI_CS_ASSERT 0x02
  111. #define SPI_CS_DROP 0x04
  112. #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
  113. struct chip_data {
  114. u32 ctar_val;
  115. u16 void_write_data;
  116. };
  117. enum dspi_trans_mode {
  118. DSPI_EOQ_MODE = 0,
  119. DSPI_TCFQ_MODE,
  120. DSPI_DMA_MODE,
  121. };
  122. struct fsl_dspi_devtype_data {
  123. enum dspi_trans_mode trans_mode;
  124. u8 max_clock_factor;
  125. bool xspi_mode;
  126. };
  127. static const struct fsl_dspi_devtype_data vf610_data = {
  128. .trans_mode = DSPI_DMA_MODE,
  129. .max_clock_factor = 2,
  130. };
  131. static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
  132. .trans_mode = DSPI_TCFQ_MODE,
  133. .max_clock_factor = 8,
  134. .xspi_mode = true,
  135. };
  136. static const struct fsl_dspi_devtype_data ls2085a_data = {
  137. .trans_mode = DSPI_TCFQ_MODE,
  138. .max_clock_factor = 8,
  139. };
  140. static const struct fsl_dspi_devtype_data coldfire_data = {
  141. .trans_mode = DSPI_EOQ_MODE,
  142. .max_clock_factor = 8,
  143. };
  144. struct fsl_dspi_dma {
  145. /* Length of transfer in words of DSPI_FIFO_SIZE */
  146. u32 curr_xfer_len;
  147. u32 *tx_dma_buf;
  148. struct dma_chan *chan_tx;
  149. dma_addr_t tx_dma_phys;
  150. struct completion cmd_tx_complete;
  151. struct dma_async_tx_descriptor *tx_desc;
  152. u32 *rx_dma_buf;
  153. struct dma_chan *chan_rx;
  154. dma_addr_t rx_dma_phys;
  155. struct completion cmd_rx_complete;
  156. struct dma_async_tx_descriptor *rx_desc;
  157. };
  158. struct fsl_dspi {
  159. struct spi_master *master;
  160. struct platform_device *pdev;
  161. struct regmap *regmap;
  162. struct regmap *regmap_pushr;
  163. int irq;
  164. struct clk *clk;
  165. struct spi_transfer *cur_transfer;
  166. struct spi_message *cur_msg;
  167. struct chip_data *cur_chip;
  168. size_t len;
  169. const void *tx;
  170. void *rx;
  171. void *rx_end;
  172. u16 void_write_data;
  173. u16 tx_cmd;
  174. u8 bits_per_word;
  175. u8 bytes_per_word;
  176. const struct fsl_dspi_devtype_data *devtype_data;
  177. wait_queue_head_t waitq;
  178. u32 waitflags;
  179. struct fsl_dspi_dma *dma;
  180. };
  181. static u32 dspi_pop_tx(struct fsl_dspi *dspi)
  182. {
  183. u32 txdata = 0;
  184. if (dspi->tx) {
  185. if (dspi->bytes_per_word == 1)
  186. txdata = *(u8 *)dspi->tx;
  187. else if (dspi->bytes_per_word == 2)
  188. txdata = *(u16 *)dspi->tx;
  189. else /* dspi->bytes_per_word == 4 */
  190. txdata = *(u32 *)dspi->tx;
  191. dspi->tx += dspi->bytes_per_word;
  192. }
  193. dspi->len -= dspi->bytes_per_word;
  194. return txdata;
  195. }
  196. static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
  197. {
  198. u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
  199. if (dspi->len > 0)
  200. cmd |= SPI_PUSHR_CMD_CONT;
  201. return cmd << 16 | data;
  202. }
  203. static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
  204. {
  205. if (!dspi->rx)
  206. return;
  207. /* Mask of undefined bits */
  208. rxdata &= (1 << dspi->bits_per_word) - 1;
  209. if (dspi->bytes_per_word == 1)
  210. *(u8 *)dspi->rx = rxdata;
  211. else if (dspi->bytes_per_word == 2)
  212. *(u16 *)dspi->rx = rxdata;
  213. else /* dspi->bytes_per_word == 4 */
  214. *(u32 *)dspi->rx = rxdata;
  215. dspi->rx += dspi->bytes_per_word;
  216. }
  217. static void dspi_tx_dma_callback(void *arg)
  218. {
  219. struct fsl_dspi *dspi = arg;
  220. struct fsl_dspi_dma *dma = dspi->dma;
  221. complete(&dma->cmd_tx_complete);
  222. }
  223. static void dspi_rx_dma_callback(void *arg)
  224. {
  225. struct fsl_dspi *dspi = arg;
  226. struct fsl_dspi_dma *dma = dspi->dma;
  227. int i;
  228. if (dspi->rx) {
  229. for (i = 0; i < dma->curr_xfer_len; i++)
  230. dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
  231. }
  232. complete(&dma->cmd_rx_complete);
  233. }
  234. static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
  235. {
  236. struct fsl_dspi_dma *dma = dspi->dma;
  237. struct device *dev = &dspi->pdev->dev;
  238. int time_left;
  239. int i;
  240. for (i = 0; i < dma->curr_xfer_len; i++)
  241. dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
  242. dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
  243. dma->tx_dma_phys,
  244. dma->curr_xfer_len *
  245. DMA_SLAVE_BUSWIDTH_4_BYTES,
  246. DMA_MEM_TO_DEV,
  247. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  248. if (!dma->tx_desc) {
  249. dev_err(dev, "Not able to get desc for DMA xfer\n");
  250. return -EIO;
  251. }
  252. dma->tx_desc->callback = dspi_tx_dma_callback;
  253. dma->tx_desc->callback_param = dspi;
  254. if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
  255. dev_err(dev, "DMA submit failed\n");
  256. return -EINVAL;
  257. }
  258. dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
  259. dma->rx_dma_phys,
  260. dma->curr_xfer_len *
  261. DMA_SLAVE_BUSWIDTH_4_BYTES,
  262. DMA_DEV_TO_MEM,
  263. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  264. if (!dma->rx_desc) {
  265. dev_err(dev, "Not able to get desc for DMA xfer\n");
  266. return -EIO;
  267. }
  268. dma->rx_desc->callback = dspi_rx_dma_callback;
  269. dma->rx_desc->callback_param = dspi;
  270. if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
  271. dev_err(dev, "DMA submit failed\n");
  272. return -EINVAL;
  273. }
  274. reinit_completion(&dspi->dma->cmd_rx_complete);
  275. reinit_completion(&dspi->dma->cmd_tx_complete);
  276. dma_async_issue_pending(dma->chan_rx);
  277. dma_async_issue_pending(dma->chan_tx);
  278. time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
  279. DMA_COMPLETION_TIMEOUT);
  280. if (time_left == 0) {
  281. dev_err(dev, "DMA tx timeout\n");
  282. dmaengine_terminate_all(dma->chan_tx);
  283. dmaengine_terminate_all(dma->chan_rx);
  284. return -ETIMEDOUT;
  285. }
  286. time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
  287. DMA_COMPLETION_TIMEOUT);
  288. if (time_left == 0) {
  289. dev_err(dev, "DMA rx timeout\n");
  290. dmaengine_terminate_all(dma->chan_tx);
  291. dmaengine_terminate_all(dma->chan_rx);
  292. return -ETIMEDOUT;
  293. }
  294. return 0;
  295. }
  296. static int dspi_dma_xfer(struct fsl_dspi *dspi)
  297. {
  298. struct fsl_dspi_dma *dma = dspi->dma;
  299. struct device *dev = &dspi->pdev->dev;
  300. int curr_remaining_bytes;
  301. int bytes_per_buffer;
  302. int ret = 0;
  303. curr_remaining_bytes = dspi->len;
  304. bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
  305. while (curr_remaining_bytes) {
  306. /* Check if current transfer fits the DMA buffer */
  307. dma->curr_xfer_len = curr_remaining_bytes
  308. / dspi->bytes_per_word;
  309. if (dma->curr_xfer_len > bytes_per_buffer)
  310. dma->curr_xfer_len = bytes_per_buffer;
  311. ret = dspi_next_xfer_dma_submit(dspi);
  312. if (ret) {
  313. dev_err(dev, "DMA transfer failed\n");
  314. goto exit;
  315. } else {
  316. curr_remaining_bytes -= dma->curr_xfer_len
  317. * dspi->bytes_per_word;
  318. if (curr_remaining_bytes < 0)
  319. curr_remaining_bytes = 0;
  320. }
  321. }
  322. exit:
  323. return ret;
  324. }
  325. static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
  326. {
  327. struct fsl_dspi_dma *dma;
  328. struct dma_slave_config cfg;
  329. struct device *dev = &dspi->pdev->dev;
  330. int ret;
  331. dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
  332. if (!dma)
  333. return -ENOMEM;
  334. dma->chan_rx = dma_request_slave_channel(dev, "rx");
  335. if (!dma->chan_rx) {
  336. dev_err(dev, "rx dma channel not available\n");
  337. ret = -ENODEV;
  338. return ret;
  339. }
  340. dma->chan_tx = dma_request_slave_channel(dev, "tx");
  341. if (!dma->chan_tx) {
  342. dev_err(dev, "tx dma channel not available\n");
  343. ret = -ENODEV;
  344. goto err_tx_channel;
  345. }
  346. dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
  347. &dma->tx_dma_phys, GFP_KERNEL);
  348. if (!dma->tx_dma_buf) {
  349. ret = -ENOMEM;
  350. goto err_tx_dma_buf;
  351. }
  352. dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
  353. &dma->rx_dma_phys, GFP_KERNEL);
  354. if (!dma->rx_dma_buf) {
  355. ret = -ENOMEM;
  356. goto err_rx_dma_buf;
  357. }
  358. cfg.src_addr = phy_addr + SPI_POPR;
  359. cfg.dst_addr = phy_addr + SPI_PUSHR;
  360. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  361. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  362. cfg.src_maxburst = 1;
  363. cfg.dst_maxburst = 1;
  364. cfg.direction = DMA_DEV_TO_MEM;
  365. ret = dmaengine_slave_config(dma->chan_rx, &cfg);
  366. if (ret) {
  367. dev_err(dev, "can't configure rx dma channel\n");
  368. ret = -EINVAL;
  369. goto err_slave_config;
  370. }
  371. cfg.direction = DMA_MEM_TO_DEV;
  372. ret = dmaengine_slave_config(dma->chan_tx, &cfg);
  373. if (ret) {
  374. dev_err(dev, "can't configure tx dma channel\n");
  375. ret = -EINVAL;
  376. goto err_slave_config;
  377. }
  378. dspi->dma = dma;
  379. init_completion(&dma->cmd_tx_complete);
  380. init_completion(&dma->cmd_rx_complete);
  381. return 0;
  382. err_slave_config:
  383. dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
  384. dma->rx_dma_buf, dma->rx_dma_phys);
  385. err_rx_dma_buf:
  386. dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
  387. dma->tx_dma_buf, dma->tx_dma_phys);
  388. err_tx_dma_buf:
  389. dma_release_channel(dma->chan_tx);
  390. err_tx_channel:
  391. dma_release_channel(dma->chan_rx);
  392. devm_kfree(dev, dma);
  393. dspi->dma = NULL;
  394. return ret;
  395. }
  396. static void dspi_release_dma(struct fsl_dspi *dspi)
  397. {
  398. struct fsl_dspi_dma *dma = dspi->dma;
  399. struct device *dev = &dspi->pdev->dev;
  400. if (dma) {
  401. if (dma->chan_tx) {
  402. dma_unmap_single(dev, dma->tx_dma_phys,
  403. DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
  404. dma_release_channel(dma->chan_tx);
  405. }
  406. if (dma->chan_rx) {
  407. dma_unmap_single(dev, dma->rx_dma_phys,
  408. DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
  409. dma_release_channel(dma->chan_rx);
  410. }
  411. }
  412. }
  413. static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
  414. unsigned long clkrate)
  415. {
  416. /* Valid baud rate pre-scaler values */
  417. int pbr_tbl[4] = {2, 3, 5, 7};
  418. int brs[16] = { 2, 4, 6, 8,
  419. 16, 32, 64, 128,
  420. 256, 512, 1024, 2048,
  421. 4096, 8192, 16384, 32768 };
  422. int scale_needed, scale, minscale = INT_MAX;
  423. int i, j;
  424. scale_needed = clkrate / speed_hz;
  425. if (clkrate % speed_hz)
  426. scale_needed++;
  427. for (i = 0; i < ARRAY_SIZE(brs); i++)
  428. for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
  429. scale = brs[i] * pbr_tbl[j];
  430. if (scale >= scale_needed) {
  431. if (scale < minscale) {
  432. minscale = scale;
  433. *br = i;
  434. *pbr = j;
  435. }
  436. break;
  437. }
  438. }
  439. if (minscale == INT_MAX) {
  440. pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
  441. speed_hz, clkrate);
  442. *pbr = ARRAY_SIZE(pbr_tbl) - 1;
  443. *br = ARRAY_SIZE(brs) - 1;
  444. }
  445. }
  446. static void ns_delay_scale(char *psc, char *sc, int delay_ns,
  447. unsigned long clkrate)
  448. {
  449. int pscale_tbl[4] = {1, 3, 5, 7};
  450. int scale_needed, scale, minscale = INT_MAX;
  451. int i, j;
  452. u32 remainder;
  453. scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
  454. &remainder);
  455. if (remainder)
  456. scale_needed++;
  457. for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
  458. for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
  459. scale = pscale_tbl[i] * (2 << j);
  460. if (scale >= scale_needed) {
  461. if (scale < minscale) {
  462. minscale = scale;
  463. *psc = i;
  464. *sc = j;
  465. }
  466. break;
  467. }
  468. }
  469. if (minscale == INT_MAX) {
  470. pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
  471. delay_ns, clkrate);
  472. *psc = ARRAY_SIZE(pscale_tbl) - 1;
  473. *sc = SPI_CTAR_SCALE_BITS;
  474. }
  475. }
  476. static void fifo_write(struct fsl_dspi *dspi)
  477. {
  478. regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
  479. }
  480. static void cmd_fifo_write(struct fsl_dspi *dspi)
  481. {
  482. u16 cmd = dspi->tx_cmd;
  483. if (dspi->len > 0)
  484. cmd |= SPI_PUSHR_CMD_CONT;
  485. regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
  486. }
  487. static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
  488. {
  489. regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
  490. }
  491. static void dspi_tcfq_write(struct fsl_dspi *dspi)
  492. {
  493. /* Clear transfer count */
  494. dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
  495. if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
  496. /* Write two TX FIFO entries first, and then the corresponding
  497. * CMD FIFO entry.
  498. */
  499. u32 data = dspi_pop_tx(dspi);
  500. if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE(1)) {
  501. /* LSB */
  502. tx_fifo_write(dspi, data & 0xFFFF);
  503. tx_fifo_write(dspi, data >> 16);
  504. } else {
  505. /* MSB */
  506. tx_fifo_write(dspi, data >> 16);
  507. tx_fifo_write(dspi, data & 0xFFFF);
  508. }
  509. cmd_fifo_write(dspi);
  510. } else {
  511. /* Write one entry to both TX FIFO and CMD FIFO
  512. * simultaneously.
  513. */
  514. fifo_write(dspi);
  515. }
  516. }
  517. static u32 fifo_read(struct fsl_dspi *dspi)
  518. {
  519. u32 rxdata = 0;
  520. regmap_read(dspi->regmap, SPI_POPR, &rxdata);
  521. return rxdata;
  522. }
  523. static void dspi_tcfq_read(struct fsl_dspi *dspi)
  524. {
  525. dspi_push_rx(dspi, fifo_read(dspi));
  526. }
  527. static void dspi_eoq_write(struct fsl_dspi *dspi)
  528. {
  529. int fifo_size = DSPI_FIFO_SIZE;
  530. /* Fill TX FIFO with as many transfers as possible */
  531. while (dspi->len && fifo_size--) {
  532. /* Request EOQF for last transfer in FIFO */
  533. if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
  534. dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
  535. /* Clear transfer count for first transfer in FIFO */
  536. if (fifo_size == (DSPI_FIFO_SIZE - 1))
  537. dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
  538. /* Write combined TX FIFO and CMD FIFO entry */
  539. fifo_write(dspi);
  540. }
  541. }
  542. static void dspi_eoq_read(struct fsl_dspi *dspi)
  543. {
  544. int fifo_size = DSPI_FIFO_SIZE;
  545. /* Read one FIFO entry at and push to rx buffer */
  546. while ((dspi->rx < dspi->rx_end) && fifo_size--)
  547. dspi_push_rx(dspi, fifo_read(dspi));
  548. }
  549. static int dspi_transfer_one_message(struct spi_master *master,
  550. struct spi_message *message)
  551. {
  552. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  553. struct spi_device *spi = message->spi;
  554. struct spi_transfer *transfer;
  555. int status = 0;
  556. enum dspi_trans_mode trans_mode;
  557. message->actual_length = 0;
  558. list_for_each_entry(transfer, &message->transfers, transfer_list) {
  559. dspi->cur_transfer = transfer;
  560. dspi->cur_msg = message;
  561. dspi->cur_chip = spi_get_ctldata(spi);
  562. /* Prepare command word for CMD FIFO */
  563. dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
  564. SPI_PUSHR_CMD_PCS(spi->chip_select);
  565. if (list_is_last(&dspi->cur_transfer->transfer_list,
  566. &dspi->cur_msg->transfers)) {
  567. /* Leave PCS activated after last transfer when
  568. * cs_change is set.
  569. */
  570. if (transfer->cs_change)
  571. dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
  572. } else {
  573. /* Keep PCS active between transfers in same message
  574. * when cs_change is not set, and de-activate PCS
  575. * between transfers in the same message when
  576. * cs_change is set.
  577. */
  578. if (!transfer->cs_change)
  579. dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
  580. }
  581. dspi->void_write_data = dspi->cur_chip->void_write_data;
  582. dspi->tx = transfer->tx_buf;
  583. dspi->rx = transfer->rx_buf;
  584. dspi->rx_end = dspi->rx + transfer->len;
  585. dspi->len = transfer->len;
  586. /* Validated transfer specific frame size (defaults applied) */
  587. dspi->bits_per_word = transfer->bits_per_word;
  588. if (transfer->bits_per_word <= 8)
  589. dspi->bytes_per_word = 1;
  590. else if (transfer->bits_per_word <= 16)
  591. dspi->bytes_per_word = 2;
  592. else
  593. dspi->bytes_per_word = 4;
  594. regmap_update_bits(dspi->regmap, SPI_MCR,
  595. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
  596. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
  597. regmap_write(dspi->regmap, SPI_CTAR(0),
  598. dspi->cur_chip->ctar_val |
  599. SPI_FRAME_BITS(transfer->bits_per_word));
  600. if (dspi->devtype_data->xspi_mode)
  601. regmap_write(dspi->regmap, SPI_CTARE(0),
  602. SPI_FRAME_EBITS(transfer->bits_per_word)
  603. | SPI_CTARE_DTCP(1));
  604. trans_mode = dspi->devtype_data->trans_mode;
  605. switch (trans_mode) {
  606. case DSPI_EOQ_MODE:
  607. regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
  608. dspi_eoq_write(dspi);
  609. break;
  610. case DSPI_TCFQ_MODE:
  611. regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
  612. dspi_tcfq_write(dspi);
  613. break;
  614. case DSPI_DMA_MODE:
  615. regmap_write(dspi->regmap, SPI_RSER,
  616. SPI_RSER_TFFFE | SPI_RSER_TFFFD |
  617. SPI_RSER_RFDFE | SPI_RSER_RFDFD);
  618. status = dspi_dma_xfer(dspi);
  619. break;
  620. default:
  621. dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
  622. trans_mode);
  623. status = -EINVAL;
  624. goto out;
  625. }
  626. if (trans_mode != DSPI_DMA_MODE) {
  627. if (wait_event_interruptible(dspi->waitq,
  628. dspi->waitflags))
  629. dev_err(&dspi->pdev->dev,
  630. "wait transfer complete fail!\n");
  631. dspi->waitflags = 0;
  632. }
  633. if (transfer->delay_usecs)
  634. udelay(transfer->delay_usecs);
  635. }
  636. out:
  637. message->status = status;
  638. spi_finalize_current_message(master);
  639. return status;
  640. }
  641. static int dspi_setup(struct spi_device *spi)
  642. {
  643. struct chip_data *chip;
  644. struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
  645. struct fsl_dspi_platform_data *pdata;
  646. u32 cs_sck_delay = 0, sck_cs_delay = 0;
  647. unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
  648. unsigned char pasc = 0, asc = 0;
  649. unsigned long clkrate;
  650. /* Only alloc on first setup */
  651. chip = spi_get_ctldata(spi);
  652. if (chip == NULL) {
  653. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  654. if (!chip)
  655. return -ENOMEM;
  656. }
  657. pdata = dev_get_platdata(&dspi->pdev->dev);
  658. if (!pdata) {
  659. of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
  660. &cs_sck_delay);
  661. of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
  662. &sck_cs_delay);
  663. } else {
  664. cs_sck_delay = pdata->cs_sck_delay;
  665. sck_cs_delay = pdata->sck_cs_delay;
  666. }
  667. chip->void_write_data = 0;
  668. clkrate = clk_get_rate(dspi->clk);
  669. hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
  670. /* Set PCS to SCK delay scale values */
  671. ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
  672. /* Set After SCK delay scale values */
  673. ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
  674. chip->ctar_val = SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
  675. | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
  676. | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
  677. | SPI_CTAR_PCSSCK(pcssck)
  678. | SPI_CTAR_CSSCK(cssck)
  679. | SPI_CTAR_PASC(pasc)
  680. | SPI_CTAR_ASC(asc)
  681. | SPI_CTAR_PBR(pbr)
  682. | SPI_CTAR_BR(br);
  683. spi_set_ctldata(spi, chip);
  684. return 0;
  685. }
  686. static void dspi_cleanup(struct spi_device *spi)
  687. {
  688. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  689. dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
  690. spi->master->bus_num, spi->chip_select);
  691. kfree(chip);
  692. }
  693. static irqreturn_t dspi_interrupt(int irq, void *dev_id)
  694. {
  695. struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
  696. struct spi_message *msg = dspi->cur_msg;
  697. enum dspi_trans_mode trans_mode;
  698. u32 spi_sr, spi_tcr;
  699. u16 spi_tcnt;
  700. regmap_read(dspi->regmap, SPI_SR, &spi_sr);
  701. regmap_write(dspi->regmap, SPI_SR, spi_sr);
  702. if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
  703. /* Get transfer counter (in number of SPI transfers). It was
  704. * reset to 0 when transfer(s) were started.
  705. */
  706. regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
  707. spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
  708. /* Update total number of bytes that were transferred */
  709. msg->actual_length += spi_tcnt * dspi->bytes_per_word;
  710. trans_mode = dspi->devtype_data->trans_mode;
  711. switch (trans_mode) {
  712. case DSPI_EOQ_MODE:
  713. dspi_eoq_read(dspi);
  714. break;
  715. case DSPI_TCFQ_MODE:
  716. dspi_tcfq_read(dspi);
  717. break;
  718. default:
  719. dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
  720. trans_mode);
  721. return IRQ_HANDLED;
  722. }
  723. if (!dspi->len) {
  724. dspi->waitflags = 1;
  725. wake_up_interruptible(&dspi->waitq);
  726. } else {
  727. switch (trans_mode) {
  728. case DSPI_EOQ_MODE:
  729. dspi_eoq_write(dspi);
  730. break;
  731. case DSPI_TCFQ_MODE:
  732. dspi_tcfq_write(dspi);
  733. break;
  734. default:
  735. dev_err(&dspi->pdev->dev,
  736. "unsupported trans_mode %u\n",
  737. trans_mode);
  738. }
  739. }
  740. }
  741. return IRQ_HANDLED;
  742. }
  743. static const struct of_device_id fsl_dspi_dt_ids[] = {
  744. { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
  745. { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
  746. { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
  747. { /* sentinel */ }
  748. };
  749. MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
  750. #ifdef CONFIG_PM_SLEEP
  751. static int dspi_suspend(struct device *dev)
  752. {
  753. struct spi_master *master = dev_get_drvdata(dev);
  754. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  755. spi_master_suspend(master);
  756. clk_disable_unprepare(dspi->clk);
  757. pinctrl_pm_select_sleep_state(dev);
  758. return 0;
  759. }
  760. static int dspi_resume(struct device *dev)
  761. {
  762. struct spi_master *master = dev_get_drvdata(dev);
  763. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  764. int ret;
  765. pinctrl_pm_select_default_state(dev);
  766. ret = clk_prepare_enable(dspi->clk);
  767. if (ret)
  768. return ret;
  769. spi_master_resume(master);
  770. return 0;
  771. }
  772. #endif /* CONFIG_PM_SLEEP */
  773. static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
  774. static const struct regmap_range dspi_volatile_ranges[] = {
  775. regmap_reg_range(SPI_MCR, SPI_TCR),
  776. regmap_reg_range(SPI_SR, SPI_SR),
  777. regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
  778. };
  779. static const struct regmap_access_table dspi_volatile_table = {
  780. .yes_ranges = dspi_volatile_ranges,
  781. .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
  782. };
  783. static const struct regmap_config dspi_regmap_config = {
  784. .reg_bits = 32,
  785. .val_bits = 32,
  786. .reg_stride = 4,
  787. .max_register = 0x88,
  788. .volatile_table = &dspi_volatile_table,
  789. };
  790. static const struct regmap_range dspi_xspi_volatile_ranges[] = {
  791. regmap_reg_range(SPI_MCR, SPI_TCR),
  792. regmap_reg_range(SPI_SR, SPI_SR),
  793. regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
  794. regmap_reg_range(SPI_SREX, SPI_SREX),
  795. };
  796. static const struct regmap_access_table dspi_xspi_volatile_table = {
  797. .yes_ranges = dspi_xspi_volatile_ranges,
  798. .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
  799. };
  800. static const struct regmap_config dspi_xspi_regmap_config[] = {
  801. {
  802. .reg_bits = 32,
  803. .val_bits = 32,
  804. .reg_stride = 4,
  805. .max_register = 0x13c,
  806. .volatile_table = &dspi_xspi_volatile_table,
  807. },
  808. {
  809. .name = "pushr",
  810. .reg_bits = 16,
  811. .val_bits = 16,
  812. .reg_stride = 2,
  813. .max_register = 0x2,
  814. },
  815. };
  816. static void dspi_init(struct fsl_dspi *dspi)
  817. {
  818. regmap_write(dspi->regmap, SPI_MCR, SPI_MCR_MASTER | SPI_MCR_PCSIS);
  819. regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
  820. if (dspi->devtype_data->xspi_mode)
  821. regmap_write(dspi->regmap, SPI_CTARE(0),
  822. SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
  823. }
  824. static int dspi_probe(struct platform_device *pdev)
  825. {
  826. struct device_node *np = pdev->dev.of_node;
  827. struct spi_master *master;
  828. struct fsl_dspi *dspi;
  829. struct resource *res;
  830. const struct regmap_config *regmap_config;
  831. void __iomem *base;
  832. struct fsl_dspi_platform_data *pdata;
  833. int ret = 0, cs_num, bus_num;
  834. master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
  835. if (!master)
  836. return -ENOMEM;
  837. dspi = spi_master_get_devdata(master);
  838. dspi->pdev = pdev;
  839. dspi->master = master;
  840. master->transfer = NULL;
  841. master->setup = dspi_setup;
  842. master->transfer_one_message = dspi_transfer_one_message;
  843. master->dev.of_node = pdev->dev.of_node;
  844. master->cleanup = dspi_cleanup;
  845. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  846. pdata = dev_get_platdata(&pdev->dev);
  847. if (pdata) {
  848. master->num_chipselect = pdata->cs_num;
  849. master->bus_num = pdata->bus_num;
  850. dspi->devtype_data = &coldfire_data;
  851. } else {
  852. ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
  853. if (ret < 0) {
  854. dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
  855. goto out_master_put;
  856. }
  857. master->num_chipselect = cs_num;
  858. ret = of_property_read_u32(np, "bus-num", &bus_num);
  859. if (ret < 0) {
  860. dev_err(&pdev->dev, "can't get bus-num\n");
  861. goto out_master_put;
  862. }
  863. master->bus_num = bus_num;
  864. dspi->devtype_data = of_device_get_match_data(&pdev->dev);
  865. if (!dspi->devtype_data) {
  866. dev_err(&pdev->dev, "can't get devtype_data\n");
  867. ret = -EFAULT;
  868. goto out_master_put;
  869. }
  870. }
  871. if (dspi->devtype_data->xspi_mode)
  872. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  873. else
  874. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  875. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  876. base = devm_ioremap_resource(&pdev->dev, res);
  877. if (IS_ERR(base)) {
  878. ret = PTR_ERR(base);
  879. goto out_master_put;
  880. }
  881. if (dspi->devtype_data->xspi_mode)
  882. regmap_config = &dspi_xspi_regmap_config[0];
  883. else
  884. regmap_config = &dspi_regmap_config;
  885. dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
  886. if (IS_ERR(dspi->regmap)) {
  887. dev_err(&pdev->dev, "failed to init regmap: %ld\n",
  888. PTR_ERR(dspi->regmap));
  889. ret = PTR_ERR(dspi->regmap);
  890. goto out_master_put;
  891. }
  892. if (dspi->devtype_data->xspi_mode) {
  893. dspi->regmap_pushr = devm_regmap_init_mmio(
  894. &pdev->dev, base + SPI_PUSHR,
  895. &dspi_xspi_regmap_config[1]);
  896. if (IS_ERR(dspi->regmap_pushr)) {
  897. dev_err(&pdev->dev,
  898. "failed to init pushr regmap: %ld\n",
  899. PTR_ERR(dspi->regmap_pushr));
  900. ret = PTR_ERR(dspi->regmap);
  901. goto out_master_put;
  902. }
  903. }
  904. dspi_init(dspi);
  905. dspi->irq = platform_get_irq(pdev, 0);
  906. if (dspi->irq < 0) {
  907. dev_err(&pdev->dev, "can't get platform irq\n");
  908. ret = dspi->irq;
  909. goto out_master_put;
  910. }
  911. ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
  912. pdev->name, dspi);
  913. if (ret < 0) {
  914. dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
  915. goto out_master_put;
  916. }
  917. dspi->clk = devm_clk_get(&pdev->dev, "dspi");
  918. if (IS_ERR(dspi->clk)) {
  919. ret = PTR_ERR(dspi->clk);
  920. dev_err(&pdev->dev, "unable to get clock\n");
  921. goto out_master_put;
  922. }
  923. ret = clk_prepare_enable(dspi->clk);
  924. if (ret)
  925. goto out_master_put;
  926. if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
  927. ret = dspi_request_dma(dspi, res->start);
  928. if (ret < 0) {
  929. dev_err(&pdev->dev, "can't get dma channels\n");
  930. goto out_clk_put;
  931. }
  932. }
  933. master->max_speed_hz =
  934. clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
  935. init_waitqueue_head(&dspi->waitq);
  936. platform_set_drvdata(pdev, master);
  937. ret = spi_register_master(master);
  938. if (ret != 0) {
  939. dev_err(&pdev->dev, "Problem registering DSPI master\n");
  940. goto out_clk_put;
  941. }
  942. return ret;
  943. out_clk_put:
  944. clk_disable_unprepare(dspi->clk);
  945. out_master_put:
  946. spi_master_put(master);
  947. return ret;
  948. }
  949. static int dspi_remove(struct platform_device *pdev)
  950. {
  951. struct spi_master *master = platform_get_drvdata(pdev);
  952. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  953. /* Disconnect from the SPI framework */
  954. dspi_release_dma(dspi);
  955. clk_disable_unprepare(dspi->clk);
  956. spi_unregister_master(dspi->master);
  957. return 0;
  958. }
  959. static struct platform_driver fsl_dspi_driver = {
  960. .driver.name = DRIVER_NAME,
  961. .driver.of_match_table = fsl_dspi_dt_ids,
  962. .driver.owner = THIS_MODULE,
  963. .driver.pm = &dspi_pm,
  964. .probe = dspi_probe,
  965. .remove = dspi_remove,
  966. };
  967. module_platform_driver(fsl_dspi_driver);
  968. MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
  969. MODULE_LICENSE("GPL");
  970. MODULE_ALIAS("platform:" DRIVER_NAME);