intel.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772
  1. #include <linux/kernel.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/smp.h>
  5. #include <linux/sched.h>
  6. #include <linux/thread_info.h>
  7. #include <linux/module.h>
  8. #include <linux/uaccess.h>
  9. #include <asm/processor.h>
  10. #include <asm/pgtable.h>
  11. #include <asm/msr.h>
  12. #include <asm/bugs.h>
  13. #include <asm/cpu.h>
  14. #ifdef CONFIG_X86_64
  15. #include <linux/topology.h>
  16. #endif
  17. #include "cpu.h"
  18. #ifdef CONFIG_X86_LOCAL_APIC
  19. #include <asm/mpspec.h>
  20. #include <asm/apic.h>
  21. #endif
  22. static void early_init_intel(struct cpuinfo_x86 *c)
  23. {
  24. u64 misc_enable;
  25. /* Unmask CPUID levels if masked: */
  26. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  27. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  28. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  29. c->cpuid_level = cpuid_eax(0);
  30. get_cpu_cap(c);
  31. }
  32. }
  33. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  34. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  35. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  36. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
  37. unsigned lower_word;
  38. wrmsr(MSR_IA32_UCODE_REV, 0, 0);
  39. /* Required by the SDM */
  40. sync_core();
  41. rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
  42. }
  43. /*
  44. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  45. *
  46. * A race condition between speculative fetches and invalidating
  47. * a large page. This is worked around in microcode, but we
  48. * need the microcode to have already been loaded... so if it is
  49. * not, recommend a BIOS update and disable large pages.
  50. */
  51. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  52. c->microcode < 0x20e) {
  53. printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
  54. clear_cpu_cap(c, X86_FEATURE_PSE);
  55. }
  56. #ifdef CONFIG_X86_64
  57. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  58. #else
  59. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  60. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  61. c->x86_cache_alignment = 128;
  62. #endif
  63. /* CPUID workaround for 0F33/0F34 CPU */
  64. if (c->x86 == 0xF && c->x86_model == 0x3
  65. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  66. c->x86_phys_bits = 36;
  67. /*
  68. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  69. * with P/T states and does not stop in deep C-states.
  70. *
  71. * It is also reliable across cores and sockets. (but not across
  72. * cabinets - we turn it off in that case explicitly.)
  73. */
  74. if (c->x86_power & (1 << 8)) {
  75. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  76. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  77. if (!check_tsc_unstable())
  78. set_sched_clock_stable();
  79. }
  80. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  81. if (c->x86 == 6) {
  82. switch (c->x86_model) {
  83. case 0x27: /* Penwell */
  84. case 0x35: /* Cloverview */
  85. case 0x4a: /* Merrifield */
  86. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  87. break;
  88. default:
  89. break;
  90. }
  91. }
  92. /*
  93. * There is a known erratum on Pentium III and Core Solo
  94. * and Core Duo CPUs.
  95. * " Page with PAT set to WC while associated MTRR is UC
  96. * may consolidate to UC "
  97. * Because of this erratum, it is better to stick with
  98. * setting WC in MTRR rather than using PAT on these CPUs.
  99. *
  100. * Enable PAT WC only on P4, Core 2 or later CPUs.
  101. */
  102. if (c->x86 == 6 && c->x86_model < 15)
  103. clear_cpu_cap(c, X86_FEATURE_PAT);
  104. #ifdef CONFIG_KMEMCHECK
  105. /*
  106. * P4s have a "fast strings" feature which causes single-
  107. * stepping REP instructions to only generate a #DB on
  108. * cache-line boundaries.
  109. *
  110. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  111. * (model 2) with the same problem.
  112. */
  113. if (c->x86 == 15)
  114. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  115. MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
  116. pr_info("kmemcheck: Disabling fast string operations\n");
  117. #endif
  118. /*
  119. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  120. * clear the fast string and enhanced fast string CPU capabilities.
  121. */
  122. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  123. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  124. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  125. printk(KERN_INFO "Disabled fast string operations\n");
  126. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  127. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  128. }
  129. }
  130. /*
  131. * Intel Quark Core DevMan_001.pdf section 6.4.11
  132. * "The operating system also is required to invalidate (i.e., flush)
  133. * the TLB when any changes are made to any of the page table entries.
  134. * The operating system must reload CR3 to cause the TLB to be flushed"
  135. *
  136. * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
  137. * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  138. * to be modified
  139. */
  140. if (c->x86 == 5 && c->x86_model == 9) {
  141. pr_info("Disabling PGE capability bit\n");
  142. setup_clear_cpu_cap(X86_FEATURE_PGE);
  143. }
  144. }
  145. #ifdef CONFIG_X86_32
  146. /*
  147. * Early probe support logic for ppro memory erratum #50
  148. *
  149. * This is called before we do cpu ident work
  150. */
  151. int ppro_with_ram_bug(void)
  152. {
  153. /* Uses data from early_cpu_detect now */
  154. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  155. boot_cpu_data.x86 == 6 &&
  156. boot_cpu_data.x86_model == 1 &&
  157. boot_cpu_data.x86_mask < 8) {
  158. printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  159. return 1;
  160. }
  161. return 0;
  162. }
  163. static void intel_smp_check(struct cpuinfo_x86 *c)
  164. {
  165. /* calling is from identify_secondary_cpu() ? */
  166. if (!c->cpu_index)
  167. return;
  168. /*
  169. * Mask B, Pentium, but not Pentium MMX
  170. */
  171. if (c->x86 == 5 &&
  172. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  173. c->x86_model <= 3) {
  174. /*
  175. * Remember we have B step Pentia with bugs
  176. */
  177. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  178. "with B stepping processors.\n");
  179. }
  180. }
  181. static int forcepae;
  182. static int __init forcepae_setup(char *__unused)
  183. {
  184. forcepae = 1;
  185. return 1;
  186. }
  187. __setup("forcepae", forcepae_setup);
  188. static void intel_workarounds(struct cpuinfo_x86 *c)
  189. {
  190. #ifdef CONFIG_X86_F00F_BUG
  191. /*
  192. * All models of Pentium and Pentium with MMX technology CPUs
  193. * have the F0 0F bug, which lets nonprivileged users lock up the
  194. * system. Announce that the fault handler will be checking for it.
  195. * The Quark is also family 5, but does not have the same bug.
  196. */
  197. clear_cpu_bug(c, X86_BUG_F00F);
  198. if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
  199. static int f00f_workaround_enabled;
  200. set_cpu_bug(c, X86_BUG_F00F);
  201. if (!f00f_workaround_enabled) {
  202. printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
  203. f00f_workaround_enabled = 1;
  204. }
  205. }
  206. #endif
  207. /*
  208. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  209. * model 3 mask 3
  210. */
  211. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  212. clear_cpu_cap(c, X86_FEATURE_SEP);
  213. /*
  214. * PAE CPUID issue: many Pentium M report no PAE but may have a
  215. * functionally usable PAE implementation.
  216. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  217. */
  218. if (forcepae) {
  219. printk(KERN_WARNING "PAE forced!\n");
  220. set_cpu_cap(c, X86_FEATURE_PAE);
  221. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  222. }
  223. /*
  224. * P4 Xeon errata 037 workaround.
  225. * Hardware prefetcher may cause stale data to be loaded into the cache.
  226. */
  227. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  228. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  229. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
  230. > 0) {
  231. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  232. pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
  233. }
  234. }
  235. /*
  236. * See if we have a good local APIC by checking for buggy Pentia,
  237. * i.e. all B steppings and the C2 stepping of P54C when using their
  238. * integrated APIC (see 11AP erratum in "Pentium Processor
  239. * Specification Update").
  240. */
  241. if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  242. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  243. set_cpu_bug(c, X86_BUG_11AP);
  244. #ifdef CONFIG_X86_INTEL_USERCOPY
  245. /*
  246. * Set up the preferred alignment for movsl bulk memory moves
  247. */
  248. switch (c->x86) {
  249. case 4: /* 486: untested */
  250. break;
  251. case 5: /* Old Pentia: untested */
  252. break;
  253. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  254. movsl_mask.mask = 7;
  255. break;
  256. case 15: /* P4 is OK down to 8-byte alignment */
  257. movsl_mask.mask = 7;
  258. break;
  259. }
  260. #endif
  261. intel_smp_check(c);
  262. }
  263. #else
  264. static void intel_workarounds(struct cpuinfo_x86 *c)
  265. {
  266. }
  267. #endif
  268. static void srat_detect_node(struct cpuinfo_x86 *c)
  269. {
  270. #ifdef CONFIG_NUMA
  271. unsigned node;
  272. int cpu = smp_processor_id();
  273. /* Don't do the funky fallback heuristics the AMD version employs
  274. for now. */
  275. node = numa_cpu_node(cpu);
  276. if (node == NUMA_NO_NODE || !node_online(node)) {
  277. /* reuse the value from init_cpu_to_node() */
  278. node = cpu_to_node(cpu);
  279. }
  280. numa_set_node(cpu, node);
  281. #endif
  282. }
  283. /*
  284. * find out the number of processor cores on the die
  285. */
  286. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  287. {
  288. unsigned int eax, ebx, ecx, edx;
  289. if (c->cpuid_level < 4)
  290. return 1;
  291. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  292. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  293. if (eax & 0x1f)
  294. return (eax >> 26) + 1;
  295. else
  296. return 1;
  297. }
  298. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  299. {
  300. /* Intel VMX MSR indicated features */
  301. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  302. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  303. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  304. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  305. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  306. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  307. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  308. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  309. clear_cpu_cap(c, X86_FEATURE_VNMI);
  310. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  311. clear_cpu_cap(c, X86_FEATURE_EPT);
  312. clear_cpu_cap(c, X86_FEATURE_VPID);
  313. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  314. msr_ctl = vmx_msr_high | vmx_msr_low;
  315. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  316. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  317. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  318. set_cpu_cap(c, X86_FEATURE_VNMI);
  319. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  320. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  321. vmx_msr_low, vmx_msr_high);
  322. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  323. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  324. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  325. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  326. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  327. set_cpu_cap(c, X86_FEATURE_EPT);
  328. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  329. set_cpu_cap(c, X86_FEATURE_VPID);
  330. }
  331. }
  332. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  333. {
  334. u64 epb;
  335. /*
  336. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  337. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  338. */
  339. if (!cpu_has(c, X86_FEATURE_EPB))
  340. return;
  341. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  342. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  343. return;
  344. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  345. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  346. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  347. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  348. }
  349. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  350. {
  351. /*
  352. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  353. * so reinitialize it properly like during bootup:
  354. */
  355. init_intel_energy_perf(c);
  356. }
  357. static void init_intel(struct cpuinfo_x86 *c)
  358. {
  359. unsigned int l2 = 0;
  360. early_init_intel(c);
  361. intel_workarounds(c);
  362. /*
  363. * Detect the extended topology information if available. This
  364. * will reinitialise the initial_apicid which will be used
  365. * in init_intel_cacheinfo()
  366. */
  367. detect_extended_topology(c);
  368. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  369. /*
  370. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  371. * detection.
  372. */
  373. c->x86_max_cores = intel_num_cpu_cores(c);
  374. #ifdef CONFIG_X86_32
  375. detect_ht(c);
  376. #endif
  377. }
  378. l2 = init_intel_cacheinfo(c);
  379. /* Detect legacy cache sizes if init_intel_cacheinfo did not */
  380. if (l2 == 0) {
  381. cpu_detect_cache_sizes(c);
  382. l2 = c->x86_cache_size;
  383. }
  384. if (c->cpuid_level > 9) {
  385. unsigned eax = cpuid_eax(10);
  386. /* Check for version and the number of counters */
  387. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  388. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  389. }
  390. if (cpu_has_xmm2)
  391. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  392. if (cpu_has_ds) {
  393. unsigned int l1;
  394. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  395. if (!(l1 & (1<<11)))
  396. set_cpu_cap(c, X86_FEATURE_BTS);
  397. if (!(l1 & (1<<12)))
  398. set_cpu_cap(c, X86_FEATURE_PEBS);
  399. }
  400. if (c->x86 == 6 && cpu_has_clflush &&
  401. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  402. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  403. #ifdef CONFIG_X86_64
  404. if (c->x86 == 15)
  405. c->x86_cache_alignment = c->x86_clflush_size * 2;
  406. if (c->x86 == 6)
  407. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  408. #else
  409. /*
  410. * Names for the Pentium II/Celeron processors
  411. * detectable only by also checking the cache size.
  412. * Dixon is NOT a Celeron.
  413. */
  414. if (c->x86 == 6) {
  415. char *p = NULL;
  416. switch (c->x86_model) {
  417. case 5:
  418. if (l2 == 0)
  419. p = "Celeron (Covington)";
  420. else if (l2 == 256)
  421. p = "Mobile Pentium II (Dixon)";
  422. break;
  423. case 6:
  424. if (l2 == 128)
  425. p = "Celeron (Mendocino)";
  426. else if (c->x86_mask == 0 || c->x86_mask == 5)
  427. p = "Celeron-A";
  428. break;
  429. case 8:
  430. if (l2 == 128)
  431. p = "Celeron (Coppermine)";
  432. break;
  433. }
  434. if (p)
  435. strcpy(c->x86_model_id, p);
  436. }
  437. if (c->x86 == 15)
  438. set_cpu_cap(c, X86_FEATURE_P4);
  439. if (c->x86 == 6)
  440. set_cpu_cap(c, X86_FEATURE_P3);
  441. #endif
  442. /* Work around errata */
  443. srat_detect_node(c);
  444. if (cpu_has(c, X86_FEATURE_VMX))
  445. detect_vmx_virtcap(c);
  446. init_intel_energy_perf(c);
  447. }
  448. #ifdef CONFIG_X86_32
  449. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  450. {
  451. /*
  452. * Intel PIII Tualatin. This comes in two flavours.
  453. * One has 256kb of cache, the other 512. We have no way
  454. * to determine which, so we use a boottime override
  455. * for the 512kb model, and assume 256 otherwise.
  456. */
  457. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  458. size = 256;
  459. /*
  460. * Intel Quark SoC X1000 contains a 4-way set associative
  461. * 16K cache with a 16 byte cache line and 256 lines per tag
  462. */
  463. if ((c->x86 == 5) && (c->x86_model == 9))
  464. size = 16;
  465. return size;
  466. }
  467. #endif
  468. #define TLB_INST_4K 0x01
  469. #define TLB_INST_4M 0x02
  470. #define TLB_INST_2M_4M 0x03
  471. #define TLB_INST_ALL 0x05
  472. #define TLB_INST_1G 0x06
  473. #define TLB_DATA_4K 0x11
  474. #define TLB_DATA_4M 0x12
  475. #define TLB_DATA_2M_4M 0x13
  476. #define TLB_DATA_4K_4M 0x14
  477. #define TLB_DATA_1G 0x16
  478. #define TLB_DATA0_4K 0x21
  479. #define TLB_DATA0_4M 0x22
  480. #define TLB_DATA0_2M_4M 0x23
  481. #define STLB_4K 0x41
  482. #define STLB_4K_2M 0x42
  483. static const struct _tlb_table intel_tlb_table[] = {
  484. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  485. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  486. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  487. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  488. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  489. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  490. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  491. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  492. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  493. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  494. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  495. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  496. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  497. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  498. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  499. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  500. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  501. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  502. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  503. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  504. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  505. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  506. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  507. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  508. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  509. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  510. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  511. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  512. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  513. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  514. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  515. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  516. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  517. { 0x00, 0, 0 }
  518. };
  519. static void intel_tlb_lookup(const unsigned char desc)
  520. {
  521. unsigned char k;
  522. if (desc == 0)
  523. return;
  524. /* look up this descriptor in the table */
  525. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  526. intel_tlb_table[k].descriptor != 0; k++)
  527. ;
  528. if (intel_tlb_table[k].tlb_type == 0)
  529. return;
  530. switch (intel_tlb_table[k].tlb_type) {
  531. case STLB_4K:
  532. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  533. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  534. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  535. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  536. break;
  537. case STLB_4K_2M:
  538. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  539. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  540. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  541. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  542. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  543. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  544. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  545. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  546. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  547. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  548. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  549. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  550. break;
  551. case TLB_INST_ALL:
  552. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  553. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  554. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  555. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  556. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  557. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  558. break;
  559. case TLB_INST_4K:
  560. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  561. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  562. break;
  563. case TLB_INST_4M:
  564. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  565. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  566. break;
  567. case TLB_INST_2M_4M:
  568. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  569. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  570. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  571. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  572. break;
  573. case TLB_DATA_4K:
  574. case TLB_DATA0_4K:
  575. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  576. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  577. break;
  578. case TLB_DATA_4M:
  579. case TLB_DATA0_4M:
  580. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  581. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  582. break;
  583. case TLB_DATA_2M_4M:
  584. case TLB_DATA0_2M_4M:
  585. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  586. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  587. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  588. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  589. break;
  590. case TLB_DATA_4K_4M:
  591. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  592. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  593. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  594. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  595. break;
  596. case TLB_DATA_1G:
  597. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  598. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  599. break;
  600. }
  601. }
  602. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  603. {
  604. int i, j, n;
  605. unsigned int regs[4];
  606. unsigned char *desc = (unsigned char *)regs;
  607. if (c->cpuid_level < 2)
  608. return;
  609. /* Number of times to iterate */
  610. n = cpuid_eax(2) & 0xFF;
  611. for (i = 0 ; i < n ; i++) {
  612. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  613. /* If bit 31 is set, this is an unknown format */
  614. for (j = 0 ; j < 3 ; j++)
  615. if (regs[j] & (1 << 31))
  616. regs[j] = 0;
  617. /* Byte 0 is level count, not a descriptor */
  618. for (j = 1 ; j < 16 ; j++)
  619. intel_tlb_lookup(desc[j]);
  620. }
  621. }
  622. static const struct cpu_dev intel_cpu_dev = {
  623. .c_vendor = "Intel",
  624. .c_ident = { "GenuineIntel" },
  625. #ifdef CONFIG_X86_32
  626. .legacy_models = {
  627. { .family = 4, .model_names =
  628. {
  629. [0] = "486 DX-25/33",
  630. [1] = "486 DX-50",
  631. [2] = "486 SX",
  632. [3] = "486 DX/2",
  633. [4] = "486 SL",
  634. [5] = "486 SX/2",
  635. [7] = "486 DX/2-WB",
  636. [8] = "486 DX/4",
  637. [9] = "486 DX/4-WB"
  638. }
  639. },
  640. { .family = 5, .model_names =
  641. {
  642. [0] = "Pentium 60/66 A-step",
  643. [1] = "Pentium 60/66",
  644. [2] = "Pentium 75 - 200",
  645. [3] = "OverDrive PODP5V83",
  646. [4] = "Pentium MMX",
  647. [7] = "Mobile Pentium 75 - 200",
  648. [8] = "Mobile Pentium MMX",
  649. [9] = "Quark SoC X1000",
  650. }
  651. },
  652. { .family = 6, .model_names =
  653. {
  654. [0] = "Pentium Pro A-step",
  655. [1] = "Pentium Pro",
  656. [3] = "Pentium II (Klamath)",
  657. [4] = "Pentium II (Deschutes)",
  658. [5] = "Pentium II (Deschutes)",
  659. [6] = "Mobile Pentium II",
  660. [7] = "Pentium III (Katmai)",
  661. [8] = "Pentium III (Coppermine)",
  662. [10] = "Pentium III (Cascades)",
  663. [11] = "Pentium III (Tualatin)",
  664. }
  665. },
  666. { .family = 15, .model_names =
  667. {
  668. [0] = "Pentium 4 (Unknown)",
  669. [1] = "Pentium 4 (Willamette)",
  670. [2] = "Pentium 4 (Northwood)",
  671. [4] = "Pentium 4 (Foster)",
  672. [5] = "Pentium 4 (Foster)",
  673. }
  674. },
  675. },
  676. .legacy_cache_size = intel_size_cache,
  677. #endif
  678. .c_detect_tlb = intel_detect_tlb,
  679. .c_early_init = early_init_intel,
  680. .c_init = init_intel,
  681. .c_bsp_resume = intel_bsp_resume,
  682. .c_x86_vendor = X86_VENDOR_INTEL,
  683. };
  684. cpu_dev_register(intel_cpu_dev);