sstep.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722
  1. /*
  2. * Single-step support.
  3. *
  4. * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/kprobes.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/prefetch.h>
  15. #include <asm/sstep.h>
  16. #include <asm/processor.h>
  17. #include <linux/uaccess.h>
  18. #include <asm/cpu_has_feature.h>
  19. #include <asm/cputable.h>
  20. extern char system_call_common[];
  21. #ifdef CONFIG_PPC64
  22. /* Bits in SRR1 that are copied from MSR */
  23. #define MSR_MASK 0xffffffff87c0ffffUL
  24. #else
  25. #define MSR_MASK 0x87c0ffff
  26. #endif
  27. /* Bits in XER */
  28. #define XER_SO 0x80000000U
  29. #define XER_OV 0x40000000U
  30. #define XER_CA 0x20000000U
  31. #ifdef CONFIG_PPC_FPU
  32. /*
  33. * Functions in ldstfp.S
  34. */
  35. extern int do_lfs(int rn, unsigned long ea);
  36. extern int do_lfd(int rn, unsigned long ea);
  37. extern int do_stfs(int rn, unsigned long ea);
  38. extern int do_stfd(int rn, unsigned long ea);
  39. extern int do_lvx(int rn, unsigned long ea);
  40. extern int do_stvx(int rn, unsigned long ea);
  41. extern void load_vsrn(int vsr, const void *p);
  42. extern void store_vsrn(int vsr, void *p);
  43. extern void conv_sp_to_dp(const float *sp, double *dp);
  44. extern void conv_dp_to_sp(const double *dp, float *sp);
  45. #endif
  46. #ifdef __powerpc64__
  47. /*
  48. * Functions in quad.S
  49. */
  50. extern int do_lq(unsigned long ea, unsigned long *regs);
  51. extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
  52. extern int do_lqarx(unsigned long ea, unsigned long *regs);
  53. extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
  54. unsigned int *crp);
  55. #endif
  56. #ifdef __LITTLE_ENDIAN__
  57. #define IS_LE 1
  58. #define IS_BE 0
  59. #else
  60. #define IS_LE 0
  61. #define IS_BE 1
  62. #endif
  63. /*
  64. * Emulate the truncation of 64 bit values in 32-bit mode.
  65. */
  66. static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
  67. unsigned long val)
  68. {
  69. #ifdef __powerpc64__
  70. if ((msr & MSR_64BIT) == 0)
  71. val &= 0xffffffffUL;
  72. #endif
  73. return val;
  74. }
  75. /*
  76. * Determine whether a conditional branch instruction would branch.
  77. */
  78. static nokprobe_inline int branch_taken(unsigned int instr,
  79. const struct pt_regs *regs,
  80. struct instruction_op *op)
  81. {
  82. unsigned int bo = (instr >> 21) & 0x1f;
  83. unsigned int bi;
  84. if ((bo & 4) == 0) {
  85. /* decrement counter */
  86. op->type |= DECCTR;
  87. if (((bo >> 1) & 1) ^ (regs->ctr == 1))
  88. return 0;
  89. }
  90. if ((bo & 0x10) == 0) {
  91. /* check bit from CR */
  92. bi = (instr >> 16) & 0x1f;
  93. if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
  94. return 0;
  95. }
  96. return 1;
  97. }
  98. static nokprobe_inline long address_ok(struct pt_regs *regs, unsigned long ea, int nb)
  99. {
  100. if (!user_mode(regs))
  101. return 1;
  102. return __access_ok(ea, nb, USER_DS);
  103. }
  104. /*
  105. * Calculate effective address for a D-form instruction
  106. */
  107. static nokprobe_inline unsigned long dform_ea(unsigned int instr,
  108. const struct pt_regs *regs)
  109. {
  110. int ra;
  111. unsigned long ea;
  112. ra = (instr >> 16) & 0x1f;
  113. ea = (signed short) instr; /* sign-extend */
  114. if (ra)
  115. ea += regs->gpr[ra];
  116. return truncate_if_32bit(regs->msr, ea);
  117. }
  118. #ifdef __powerpc64__
  119. /*
  120. * Calculate effective address for a DS-form instruction
  121. */
  122. static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
  123. const struct pt_regs *regs)
  124. {
  125. int ra;
  126. unsigned long ea;
  127. ra = (instr >> 16) & 0x1f;
  128. ea = (signed short) (instr & ~3); /* sign-extend */
  129. if (ra)
  130. ea += regs->gpr[ra];
  131. return truncate_if_32bit(regs->msr, ea);
  132. }
  133. /*
  134. * Calculate effective address for a DQ-form instruction
  135. */
  136. static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
  137. const struct pt_regs *regs)
  138. {
  139. int ra;
  140. unsigned long ea;
  141. ra = (instr >> 16) & 0x1f;
  142. ea = (signed short) (instr & ~0xf); /* sign-extend */
  143. if (ra)
  144. ea += regs->gpr[ra];
  145. return truncate_if_32bit(regs->msr, ea);
  146. }
  147. #endif /* __powerpc64 */
  148. /*
  149. * Calculate effective address for an X-form instruction
  150. */
  151. static nokprobe_inline unsigned long xform_ea(unsigned int instr,
  152. const struct pt_regs *regs)
  153. {
  154. int ra, rb;
  155. unsigned long ea;
  156. ra = (instr >> 16) & 0x1f;
  157. rb = (instr >> 11) & 0x1f;
  158. ea = regs->gpr[rb];
  159. if (ra)
  160. ea += regs->gpr[ra];
  161. return truncate_if_32bit(regs->msr, ea);
  162. }
  163. /*
  164. * Return the largest power of 2, not greater than sizeof(unsigned long),
  165. * such that x is a multiple of it.
  166. */
  167. static nokprobe_inline unsigned long max_align(unsigned long x)
  168. {
  169. x |= sizeof(unsigned long);
  170. return x & -x; /* isolates rightmost bit */
  171. }
  172. static nokprobe_inline unsigned long byterev_2(unsigned long x)
  173. {
  174. return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
  175. }
  176. static nokprobe_inline unsigned long byterev_4(unsigned long x)
  177. {
  178. return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
  179. ((x & 0xff00) << 8) | ((x & 0xff) << 24);
  180. }
  181. #ifdef __powerpc64__
  182. static nokprobe_inline unsigned long byterev_8(unsigned long x)
  183. {
  184. return (byterev_4(x) << 32) | byterev_4(x >> 32);
  185. }
  186. #endif
  187. static nokprobe_inline int read_mem_aligned(unsigned long *dest,
  188. unsigned long ea, int nb)
  189. {
  190. int err = 0;
  191. unsigned long x = 0;
  192. switch (nb) {
  193. case 1:
  194. err = __get_user(x, (unsigned char __user *) ea);
  195. break;
  196. case 2:
  197. err = __get_user(x, (unsigned short __user *) ea);
  198. break;
  199. case 4:
  200. err = __get_user(x, (unsigned int __user *) ea);
  201. break;
  202. #ifdef __powerpc64__
  203. case 8:
  204. err = __get_user(x, (unsigned long __user *) ea);
  205. break;
  206. #endif
  207. }
  208. if (!err)
  209. *dest = x;
  210. return err;
  211. }
  212. static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
  213. unsigned long ea, int nb, struct pt_regs *regs)
  214. {
  215. int err;
  216. unsigned long x, b, c;
  217. #ifdef __LITTLE_ENDIAN__
  218. int len = nb; /* save a copy of the length for byte reversal */
  219. #endif
  220. /* unaligned, do this in pieces */
  221. x = 0;
  222. for (; nb > 0; nb -= c) {
  223. #ifdef __LITTLE_ENDIAN__
  224. c = 1;
  225. #endif
  226. #ifdef __BIG_ENDIAN__
  227. c = max_align(ea);
  228. #endif
  229. if (c > nb)
  230. c = max_align(nb);
  231. err = read_mem_aligned(&b, ea, c);
  232. if (err)
  233. return err;
  234. x = (x << (8 * c)) + b;
  235. ea += c;
  236. }
  237. #ifdef __LITTLE_ENDIAN__
  238. switch (len) {
  239. case 2:
  240. *dest = byterev_2(x);
  241. break;
  242. case 4:
  243. *dest = byterev_4(x);
  244. break;
  245. #ifdef __powerpc64__
  246. case 8:
  247. *dest = byterev_8(x);
  248. break;
  249. #endif
  250. }
  251. #endif
  252. #ifdef __BIG_ENDIAN__
  253. *dest = x;
  254. #endif
  255. return 0;
  256. }
  257. /*
  258. * Read memory at address ea for nb bytes, return 0 for success
  259. * or -EFAULT if an error occurred.
  260. */
  261. static int read_mem(unsigned long *dest, unsigned long ea, int nb,
  262. struct pt_regs *regs)
  263. {
  264. if (!address_ok(regs, ea, nb))
  265. return -EFAULT;
  266. if ((ea & (nb - 1)) == 0)
  267. return read_mem_aligned(dest, ea, nb);
  268. return read_mem_unaligned(dest, ea, nb, regs);
  269. }
  270. NOKPROBE_SYMBOL(read_mem);
  271. static nokprobe_inline int write_mem_aligned(unsigned long val,
  272. unsigned long ea, int nb)
  273. {
  274. int err = 0;
  275. switch (nb) {
  276. case 1:
  277. err = __put_user(val, (unsigned char __user *) ea);
  278. break;
  279. case 2:
  280. err = __put_user(val, (unsigned short __user *) ea);
  281. break;
  282. case 4:
  283. err = __put_user(val, (unsigned int __user *) ea);
  284. break;
  285. #ifdef __powerpc64__
  286. case 8:
  287. err = __put_user(val, (unsigned long __user *) ea);
  288. break;
  289. #endif
  290. }
  291. return err;
  292. }
  293. static nokprobe_inline int write_mem_unaligned(unsigned long val,
  294. unsigned long ea, int nb, struct pt_regs *regs)
  295. {
  296. int err;
  297. unsigned long c;
  298. #ifdef __LITTLE_ENDIAN__
  299. switch (nb) {
  300. case 2:
  301. val = byterev_2(val);
  302. break;
  303. case 4:
  304. val = byterev_4(val);
  305. break;
  306. #ifdef __powerpc64__
  307. case 8:
  308. val = byterev_8(val);
  309. break;
  310. #endif
  311. }
  312. #endif
  313. /* unaligned or little-endian, do this in pieces */
  314. for (; nb > 0; nb -= c) {
  315. #ifdef __LITTLE_ENDIAN__
  316. c = 1;
  317. #endif
  318. #ifdef __BIG_ENDIAN__
  319. c = max_align(ea);
  320. #endif
  321. if (c > nb)
  322. c = max_align(nb);
  323. err = write_mem_aligned(val >> (nb - c) * 8, ea, c);
  324. if (err)
  325. return err;
  326. ea += c;
  327. }
  328. return 0;
  329. }
  330. /*
  331. * Write memory at address ea for nb bytes, return 0 for success
  332. * or -EFAULT if an error occurred.
  333. */
  334. static int write_mem(unsigned long val, unsigned long ea, int nb,
  335. struct pt_regs *regs)
  336. {
  337. if (!address_ok(regs, ea, nb))
  338. return -EFAULT;
  339. if ((ea & (nb - 1)) == 0)
  340. return write_mem_aligned(val, ea, nb);
  341. return write_mem_unaligned(val, ea, nb, regs);
  342. }
  343. NOKPROBE_SYMBOL(write_mem);
  344. #ifdef CONFIG_PPC_FPU
  345. /*
  346. * Check the address and alignment, and call func to do the actual
  347. * load or store.
  348. */
  349. static int do_fp_load(int rn, int (*func)(int, unsigned long),
  350. unsigned long ea, int nb,
  351. struct pt_regs *regs)
  352. {
  353. int err;
  354. union {
  355. double dbl;
  356. unsigned long ul[2];
  357. struct {
  358. #ifdef __BIG_ENDIAN__
  359. unsigned _pad_;
  360. unsigned word;
  361. #endif
  362. #ifdef __LITTLE_ENDIAN__
  363. unsigned word;
  364. unsigned _pad_;
  365. #endif
  366. } single;
  367. } data;
  368. unsigned long ptr;
  369. if (!address_ok(regs, ea, nb))
  370. return -EFAULT;
  371. if ((ea & 3) == 0)
  372. return (*func)(rn, ea);
  373. ptr = (unsigned long) &data.ul;
  374. if (sizeof(unsigned long) == 8 || nb == 4) {
  375. err = read_mem_unaligned(&data.ul[0], ea, nb, regs);
  376. if (nb == 4)
  377. ptr = (unsigned long)&(data.single.word);
  378. } else {
  379. /* reading a double on 32-bit */
  380. err = read_mem_unaligned(&data.ul[0], ea, 4, regs);
  381. if (!err)
  382. err = read_mem_unaligned(&data.ul[1], ea + 4, 4, regs);
  383. }
  384. if (err)
  385. return err;
  386. return (*func)(rn, ptr);
  387. }
  388. NOKPROBE_SYMBOL(do_fp_load);
  389. static int do_fp_store(int rn, int (*func)(int, unsigned long),
  390. unsigned long ea, int nb,
  391. struct pt_regs *regs)
  392. {
  393. int err;
  394. union {
  395. double dbl;
  396. unsigned long ul[2];
  397. struct {
  398. #ifdef __BIG_ENDIAN__
  399. unsigned _pad_;
  400. unsigned word;
  401. #endif
  402. #ifdef __LITTLE_ENDIAN__
  403. unsigned word;
  404. unsigned _pad_;
  405. #endif
  406. } single;
  407. } data;
  408. unsigned long ptr;
  409. if (!address_ok(regs, ea, nb))
  410. return -EFAULT;
  411. if ((ea & 3) == 0)
  412. return (*func)(rn, ea);
  413. ptr = (unsigned long) &data.ul[0];
  414. if (sizeof(unsigned long) == 8 || nb == 4) {
  415. if (nb == 4)
  416. ptr = (unsigned long)&(data.single.word);
  417. err = (*func)(rn, ptr);
  418. if (err)
  419. return err;
  420. err = write_mem_unaligned(data.ul[0], ea, nb, regs);
  421. } else {
  422. /* writing a double on 32-bit */
  423. err = (*func)(rn, ptr);
  424. if (err)
  425. return err;
  426. err = write_mem_unaligned(data.ul[0], ea, 4, regs);
  427. if (!err)
  428. err = write_mem_unaligned(data.ul[1], ea + 4, 4, regs);
  429. }
  430. return err;
  431. }
  432. NOKPROBE_SYMBOL(do_fp_store);
  433. #endif
  434. #ifdef CONFIG_ALTIVEC
  435. /* For Altivec/VMX, no need to worry about alignment */
  436. static nokprobe_inline int do_vec_load(int rn, int (*func)(int, unsigned long),
  437. unsigned long ea, struct pt_regs *regs)
  438. {
  439. if (!address_ok(regs, ea & ~0xfUL, 16))
  440. return -EFAULT;
  441. return (*func)(rn, ea);
  442. }
  443. static nokprobe_inline int do_vec_store(int rn, int (*func)(int, unsigned long),
  444. unsigned long ea, struct pt_regs *regs)
  445. {
  446. if (!address_ok(regs, ea & ~0xfUL, 16))
  447. return -EFAULT;
  448. return (*func)(rn, ea);
  449. }
  450. #endif /* CONFIG_ALTIVEC */
  451. #ifdef __powerpc64__
  452. static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
  453. int reg)
  454. {
  455. int err;
  456. if (!address_ok(regs, ea, 16))
  457. return -EFAULT;
  458. /* if aligned, should be atomic */
  459. if ((ea & 0xf) == 0)
  460. return do_lq(ea, &regs->gpr[reg]);
  461. err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
  462. if (!err)
  463. err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
  464. return err;
  465. }
  466. static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
  467. int reg)
  468. {
  469. int err;
  470. if (!address_ok(regs, ea, 16))
  471. return -EFAULT;
  472. /* if aligned, should be atomic */
  473. if ((ea & 0xf) == 0)
  474. return do_stq(ea, regs->gpr[reg], regs->gpr[reg + 1]);
  475. err = write_mem(regs->gpr[reg + IS_LE], ea, 8, regs);
  476. if (!err)
  477. err = write_mem(regs->gpr[reg + IS_BE], ea + 8, 8, regs);
  478. return err;
  479. }
  480. #endif /* __powerpc64 */
  481. #ifdef CONFIG_VSX
  482. void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
  483. const void *mem)
  484. {
  485. int size, read_size;
  486. int i, j;
  487. const unsigned int *wp;
  488. const unsigned short *hp;
  489. const unsigned char *bp;
  490. size = GETSIZE(op->type);
  491. reg->d[0] = reg->d[1] = 0;
  492. switch (op->element_size) {
  493. case 16:
  494. /* whole vector; lxv[x] or lxvl[l] */
  495. if (size == 0)
  496. break;
  497. memcpy(reg, mem, size);
  498. if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) {
  499. /* reverse 16 bytes */
  500. unsigned long tmp;
  501. tmp = byterev_8(reg->d[0]);
  502. reg->d[0] = byterev_8(reg->d[1]);
  503. reg->d[1] = tmp;
  504. }
  505. break;
  506. case 8:
  507. /* scalar loads, lxvd2x, lxvdsx */
  508. read_size = (size >= 8) ? 8 : size;
  509. i = IS_LE ? 8 : 8 - read_size;
  510. memcpy(&reg->b[i], mem, read_size);
  511. if (size < 8) {
  512. if (op->type & SIGNEXT) {
  513. /* size == 4 is the only case here */
  514. reg->d[IS_LE] = (signed int) reg->d[IS_LE];
  515. } else if (op->vsx_flags & VSX_FPCONV) {
  516. preempt_disable();
  517. conv_sp_to_dp(&reg->fp[1 + IS_LE],
  518. &reg->dp[IS_LE]);
  519. preempt_enable();
  520. }
  521. } else {
  522. if (size == 16)
  523. reg->d[IS_BE] = *(unsigned long *)(mem + 8);
  524. else if (op->vsx_flags & VSX_SPLAT)
  525. reg->d[IS_BE] = reg->d[IS_LE];
  526. }
  527. break;
  528. case 4:
  529. /* lxvw4x, lxvwsx */
  530. wp = mem;
  531. for (j = 0; j < size / 4; ++j) {
  532. i = IS_LE ? 3 - j : j;
  533. reg->w[i] = *wp++;
  534. }
  535. if (op->vsx_flags & VSX_SPLAT) {
  536. u32 val = reg->w[IS_LE ? 3 : 0];
  537. for (; j < 4; ++j) {
  538. i = IS_LE ? 3 - j : j;
  539. reg->w[i] = val;
  540. }
  541. }
  542. break;
  543. case 2:
  544. /* lxvh8x */
  545. hp = mem;
  546. for (j = 0; j < size / 2; ++j) {
  547. i = IS_LE ? 7 - j : j;
  548. reg->h[i] = *hp++;
  549. }
  550. break;
  551. case 1:
  552. /* lxvb16x */
  553. bp = mem;
  554. for (j = 0; j < size; ++j) {
  555. i = IS_LE ? 15 - j : j;
  556. reg->b[i] = *bp++;
  557. }
  558. break;
  559. }
  560. }
  561. EXPORT_SYMBOL_GPL(emulate_vsx_load);
  562. NOKPROBE_SYMBOL(emulate_vsx_load);
  563. void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
  564. void *mem)
  565. {
  566. int size, write_size;
  567. int i, j;
  568. union vsx_reg buf;
  569. unsigned int *wp;
  570. unsigned short *hp;
  571. unsigned char *bp;
  572. size = GETSIZE(op->type);
  573. switch (op->element_size) {
  574. case 16:
  575. /* stxv, stxvx, stxvl, stxvll */
  576. if (size == 0)
  577. break;
  578. if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) {
  579. /* reverse 16 bytes */
  580. buf.d[0] = byterev_8(reg->d[1]);
  581. buf.d[1] = byterev_8(reg->d[0]);
  582. reg = &buf;
  583. }
  584. memcpy(mem, reg, size);
  585. break;
  586. case 8:
  587. /* scalar stores, stxvd2x */
  588. write_size = (size >= 8) ? 8 : size;
  589. i = IS_LE ? 8 : 8 - write_size;
  590. if (size < 8 && op->vsx_flags & VSX_FPCONV) {
  591. buf.d[0] = buf.d[1] = 0;
  592. preempt_disable();
  593. conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
  594. preempt_enable();
  595. reg = &buf;
  596. }
  597. memcpy(mem, &reg->b[i], write_size);
  598. if (size == 16)
  599. memcpy(mem + 8, &reg->d[IS_BE], 8);
  600. break;
  601. case 4:
  602. /* stxvw4x */
  603. wp = mem;
  604. for (j = 0; j < size / 4; ++j) {
  605. i = IS_LE ? 3 - j : j;
  606. *wp++ = reg->w[i];
  607. }
  608. break;
  609. case 2:
  610. /* stxvh8x */
  611. hp = mem;
  612. for (j = 0; j < size / 2; ++j) {
  613. i = IS_LE ? 7 - j : j;
  614. *hp++ = reg->h[i];
  615. }
  616. break;
  617. case 1:
  618. /* stvxb16x */
  619. bp = mem;
  620. for (j = 0; j < size; ++j) {
  621. i = IS_LE ? 15 - j : j;
  622. *bp++ = reg->b[i];
  623. }
  624. break;
  625. }
  626. }
  627. EXPORT_SYMBOL_GPL(emulate_vsx_store);
  628. NOKPROBE_SYMBOL(emulate_vsx_store);
  629. #endif /* CONFIG_VSX */
  630. #define __put_user_asmx(x, addr, err, op, cr) \
  631. __asm__ __volatile__( \
  632. "1: " op " %2,0,%3\n" \
  633. " mfcr %1\n" \
  634. "2:\n" \
  635. ".section .fixup,\"ax\"\n" \
  636. "3: li %0,%4\n" \
  637. " b 2b\n" \
  638. ".previous\n" \
  639. EX_TABLE(1b, 3b) \
  640. : "=r" (err), "=r" (cr) \
  641. : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
  642. #define __get_user_asmx(x, addr, err, op) \
  643. __asm__ __volatile__( \
  644. "1: "op" %1,0,%2\n" \
  645. "2:\n" \
  646. ".section .fixup,\"ax\"\n" \
  647. "3: li %0,%3\n" \
  648. " b 2b\n" \
  649. ".previous\n" \
  650. EX_TABLE(1b, 3b) \
  651. : "=r" (err), "=r" (x) \
  652. : "r" (addr), "i" (-EFAULT), "0" (err))
  653. #define __cacheop_user_asmx(addr, err, op) \
  654. __asm__ __volatile__( \
  655. "1: "op" 0,%1\n" \
  656. "2:\n" \
  657. ".section .fixup,\"ax\"\n" \
  658. "3: li %0,%3\n" \
  659. " b 2b\n" \
  660. ".previous\n" \
  661. EX_TABLE(1b, 3b) \
  662. : "=r" (err) \
  663. : "r" (addr), "i" (-EFAULT), "0" (err))
  664. static nokprobe_inline void set_cr0(const struct pt_regs *regs,
  665. struct instruction_op *op, int rd)
  666. {
  667. long val = regs->gpr[rd];
  668. op->type |= SETCC;
  669. op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
  670. #ifdef __powerpc64__
  671. if (!(regs->msr & MSR_64BIT))
  672. val = (int) val;
  673. #endif
  674. if (val < 0)
  675. op->ccval |= 0x80000000;
  676. else if (val > 0)
  677. op->ccval |= 0x40000000;
  678. else
  679. op->ccval |= 0x20000000;
  680. }
  681. static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
  682. struct instruction_op *op, int rd,
  683. unsigned long val1, unsigned long val2,
  684. unsigned long carry_in)
  685. {
  686. unsigned long val = val1 + val2;
  687. if (carry_in)
  688. ++val;
  689. op->type = COMPUTE + SETREG + SETXER;
  690. op->reg = rd;
  691. op->val = val;
  692. #ifdef __powerpc64__
  693. if (!(regs->msr & MSR_64BIT)) {
  694. val = (unsigned int) val;
  695. val1 = (unsigned int) val1;
  696. }
  697. #endif
  698. op->xerval = regs->xer;
  699. if (val < val1 || (carry_in && val == val1))
  700. op->xerval |= XER_CA;
  701. else
  702. op->xerval &= ~XER_CA;
  703. }
  704. static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
  705. struct instruction_op *op,
  706. long v1, long v2, int crfld)
  707. {
  708. unsigned int crval, shift;
  709. op->type = COMPUTE + SETCC;
  710. crval = (regs->xer >> 31) & 1; /* get SO bit */
  711. if (v1 < v2)
  712. crval |= 8;
  713. else if (v1 > v2)
  714. crval |= 4;
  715. else
  716. crval |= 2;
  717. shift = (7 - crfld) * 4;
  718. op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  719. }
  720. static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
  721. struct instruction_op *op,
  722. unsigned long v1,
  723. unsigned long v2, int crfld)
  724. {
  725. unsigned int crval, shift;
  726. op->type = COMPUTE + SETCC;
  727. crval = (regs->xer >> 31) & 1; /* get SO bit */
  728. if (v1 < v2)
  729. crval |= 8;
  730. else if (v1 > v2)
  731. crval |= 4;
  732. else
  733. crval |= 2;
  734. shift = (7 - crfld) * 4;
  735. op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  736. }
  737. static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
  738. struct instruction_op *op,
  739. unsigned long v1, unsigned long v2)
  740. {
  741. unsigned long long out_val, mask;
  742. int i;
  743. out_val = 0;
  744. for (i = 0; i < 8; i++) {
  745. mask = 0xffUL << (i * 8);
  746. if ((v1 & mask) == (v2 & mask))
  747. out_val |= mask;
  748. }
  749. op->val = out_val;
  750. }
  751. /*
  752. * The size parameter is used to adjust the equivalent popcnt instruction.
  753. * popcntb = 8, popcntw = 32, popcntd = 64
  754. */
  755. static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
  756. struct instruction_op *op,
  757. unsigned long v1, int size)
  758. {
  759. unsigned long long out = v1;
  760. out -= (out >> 1) & 0x5555555555555555;
  761. out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
  762. out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
  763. if (size == 8) { /* popcntb */
  764. op->val = out;
  765. return;
  766. }
  767. out += out >> 8;
  768. out += out >> 16;
  769. if (size == 32) { /* popcntw */
  770. op->val = out & 0x0000003f0000003f;
  771. return;
  772. }
  773. out = (out + (out >> 32)) & 0x7f;
  774. op->val = out; /* popcntd */
  775. }
  776. #ifdef CONFIG_PPC64
  777. static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
  778. struct instruction_op *op,
  779. unsigned long v1, unsigned long v2)
  780. {
  781. unsigned char perm, idx;
  782. unsigned int i;
  783. perm = 0;
  784. for (i = 0; i < 8; i++) {
  785. idx = (v1 >> (i * 8)) & 0xff;
  786. if (idx < 64)
  787. if (v2 & PPC_BIT(idx))
  788. perm |= 1 << i;
  789. }
  790. op->val = perm;
  791. }
  792. #endif /* CONFIG_PPC64 */
  793. /*
  794. * The size parameter adjusts the equivalent prty instruction.
  795. * prtyw = 32, prtyd = 64
  796. */
  797. static nokprobe_inline void do_prty(const struct pt_regs *regs,
  798. struct instruction_op *op,
  799. unsigned long v, int size)
  800. {
  801. unsigned long long res = v ^ (v >> 8);
  802. res ^= res >> 16;
  803. if (size == 32) { /* prtyw */
  804. op->val = res & 0x0000000100000001;
  805. return;
  806. }
  807. res ^= res >> 32;
  808. op->val = res & 1; /*prtyd */
  809. }
  810. static nokprobe_inline int trap_compare(long v1, long v2)
  811. {
  812. int ret = 0;
  813. if (v1 < v2)
  814. ret |= 0x10;
  815. else if (v1 > v2)
  816. ret |= 0x08;
  817. else
  818. ret |= 0x04;
  819. if ((unsigned long)v1 < (unsigned long)v2)
  820. ret |= 0x02;
  821. else if ((unsigned long)v1 > (unsigned long)v2)
  822. ret |= 0x01;
  823. return ret;
  824. }
  825. /*
  826. * Elements of 32-bit rotate and mask instructions.
  827. */
  828. #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
  829. ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
  830. #ifdef __powerpc64__
  831. #define MASK64_L(mb) (~0UL >> (mb))
  832. #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
  833. #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
  834. #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
  835. #else
  836. #define DATA32(x) (x)
  837. #endif
  838. #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
  839. /*
  840. * Decode an instruction, and return information about it in *op
  841. * without changing *regs.
  842. * Integer arithmetic and logical instructions, branches, and barrier
  843. * instructions can be emulated just using the information in *op.
  844. *
  845. * Return value is 1 if the instruction can be emulated just by
  846. * updating *regs with the information in *op, -1 if we need the
  847. * GPRs but *regs doesn't contain the full register set, or 0
  848. * otherwise.
  849. */
  850. int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
  851. unsigned int instr)
  852. {
  853. unsigned int opcode, ra, rb, rd, spr, u;
  854. unsigned long int imm;
  855. unsigned long int val, val2;
  856. unsigned int mb, me, sh;
  857. long ival;
  858. op->type = COMPUTE;
  859. opcode = instr >> 26;
  860. switch (opcode) {
  861. case 16: /* bc */
  862. op->type = BRANCH;
  863. imm = (signed short)(instr & 0xfffc);
  864. if ((instr & 2) == 0)
  865. imm += regs->nip;
  866. op->val = truncate_if_32bit(regs->msr, imm);
  867. if (instr & 1)
  868. op->type |= SETLK;
  869. if (branch_taken(instr, regs, op))
  870. op->type |= BRTAKEN;
  871. return 1;
  872. #ifdef CONFIG_PPC64
  873. case 17: /* sc */
  874. if ((instr & 0xfe2) == 2)
  875. op->type = SYSCALL;
  876. else
  877. op->type = UNKNOWN;
  878. return 0;
  879. #endif
  880. case 18: /* b */
  881. op->type = BRANCH | BRTAKEN;
  882. imm = instr & 0x03fffffc;
  883. if (imm & 0x02000000)
  884. imm -= 0x04000000;
  885. if ((instr & 2) == 0)
  886. imm += regs->nip;
  887. op->val = truncate_if_32bit(regs->msr, imm);
  888. if (instr & 1)
  889. op->type |= SETLK;
  890. return 1;
  891. case 19:
  892. switch ((instr >> 1) & 0x3ff) {
  893. case 0: /* mcrf */
  894. op->type = COMPUTE + SETCC;
  895. rd = 7 - ((instr >> 23) & 0x7);
  896. ra = 7 - ((instr >> 18) & 0x7);
  897. rd *= 4;
  898. ra *= 4;
  899. val = (regs->ccr >> ra) & 0xf;
  900. op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
  901. return 1;
  902. case 16: /* bclr */
  903. case 528: /* bcctr */
  904. op->type = BRANCH;
  905. imm = (instr & 0x400)? regs->ctr: regs->link;
  906. op->val = truncate_if_32bit(regs->msr, imm);
  907. if (instr & 1)
  908. op->type |= SETLK;
  909. if (branch_taken(instr, regs, op))
  910. op->type |= BRTAKEN;
  911. return 1;
  912. case 18: /* rfid, scary */
  913. if (regs->msr & MSR_PR)
  914. goto priv;
  915. op->type = RFI;
  916. return 0;
  917. case 150: /* isync */
  918. op->type = BARRIER | BARRIER_ISYNC;
  919. return 1;
  920. case 33: /* crnor */
  921. case 129: /* crandc */
  922. case 193: /* crxor */
  923. case 225: /* crnand */
  924. case 257: /* crand */
  925. case 289: /* creqv */
  926. case 417: /* crorc */
  927. case 449: /* cror */
  928. op->type = COMPUTE + SETCC;
  929. ra = (instr >> 16) & 0x1f;
  930. rb = (instr >> 11) & 0x1f;
  931. rd = (instr >> 21) & 0x1f;
  932. ra = (regs->ccr >> (31 - ra)) & 1;
  933. rb = (regs->ccr >> (31 - rb)) & 1;
  934. val = (instr >> (6 + ra * 2 + rb)) & 1;
  935. op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
  936. (val << (31 - rd));
  937. return 1;
  938. default:
  939. op->type = UNKNOWN;
  940. return 0;
  941. }
  942. break;
  943. case 31:
  944. switch ((instr >> 1) & 0x3ff) {
  945. case 598: /* sync */
  946. op->type = BARRIER + BARRIER_SYNC;
  947. #ifdef __powerpc64__
  948. switch ((instr >> 21) & 3) {
  949. case 1: /* lwsync */
  950. op->type = BARRIER + BARRIER_LWSYNC;
  951. break;
  952. case 2: /* ptesync */
  953. op->type = BARRIER + BARRIER_PTESYNC;
  954. break;
  955. }
  956. #endif
  957. return 1;
  958. case 854: /* eieio */
  959. op->type = BARRIER + BARRIER_EIEIO;
  960. return 1;
  961. }
  962. break;
  963. }
  964. /* Following cases refer to regs->gpr[], so we need all regs */
  965. if (!FULL_REGS(regs))
  966. return -1;
  967. rd = (instr >> 21) & 0x1f;
  968. ra = (instr >> 16) & 0x1f;
  969. rb = (instr >> 11) & 0x1f;
  970. switch (opcode) {
  971. #ifdef __powerpc64__
  972. case 2: /* tdi */
  973. if (rd & trap_compare(regs->gpr[ra], (short) instr))
  974. goto trap;
  975. return 1;
  976. #endif
  977. case 3: /* twi */
  978. if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
  979. goto trap;
  980. return 1;
  981. case 7: /* mulli */
  982. op->val = regs->gpr[ra] * (short) instr;
  983. goto compute_done;
  984. case 8: /* subfic */
  985. imm = (short) instr;
  986. add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
  987. return 1;
  988. case 10: /* cmpli */
  989. imm = (unsigned short) instr;
  990. val = regs->gpr[ra];
  991. #ifdef __powerpc64__
  992. if ((rd & 1) == 0)
  993. val = (unsigned int) val;
  994. #endif
  995. do_cmp_unsigned(regs, op, val, imm, rd >> 2);
  996. return 1;
  997. case 11: /* cmpi */
  998. imm = (short) instr;
  999. val = regs->gpr[ra];
  1000. #ifdef __powerpc64__
  1001. if ((rd & 1) == 0)
  1002. val = (int) val;
  1003. #endif
  1004. do_cmp_signed(regs, op, val, imm, rd >> 2);
  1005. return 1;
  1006. case 12: /* addic */
  1007. imm = (short) instr;
  1008. add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
  1009. return 1;
  1010. case 13: /* addic. */
  1011. imm = (short) instr;
  1012. add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
  1013. set_cr0(regs, op, rd);
  1014. return 1;
  1015. case 14: /* addi */
  1016. imm = (short) instr;
  1017. if (ra)
  1018. imm += regs->gpr[ra];
  1019. op->val = imm;
  1020. goto compute_done;
  1021. case 15: /* addis */
  1022. imm = ((short) instr) << 16;
  1023. if (ra)
  1024. imm += regs->gpr[ra];
  1025. op->val = imm;
  1026. goto compute_done;
  1027. case 20: /* rlwimi */
  1028. mb = (instr >> 6) & 0x1f;
  1029. me = (instr >> 1) & 0x1f;
  1030. val = DATA32(regs->gpr[rd]);
  1031. imm = MASK32(mb, me);
  1032. op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
  1033. goto logical_done;
  1034. case 21: /* rlwinm */
  1035. mb = (instr >> 6) & 0x1f;
  1036. me = (instr >> 1) & 0x1f;
  1037. val = DATA32(regs->gpr[rd]);
  1038. op->val = ROTATE(val, rb) & MASK32(mb, me);
  1039. goto logical_done;
  1040. case 23: /* rlwnm */
  1041. mb = (instr >> 6) & 0x1f;
  1042. me = (instr >> 1) & 0x1f;
  1043. rb = regs->gpr[rb] & 0x1f;
  1044. val = DATA32(regs->gpr[rd]);
  1045. op->val = ROTATE(val, rb) & MASK32(mb, me);
  1046. goto logical_done;
  1047. case 24: /* ori */
  1048. op->val = regs->gpr[rd] | (unsigned short) instr;
  1049. goto logical_done_nocc;
  1050. case 25: /* oris */
  1051. imm = (unsigned short) instr;
  1052. op->val = regs->gpr[rd] | (imm << 16);
  1053. goto logical_done_nocc;
  1054. case 26: /* xori */
  1055. op->val = regs->gpr[rd] ^ (unsigned short) instr;
  1056. goto logical_done_nocc;
  1057. case 27: /* xoris */
  1058. imm = (unsigned short) instr;
  1059. op->val = regs->gpr[rd] ^ (imm << 16);
  1060. goto logical_done_nocc;
  1061. case 28: /* andi. */
  1062. op->val = regs->gpr[rd] & (unsigned short) instr;
  1063. set_cr0(regs, op, ra);
  1064. goto logical_done_nocc;
  1065. case 29: /* andis. */
  1066. imm = (unsigned short) instr;
  1067. op->val = regs->gpr[rd] & (imm << 16);
  1068. set_cr0(regs, op, ra);
  1069. goto logical_done_nocc;
  1070. #ifdef __powerpc64__
  1071. case 30: /* rld* */
  1072. mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
  1073. val = regs->gpr[rd];
  1074. if ((instr & 0x10) == 0) {
  1075. sh = rb | ((instr & 2) << 4);
  1076. val = ROTATE(val, sh);
  1077. switch ((instr >> 2) & 3) {
  1078. case 0: /* rldicl */
  1079. val &= MASK64_L(mb);
  1080. break;
  1081. case 1: /* rldicr */
  1082. val &= MASK64_R(mb);
  1083. break;
  1084. case 2: /* rldic */
  1085. val &= MASK64(mb, 63 - sh);
  1086. break;
  1087. case 3: /* rldimi */
  1088. imm = MASK64(mb, 63 - sh);
  1089. val = (regs->gpr[ra] & ~imm) |
  1090. (val & imm);
  1091. }
  1092. op->val = val;
  1093. goto logical_done;
  1094. } else {
  1095. sh = regs->gpr[rb] & 0x3f;
  1096. val = ROTATE(val, sh);
  1097. switch ((instr >> 1) & 7) {
  1098. case 0: /* rldcl */
  1099. op->val = val & MASK64_L(mb);
  1100. goto logical_done;
  1101. case 1: /* rldcr */
  1102. op->val = val & MASK64_R(mb);
  1103. goto logical_done;
  1104. }
  1105. }
  1106. #endif
  1107. op->type = UNKNOWN; /* illegal instruction */
  1108. return 0;
  1109. case 31:
  1110. switch ((instr >> 1) & 0x3ff) {
  1111. case 4: /* tw */
  1112. if (rd == 0x1f ||
  1113. (rd & trap_compare((int)regs->gpr[ra],
  1114. (int)regs->gpr[rb])))
  1115. goto trap;
  1116. return 1;
  1117. #ifdef __powerpc64__
  1118. case 68: /* td */
  1119. if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
  1120. goto trap;
  1121. return 1;
  1122. #endif
  1123. case 83: /* mfmsr */
  1124. if (regs->msr & MSR_PR)
  1125. goto priv;
  1126. op->type = MFMSR;
  1127. op->reg = rd;
  1128. return 0;
  1129. case 146: /* mtmsr */
  1130. if (regs->msr & MSR_PR)
  1131. goto priv;
  1132. op->type = MTMSR;
  1133. op->reg = rd;
  1134. op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
  1135. return 0;
  1136. #ifdef CONFIG_PPC64
  1137. case 178: /* mtmsrd */
  1138. if (regs->msr & MSR_PR)
  1139. goto priv;
  1140. op->type = MTMSR;
  1141. op->reg = rd;
  1142. /* only MSR_EE and MSR_RI get changed if bit 15 set */
  1143. /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
  1144. imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
  1145. op->val = imm;
  1146. return 0;
  1147. #endif
  1148. case 19: /* mfcr */
  1149. imm = 0xffffffffUL;
  1150. if ((instr >> 20) & 1) {
  1151. imm = 0xf0000000UL;
  1152. for (sh = 0; sh < 8; ++sh) {
  1153. if (instr & (0x80000 >> sh))
  1154. break;
  1155. imm >>= 4;
  1156. }
  1157. }
  1158. op->val = regs->ccr & imm;
  1159. goto compute_done;
  1160. case 144: /* mtcrf */
  1161. op->type = COMPUTE + SETCC;
  1162. imm = 0xf0000000UL;
  1163. val = regs->gpr[rd];
  1164. op->val = regs->ccr;
  1165. for (sh = 0; sh < 8; ++sh) {
  1166. if (instr & (0x80000 >> sh))
  1167. op->val = (op->val & ~imm) |
  1168. (val & imm);
  1169. imm >>= 4;
  1170. }
  1171. return 1;
  1172. case 339: /* mfspr */
  1173. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  1174. op->type = MFSPR;
  1175. op->reg = rd;
  1176. op->spr = spr;
  1177. if (spr == SPRN_XER || spr == SPRN_LR ||
  1178. spr == SPRN_CTR)
  1179. return 1;
  1180. return 0;
  1181. case 467: /* mtspr */
  1182. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  1183. op->type = MTSPR;
  1184. op->val = regs->gpr[rd];
  1185. op->spr = spr;
  1186. if (spr == SPRN_XER || spr == SPRN_LR ||
  1187. spr == SPRN_CTR)
  1188. return 1;
  1189. return 0;
  1190. /*
  1191. * Compare instructions
  1192. */
  1193. case 0: /* cmp */
  1194. val = regs->gpr[ra];
  1195. val2 = regs->gpr[rb];
  1196. #ifdef __powerpc64__
  1197. if ((rd & 1) == 0) {
  1198. /* word (32-bit) compare */
  1199. val = (int) val;
  1200. val2 = (int) val2;
  1201. }
  1202. #endif
  1203. do_cmp_signed(regs, op, val, val2, rd >> 2);
  1204. return 1;
  1205. case 32: /* cmpl */
  1206. val = regs->gpr[ra];
  1207. val2 = regs->gpr[rb];
  1208. #ifdef __powerpc64__
  1209. if ((rd & 1) == 0) {
  1210. /* word (32-bit) compare */
  1211. val = (unsigned int) val;
  1212. val2 = (unsigned int) val2;
  1213. }
  1214. #endif
  1215. do_cmp_unsigned(regs, op, val, val2, rd >> 2);
  1216. return 1;
  1217. case 508: /* cmpb */
  1218. do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
  1219. goto logical_done_nocc;
  1220. /*
  1221. * Arithmetic instructions
  1222. */
  1223. case 8: /* subfc */
  1224. add_with_carry(regs, op, rd, ~regs->gpr[ra],
  1225. regs->gpr[rb], 1);
  1226. goto arith_done;
  1227. #ifdef __powerpc64__
  1228. case 9: /* mulhdu */
  1229. asm("mulhdu %0,%1,%2" : "=r" (op->val) :
  1230. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1231. goto arith_done;
  1232. #endif
  1233. case 10: /* addc */
  1234. add_with_carry(regs, op, rd, regs->gpr[ra],
  1235. regs->gpr[rb], 0);
  1236. goto arith_done;
  1237. case 11: /* mulhwu */
  1238. asm("mulhwu %0,%1,%2" : "=r" (op->val) :
  1239. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1240. goto arith_done;
  1241. case 40: /* subf */
  1242. op->val = regs->gpr[rb] - regs->gpr[ra];
  1243. goto arith_done;
  1244. #ifdef __powerpc64__
  1245. case 73: /* mulhd */
  1246. asm("mulhd %0,%1,%2" : "=r" (op->val) :
  1247. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1248. goto arith_done;
  1249. #endif
  1250. case 75: /* mulhw */
  1251. asm("mulhw %0,%1,%2" : "=r" (op->val) :
  1252. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  1253. goto arith_done;
  1254. case 104: /* neg */
  1255. op->val = -regs->gpr[ra];
  1256. goto arith_done;
  1257. case 136: /* subfe */
  1258. add_with_carry(regs, op, rd, ~regs->gpr[ra],
  1259. regs->gpr[rb], regs->xer & XER_CA);
  1260. goto arith_done;
  1261. case 138: /* adde */
  1262. add_with_carry(regs, op, rd, regs->gpr[ra],
  1263. regs->gpr[rb], regs->xer & XER_CA);
  1264. goto arith_done;
  1265. case 200: /* subfze */
  1266. add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
  1267. regs->xer & XER_CA);
  1268. goto arith_done;
  1269. case 202: /* addze */
  1270. add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
  1271. regs->xer & XER_CA);
  1272. goto arith_done;
  1273. case 232: /* subfme */
  1274. add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
  1275. regs->xer & XER_CA);
  1276. goto arith_done;
  1277. #ifdef __powerpc64__
  1278. case 233: /* mulld */
  1279. op->val = regs->gpr[ra] * regs->gpr[rb];
  1280. goto arith_done;
  1281. #endif
  1282. case 234: /* addme */
  1283. add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
  1284. regs->xer & XER_CA);
  1285. goto arith_done;
  1286. case 235: /* mullw */
  1287. op->val = (unsigned int) regs->gpr[ra] *
  1288. (unsigned int) regs->gpr[rb];
  1289. goto arith_done;
  1290. case 266: /* add */
  1291. op->val = regs->gpr[ra] + regs->gpr[rb];
  1292. goto arith_done;
  1293. #ifdef __powerpc64__
  1294. case 457: /* divdu */
  1295. op->val = regs->gpr[ra] / regs->gpr[rb];
  1296. goto arith_done;
  1297. #endif
  1298. case 459: /* divwu */
  1299. op->val = (unsigned int) regs->gpr[ra] /
  1300. (unsigned int) regs->gpr[rb];
  1301. goto arith_done;
  1302. #ifdef __powerpc64__
  1303. case 489: /* divd */
  1304. op->val = (long int) regs->gpr[ra] /
  1305. (long int) regs->gpr[rb];
  1306. goto arith_done;
  1307. #endif
  1308. case 491: /* divw */
  1309. op->val = (int) regs->gpr[ra] /
  1310. (int) regs->gpr[rb];
  1311. goto arith_done;
  1312. /*
  1313. * Logical instructions
  1314. */
  1315. case 15: /* isel */
  1316. mb = (instr >> 6) & 0x1f; /* bc */
  1317. val = (regs->ccr >> (31 - mb)) & 1;
  1318. val2 = (ra) ? regs->gpr[ra] : 0;
  1319. op->val = (val) ? val2 : regs->gpr[rb];
  1320. goto compute_done;
  1321. case 26: /* cntlzw */
  1322. op->val = __builtin_clz((unsigned int) regs->gpr[rd]);
  1323. goto logical_done;
  1324. #ifdef __powerpc64__
  1325. case 58: /* cntlzd */
  1326. op->val = __builtin_clzl(regs->gpr[rd]);
  1327. goto logical_done;
  1328. #endif
  1329. case 28: /* and */
  1330. op->val = regs->gpr[rd] & regs->gpr[rb];
  1331. goto logical_done;
  1332. case 60: /* andc */
  1333. op->val = regs->gpr[rd] & ~regs->gpr[rb];
  1334. goto logical_done;
  1335. case 122: /* popcntb */
  1336. do_popcnt(regs, op, regs->gpr[rd], 8);
  1337. goto logical_done;
  1338. case 124: /* nor */
  1339. op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
  1340. goto logical_done;
  1341. case 154: /* prtyw */
  1342. do_prty(regs, op, regs->gpr[rd], 32);
  1343. goto logical_done;
  1344. case 186: /* prtyd */
  1345. do_prty(regs, op, regs->gpr[rd], 64);
  1346. goto logical_done;
  1347. #ifdef CONFIG_PPC64
  1348. case 252: /* bpermd */
  1349. do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
  1350. goto logical_done;
  1351. #endif
  1352. case 284: /* xor */
  1353. op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
  1354. goto logical_done;
  1355. case 316: /* xor */
  1356. op->val = regs->gpr[rd] ^ regs->gpr[rb];
  1357. goto logical_done;
  1358. case 378: /* popcntw */
  1359. do_popcnt(regs, op, regs->gpr[rd], 32);
  1360. goto logical_done;
  1361. case 412: /* orc */
  1362. op->val = regs->gpr[rd] | ~regs->gpr[rb];
  1363. goto logical_done;
  1364. case 444: /* or */
  1365. op->val = regs->gpr[rd] | regs->gpr[rb];
  1366. goto logical_done;
  1367. case 476: /* nand */
  1368. op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
  1369. goto logical_done;
  1370. #ifdef CONFIG_PPC64
  1371. case 506: /* popcntd */
  1372. do_popcnt(regs, op, regs->gpr[rd], 64);
  1373. goto logical_done;
  1374. #endif
  1375. case 922: /* extsh */
  1376. op->val = (signed short) regs->gpr[rd];
  1377. goto logical_done;
  1378. case 954: /* extsb */
  1379. op->val = (signed char) regs->gpr[rd];
  1380. goto logical_done;
  1381. #ifdef __powerpc64__
  1382. case 986: /* extsw */
  1383. op->val = (signed int) regs->gpr[rd];
  1384. goto logical_done;
  1385. #endif
  1386. /*
  1387. * Shift instructions
  1388. */
  1389. case 24: /* slw */
  1390. sh = regs->gpr[rb] & 0x3f;
  1391. if (sh < 32)
  1392. op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
  1393. else
  1394. op->val = 0;
  1395. goto logical_done;
  1396. case 536: /* srw */
  1397. sh = regs->gpr[rb] & 0x3f;
  1398. if (sh < 32)
  1399. op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
  1400. else
  1401. op->val = 0;
  1402. goto logical_done;
  1403. case 792: /* sraw */
  1404. op->type = COMPUTE + SETREG + SETXER;
  1405. sh = regs->gpr[rb] & 0x3f;
  1406. ival = (signed int) regs->gpr[rd];
  1407. op->val = ival >> (sh < 32 ? sh : 31);
  1408. op->xerval = regs->xer;
  1409. if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
  1410. op->xerval |= XER_CA;
  1411. else
  1412. op->xerval &= ~XER_CA;
  1413. goto logical_done;
  1414. case 824: /* srawi */
  1415. op->type = COMPUTE + SETREG + SETXER;
  1416. sh = rb;
  1417. ival = (signed int) regs->gpr[rd];
  1418. op->val = ival >> sh;
  1419. op->xerval = regs->xer;
  1420. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1421. op->xerval |= XER_CA;
  1422. else
  1423. op->xerval &= ~XER_CA;
  1424. goto logical_done;
  1425. #ifdef __powerpc64__
  1426. case 27: /* sld */
  1427. sh = regs->gpr[rb] & 0x7f;
  1428. if (sh < 64)
  1429. op->val = regs->gpr[rd] << sh;
  1430. else
  1431. op->val = 0;
  1432. goto logical_done;
  1433. case 539: /* srd */
  1434. sh = regs->gpr[rb] & 0x7f;
  1435. if (sh < 64)
  1436. op->val = regs->gpr[rd] >> sh;
  1437. else
  1438. op->val = 0;
  1439. goto logical_done;
  1440. case 794: /* srad */
  1441. op->type = COMPUTE + SETREG + SETXER;
  1442. sh = regs->gpr[rb] & 0x7f;
  1443. ival = (signed long int) regs->gpr[rd];
  1444. op->val = ival >> (sh < 64 ? sh : 63);
  1445. op->xerval = regs->xer;
  1446. if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
  1447. op->xerval |= XER_CA;
  1448. else
  1449. op->xerval &= ~XER_CA;
  1450. goto logical_done;
  1451. case 826: /* sradi with sh_5 = 0 */
  1452. case 827: /* sradi with sh_5 = 1 */
  1453. op->type = COMPUTE + SETREG + SETXER;
  1454. sh = rb | ((instr & 2) << 4);
  1455. ival = (signed long int) regs->gpr[rd];
  1456. op->val = ival >> sh;
  1457. op->xerval = regs->xer;
  1458. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1459. op->xerval |= XER_CA;
  1460. else
  1461. op->xerval &= ~XER_CA;
  1462. goto logical_done;
  1463. #endif /* __powerpc64__ */
  1464. /*
  1465. * Cache instructions
  1466. */
  1467. case 54: /* dcbst */
  1468. op->type = MKOP(CACHEOP, DCBST, 0);
  1469. op->ea = xform_ea(instr, regs);
  1470. return 0;
  1471. case 86: /* dcbf */
  1472. op->type = MKOP(CACHEOP, DCBF, 0);
  1473. op->ea = xform_ea(instr, regs);
  1474. return 0;
  1475. case 246: /* dcbtst */
  1476. op->type = MKOP(CACHEOP, DCBTST, 0);
  1477. op->ea = xform_ea(instr, regs);
  1478. op->reg = rd;
  1479. return 0;
  1480. case 278: /* dcbt */
  1481. op->type = MKOP(CACHEOP, DCBTST, 0);
  1482. op->ea = xform_ea(instr, regs);
  1483. op->reg = rd;
  1484. return 0;
  1485. case 982: /* icbi */
  1486. op->type = MKOP(CACHEOP, ICBI, 0);
  1487. op->ea = xform_ea(instr, regs);
  1488. return 0;
  1489. }
  1490. break;
  1491. }
  1492. /*
  1493. * Loads and stores.
  1494. */
  1495. op->type = UNKNOWN;
  1496. op->update_reg = ra;
  1497. op->reg = rd;
  1498. op->val = regs->gpr[rd];
  1499. u = (instr >> 20) & UPDATE;
  1500. op->vsx_flags = 0;
  1501. switch (opcode) {
  1502. case 31:
  1503. u = instr & UPDATE;
  1504. op->ea = xform_ea(instr, regs);
  1505. switch ((instr >> 1) & 0x3ff) {
  1506. case 20: /* lwarx */
  1507. op->type = MKOP(LARX, 0, 4);
  1508. break;
  1509. case 150: /* stwcx. */
  1510. op->type = MKOP(STCX, 0, 4);
  1511. break;
  1512. #ifdef __powerpc64__
  1513. case 84: /* ldarx */
  1514. op->type = MKOP(LARX, 0, 8);
  1515. break;
  1516. case 214: /* stdcx. */
  1517. op->type = MKOP(STCX, 0, 8);
  1518. break;
  1519. case 52: /* lbarx */
  1520. op->type = MKOP(LARX, 0, 1);
  1521. break;
  1522. case 694: /* stbcx. */
  1523. op->type = MKOP(STCX, 0, 1);
  1524. break;
  1525. case 116: /* lharx */
  1526. op->type = MKOP(LARX, 0, 2);
  1527. break;
  1528. case 726: /* sthcx. */
  1529. op->type = MKOP(STCX, 0, 2);
  1530. break;
  1531. case 276: /* lqarx */
  1532. if (!((rd & 1) || rd == ra || rd == rb))
  1533. op->type = MKOP(LARX, 0, 16);
  1534. break;
  1535. case 182: /* stqcx. */
  1536. if (!(rd & 1))
  1537. op->type = MKOP(STCX, 0, 16);
  1538. break;
  1539. #endif
  1540. case 23: /* lwzx */
  1541. case 55: /* lwzux */
  1542. op->type = MKOP(LOAD, u, 4);
  1543. break;
  1544. case 87: /* lbzx */
  1545. case 119: /* lbzux */
  1546. op->type = MKOP(LOAD, u, 1);
  1547. break;
  1548. #ifdef CONFIG_ALTIVEC
  1549. case 103: /* lvx */
  1550. case 359: /* lvxl */
  1551. op->type = MKOP(LOAD_VMX, 0, 16);
  1552. op->element_size = 16;
  1553. break;
  1554. case 231: /* stvx */
  1555. case 487: /* stvxl */
  1556. op->type = MKOP(STORE_VMX, 0, 16);
  1557. break;
  1558. #endif /* CONFIG_ALTIVEC */
  1559. #ifdef __powerpc64__
  1560. case 21: /* ldx */
  1561. case 53: /* ldux */
  1562. op->type = MKOP(LOAD, u, 8);
  1563. break;
  1564. case 149: /* stdx */
  1565. case 181: /* stdux */
  1566. op->type = MKOP(STORE, u, 8);
  1567. break;
  1568. #endif
  1569. case 151: /* stwx */
  1570. case 183: /* stwux */
  1571. op->type = MKOP(STORE, u, 4);
  1572. break;
  1573. case 215: /* stbx */
  1574. case 247: /* stbux */
  1575. op->type = MKOP(STORE, u, 1);
  1576. break;
  1577. case 279: /* lhzx */
  1578. case 311: /* lhzux */
  1579. op->type = MKOP(LOAD, u, 2);
  1580. break;
  1581. #ifdef __powerpc64__
  1582. case 341: /* lwax */
  1583. case 373: /* lwaux */
  1584. op->type = MKOP(LOAD, SIGNEXT | u, 4);
  1585. break;
  1586. #endif
  1587. case 343: /* lhax */
  1588. case 375: /* lhaux */
  1589. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  1590. break;
  1591. case 407: /* sthx */
  1592. case 439: /* sthux */
  1593. op->type = MKOP(STORE, u, 2);
  1594. break;
  1595. #ifdef __powerpc64__
  1596. case 532: /* ldbrx */
  1597. op->type = MKOP(LOAD, BYTEREV, 8);
  1598. break;
  1599. #endif
  1600. case 533: /* lswx */
  1601. op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
  1602. break;
  1603. case 534: /* lwbrx */
  1604. op->type = MKOP(LOAD, BYTEREV, 4);
  1605. break;
  1606. case 597: /* lswi */
  1607. if (rb == 0)
  1608. rb = 32; /* # bytes to load */
  1609. op->type = MKOP(LOAD_MULTI, 0, rb);
  1610. op->ea = 0;
  1611. if (ra)
  1612. op->ea = truncate_if_32bit(regs->msr,
  1613. regs->gpr[ra]);
  1614. break;
  1615. #ifdef CONFIG_PPC_FPU
  1616. case 535: /* lfsx */
  1617. case 567: /* lfsux */
  1618. op->type = MKOP(LOAD_FP, u, 4);
  1619. break;
  1620. case 599: /* lfdx */
  1621. case 631: /* lfdux */
  1622. op->type = MKOP(LOAD_FP, u, 8);
  1623. break;
  1624. case 663: /* stfsx */
  1625. case 695: /* stfsux */
  1626. op->type = MKOP(STORE_FP, u, 4);
  1627. break;
  1628. case 727: /* stfdx */
  1629. case 759: /* stfdux */
  1630. op->type = MKOP(STORE_FP, u, 8);
  1631. break;
  1632. #endif
  1633. #ifdef __powerpc64__
  1634. case 660: /* stdbrx */
  1635. op->type = MKOP(STORE, BYTEREV, 8);
  1636. op->val = byterev_8(regs->gpr[rd]);
  1637. break;
  1638. #endif
  1639. case 661: /* stswx */
  1640. op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
  1641. break;
  1642. case 662: /* stwbrx */
  1643. op->type = MKOP(STORE, BYTEREV, 4);
  1644. op->val = byterev_4(regs->gpr[rd]);
  1645. break;
  1646. case 725:
  1647. if (rb == 0)
  1648. rb = 32; /* # bytes to store */
  1649. op->type = MKOP(STORE_MULTI, 0, rb);
  1650. op->ea = 0;
  1651. if (ra)
  1652. op->ea = truncate_if_32bit(regs->msr,
  1653. regs->gpr[ra]);
  1654. break;
  1655. case 790: /* lhbrx */
  1656. op->type = MKOP(LOAD, BYTEREV, 2);
  1657. break;
  1658. case 918: /* sthbrx */
  1659. op->type = MKOP(STORE, BYTEREV, 2);
  1660. op->val = byterev_2(regs->gpr[rd]);
  1661. break;
  1662. #ifdef CONFIG_VSX
  1663. case 12: /* lxsiwzx */
  1664. op->reg = rd | ((instr & 1) << 5);
  1665. op->type = MKOP(LOAD_VSX, 0, 4);
  1666. op->element_size = 8;
  1667. break;
  1668. case 76: /* lxsiwax */
  1669. op->reg = rd | ((instr & 1) << 5);
  1670. op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
  1671. op->element_size = 8;
  1672. break;
  1673. case 140: /* stxsiwx */
  1674. op->reg = rd | ((instr & 1) << 5);
  1675. op->type = MKOP(STORE_VSX, 0, 4);
  1676. op->element_size = 8;
  1677. break;
  1678. case 268: /* lxvx */
  1679. op->reg = rd | ((instr & 1) << 5);
  1680. op->type = MKOP(LOAD_VSX, 0, 16);
  1681. op->element_size = 16;
  1682. op->vsx_flags = VSX_CHECK_VEC;
  1683. break;
  1684. case 269: /* lxvl */
  1685. case 301: { /* lxvll */
  1686. int nb;
  1687. op->reg = rd | ((instr & 1) << 5);
  1688. op->ea = ra ? regs->gpr[ra] : 0;
  1689. nb = regs->gpr[rb] & 0xff;
  1690. if (nb > 16)
  1691. nb = 16;
  1692. op->type = MKOP(LOAD_VSX, 0, nb);
  1693. op->element_size = 16;
  1694. op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
  1695. VSX_CHECK_VEC;
  1696. break;
  1697. }
  1698. case 332: /* lxvdsx */
  1699. op->reg = rd | ((instr & 1) << 5);
  1700. op->type = MKOP(LOAD_VSX, 0, 8);
  1701. op->element_size = 8;
  1702. op->vsx_flags = VSX_SPLAT;
  1703. break;
  1704. case 364: /* lxvwsx */
  1705. op->reg = rd | ((instr & 1) << 5);
  1706. op->type = MKOP(LOAD_VSX, 0, 4);
  1707. op->element_size = 4;
  1708. op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
  1709. break;
  1710. case 396: /* stxvx */
  1711. op->reg = rd | ((instr & 1) << 5);
  1712. op->type = MKOP(STORE_VSX, 0, 16);
  1713. op->element_size = 16;
  1714. op->vsx_flags = VSX_CHECK_VEC;
  1715. break;
  1716. case 397: /* stxvl */
  1717. case 429: { /* stxvll */
  1718. int nb;
  1719. op->reg = rd | ((instr & 1) << 5);
  1720. op->ea = ra ? regs->gpr[ra] : 0;
  1721. nb = regs->gpr[rb] & 0xff;
  1722. if (nb > 16)
  1723. nb = 16;
  1724. op->type = MKOP(STORE_VSX, 0, nb);
  1725. op->element_size = 16;
  1726. op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
  1727. VSX_CHECK_VEC;
  1728. break;
  1729. }
  1730. case 524: /* lxsspx */
  1731. op->reg = rd | ((instr & 1) << 5);
  1732. op->type = MKOP(LOAD_VSX, 0, 4);
  1733. op->element_size = 8;
  1734. op->vsx_flags = VSX_FPCONV;
  1735. break;
  1736. case 588: /* lxsdx */
  1737. op->reg = rd | ((instr & 1) << 5);
  1738. op->type = MKOP(LOAD_VSX, 0, 8);
  1739. op->element_size = 8;
  1740. break;
  1741. case 652: /* stxsspx */
  1742. op->reg = rd | ((instr & 1) << 5);
  1743. op->type = MKOP(STORE_VSX, 0, 4);
  1744. op->element_size = 8;
  1745. op->vsx_flags = VSX_FPCONV;
  1746. break;
  1747. case 716: /* stxsdx */
  1748. op->reg = rd | ((instr & 1) << 5);
  1749. op->type = MKOP(STORE_VSX, 0, 8);
  1750. op->element_size = 8;
  1751. break;
  1752. case 780: /* lxvw4x */
  1753. op->reg = rd | ((instr & 1) << 5);
  1754. op->type = MKOP(LOAD_VSX, 0, 16);
  1755. op->element_size = 4;
  1756. break;
  1757. case 781: /* lxsibzx */
  1758. op->reg = rd | ((instr & 1) << 5);
  1759. op->type = MKOP(LOAD_VSX, 0, 1);
  1760. op->element_size = 8;
  1761. op->vsx_flags = VSX_CHECK_VEC;
  1762. break;
  1763. case 812: /* lxvh8x */
  1764. op->reg = rd | ((instr & 1) << 5);
  1765. op->type = MKOP(LOAD_VSX, 0, 16);
  1766. op->element_size = 2;
  1767. op->vsx_flags = VSX_CHECK_VEC;
  1768. break;
  1769. case 813: /* lxsihzx */
  1770. op->reg = rd | ((instr & 1) << 5);
  1771. op->type = MKOP(LOAD_VSX, 0, 2);
  1772. op->element_size = 8;
  1773. op->vsx_flags = VSX_CHECK_VEC;
  1774. break;
  1775. case 844: /* lxvd2x */
  1776. op->reg = rd | ((instr & 1) << 5);
  1777. op->type = MKOP(LOAD_VSX, 0, 16);
  1778. op->element_size = 8;
  1779. break;
  1780. case 876: /* lxvb16x */
  1781. op->reg = rd | ((instr & 1) << 5);
  1782. op->type = MKOP(LOAD_VSX, 0, 16);
  1783. op->element_size = 1;
  1784. op->vsx_flags = VSX_CHECK_VEC;
  1785. break;
  1786. case 908: /* stxvw4x */
  1787. op->reg = rd | ((instr & 1) << 5);
  1788. op->type = MKOP(STORE_VSX, 0, 16);
  1789. op->element_size = 4;
  1790. break;
  1791. case 909: /* stxsibx */
  1792. op->reg = rd | ((instr & 1) << 5);
  1793. op->type = MKOP(STORE_VSX, 0, 1);
  1794. op->element_size = 8;
  1795. op->vsx_flags = VSX_CHECK_VEC;
  1796. break;
  1797. case 940: /* stxvh8x */
  1798. op->reg = rd | ((instr & 1) << 5);
  1799. op->type = MKOP(STORE_VSX, 0, 16);
  1800. op->element_size = 2;
  1801. op->vsx_flags = VSX_CHECK_VEC;
  1802. break;
  1803. case 941: /* stxsihx */
  1804. op->reg = rd | ((instr & 1) << 5);
  1805. op->type = MKOP(STORE_VSX, 0, 2);
  1806. op->element_size = 8;
  1807. op->vsx_flags = VSX_CHECK_VEC;
  1808. break;
  1809. case 972: /* stxvd2x */
  1810. op->reg = rd | ((instr & 1) << 5);
  1811. op->type = MKOP(STORE_VSX, 0, 16);
  1812. op->element_size = 8;
  1813. break;
  1814. case 1004: /* stxvb16x */
  1815. op->reg = rd | ((instr & 1) << 5);
  1816. op->type = MKOP(STORE_VSX, 0, 16);
  1817. op->element_size = 1;
  1818. op->vsx_flags = VSX_CHECK_VEC;
  1819. break;
  1820. #endif /* CONFIG_VSX */
  1821. }
  1822. break;
  1823. case 32: /* lwz */
  1824. case 33: /* lwzu */
  1825. op->type = MKOP(LOAD, u, 4);
  1826. op->ea = dform_ea(instr, regs);
  1827. break;
  1828. case 34: /* lbz */
  1829. case 35: /* lbzu */
  1830. op->type = MKOP(LOAD, u, 1);
  1831. op->ea = dform_ea(instr, regs);
  1832. break;
  1833. case 36: /* stw */
  1834. case 37: /* stwu */
  1835. op->type = MKOP(STORE, u, 4);
  1836. op->ea = dform_ea(instr, regs);
  1837. break;
  1838. case 38: /* stb */
  1839. case 39: /* stbu */
  1840. op->type = MKOP(STORE, u, 1);
  1841. op->ea = dform_ea(instr, regs);
  1842. break;
  1843. case 40: /* lhz */
  1844. case 41: /* lhzu */
  1845. op->type = MKOP(LOAD, u, 2);
  1846. op->ea = dform_ea(instr, regs);
  1847. break;
  1848. case 42: /* lha */
  1849. case 43: /* lhau */
  1850. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  1851. op->ea = dform_ea(instr, regs);
  1852. break;
  1853. case 44: /* sth */
  1854. case 45: /* sthu */
  1855. op->type = MKOP(STORE, u, 2);
  1856. op->ea = dform_ea(instr, regs);
  1857. break;
  1858. case 46: /* lmw */
  1859. if (ra >= rd)
  1860. break; /* invalid form, ra in range to load */
  1861. op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
  1862. op->ea = dform_ea(instr, regs);
  1863. break;
  1864. case 47: /* stmw */
  1865. op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
  1866. op->ea = dform_ea(instr, regs);
  1867. break;
  1868. #ifdef CONFIG_PPC_FPU
  1869. case 48: /* lfs */
  1870. case 49: /* lfsu */
  1871. op->type = MKOP(LOAD_FP, u, 4);
  1872. op->ea = dform_ea(instr, regs);
  1873. break;
  1874. case 50: /* lfd */
  1875. case 51: /* lfdu */
  1876. op->type = MKOP(LOAD_FP, u, 8);
  1877. op->ea = dform_ea(instr, regs);
  1878. break;
  1879. case 52: /* stfs */
  1880. case 53: /* stfsu */
  1881. op->type = MKOP(STORE_FP, u, 4);
  1882. op->ea = dform_ea(instr, regs);
  1883. break;
  1884. case 54: /* stfd */
  1885. case 55: /* stfdu */
  1886. op->type = MKOP(STORE_FP, u, 8);
  1887. op->ea = dform_ea(instr, regs);
  1888. break;
  1889. #endif
  1890. #ifdef __powerpc64__
  1891. case 56: /* lq */
  1892. if (!((rd & 1) || (rd == ra)))
  1893. op->type = MKOP(LOAD, 0, 16);
  1894. op->ea = dqform_ea(instr, regs);
  1895. break;
  1896. #endif
  1897. #ifdef CONFIG_VSX
  1898. case 57: /* lxsd, lxssp */
  1899. op->ea = dsform_ea(instr, regs);
  1900. switch (instr & 3) {
  1901. case 2: /* lxsd */
  1902. op->reg = rd + 32;
  1903. op->type = MKOP(LOAD_VSX, 0, 8);
  1904. op->element_size = 8;
  1905. op->vsx_flags = VSX_CHECK_VEC;
  1906. break;
  1907. case 3: /* lxssp */
  1908. op->reg = rd + 32;
  1909. op->type = MKOP(LOAD_VSX, 0, 4);
  1910. op->element_size = 8;
  1911. op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
  1912. break;
  1913. }
  1914. break;
  1915. #endif /* CONFIG_VSX */
  1916. #ifdef __powerpc64__
  1917. case 58: /* ld[u], lwa */
  1918. op->ea = dsform_ea(instr, regs);
  1919. switch (instr & 3) {
  1920. case 0: /* ld */
  1921. op->type = MKOP(LOAD, 0, 8);
  1922. break;
  1923. case 1: /* ldu */
  1924. op->type = MKOP(LOAD, UPDATE, 8);
  1925. break;
  1926. case 2: /* lwa */
  1927. op->type = MKOP(LOAD, SIGNEXT, 4);
  1928. break;
  1929. }
  1930. break;
  1931. #endif
  1932. #ifdef CONFIG_VSX
  1933. case 61: /* lxv, stxsd, stxssp, stxv */
  1934. switch (instr & 7) {
  1935. case 1: /* lxv */
  1936. op->ea = dqform_ea(instr, regs);
  1937. if (instr & 8)
  1938. op->reg = rd + 32;
  1939. op->type = MKOP(LOAD_VSX, 0, 16);
  1940. op->element_size = 16;
  1941. op->vsx_flags = VSX_CHECK_VEC;
  1942. break;
  1943. case 2: /* stxsd with LSB of DS field = 0 */
  1944. case 6: /* stxsd with LSB of DS field = 1 */
  1945. op->ea = dsform_ea(instr, regs);
  1946. op->reg = rd + 32;
  1947. op->type = MKOP(STORE_VSX, 0, 8);
  1948. op->element_size = 8;
  1949. op->vsx_flags = VSX_CHECK_VEC;
  1950. break;
  1951. case 3: /* stxssp with LSB of DS field = 0 */
  1952. case 7: /* stxssp with LSB of DS field = 1 */
  1953. op->ea = dsform_ea(instr, regs);
  1954. op->reg = rd + 32;
  1955. op->type = MKOP(STORE_VSX, 0, 4);
  1956. op->element_size = 8;
  1957. op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
  1958. break;
  1959. case 5: /* stxv */
  1960. op->ea = dqform_ea(instr, regs);
  1961. if (instr & 8)
  1962. op->reg = rd + 32;
  1963. op->type = MKOP(STORE_VSX, 0, 16);
  1964. op->element_size = 16;
  1965. op->vsx_flags = VSX_CHECK_VEC;
  1966. break;
  1967. }
  1968. break;
  1969. #endif /* CONFIG_VSX */
  1970. #ifdef __powerpc64__
  1971. case 62: /* std[u] */
  1972. op->ea = dsform_ea(instr, regs);
  1973. switch (instr & 3) {
  1974. case 0: /* std */
  1975. op->type = MKOP(STORE, 0, 8);
  1976. break;
  1977. case 1: /* stdu */
  1978. op->type = MKOP(STORE, UPDATE, 8);
  1979. break;
  1980. case 2: /* stq */
  1981. if (!(rd & 1))
  1982. op->type = MKOP(STORE, 0, 16);
  1983. break;
  1984. }
  1985. break;
  1986. #endif /* __powerpc64__ */
  1987. }
  1988. return 0;
  1989. logical_done:
  1990. if (instr & 1)
  1991. set_cr0(regs, op, ra);
  1992. logical_done_nocc:
  1993. op->reg = ra;
  1994. op->type |= SETREG;
  1995. return 1;
  1996. arith_done:
  1997. if (instr & 1)
  1998. set_cr0(regs, op, rd);
  1999. compute_done:
  2000. op->reg = rd;
  2001. op->type |= SETREG;
  2002. return 1;
  2003. priv:
  2004. op->type = INTERRUPT | 0x700;
  2005. op->val = SRR1_PROGPRIV;
  2006. return 0;
  2007. trap:
  2008. op->type = INTERRUPT | 0x700;
  2009. op->val = SRR1_PROGTRAP;
  2010. return 0;
  2011. }
  2012. EXPORT_SYMBOL_GPL(analyse_instr);
  2013. NOKPROBE_SYMBOL(analyse_instr);
  2014. /*
  2015. * For PPC32 we always use stwu with r1 to change the stack pointer.
  2016. * So this emulated store may corrupt the exception frame, now we
  2017. * have to provide the exception frame trampoline, which is pushed
  2018. * below the kprobed function stack. So we only update gpr[1] but
  2019. * don't emulate the real store operation. We will do real store
  2020. * operation safely in exception return code by checking this flag.
  2021. */
  2022. static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
  2023. {
  2024. #ifdef CONFIG_PPC32
  2025. /*
  2026. * Check if we will touch kernel stack overflow
  2027. */
  2028. if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
  2029. printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
  2030. return -EINVAL;
  2031. }
  2032. #endif /* CONFIG_PPC32 */
  2033. /*
  2034. * Check if we already set since that means we'll
  2035. * lose the previous value.
  2036. */
  2037. WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
  2038. set_thread_flag(TIF_EMULATE_STACK_STORE);
  2039. return 0;
  2040. }
  2041. static nokprobe_inline void do_signext(unsigned long *valp, int size)
  2042. {
  2043. switch (size) {
  2044. case 2:
  2045. *valp = (signed short) *valp;
  2046. break;
  2047. case 4:
  2048. *valp = (signed int) *valp;
  2049. break;
  2050. }
  2051. }
  2052. static nokprobe_inline void do_byterev(unsigned long *valp, int size)
  2053. {
  2054. switch (size) {
  2055. case 2:
  2056. *valp = byterev_2(*valp);
  2057. break;
  2058. case 4:
  2059. *valp = byterev_4(*valp);
  2060. break;
  2061. #ifdef __powerpc64__
  2062. case 8:
  2063. *valp = byterev_8(*valp);
  2064. break;
  2065. #endif
  2066. }
  2067. }
  2068. /*
  2069. * Emulate an instruction that can be executed just by updating
  2070. * fields in *regs.
  2071. */
  2072. void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
  2073. {
  2074. unsigned long next_pc;
  2075. next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
  2076. switch (op->type & INSTR_TYPE_MASK) {
  2077. case COMPUTE:
  2078. if (op->type & SETREG)
  2079. regs->gpr[op->reg] = op->val;
  2080. if (op->type & SETCC)
  2081. regs->ccr = op->ccval;
  2082. if (op->type & SETXER)
  2083. regs->xer = op->xerval;
  2084. break;
  2085. case BRANCH:
  2086. if (op->type & SETLK)
  2087. regs->link = next_pc;
  2088. if (op->type & BRTAKEN)
  2089. next_pc = op->val;
  2090. if (op->type & DECCTR)
  2091. --regs->ctr;
  2092. break;
  2093. case BARRIER:
  2094. switch (op->type & BARRIER_MASK) {
  2095. case BARRIER_SYNC:
  2096. mb();
  2097. break;
  2098. case BARRIER_ISYNC:
  2099. isync();
  2100. break;
  2101. case BARRIER_EIEIO:
  2102. eieio();
  2103. break;
  2104. case BARRIER_LWSYNC:
  2105. asm volatile("lwsync" : : : "memory");
  2106. break;
  2107. case BARRIER_PTESYNC:
  2108. asm volatile("ptesync" : : : "memory");
  2109. break;
  2110. }
  2111. break;
  2112. case MFSPR:
  2113. switch (op->spr) {
  2114. case SPRN_XER:
  2115. regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
  2116. break;
  2117. case SPRN_LR:
  2118. regs->gpr[op->reg] = regs->link;
  2119. break;
  2120. case SPRN_CTR:
  2121. regs->gpr[op->reg] = regs->ctr;
  2122. break;
  2123. default:
  2124. WARN_ON_ONCE(1);
  2125. }
  2126. break;
  2127. case MTSPR:
  2128. switch (op->spr) {
  2129. case SPRN_XER:
  2130. regs->xer = op->val & 0xffffffffUL;
  2131. break;
  2132. case SPRN_LR:
  2133. regs->link = op->val;
  2134. break;
  2135. case SPRN_CTR:
  2136. regs->ctr = op->val;
  2137. break;
  2138. default:
  2139. WARN_ON_ONCE(1);
  2140. }
  2141. break;
  2142. default:
  2143. WARN_ON_ONCE(1);
  2144. }
  2145. regs->nip = next_pc;
  2146. }
  2147. /*
  2148. * Emulate instructions that cause a transfer of control,
  2149. * loads and stores, and a few other instructions.
  2150. * Returns 1 if the step was emulated, 0 if not,
  2151. * or -1 if the instruction is one that should not be stepped,
  2152. * such as an rfid, or a mtmsrd that would clear MSR_RI.
  2153. */
  2154. int emulate_step(struct pt_regs *regs, unsigned int instr)
  2155. {
  2156. struct instruction_op op;
  2157. int r, err, size;
  2158. unsigned long val;
  2159. unsigned int cr;
  2160. int i, rd, nb;
  2161. r = analyse_instr(&op, regs, instr);
  2162. if (r < 0)
  2163. return r;
  2164. if (r > 0) {
  2165. emulate_update_regs(regs, &op);
  2166. return 1;
  2167. }
  2168. err = 0;
  2169. size = GETSIZE(op.type);
  2170. switch (op.type & INSTR_TYPE_MASK) {
  2171. case CACHEOP:
  2172. if (!address_ok(regs, op.ea, 8))
  2173. return 0;
  2174. switch (op.type & CACHEOP_MASK) {
  2175. case DCBST:
  2176. __cacheop_user_asmx(op.ea, err, "dcbst");
  2177. break;
  2178. case DCBF:
  2179. __cacheop_user_asmx(op.ea, err, "dcbf");
  2180. break;
  2181. case DCBTST:
  2182. if (op.reg == 0)
  2183. prefetchw((void *) op.ea);
  2184. break;
  2185. case DCBT:
  2186. if (op.reg == 0)
  2187. prefetch((void *) op.ea);
  2188. break;
  2189. case ICBI:
  2190. __cacheop_user_asmx(op.ea, err, "icbi");
  2191. break;
  2192. }
  2193. if (err)
  2194. return 0;
  2195. goto instr_done;
  2196. case LARX:
  2197. if (op.ea & (size - 1))
  2198. break; /* can't handle misaligned */
  2199. if (!address_ok(regs, op.ea, size))
  2200. return 0;
  2201. err = 0;
  2202. switch (size) {
  2203. #ifdef __powerpc64__
  2204. case 1:
  2205. __get_user_asmx(val, op.ea, err, "lbarx");
  2206. break;
  2207. case 2:
  2208. __get_user_asmx(val, op.ea, err, "lharx");
  2209. break;
  2210. #endif
  2211. case 4:
  2212. __get_user_asmx(val, op.ea, err, "lwarx");
  2213. break;
  2214. #ifdef __powerpc64__
  2215. case 8:
  2216. __get_user_asmx(val, op.ea, err, "ldarx");
  2217. break;
  2218. case 16:
  2219. err = do_lqarx(op.ea, &regs->gpr[op.reg]);
  2220. goto ldst_done;
  2221. #endif
  2222. default:
  2223. return 0;
  2224. }
  2225. if (!err)
  2226. regs->gpr[op.reg] = val;
  2227. goto ldst_done;
  2228. case STCX:
  2229. if (op.ea & (size - 1))
  2230. break; /* can't handle misaligned */
  2231. if (!address_ok(regs, op.ea, size))
  2232. return 0;
  2233. err = 0;
  2234. switch (size) {
  2235. #ifdef __powerpc64__
  2236. case 1:
  2237. __put_user_asmx(op.val, op.ea, err, "stbcx.", cr);
  2238. break;
  2239. case 2:
  2240. __put_user_asmx(op.val, op.ea, err, "stbcx.", cr);
  2241. break;
  2242. #endif
  2243. case 4:
  2244. __put_user_asmx(op.val, op.ea, err, "stwcx.", cr);
  2245. break;
  2246. #ifdef __powerpc64__
  2247. case 8:
  2248. __put_user_asmx(op.val, op.ea, err, "stdcx.", cr);
  2249. break;
  2250. case 16:
  2251. err = do_stqcx(op.ea, regs->gpr[op.reg],
  2252. regs->gpr[op.reg + 1], &cr);
  2253. break;
  2254. #endif
  2255. default:
  2256. return 0;
  2257. }
  2258. if (!err)
  2259. regs->ccr = (regs->ccr & 0x0fffffff) |
  2260. (cr & 0xe0000000) |
  2261. ((regs->xer >> 3) & 0x10000000);
  2262. goto ldst_done;
  2263. case LOAD:
  2264. #ifdef __powerpc64__
  2265. if (size == 16) {
  2266. err = emulate_lq(regs, op.ea, op.reg);
  2267. goto ldst_done;
  2268. }
  2269. #endif
  2270. err = read_mem(&regs->gpr[op.reg], op.ea, size, regs);
  2271. if (!err) {
  2272. if (op.type & SIGNEXT)
  2273. do_signext(&regs->gpr[op.reg], size);
  2274. if (op.type & BYTEREV)
  2275. do_byterev(&regs->gpr[op.reg], size);
  2276. }
  2277. goto ldst_done;
  2278. #ifdef CONFIG_PPC_FPU
  2279. case LOAD_FP:
  2280. if (!(regs->msr & MSR_FP))
  2281. return 0;
  2282. if (size == 4)
  2283. err = do_fp_load(op.reg, do_lfs, op.ea, size, regs);
  2284. else
  2285. err = do_fp_load(op.reg, do_lfd, op.ea, size, regs);
  2286. goto ldst_done;
  2287. #endif
  2288. #ifdef CONFIG_ALTIVEC
  2289. case LOAD_VMX:
  2290. if (!(regs->msr & MSR_VEC))
  2291. return 0;
  2292. err = do_vec_load(op.reg, do_lvx, op.ea, regs);
  2293. goto ldst_done;
  2294. #endif
  2295. #ifdef CONFIG_VSX
  2296. case LOAD_VSX: {
  2297. char mem[16];
  2298. union vsx_reg buf;
  2299. unsigned long msrbit = MSR_VSX;
  2300. /*
  2301. * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
  2302. * when the target of the instruction is a vector register.
  2303. */
  2304. if (op.reg >= 32 && (op.vsx_flags & VSX_CHECK_VEC))
  2305. msrbit = MSR_VEC;
  2306. if (!(regs->msr & msrbit))
  2307. return 0;
  2308. if (!address_ok(regs, op.ea, size) ||
  2309. __copy_from_user(mem, (void __user *)op.ea, size))
  2310. return 0;
  2311. emulate_vsx_load(&op, &buf, mem);
  2312. load_vsrn(op.reg, &buf);
  2313. goto ldst_done;
  2314. }
  2315. #endif
  2316. case LOAD_MULTI:
  2317. if (regs->msr & MSR_LE)
  2318. return 0;
  2319. rd = op.reg;
  2320. for (i = 0; i < size; i += 4) {
  2321. nb = size - i;
  2322. if (nb > 4)
  2323. nb = 4;
  2324. err = read_mem(&regs->gpr[rd], op.ea, nb, regs);
  2325. if (err)
  2326. return 0;
  2327. if (nb < 4) /* left-justify last bytes */
  2328. regs->gpr[rd] <<= 32 - 8 * nb;
  2329. op.ea += 4;
  2330. ++rd;
  2331. }
  2332. goto instr_done;
  2333. case STORE:
  2334. #ifdef __powerpc64__
  2335. if (size == 16) {
  2336. err = emulate_stq(regs, op.ea, op.reg);
  2337. goto ldst_done;
  2338. }
  2339. #endif
  2340. if ((op.type & UPDATE) && size == sizeof(long) &&
  2341. op.reg == 1 && op.update_reg == 1 &&
  2342. !(regs->msr & MSR_PR) &&
  2343. op.ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
  2344. err = handle_stack_update(op.ea, regs);
  2345. goto ldst_done;
  2346. }
  2347. err = write_mem(op.val, op.ea, size, regs);
  2348. goto ldst_done;
  2349. #ifdef CONFIG_PPC_FPU
  2350. case STORE_FP:
  2351. if (!(regs->msr & MSR_FP))
  2352. return 0;
  2353. if (size == 4)
  2354. err = do_fp_store(op.reg, do_stfs, op.ea, size, regs);
  2355. else
  2356. err = do_fp_store(op.reg, do_stfd, op.ea, size, regs);
  2357. goto ldst_done;
  2358. #endif
  2359. #ifdef CONFIG_ALTIVEC
  2360. case STORE_VMX:
  2361. if (!(regs->msr & MSR_VEC))
  2362. return 0;
  2363. err = do_vec_store(op.reg, do_stvx, op.ea, regs);
  2364. goto ldst_done;
  2365. #endif
  2366. #ifdef CONFIG_VSX
  2367. case STORE_VSX: {
  2368. char mem[16];
  2369. union vsx_reg buf;
  2370. unsigned long msrbit = MSR_VSX;
  2371. /*
  2372. * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
  2373. * when the target of the instruction is a vector register.
  2374. */
  2375. if (op.reg >= 32 && (op.vsx_flags & VSX_CHECK_VEC))
  2376. msrbit = MSR_VEC;
  2377. if (!(regs->msr & msrbit))
  2378. return 0;
  2379. if (!address_ok(regs, op.ea, size))
  2380. return 0;
  2381. store_vsrn(op.reg, &buf);
  2382. emulate_vsx_store(&op, &buf, mem);
  2383. if (__copy_to_user((void __user *)op.ea, mem, size))
  2384. return 0;
  2385. goto ldst_done;
  2386. }
  2387. #endif
  2388. case STORE_MULTI:
  2389. if (regs->msr & MSR_LE)
  2390. return 0;
  2391. rd = op.reg;
  2392. for (i = 0; i < size; i += 4) {
  2393. val = regs->gpr[rd];
  2394. nb = size - i;
  2395. if (nb > 4)
  2396. nb = 4;
  2397. else
  2398. val >>= 32 - 8 * nb;
  2399. err = write_mem(val, op.ea, nb, regs);
  2400. if (err)
  2401. return 0;
  2402. op.ea += 4;
  2403. ++rd;
  2404. }
  2405. goto instr_done;
  2406. case MFMSR:
  2407. regs->gpr[op.reg] = regs->msr & MSR_MASK;
  2408. goto instr_done;
  2409. case MTMSR:
  2410. val = regs->gpr[op.reg];
  2411. if ((val & MSR_RI) == 0)
  2412. /* can't step mtmsr[d] that would clear MSR_RI */
  2413. return -1;
  2414. /* here op.val is the mask of bits to change */
  2415. regs->msr = (regs->msr & ~op.val) | (val & op.val);
  2416. goto instr_done;
  2417. #ifdef CONFIG_PPC64
  2418. case SYSCALL: /* sc */
  2419. /*
  2420. * N.B. this uses knowledge about how the syscall
  2421. * entry code works. If that is changed, this will
  2422. * need to be changed also.
  2423. */
  2424. if (regs->gpr[0] == 0x1ebe &&
  2425. cpu_has_feature(CPU_FTR_REAL_LE)) {
  2426. regs->msr ^= MSR_LE;
  2427. goto instr_done;
  2428. }
  2429. regs->gpr[9] = regs->gpr[13];
  2430. regs->gpr[10] = MSR_KERNEL;
  2431. regs->gpr[11] = regs->nip + 4;
  2432. regs->gpr[12] = regs->msr & MSR_MASK;
  2433. regs->gpr[13] = (unsigned long) get_paca();
  2434. regs->nip = (unsigned long) &system_call_common;
  2435. regs->msr = MSR_KERNEL;
  2436. return 1;
  2437. case RFI:
  2438. return -1;
  2439. #endif
  2440. }
  2441. return 0;
  2442. ldst_done:
  2443. if (err)
  2444. return 0;
  2445. if (op.type & UPDATE)
  2446. regs->gpr[op.update_reg] = op.ea;
  2447. instr_done:
  2448. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  2449. return 1;
  2450. }
  2451. NOKPROBE_SYMBOL(emulate_step);