disk-io.c 121 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #include "tree-checker.h"
  53. #include "ref-verify.h"
  54. #ifdef CONFIG_X86
  55. #include <asm/cpufeature.h>
  56. #endif
  57. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  58. BTRFS_HEADER_FLAG_RELOC |\
  59. BTRFS_SUPER_FLAG_ERROR |\
  60. BTRFS_SUPER_FLAG_SEEDING |\
  61. BTRFS_SUPER_FLAG_METADUMP)
  62. static const struct extent_io_ops btree_extent_io_ops;
  63. static void end_workqueue_fn(struct btrfs_work *work);
  64. static void free_fs_root(struct btrfs_root *root);
  65. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  66. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  67. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  68. struct btrfs_fs_info *fs_info);
  69. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  70. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  71. struct extent_io_tree *dirty_pages,
  72. int mark);
  73. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  74. struct extent_io_tree *pinned_extents);
  75. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  76. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  77. /*
  78. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  79. * is complete. This is used during reads to verify checksums, and it is used
  80. * by writes to insert metadata for new file extents after IO is complete.
  81. */
  82. struct btrfs_end_io_wq {
  83. struct bio *bio;
  84. bio_end_io_t *end_io;
  85. void *private;
  86. struct btrfs_fs_info *info;
  87. blk_status_t status;
  88. enum btrfs_wq_endio_type metadata;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. void *private_data;
  114. struct btrfs_fs_info *fs_info;
  115. struct bio *bio;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int mirror_num;
  119. unsigned long bio_flags;
  120. /*
  121. * bio_offset is optional, can be used if the pages in the bio
  122. * can't tell us where in the file the bio should go
  123. */
  124. u64 bio_offset;
  125. struct btrfs_work work;
  126. blk_status_t status;
  127. };
  128. /*
  129. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  130. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  131. * the level the eb occupies in the tree.
  132. *
  133. * Different roots are used for different purposes and may nest inside each
  134. * other and they require separate keysets. As lockdep keys should be
  135. * static, assign keysets according to the purpose of the root as indicated
  136. * by btrfs_root->objectid. This ensures that all special purpose roots
  137. * have separate keysets.
  138. *
  139. * Lock-nesting across peer nodes is always done with the immediate parent
  140. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  141. * subclass to avoid triggering lockdep warning in such cases.
  142. *
  143. * The key is set by the readpage_end_io_hook after the buffer has passed
  144. * csum validation but before the pages are unlocked. It is also set by
  145. * btrfs_init_new_buffer on freshly allocated blocks.
  146. *
  147. * We also add a check to make sure the highest level of the tree is the
  148. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  149. * needs update as well.
  150. */
  151. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  152. # if BTRFS_MAX_LEVEL != 8
  153. # error
  154. # endif
  155. static struct btrfs_lockdep_keyset {
  156. u64 id; /* root objectid */
  157. const char *name_stem; /* lock name stem */
  158. char names[BTRFS_MAX_LEVEL + 1][20];
  159. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  160. } btrfs_lockdep_keysets[] = {
  161. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  162. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  163. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  164. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  165. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  166. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  167. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  168. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  169. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  170. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  171. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  172. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  173. { .id = 0, .name_stem = "tree" },
  174. };
  175. void __init btrfs_init_lockdep(void)
  176. {
  177. int i, j;
  178. /* initialize lockdep class names */
  179. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  180. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  181. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  182. snprintf(ks->names[j], sizeof(ks->names[j]),
  183. "btrfs-%s-%02d", ks->name_stem, j);
  184. }
  185. }
  186. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  187. int level)
  188. {
  189. struct btrfs_lockdep_keyset *ks;
  190. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  191. /* find the matching keyset, id 0 is the default entry */
  192. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  193. if (ks->id == objectid)
  194. break;
  195. lockdep_set_class_and_name(&eb->lock,
  196. &ks->keys[level], ks->names[level]);
  197. }
  198. #endif
  199. /*
  200. * extents on the btree inode are pretty simple, there's one extent
  201. * that covers the entire device
  202. */
  203. static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  204. struct page *page, size_t pg_offset, u64 start, u64 len,
  205. int create)
  206. {
  207. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  208. struct extent_map_tree *em_tree = &inode->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev = fs_info->fs_devices->latest_bdev;
  215. read_unlock(&em_tree->lock);
  216. goto out;
  217. }
  218. read_unlock(&em_tree->lock);
  219. em = alloc_extent_map();
  220. if (!em) {
  221. em = ERR_PTR(-ENOMEM);
  222. goto out;
  223. }
  224. em->start = 0;
  225. em->len = (u64)-1;
  226. em->block_len = (u64)-1;
  227. em->block_start = 0;
  228. em->bdev = fs_info->fs_devices->latest_bdev;
  229. write_lock(&em_tree->lock);
  230. ret = add_extent_mapping(em_tree, em, 0);
  231. if (ret == -EEXIST) {
  232. free_extent_map(em);
  233. em = lookup_extent_mapping(em_tree, start, len);
  234. if (!em)
  235. em = ERR_PTR(-EIO);
  236. } else if (ret) {
  237. free_extent_map(em);
  238. em = ERR_PTR(ret);
  239. }
  240. write_unlock(&em_tree->lock);
  241. out:
  242. return em;
  243. }
  244. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  245. {
  246. return btrfs_crc32c(seed, data, len);
  247. }
  248. void btrfs_csum_final(u32 crc, u8 *result)
  249. {
  250. put_unaligned_le32(~crc, result);
  251. }
  252. /*
  253. * compute the csum for a btree block, and either verify it or write it
  254. * into the csum field of the block.
  255. */
  256. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  257. struct extent_buffer *buf,
  258. int verify)
  259. {
  260. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  261. char *result = NULL;
  262. unsigned long len;
  263. unsigned long cur_len;
  264. unsigned long offset = BTRFS_CSUM_SIZE;
  265. char *kaddr;
  266. unsigned long map_start;
  267. unsigned long map_len;
  268. int err;
  269. u32 crc = ~(u32)0;
  270. unsigned long inline_result;
  271. len = buf->len - offset;
  272. while (len > 0) {
  273. err = map_private_extent_buffer(buf, offset, 32,
  274. &kaddr, &map_start, &map_len);
  275. if (err)
  276. return err;
  277. cur_len = min(len, map_len - (offset - map_start));
  278. crc = btrfs_csum_data(kaddr + offset - map_start,
  279. crc, cur_len);
  280. len -= cur_len;
  281. offset += cur_len;
  282. }
  283. if (csum_size > sizeof(inline_result)) {
  284. result = kzalloc(csum_size, GFP_NOFS);
  285. if (!result)
  286. return -ENOMEM;
  287. } else {
  288. result = (char *)&inline_result;
  289. }
  290. btrfs_csum_final(crc, result);
  291. if (verify) {
  292. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  293. u32 val;
  294. u32 found = 0;
  295. memcpy(&found, result, csum_size);
  296. read_extent_buffer(buf, &val, 0, csum_size);
  297. btrfs_warn_rl(fs_info,
  298. "%s checksum verify failed on %llu wanted %X found %X level %d",
  299. fs_info->sb->s_id, buf->start,
  300. val, found, btrfs_header_level(buf));
  301. if (result != (char *)&inline_result)
  302. kfree(result);
  303. return -EUCLEAN;
  304. }
  305. } else {
  306. write_extent_buffer(buf, result, 0, csum_size);
  307. }
  308. if (result != (char *)&inline_result)
  309. kfree(result);
  310. return 0;
  311. }
  312. /*
  313. * we can't consider a given block up to date unless the transid of the
  314. * block matches the transid in the parent node's pointer. This is how we
  315. * detect blocks that either didn't get written at all or got written
  316. * in the wrong place.
  317. */
  318. static int verify_parent_transid(struct extent_io_tree *io_tree,
  319. struct extent_buffer *eb, u64 parent_transid,
  320. int atomic)
  321. {
  322. struct extent_state *cached_state = NULL;
  323. int ret;
  324. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  325. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  326. return 0;
  327. if (atomic)
  328. return -EAGAIN;
  329. if (need_lock) {
  330. btrfs_tree_read_lock(eb);
  331. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  332. }
  333. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  334. &cached_state);
  335. if (extent_buffer_uptodate(eb) &&
  336. btrfs_header_generation(eb) == parent_transid) {
  337. ret = 0;
  338. goto out;
  339. }
  340. btrfs_err_rl(eb->fs_info,
  341. "parent transid verify failed on %llu wanted %llu found %llu",
  342. eb->start,
  343. parent_transid, btrfs_header_generation(eb));
  344. ret = 1;
  345. /*
  346. * Things reading via commit roots that don't have normal protection,
  347. * like send, can have a really old block in cache that may point at a
  348. * block that has been freed and re-allocated. So don't clear uptodate
  349. * if we find an eb that is under IO (dirty/writeback) because we could
  350. * end up reading in the stale data and then writing it back out and
  351. * making everybody very sad.
  352. */
  353. if (!extent_buffer_under_io(eb))
  354. clear_extent_buffer_uptodate(eb);
  355. out:
  356. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  357. &cached_state, GFP_NOFS);
  358. if (need_lock)
  359. btrfs_tree_read_unlock_blocking(eb);
  360. return ret;
  361. }
  362. /*
  363. * Return 0 if the superblock checksum type matches the checksum value of that
  364. * algorithm. Pass the raw disk superblock data.
  365. */
  366. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  367. char *raw_disk_sb)
  368. {
  369. struct btrfs_super_block *disk_sb =
  370. (struct btrfs_super_block *)raw_disk_sb;
  371. u16 csum_type = btrfs_super_csum_type(disk_sb);
  372. int ret = 0;
  373. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  374. u32 crc = ~(u32)0;
  375. const int csum_size = sizeof(crc);
  376. char result[csum_size];
  377. /*
  378. * The super_block structure does not span the whole
  379. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  380. * is filled with zeros and is included in the checksum.
  381. */
  382. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  383. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  384. btrfs_csum_final(crc, result);
  385. if (memcmp(raw_disk_sb, result, csum_size))
  386. ret = 1;
  387. }
  388. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  389. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  390. csum_type);
  391. ret = 1;
  392. }
  393. return ret;
  394. }
  395. /*
  396. * helper to read a given tree block, doing retries as required when
  397. * the checksums don't match and we have alternate mirrors to try.
  398. */
  399. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  400. struct extent_buffer *eb,
  401. u64 parent_transid)
  402. {
  403. struct extent_io_tree *io_tree;
  404. int failed = 0;
  405. int ret;
  406. int num_copies = 0;
  407. int mirror_num = 0;
  408. int failed_mirror = 0;
  409. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  410. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  411. while (1) {
  412. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  413. btree_get_extent, mirror_num);
  414. if (!ret) {
  415. if (!verify_parent_transid(io_tree, eb,
  416. parent_transid, 0))
  417. break;
  418. else
  419. ret = -EIO;
  420. }
  421. /*
  422. * This buffer's crc is fine, but its contents are corrupted, so
  423. * there is no reason to read the other copies, they won't be
  424. * any less wrong.
  425. */
  426. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  427. break;
  428. num_copies = btrfs_num_copies(fs_info,
  429. eb->start, eb->len);
  430. if (num_copies == 1)
  431. break;
  432. if (!failed_mirror) {
  433. failed = 1;
  434. failed_mirror = eb->read_mirror;
  435. }
  436. mirror_num++;
  437. if (mirror_num == failed_mirror)
  438. mirror_num++;
  439. if (mirror_num > num_copies)
  440. break;
  441. }
  442. if (failed && !ret && failed_mirror)
  443. repair_eb_io_failure(fs_info, eb, failed_mirror);
  444. return ret;
  445. }
  446. /*
  447. * checksum a dirty tree block before IO. This has extra checks to make sure
  448. * we only fill in the checksum field in the first page of a multi-page block
  449. */
  450. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  451. {
  452. u64 start = page_offset(page);
  453. u64 found_start;
  454. struct extent_buffer *eb;
  455. eb = (struct extent_buffer *)page->private;
  456. if (page != eb->pages[0])
  457. return 0;
  458. found_start = btrfs_header_bytenr(eb);
  459. /*
  460. * Please do not consolidate these warnings into a single if.
  461. * It is useful to know what went wrong.
  462. */
  463. if (WARN_ON(found_start != start))
  464. return -EUCLEAN;
  465. if (WARN_ON(!PageUptodate(page)))
  466. return -EUCLEAN;
  467. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  468. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  469. return csum_tree_block(fs_info, eb, 0);
  470. }
  471. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  472. struct extent_buffer *eb)
  473. {
  474. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  475. u8 fsid[BTRFS_FSID_SIZE];
  476. int ret = 1;
  477. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  478. while (fs_devices) {
  479. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  480. ret = 0;
  481. break;
  482. }
  483. fs_devices = fs_devices->seed;
  484. }
  485. return ret;
  486. }
  487. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  488. u64 phy_offset, struct page *page,
  489. u64 start, u64 end, int mirror)
  490. {
  491. u64 found_start;
  492. int found_level;
  493. struct extent_buffer *eb;
  494. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  495. struct btrfs_fs_info *fs_info = root->fs_info;
  496. int ret = 0;
  497. int reads_done;
  498. if (!page->private)
  499. goto out;
  500. eb = (struct extent_buffer *)page->private;
  501. /* the pending IO might have been the only thing that kept this buffer
  502. * in memory. Make sure we have a ref for all this other checks
  503. */
  504. extent_buffer_get(eb);
  505. reads_done = atomic_dec_and_test(&eb->io_pages);
  506. if (!reads_done)
  507. goto err;
  508. eb->read_mirror = mirror;
  509. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  510. ret = -EIO;
  511. goto err;
  512. }
  513. found_start = btrfs_header_bytenr(eb);
  514. if (found_start != eb->start) {
  515. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  516. found_start, eb->start);
  517. ret = -EIO;
  518. goto err;
  519. }
  520. if (check_tree_block_fsid(fs_info, eb)) {
  521. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  522. eb->start);
  523. ret = -EIO;
  524. goto err;
  525. }
  526. found_level = btrfs_header_level(eb);
  527. if (found_level >= BTRFS_MAX_LEVEL) {
  528. btrfs_err(fs_info, "bad tree block level %d",
  529. (int)btrfs_header_level(eb));
  530. ret = -EIO;
  531. goto err;
  532. }
  533. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  534. eb, found_level);
  535. ret = csum_tree_block(fs_info, eb, 1);
  536. if (ret)
  537. goto err;
  538. /*
  539. * If this is a leaf block and it is corrupt, set the corrupt bit so
  540. * that we don't try and read the other copies of this block, just
  541. * return -EIO.
  542. */
  543. if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
  544. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  545. ret = -EIO;
  546. }
  547. if (found_level > 0 && btrfs_check_node(root, eb))
  548. ret = -EIO;
  549. if (!ret)
  550. set_extent_buffer_uptodate(eb);
  551. err:
  552. if (reads_done &&
  553. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  554. btree_readahead_hook(eb, ret);
  555. if (ret) {
  556. /*
  557. * our io error hook is going to dec the io pages
  558. * again, we have to make sure it has something
  559. * to decrement
  560. */
  561. atomic_inc(&eb->io_pages);
  562. clear_extent_buffer_uptodate(eb);
  563. }
  564. free_extent_buffer(eb);
  565. out:
  566. return ret;
  567. }
  568. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  569. {
  570. struct extent_buffer *eb;
  571. eb = (struct extent_buffer *)page->private;
  572. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  573. eb->read_mirror = failed_mirror;
  574. atomic_dec(&eb->io_pages);
  575. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  576. btree_readahead_hook(eb, -EIO);
  577. return -EIO; /* we fixed nothing */
  578. }
  579. static void end_workqueue_bio(struct bio *bio)
  580. {
  581. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  582. struct btrfs_fs_info *fs_info;
  583. struct btrfs_workqueue *wq;
  584. btrfs_work_func_t func;
  585. fs_info = end_io_wq->info;
  586. end_io_wq->status = bio->bi_status;
  587. if (bio_op(bio) == REQ_OP_WRITE) {
  588. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  589. wq = fs_info->endio_meta_write_workers;
  590. func = btrfs_endio_meta_write_helper;
  591. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  592. wq = fs_info->endio_freespace_worker;
  593. func = btrfs_freespace_write_helper;
  594. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  595. wq = fs_info->endio_raid56_workers;
  596. func = btrfs_endio_raid56_helper;
  597. } else {
  598. wq = fs_info->endio_write_workers;
  599. func = btrfs_endio_write_helper;
  600. }
  601. } else {
  602. if (unlikely(end_io_wq->metadata ==
  603. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  604. wq = fs_info->endio_repair_workers;
  605. func = btrfs_endio_repair_helper;
  606. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  607. wq = fs_info->endio_raid56_workers;
  608. func = btrfs_endio_raid56_helper;
  609. } else if (end_io_wq->metadata) {
  610. wq = fs_info->endio_meta_workers;
  611. func = btrfs_endio_meta_helper;
  612. } else {
  613. wq = fs_info->endio_workers;
  614. func = btrfs_endio_helper;
  615. }
  616. }
  617. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  618. btrfs_queue_work(wq, &end_io_wq->work);
  619. }
  620. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  621. enum btrfs_wq_endio_type metadata)
  622. {
  623. struct btrfs_end_io_wq *end_io_wq;
  624. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  625. if (!end_io_wq)
  626. return BLK_STS_RESOURCE;
  627. end_io_wq->private = bio->bi_private;
  628. end_io_wq->end_io = bio->bi_end_io;
  629. end_io_wq->info = info;
  630. end_io_wq->status = 0;
  631. end_io_wq->bio = bio;
  632. end_io_wq->metadata = metadata;
  633. bio->bi_private = end_io_wq;
  634. bio->bi_end_io = end_workqueue_bio;
  635. return 0;
  636. }
  637. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  638. {
  639. unsigned long limit = min_t(unsigned long,
  640. info->thread_pool_size,
  641. info->fs_devices->open_devices);
  642. return 256 * limit;
  643. }
  644. static void run_one_async_start(struct btrfs_work *work)
  645. {
  646. struct async_submit_bio *async;
  647. blk_status_t ret;
  648. async = container_of(work, struct async_submit_bio, work);
  649. ret = async->submit_bio_start(async->private_data, async->bio,
  650. async->mirror_num, async->bio_flags,
  651. async->bio_offset);
  652. if (ret)
  653. async->status = ret;
  654. }
  655. static void run_one_async_done(struct btrfs_work *work)
  656. {
  657. struct async_submit_bio *async;
  658. async = container_of(work, struct async_submit_bio, work);
  659. /* If an error occurred we just want to clean up the bio and move on */
  660. if (async->status) {
  661. async->bio->bi_status = async->status;
  662. bio_endio(async->bio);
  663. return;
  664. }
  665. async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
  666. async->bio_flags, async->bio_offset);
  667. }
  668. static void run_one_async_free(struct btrfs_work *work)
  669. {
  670. struct async_submit_bio *async;
  671. async = container_of(work, struct async_submit_bio, work);
  672. kfree(async);
  673. }
  674. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
  675. int mirror_num, unsigned long bio_flags,
  676. u64 bio_offset, void *private_data,
  677. extent_submit_bio_hook_t *submit_bio_start,
  678. extent_submit_bio_hook_t *submit_bio_done)
  679. {
  680. struct async_submit_bio *async;
  681. async = kmalloc(sizeof(*async), GFP_NOFS);
  682. if (!async)
  683. return BLK_STS_RESOURCE;
  684. async->private_data = private_data;
  685. async->fs_info = fs_info;
  686. async->bio = bio;
  687. async->mirror_num = mirror_num;
  688. async->submit_bio_start = submit_bio_start;
  689. async->submit_bio_done = submit_bio_done;
  690. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  691. run_one_async_done, run_one_async_free);
  692. async->bio_flags = bio_flags;
  693. async->bio_offset = bio_offset;
  694. async->status = 0;
  695. if (op_is_sync(bio->bi_opf))
  696. btrfs_set_work_high_priority(&async->work);
  697. btrfs_queue_work(fs_info->workers, &async->work);
  698. return 0;
  699. }
  700. static blk_status_t btree_csum_one_bio(struct bio *bio)
  701. {
  702. struct bio_vec *bvec;
  703. struct btrfs_root *root;
  704. int i, ret = 0;
  705. ASSERT(!bio_flagged(bio, BIO_CLONED));
  706. bio_for_each_segment_all(bvec, bio, i) {
  707. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  708. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  709. if (ret)
  710. break;
  711. }
  712. return errno_to_blk_status(ret);
  713. }
  714. static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
  715. int mirror_num, unsigned long bio_flags,
  716. u64 bio_offset)
  717. {
  718. /*
  719. * when we're called for a write, we're already in the async
  720. * submission context. Just jump into btrfs_map_bio
  721. */
  722. return btree_csum_one_bio(bio);
  723. }
  724. static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
  725. int mirror_num, unsigned long bio_flags,
  726. u64 bio_offset)
  727. {
  728. struct inode *inode = private_data;
  729. blk_status_t ret;
  730. /*
  731. * when we're called for a write, we're already in the async
  732. * submission context. Just jump into btrfs_map_bio
  733. */
  734. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  735. if (ret) {
  736. bio->bi_status = ret;
  737. bio_endio(bio);
  738. }
  739. return ret;
  740. }
  741. static int check_async_write(struct btrfs_inode *bi)
  742. {
  743. if (atomic_read(&bi->sync_writers))
  744. return 0;
  745. #ifdef CONFIG_X86
  746. if (static_cpu_has(X86_FEATURE_XMM4_2))
  747. return 0;
  748. #endif
  749. return 1;
  750. }
  751. static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
  752. int mirror_num, unsigned long bio_flags,
  753. u64 bio_offset)
  754. {
  755. struct inode *inode = private_data;
  756. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  757. int async = check_async_write(BTRFS_I(inode));
  758. blk_status_t ret;
  759. if (bio_op(bio) != REQ_OP_WRITE) {
  760. /*
  761. * called for a read, do the setup so that checksum validation
  762. * can happen in the async kernel threads
  763. */
  764. ret = btrfs_bio_wq_end_io(fs_info, bio,
  765. BTRFS_WQ_ENDIO_METADATA);
  766. if (ret)
  767. goto out_w_error;
  768. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  769. } else if (!async) {
  770. ret = btree_csum_one_bio(bio);
  771. if (ret)
  772. goto out_w_error;
  773. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  774. } else {
  775. /*
  776. * kthread helpers are used to submit writes so that
  777. * checksumming can happen in parallel across all CPUs
  778. */
  779. ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
  780. bio_offset, private_data,
  781. __btree_submit_bio_start,
  782. __btree_submit_bio_done);
  783. }
  784. if (ret)
  785. goto out_w_error;
  786. return 0;
  787. out_w_error:
  788. bio->bi_status = ret;
  789. bio_endio(bio);
  790. return ret;
  791. }
  792. #ifdef CONFIG_MIGRATION
  793. static int btree_migratepage(struct address_space *mapping,
  794. struct page *newpage, struct page *page,
  795. enum migrate_mode mode)
  796. {
  797. /*
  798. * we can't safely write a btree page from here,
  799. * we haven't done the locking hook
  800. */
  801. if (PageDirty(page))
  802. return -EAGAIN;
  803. /*
  804. * Buffers may be managed in a filesystem specific way.
  805. * We must have no buffers or drop them.
  806. */
  807. if (page_has_private(page) &&
  808. !try_to_release_page(page, GFP_KERNEL))
  809. return -EAGAIN;
  810. return migrate_page(mapping, newpage, page, mode);
  811. }
  812. #endif
  813. static int btree_writepages(struct address_space *mapping,
  814. struct writeback_control *wbc)
  815. {
  816. struct btrfs_fs_info *fs_info;
  817. int ret;
  818. if (wbc->sync_mode == WB_SYNC_NONE) {
  819. if (wbc->for_kupdate)
  820. return 0;
  821. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  822. /* this is a bit racy, but that's ok */
  823. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  824. BTRFS_DIRTY_METADATA_THRESH);
  825. if (ret < 0)
  826. return 0;
  827. }
  828. return btree_write_cache_pages(mapping, wbc);
  829. }
  830. static int btree_readpage(struct file *file, struct page *page)
  831. {
  832. struct extent_io_tree *tree;
  833. tree = &BTRFS_I(page->mapping->host)->io_tree;
  834. return extent_read_full_page(tree, page, btree_get_extent, 0);
  835. }
  836. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  837. {
  838. if (PageWriteback(page) || PageDirty(page))
  839. return 0;
  840. return try_release_extent_buffer(page);
  841. }
  842. static void btree_invalidatepage(struct page *page, unsigned int offset,
  843. unsigned int length)
  844. {
  845. struct extent_io_tree *tree;
  846. tree = &BTRFS_I(page->mapping->host)->io_tree;
  847. extent_invalidatepage(tree, page, offset);
  848. btree_releasepage(page, GFP_NOFS);
  849. if (PagePrivate(page)) {
  850. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  851. "page private not zero on page %llu",
  852. (unsigned long long)page_offset(page));
  853. ClearPagePrivate(page);
  854. set_page_private(page, 0);
  855. put_page(page);
  856. }
  857. }
  858. static int btree_set_page_dirty(struct page *page)
  859. {
  860. #ifdef DEBUG
  861. struct extent_buffer *eb;
  862. BUG_ON(!PagePrivate(page));
  863. eb = (struct extent_buffer *)page->private;
  864. BUG_ON(!eb);
  865. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  866. BUG_ON(!atomic_read(&eb->refs));
  867. btrfs_assert_tree_locked(eb);
  868. #endif
  869. return __set_page_dirty_nobuffers(page);
  870. }
  871. static const struct address_space_operations btree_aops = {
  872. .readpage = btree_readpage,
  873. .writepages = btree_writepages,
  874. .releasepage = btree_releasepage,
  875. .invalidatepage = btree_invalidatepage,
  876. #ifdef CONFIG_MIGRATION
  877. .migratepage = btree_migratepage,
  878. #endif
  879. .set_page_dirty = btree_set_page_dirty,
  880. };
  881. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  882. {
  883. struct extent_buffer *buf = NULL;
  884. struct inode *btree_inode = fs_info->btree_inode;
  885. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  886. if (IS_ERR(buf))
  887. return;
  888. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  889. buf, WAIT_NONE, btree_get_extent, 0);
  890. free_extent_buffer(buf);
  891. }
  892. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  893. int mirror_num, struct extent_buffer **eb)
  894. {
  895. struct extent_buffer *buf = NULL;
  896. struct inode *btree_inode = fs_info->btree_inode;
  897. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  898. int ret;
  899. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  900. if (IS_ERR(buf))
  901. return 0;
  902. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  903. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  904. btree_get_extent, mirror_num);
  905. if (ret) {
  906. free_extent_buffer(buf);
  907. return ret;
  908. }
  909. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  910. free_extent_buffer(buf);
  911. return -EIO;
  912. } else if (extent_buffer_uptodate(buf)) {
  913. *eb = buf;
  914. } else {
  915. free_extent_buffer(buf);
  916. }
  917. return 0;
  918. }
  919. struct extent_buffer *btrfs_find_create_tree_block(
  920. struct btrfs_fs_info *fs_info,
  921. u64 bytenr)
  922. {
  923. if (btrfs_is_testing(fs_info))
  924. return alloc_test_extent_buffer(fs_info, bytenr);
  925. return alloc_extent_buffer(fs_info, bytenr);
  926. }
  927. int btrfs_write_tree_block(struct extent_buffer *buf)
  928. {
  929. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  930. buf->start + buf->len - 1);
  931. }
  932. void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  933. {
  934. filemap_fdatawait_range(buf->pages[0]->mapping,
  935. buf->start, buf->start + buf->len - 1);
  936. }
  937. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  938. u64 parent_transid)
  939. {
  940. struct extent_buffer *buf = NULL;
  941. int ret;
  942. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  943. if (IS_ERR(buf))
  944. return buf;
  945. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  946. if (ret) {
  947. free_extent_buffer(buf);
  948. return ERR_PTR(ret);
  949. }
  950. return buf;
  951. }
  952. void clean_tree_block(struct btrfs_fs_info *fs_info,
  953. struct extent_buffer *buf)
  954. {
  955. if (btrfs_header_generation(buf) ==
  956. fs_info->running_transaction->transid) {
  957. btrfs_assert_tree_locked(buf);
  958. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  959. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  960. -buf->len,
  961. fs_info->dirty_metadata_batch);
  962. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  963. btrfs_set_lock_blocking(buf);
  964. clear_extent_buffer_dirty(buf);
  965. }
  966. }
  967. }
  968. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  969. {
  970. struct btrfs_subvolume_writers *writers;
  971. int ret;
  972. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  973. if (!writers)
  974. return ERR_PTR(-ENOMEM);
  975. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  976. if (ret < 0) {
  977. kfree(writers);
  978. return ERR_PTR(ret);
  979. }
  980. init_waitqueue_head(&writers->wait);
  981. return writers;
  982. }
  983. static void
  984. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  985. {
  986. percpu_counter_destroy(&writers->counter);
  987. kfree(writers);
  988. }
  989. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  990. u64 objectid)
  991. {
  992. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  993. root->node = NULL;
  994. root->commit_root = NULL;
  995. root->state = 0;
  996. root->orphan_cleanup_state = 0;
  997. root->objectid = objectid;
  998. root->last_trans = 0;
  999. root->highest_objectid = 0;
  1000. root->nr_delalloc_inodes = 0;
  1001. root->nr_ordered_extents = 0;
  1002. root->name = NULL;
  1003. root->inode_tree = RB_ROOT;
  1004. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1005. root->block_rsv = NULL;
  1006. root->orphan_block_rsv = NULL;
  1007. INIT_LIST_HEAD(&root->dirty_list);
  1008. INIT_LIST_HEAD(&root->root_list);
  1009. INIT_LIST_HEAD(&root->delalloc_inodes);
  1010. INIT_LIST_HEAD(&root->delalloc_root);
  1011. INIT_LIST_HEAD(&root->ordered_extents);
  1012. INIT_LIST_HEAD(&root->ordered_root);
  1013. INIT_LIST_HEAD(&root->logged_list[0]);
  1014. INIT_LIST_HEAD(&root->logged_list[1]);
  1015. spin_lock_init(&root->orphan_lock);
  1016. spin_lock_init(&root->inode_lock);
  1017. spin_lock_init(&root->delalloc_lock);
  1018. spin_lock_init(&root->ordered_extent_lock);
  1019. spin_lock_init(&root->accounting_lock);
  1020. spin_lock_init(&root->log_extents_lock[0]);
  1021. spin_lock_init(&root->log_extents_lock[1]);
  1022. mutex_init(&root->objectid_mutex);
  1023. mutex_init(&root->log_mutex);
  1024. mutex_init(&root->ordered_extent_mutex);
  1025. mutex_init(&root->delalloc_mutex);
  1026. init_waitqueue_head(&root->log_writer_wait);
  1027. init_waitqueue_head(&root->log_commit_wait[0]);
  1028. init_waitqueue_head(&root->log_commit_wait[1]);
  1029. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1030. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1031. atomic_set(&root->log_commit[0], 0);
  1032. atomic_set(&root->log_commit[1], 0);
  1033. atomic_set(&root->log_writers, 0);
  1034. atomic_set(&root->log_batch, 0);
  1035. atomic_set(&root->orphan_inodes, 0);
  1036. refcount_set(&root->refs, 1);
  1037. atomic_set(&root->will_be_snapshotted, 0);
  1038. atomic64_set(&root->qgroup_meta_rsv, 0);
  1039. root->log_transid = 0;
  1040. root->log_transid_committed = -1;
  1041. root->last_log_commit = 0;
  1042. if (!dummy)
  1043. extent_io_tree_init(&root->dirty_log_pages, NULL);
  1044. memset(&root->root_key, 0, sizeof(root->root_key));
  1045. memset(&root->root_item, 0, sizeof(root->root_item));
  1046. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1047. if (!dummy)
  1048. root->defrag_trans_start = fs_info->generation;
  1049. else
  1050. root->defrag_trans_start = 0;
  1051. root->root_key.objectid = objectid;
  1052. root->anon_dev = 0;
  1053. spin_lock_init(&root->root_item_lock);
  1054. }
  1055. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1056. gfp_t flags)
  1057. {
  1058. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1059. if (root)
  1060. root->fs_info = fs_info;
  1061. return root;
  1062. }
  1063. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1064. /* Should only be used by the testing infrastructure */
  1065. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1066. {
  1067. struct btrfs_root *root;
  1068. if (!fs_info)
  1069. return ERR_PTR(-EINVAL);
  1070. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1071. if (!root)
  1072. return ERR_PTR(-ENOMEM);
  1073. /* We don't use the stripesize in selftest, set it as sectorsize */
  1074. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1075. root->alloc_bytenr = 0;
  1076. return root;
  1077. }
  1078. #endif
  1079. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1080. struct btrfs_fs_info *fs_info,
  1081. u64 objectid)
  1082. {
  1083. struct extent_buffer *leaf;
  1084. struct btrfs_root *tree_root = fs_info->tree_root;
  1085. struct btrfs_root *root;
  1086. struct btrfs_key key;
  1087. int ret = 0;
  1088. uuid_le uuid = NULL_UUID_LE;
  1089. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1090. if (!root)
  1091. return ERR_PTR(-ENOMEM);
  1092. __setup_root(root, fs_info, objectid);
  1093. root->root_key.objectid = objectid;
  1094. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1095. root->root_key.offset = 0;
  1096. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1097. if (IS_ERR(leaf)) {
  1098. ret = PTR_ERR(leaf);
  1099. leaf = NULL;
  1100. goto fail;
  1101. }
  1102. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1103. btrfs_set_header_bytenr(leaf, leaf->start);
  1104. btrfs_set_header_generation(leaf, trans->transid);
  1105. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1106. btrfs_set_header_owner(leaf, objectid);
  1107. root->node = leaf;
  1108. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1109. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1110. btrfs_mark_buffer_dirty(leaf);
  1111. root->commit_root = btrfs_root_node(root);
  1112. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1113. root->root_item.flags = 0;
  1114. root->root_item.byte_limit = 0;
  1115. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1116. btrfs_set_root_generation(&root->root_item, trans->transid);
  1117. btrfs_set_root_level(&root->root_item, 0);
  1118. btrfs_set_root_refs(&root->root_item, 1);
  1119. btrfs_set_root_used(&root->root_item, leaf->len);
  1120. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1121. btrfs_set_root_dirid(&root->root_item, 0);
  1122. if (is_fstree(objectid))
  1123. uuid_le_gen(&uuid);
  1124. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1125. root->root_item.drop_level = 0;
  1126. key.objectid = objectid;
  1127. key.type = BTRFS_ROOT_ITEM_KEY;
  1128. key.offset = 0;
  1129. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1130. if (ret)
  1131. goto fail;
  1132. btrfs_tree_unlock(leaf);
  1133. return root;
  1134. fail:
  1135. if (leaf) {
  1136. btrfs_tree_unlock(leaf);
  1137. free_extent_buffer(root->commit_root);
  1138. free_extent_buffer(leaf);
  1139. }
  1140. kfree(root);
  1141. return ERR_PTR(ret);
  1142. }
  1143. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1144. struct btrfs_fs_info *fs_info)
  1145. {
  1146. struct btrfs_root *root;
  1147. struct extent_buffer *leaf;
  1148. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1149. if (!root)
  1150. return ERR_PTR(-ENOMEM);
  1151. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1152. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1153. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1154. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1155. /*
  1156. * DON'T set REF_COWS for log trees
  1157. *
  1158. * log trees do not get reference counted because they go away
  1159. * before a real commit is actually done. They do store pointers
  1160. * to file data extents, and those reference counts still get
  1161. * updated (along with back refs to the log tree).
  1162. */
  1163. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1164. NULL, 0, 0, 0);
  1165. if (IS_ERR(leaf)) {
  1166. kfree(root);
  1167. return ERR_CAST(leaf);
  1168. }
  1169. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1170. btrfs_set_header_bytenr(leaf, leaf->start);
  1171. btrfs_set_header_generation(leaf, trans->transid);
  1172. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1173. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1174. root->node = leaf;
  1175. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1176. btrfs_mark_buffer_dirty(root->node);
  1177. btrfs_tree_unlock(root->node);
  1178. return root;
  1179. }
  1180. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1181. struct btrfs_fs_info *fs_info)
  1182. {
  1183. struct btrfs_root *log_root;
  1184. log_root = alloc_log_tree(trans, fs_info);
  1185. if (IS_ERR(log_root))
  1186. return PTR_ERR(log_root);
  1187. WARN_ON(fs_info->log_root_tree);
  1188. fs_info->log_root_tree = log_root;
  1189. return 0;
  1190. }
  1191. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1192. struct btrfs_root *root)
  1193. {
  1194. struct btrfs_fs_info *fs_info = root->fs_info;
  1195. struct btrfs_root *log_root;
  1196. struct btrfs_inode_item *inode_item;
  1197. log_root = alloc_log_tree(trans, fs_info);
  1198. if (IS_ERR(log_root))
  1199. return PTR_ERR(log_root);
  1200. log_root->last_trans = trans->transid;
  1201. log_root->root_key.offset = root->root_key.objectid;
  1202. inode_item = &log_root->root_item.inode;
  1203. btrfs_set_stack_inode_generation(inode_item, 1);
  1204. btrfs_set_stack_inode_size(inode_item, 3);
  1205. btrfs_set_stack_inode_nlink(inode_item, 1);
  1206. btrfs_set_stack_inode_nbytes(inode_item,
  1207. fs_info->nodesize);
  1208. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1209. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1210. WARN_ON(root->log_root);
  1211. root->log_root = log_root;
  1212. root->log_transid = 0;
  1213. root->log_transid_committed = -1;
  1214. root->last_log_commit = 0;
  1215. return 0;
  1216. }
  1217. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1218. struct btrfs_key *key)
  1219. {
  1220. struct btrfs_root *root;
  1221. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1222. struct btrfs_path *path;
  1223. u64 generation;
  1224. int ret;
  1225. path = btrfs_alloc_path();
  1226. if (!path)
  1227. return ERR_PTR(-ENOMEM);
  1228. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1229. if (!root) {
  1230. ret = -ENOMEM;
  1231. goto alloc_fail;
  1232. }
  1233. __setup_root(root, fs_info, key->objectid);
  1234. ret = btrfs_find_root(tree_root, key, path,
  1235. &root->root_item, &root->root_key);
  1236. if (ret) {
  1237. if (ret > 0)
  1238. ret = -ENOENT;
  1239. goto find_fail;
  1240. }
  1241. generation = btrfs_root_generation(&root->root_item);
  1242. root->node = read_tree_block(fs_info,
  1243. btrfs_root_bytenr(&root->root_item),
  1244. generation);
  1245. if (IS_ERR(root->node)) {
  1246. ret = PTR_ERR(root->node);
  1247. goto find_fail;
  1248. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1249. ret = -EIO;
  1250. free_extent_buffer(root->node);
  1251. goto find_fail;
  1252. }
  1253. root->commit_root = btrfs_root_node(root);
  1254. out:
  1255. btrfs_free_path(path);
  1256. return root;
  1257. find_fail:
  1258. kfree(root);
  1259. alloc_fail:
  1260. root = ERR_PTR(ret);
  1261. goto out;
  1262. }
  1263. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1264. struct btrfs_key *location)
  1265. {
  1266. struct btrfs_root *root;
  1267. root = btrfs_read_tree_root(tree_root, location);
  1268. if (IS_ERR(root))
  1269. return root;
  1270. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1271. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1272. btrfs_check_and_init_root_item(&root->root_item);
  1273. }
  1274. return root;
  1275. }
  1276. int btrfs_init_fs_root(struct btrfs_root *root)
  1277. {
  1278. int ret;
  1279. struct btrfs_subvolume_writers *writers;
  1280. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1281. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1282. GFP_NOFS);
  1283. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1284. ret = -ENOMEM;
  1285. goto fail;
  1286. }
  1287. writers = btrfs_alloc_subvolume_writers();
  1288. if (IS_ERR(writers)) {
  1289. ret = PTR_ERR(writers);
  1290. goto fail;
  1291. }
  1292. root->subv_writers = writers;
  1293. btrfs_init_free_ino_ctl(root);
  1294. spin_lock_init(&root->ino_cache_lock);
  1295. init_waitqueue_head(&root->ino_cache_wait);
  1296. ret = get_anon_bdev(&root->anon_dev);
  1297. if (ret)
  1298. goto fail;
  1299. mutex_lock(&root->objectid_mutex);
  1300. ret = btrfs_find_highest_objectid(root,
  1301. &root->highest_objectid);
  1302. if (ret) {
  1303. mutex_unlock(&root->objectid_mutex);
  1304. goto fail;
  1305. }
  1306. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1307. mutex_unlock(&root->objectid_mutex);
  1308. return 0;
  1309. fail:
  1310. /* the caller is responsible to call free_fs_root */
  1311. return ret;
  1312. }
  1313. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1314. u64 root_id)
  1315. {
  1316. struct btrfs_root *root;
  1317. spin_lock(&fs_info->fs_roots_radix_lock);
  1318. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1319. (unsigned long)root_id);
  1320. spin_unlock(&fs_info->fs_roots_radix_lock);
  1321. return root;
  1322. }
  1323. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1324. struct btrfs_root *root)
  1325. {
  1326. int ret;
  1327. ret = radix_tree_preload(GFP_NOFS);
  1328. if (ret)
  1329. return ret;
  1330. spin_lock(&fs_info->fs_roots_radix_lock);
  1331. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1332. (unsigned long)root->root_key.objectid,
  1333. root);
  1334. if (ret == 0)
  1335. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1336. spin_unlock(&fs_info->fs_roots_radix_lock);
  1337. radix_tree_preload_end();
  1338. return ret;
  1339. }
  1340. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1341. struct btrfs_key *location,
  1342. bool check_ref)
  1343. {
  1344. struct btrfs_root *root;
  1345. struct btrfs_path *path;
  1346. struct btrfs_key key;
  1347. int ret;
  1348. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1349. return fs_info->tree_root;
  1350. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1351. return fs_info->extent_root;
  1352. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1353. return fs_info->chunk_root;
  1354. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1355. return fs_info->dev_root;
  1356. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1357. return fs_info->csum_root;
  1358. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1359. return fs_info->quota_root ? fs_info->quota_root :
  1360. ERR_PTR(-ENOENT);
  1361. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1362. return fs_info->uuid_root ? fs_info->uuid_root :
  1363. ERR_PTR(-ENOENT);
  1364. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1365. return fs_info->free_space_root ? fs_info->free_space_root :
  1366. ERR_PTR(-ENOENT);
  1367. again:
  1368. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1369. if (root) {
  1370. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1371. return ERR_PTR(-ENOENT);
  1372. return root;
  1373. }
  1374. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1375. if (IS_ERR(root))
  1376. return root;
  1377. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1378. ret = -ENOENT;
  1379. goto fail;
  1380. }
  1381. ret = btrfs_init_fs_root(root);
  1382. if (ret)
  1383. goto fail;
  1384. path = btrfs_alloc_path();
  1385. if (!path) {
  1386. ret = -ENOMEM;
  1387. goto fail;
  1388. }
  1389. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1390. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1391. key.offset = location->objectid;
  1392. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1393. btrfs_free_path(path);
  1394. if (ret < 0)
  1395. goto fail;
  1396. if (ret == 0)
  1397. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1398. ret = btrfs_insert_fs_root(fs_info, root);
  1399. if (ret) {
  1400. if (ret == -EEXIST) {
  1401. free_fs_root(root);
  1402. goto again;
  1403. }
  1404. goto fail;
  1405. }
  1406. return root;
  1407. fail:
  1408. free_fs_root(root);
  1409. return ERR_PTR(ret);
  1410. }
  1411. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1412. {
  1413. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1414. int ret = 0;
  1415. struct btrfs_device *device;
  1416. struct backing_dev_info *bdi;
  1417. rcu_read_lock();
  1418. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1419. if (!device->bdev)
  1420. continue;
  1421. bdi = device->bdev->bd_bdi;
  1422. if (bdi_congested(bdi, bdi_bits)) {
  1423. ret = 1;
  1424. break;
  1425. }
  1426. }
  1427. rcu_read_unlock();
  1428. return ret;
  1429. }
  1430. /*
  1431. * called by the kthread helper functions to finally call the bio end_io
  1432. * functions. This is where read checksum verification actually happens
  1433. */
  1434. static void end_workqueue_fn(struct btrfs_work *work)
  1435. {
  1436. struct bio *bio;
  1437. struct btrfs_end_io_wq *end_io_wq;
  1438. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1439. bio = end_io_wq->bio;
  1440. bio->bi_status = end_io_wq->status;
  1441. bio->bi_private = end_io_wq->private;
  1442. bio->bi_end_io = end_io_wq->end_io;
  1443. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1444. bio_endio(bio);
  1445. }
  1446. static int cleaner_kthread(void *arg)
  1447. {
  1448. struct btrfs_root *root = arg;
  1449. struct btrfs_fs_info *fs_info = root->fs_info;
  1450. int again;
  1451. struct btrfs_trans_handle *trans;
  1452. do {
  1453. again = 0;
  1454. /* Make the cleaner go to sleep early. */
  1455. if (btrfs_need_cleaner_sleep(fs_info))
  1456. goto sleep;
  1457. /*
  1458. * Do not do anything if we might cause open_ctree() to block
  1459. * before we have finished mounting the filesystem.
  1460. */
  1461. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1462. goto sleep;
  1463. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1464. goto sleep;
  1465. /*
  1466. * Avoid the problem that we change the status of the fs
  1467. * during the above check and trylock.
  1468. */
  1469. if (btrfs_need_cleaner_sleep(fs_info)) {
  1470. mutex_unlock(&fs_info->cleaner_mutex);
  1471. goto sleep;
  1472. }
  1473. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1474. btrfs_run_delayed_iputs(fs_info);
  1475. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1476. again = btrfs_clean_one_deleted_snapshot(root);
  1477. mutex_unlock(&fs_info->cleaner_mutex);
  1478. /*
  1479. * The defragger has dealt with the R/O remount and umount,
  1480. * needn't do anything special here.
  1481. */
  1482. btrfs_run_defrag_inodes(fs_info);
  1483. /*
  1484. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1485. * with relocation (btrfs_relocate_chunk) and relocation
  1486. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1487. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1488. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1489. * unused block groups.
  1490. */
  1491. btrfs_delete_unused_bgs(fs_info);
  1492. sleep:
  1493. if (!again) {
  1494. set_current_state(TASK_INTERRUPTIBLE);
  1495. if (!kthread_should_stop())
  1496. schedule();
  1497. __set_current_state(TASK_RUNNING);
  1498. }
  1499. } while (!kthread_should_stop());
  1500. /*
  1501. * Transaction kthread is stopped before us and wakes us up.
  1502. * However we might have started a new transaction and COWed some
  1503. * tree blocks when deleting unused block groups for example. So
  1504. * make sure we commit the transaction we started to have a clean
  1505. * shutdown when evicting the btree inode - if it has dirty pages
  1506. * when we do the final iput() on it, eviction will trigger a
  1507. * writeback for it which will fail with null pointer dereferences
  1508. * since work queues and other resources were already released and
  1509. * destroyed by the time the iput/eviction/writeback is made.
  1510. */
  1511. trans = btrfs_attach_transaction(root);
  1512. if (IS_ERR(trans)) {
  1513. if (PTR_ERR(trans) != -ENOENT)
  1514. btrfs_err(fs_info,
  1515. "cleaner transaction attach returned %ld",
  1516. PTR_ERR(trans));
  1517. } else {
  1518. int ret;
  1519. ret = btrfs_commit_transaction(trans);
  1520. if (ret)
  1521. btrfs_err(fs_info,
  1522. "cleaner open transaction commit returned %d",
  1523. ret);
  1524. }
  1525. return 0;
  1526. }
  1527. static int transaction_kthread(void *arg)
  1528. {
  1529. struct btrfs_root *root = arg;
  1530. struct btrfs_fs_info *fs_info = root->fs_info;
  1531. struct btrfs_trans_handle *trans;
  1532. struct btrfs_transaction *cur;
  1533. u64 transid;
  1534. unsigned long now;
  1535. unsigned long delay;
  1536. bool cannot_commit;
  1537. do {
  1538. cannot_commit = false;
  1539. delay = HZ * fs_info->commit_interval;
  1540. mutex_lock(&fs_info->transaction_kthread_mutex);
  1541. spin_lock(&fs_info->trans_lock);
  1542. cur = fs_info->running_transaction;
  1543. if (!cur) {
  1544. spin_unlock(&fs_info->trans_lock);
  1545. goto sleep;
  1546. }
  1547. now = get_seconds();
  1548. if (cur->state < TRANS_STATE_BLOCKED &&
  1549. (now < cur->start_time ||
  1550. now - cur->start_time < fs_info->commit_interval)) {
  1551. spin_unlock(&fs_info->trans_lock);
  1552. delay = HZ * 5;
  1553. goto sleep;
  1554. }
  1555. transid = cur->transid;
  1556. spin_unlock(&fs_info->trans_lock);
  1557. /* If the file system is aborted, this will always fail. */
  1558. trans = btrfs_attach_transaction(root);
  1559. if (IS_ERR(trans)) {
  1560. if (PTR_ERR(trans) != -ENOENT)
  1561. cannot_commit = true;
  1562. goto sleep;
  1563. }
  1564. if (transid == trans->transid) {
  1565. btrfs_commit_transaction(trans);
  1566. } else {
  1567. btrfs_end_transaction(trans);
  1568. }
  1569. sleep:
  1570. wake_up_process(fs_info->cleaner_kthread);
  1571. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1572. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1573. &fs_info->fs_state)))
  1574. btrfs_cleanup_transaction(fs_info);
  1575. set_current_state(TASK_INTERRUPTIBLE);
  1576. if (!kthread_should_stop() &&
  1577. (!btrfs_transaction_blocked(fs_info) ||
  1578. cannot_commit))
  1579. schedule_timeout(delay);
  1580. __set_current_state(TASK_RUNNING);
  1581. } while (!kthread_should_stop());
  1582. return 0;
  1583. }
  1584. /*
  1585. * this will find the highest generation in the array of
  1586. * root backups. The index of the highest array is returned,
  1587. * or -1 if we can't find anything.
  1588. *
  1589. * We check to make sure the array is valid by comparing the
  1590. * generation of the latest root in the array with the generation
  1591. * in the super block. If they don't match we pitch it.
  1592. */
  1593. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1594. {
  1595. u64 cur;
  1596. int newest_index = -1;
  1597. struct btrfs_root_backup *root_backup;
  1598. int i;
  1599. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1600. root_backup = info->super_copy->super_roots + i;
  1601. cur = btrfs_backup_tree_root_gen(root_backup);
  1602. if (cur == newest_gen)
  1603. newest_index = i;
  1604. }
  1605. /* check to see if we actually wrapped around */
  1606. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1607. root_backup = info->super_copy->super_roots;
  1608. cur = btrfs_backup_tree_root_gen(root_backup);
  1609. if (cur == newest_gen)
  1610. newest_index = 0;
  1611. }
  1612. return newest_index;
  1613. }
  1614. /*
  1615. * find the oldest backup so we know where to store new entries
  1616. * in the backup array. This will set the backup_root_index
  1617. * field in the fs_info struct
  1618. */
  1619. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1620. u64 newest_gen)
  1621. {
  1622. int newest_index = -1;
  1623. newest_index = find_newest_super_backup(info, newest_gen);
  1624. /* if there was garbage in there, just move along */
  1625. if (newest_index == -1) {
  1626. info->backup_root_index = 0;
  1627. } else {
  1628. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1629. }
  1630. }
  1631. /*
  1632. * copy all the root pointers into the super backup array.
  1633. * this will bump the backup pointer by one when it is
  1634. * done
  1635. */
  1636. static void backup_super_roots(struct btrfs_fs_info *info)
  1637. {
  1638. int next_backup;
  1639. struct btrfs_root_backup *root_backup;
  1640. int last_backup;
  1641. next_backup = info->backup_root_index;
  1642. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1643. BTRFS_NUM_BACKUP_ROOTS;
  1644. /*
  1645. * just overwrite the last backup if we're at the same generation
  1646. * this happens only at umount
  1647. */
  1648. root_backup = info->super_for_commit->super_roots + last_backup;
  1649. if (btrfs_backup_tree_root_gen(root_backup) ==
  1650. btrfs_header_generation(info->tree_root->node))
  1651. next_backup = last_backup;
  1652. root_backup = info->super_for_commit->super_roots + next_backup;
  1653. /*
  1654. * make sure all of our padding and empty slots get zero filled
  1655. * regardless of which ones we use today
  1656. */
  1657. memset(root_backup, 0, sizeof(*root_backup));
  1658. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1659. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1660. btrfs_set_backup_tree_root_gen(root_backup,
  1661. btrfs_header_generation(info->tree_root->node));
  1662. btrfs_set_backup_tree_root_level(root_backup,
  1663. btrfs_header_level(info->tree_root->node));
  1664. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1665. btrfs_set_backup_chunk_root_gen(root_backup,
  1666. btrfs_header_generation(info->chunk_root->node));
  1667. btrfs_set_backup_chunk_root_level(root_backup,
  1668. btrfs_header_level(info->chunk_root->node));
  1669. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1670. btrfs_set_backup_extent_root_gen(root_backup,
  1671. btrfs_header_generation(info->extent_root->node));
  1672. btrfs_set_backup_extent_root_level(root_backup,
  1673. btrfs_header_level(info->extent_root->node));
  1674. /*
  1675. * we might commit during log recovery, which happens before we set
  1676. * the fs_root. Make sure it is valid before we fill it in.
  1677. */
  1678. if (info->fs_root && info->fs_root->node) {
  1679. btrfs_set_backup_fs_root(root_backup,
  1680. info->fs_root->node->start);
  1681. btrfs_set_backup_fs_root_gen(root_backup,
  1682. btrfs_header_generation(info->fs_root->node));
  1683. btrfs_set_backup_fs_root_level(root_backup,
  1684. btrfs_header_level(info->fs_root->node));
  1685. }
  1686. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1687. btrfs_set_backup_dev_root_gen(root_backup,
  1688. btrfs_header_generation(info->dev_root->node));
  1689. btrfs_set_backup_dev_root_level(root_backup,
  1690. btrfs_header_level(info->dev_root->node));
  1691. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1692. btrfs_set_backup_csum_root_gen(root_backup,
  1693. btrfs_header_generation(info->csum_root->node));
  1694. btrfs_set_backup_csum_root_level(root_backup,
  1695. btrfs_header_level(info->csum_root->node));
  1696. btrfs_set_backup_total_bytes(root_backup,
  1697. btrfs_super_total_bytes(info->super_copy));
  1698. btrfs_set_backup_bytes_used(root_backup,
  1699. btrfs_super_bytes_used(info->super_copy));
  1700. btrfs_set_backup_num_devices(root_backup,
  1701. btrfs_super_num_devices(info->super_copy));
  1702. /*
  1703. * if we don't copy this out to the super_copy, it won't get remembered
  1704. * for the next commit
  1705. */
  1706. memcpy(&info->super_copy->super_roots,
  1707. &info->super_for_commit->super_roots,
  1708. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1709. }
  1710. /*
  1711. * this copies info out of the root backup array and back into
  1712. * the in-memory super block. It is meant to help iterate through
  1713. * the array, so you send it the number of backups you've already
  1714. * tried and the last backup index you used.
  1715. *
  1716. * this returns -1 when it has tried all the backups
  1717. */
  1718. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1719. struct btrfs_super_block *super,
  1720. int *num_backups_tried, int *backup_index)
  1721. {
  1722. struct btrfs_root_backup *root_backup;
  1723. int newest = *backup_index;
  1724. if (*num_backups_tried == 0) {
  1725. u64 gen = btrfs_super_generation(super);
  1726. newest = find_newest_super_backup(info, gen);
  1727. if (newest == -1)
  1728. return -1;
  1729. *backup_index = newest;
  1730. *num_backups_tried = 1;
  1731. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1732. /* we've tried all the backups, all done */
  1733. return -1;
  1734. } else {
  1735. /* jump to the next oldest backup */
  1736. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1737. BTRFS_NUM_BACKUP_ROOTS;
  1738. *backup_index = newest;
  1739. *num_backups_tried += 1;
  1740. }
  1741. root_backup = super->super_roots + newest;
  1742. btrfs_set_super_generation(super,
  1743. btrfs_backup_tree_root_gen(root_backup));
  1744. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1745. btrfs_set_super_root_level(super,
  1746. btrfs_backup_tree_root_level(root_backup));
  1747. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1748. /*
  1749. * fixme: the total bytes and num_devices need to match or we should
  1750. * need a fsck
  1751. */
  1752. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1753. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1754. return 0;
  1755. }
  1756. /* helper to cleanup workers */
  1757. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1758. {
  1759. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1760. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1761. btrfs_destroy_workqueue(fs_info->workers);
  1762. btrfs_destroy_workqueue(fs_info->endio_workers);
  1763. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1764. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1765. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1766. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1767. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1768. btrfs_destroy_workqueue(fs_info->submit_workers);
  1769. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1770. btrfs_destroy_workqueue(fs_info->caching_workers);
  1771. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1772. btrfs_destroy_workqueue(fs_info->flush_workers);
  1773. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1774. btrfs_destroy_workqueue(fs_info->extent_workers);
  1775. /*
  1776. * Now that all other work queues are destroyed, we can safely destroy
  1777. * the queues used for metadata I/O, since tasks from those other work
  1778. * queues can do metadata I/O operations.
  1779. */
  1780. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1781. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1782. }
  1783. static void free_root_extent_buffers(struct btrfs_root *root)
  1784. {
  1785. if (root) {
  1786. free_extent_buffer(root->node);
  1787. free_extent_buffer(root->commit_root);
  1788. root->node = NULL;
  1789. root->commit_root = NULL;
  1790. }
  1791. }
  1792. /* helper to cleanup tree roots */
  1793. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1794. {
  1795. free_root_extent_buffers(info->tree_root);
  1796. free_root_extent_buffers(info->dev_root);
  1797. free_root_extent_buffers(info->extent_root);
  1798. free_root_extent_buffers(info->csum_root);
  1799. free_root_extent_buffers(info->quota_root);
  1800. free_root_extent_buffers(info->uuid_root);
  1801. if (chunk_root)
  1802. free_root_extent_buffers(info->chunk_root);
  1803. free_root_extent_buffers(info->free_space_root);
  1804. }
  1805. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1806. {
  1807. int ret;
  1808. struct btrfs_root *gang[8];
  1809. int i;
  1810. while (!list_empty(&fs_info->dead_roots)) {
  1811. gang[0] = list_entry(fs_info->dead_roots.next,
  1812. struct btrfs_root, root_list);
  1813. list_del(&gang[0]->root_list);
  1814. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1815. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1816. } else {
  1817. free_extent_buffer(gang[0]->node);
  1818. free_extent_buffer(gang[0]->commit_root);
  1819. btrfs_put_fs_root(gang[0]);
  1820. }
  1821. }
  1822. while (1) {
  1823. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1824. (void **)gang, 0,
  1825. ARRAY_SIZE(gang));
  1826. if (!ret)
  1827. break;
  1828. for (i = 0; i < ret; i++)
  1829. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1830. }
  1831. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1832. btrfs_free_log_root_tree(NULL, fs_info);
  1833. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1834. }
  1835. }
  1836. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1837. {
  1838. mutex_init(&fs_info->scrub_lock);
  1839. atomic_set(&fs_info->scrubs_running, 0);
  1840. atomic_set(&fs_info->scrub_pause_req, 0);
  1841. atomic_set(&fs_info->scrubs_paused, 0);
  1842. atomic_set(&fs_info->scrub_cancel_req, 0);
  1843. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1844. fs_info->scrub_workers_refcnt = 0;
  1845. }
  1846. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1847. {
  1848. spin_lock_init(&fs_info->balance_lock);
  1849. mutex_init(&fs_info->balance_mutex);
  1850. atomic_set(&fs_info->balance_running, 0);
  1851. atomic_set(&fs_info->balance_pause_req, 0);
  1852. atomic_set(&fs_info->balance_cancel_req, 0);
  1853. fs_info->balance_ctl = NULL;
  1854. init_waitqueue_head(&fs_info->balance_wait_q);
  1855. }
  1856. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1857. {
  1858. struct inode *inode = fs_info->btree_inode;
  1859. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1860. set_nlink(inode, 1);
  1861. /*
  1862. * we set the i_size on the btree inode to the max possible int.
  1863. * the real end of the address space is determined by all of
  1864. * the devices in the system
  1865. */
  1866. inode->i_size = OFFSET_MAX;
  1867. inode->i_mapping->a_ops = &btree_aops;
  1868. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  1869. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
  1870. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  1871. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  1872. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  1873. BTRFS_I(inode)->root = fs_info->tree_root;
  1874. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  1875. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  1876. btrfs_insert_inode_hash(inode);
  1877. }
  1878. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1879. {
  1880. fs_info->dev_replace.lock_owner = 0;
  1881. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1882. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1883. rwlock_init(&fs_info->dev_replace.lock);
  1884. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1885. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1886. init_waitqueue_head(&fs_info->replace_wait);
  1887. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1888. }
  1889. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1890. {
  1891. spin_lock_init(&fs_info->qgroup_lock);
  1892. mutex_init(&fs_info->qgroup_ioctl_lock);
  1893. fs_info->qgroup_tree = RB_ROOT;
  1894. fs_info->qgroup_op_tree = RB_ROOT;
  1895. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1896. fs_info->qgroup_seq = 1;
  1897. fs_info->qgroup_ulist = NULL;
  1898. fs_info->qgroup_rescan_running = false;
  1899. mutex_init(&fs_info->qgroup_rescan_lock);
  1900. }
  1901. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1902. struct btrfs_fs_devices *fs_devices)
  1903. {
  1904. int max_active = fs_info->thread_pool_size;
  1905. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1906. fs_info->workers =
  1907. btrfs_alloc_workqueue(fs_info, "worker",
  1908. flags | WQ_HIGHPRI, max_active, 16);
  1909. fs_info->delalloc_workers =
  1910. btrfs_alloc_workqueue(fs_info, "delalloc",
  1911. flags, max_active, 2);
  1912. fs_info->flush_workers =
  1913. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  1914. flags, max_active, 0);
  1915. fs_info->caching_workers =
  1916. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  1917. /*
  1918. * a higher idle thresh on the submit workers makes it much more
  1919. * likely that bios will be send down in a sane order to the
  1920. * devices
  1921. */
  1922. fs_info->submit_workers =
  1923. btrfs_alloc_workqueue(fs_info, "submit", flags,
  1924. min_t(u64, fs_devices->num_devices,
  1925. max_active), 64);
  1926. fs_info->fixup_workers =
  1927. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  1928. /*
  1929. * endios are largely parallel and should have a very
  1930. * low idle thresh
  1931. */
  1932. fs_info->endio_workers =
  1933. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  1934. fs_info->endio_meta_workers =
  1935. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  1936. max_active, 4);
  1937. fs_info->endio_meta_write_workers =
  1938. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  1939. max_active, 2);
  1940. fs_info->endio_raid56_workers =
  1941. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  1942. max_active, 4);
  1943. fs_info->endio_repair_workers =
  1944. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  1945. fs_info->rmw_workers =
  1946. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  1947. fs_info->endio_write_workers =
  1948. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  1949. max_active, 2);
  1950. fs_info->endio_freespace_worker =
  1951. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  1952. max_active, 0);
  1953. fs_info->delayed_workers =
  1954. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  1955. max_active, 0);
  1956. fs_info->readahead_workers =
  1957. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  1958. max_active, 2);
  1959. fs_info->qgroup_rescan_workers =
  1960. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  1961. fs_info->extent_workers =
  1962. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  1963. min_t(u64, fs_devices->num_devices,
  1964. max_active), 8);
  1965. if (!(fs_info->workers && fs_info->delalloc_workers &&
  1966. fs_info->submit_workers && fs_info->flush_workers &&
  1967. fs_info->endio_workers && fs_info->endio_meta_workers &&
  1968. fs_info->endio_meta_write_workers &&
  1969. fs_info->endio_repair_workers &&
  1970. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  1971. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  1972. fs_info->caching_workers && fs_info->readahead_workers &&
  1973. fs_info->fixup_workers && fs_info->delayed_workers &&
  1974. fs_info->extent_workers &&
  1975. fs_info->qgroup_rescan_workers)) {
  1976. return -ENOMEM;
  1977. }
  1978. return 0;
  1979. }
  1980. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  1981. struct btrfs_fs_devices *fs_devices)
  1982. {
  1983. int ret;
  1984. struct btrfs_root *log_tree_root;
  1985. struct btrfs_super_block *disk_super = fs_info->super_copy;
  1986. u64 bytenr = btrfs_super_log_root(disk_super);
  1987. if (fs_devices->rw_devices == 0) {
  1988. btrfs_warn(fs_info, "log replay required on RO media");
  1989. return -EIO;
  1990. }
  1991. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1992. if (!log_tree_root)
  1993. return -ENOMEM;
  1994. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1995. log_tree_root->node = read_tree_block(fs_info, bytenr,
  1996. fs_info->generation + 1);
  1997. if (IS_ERR(log_tree_root->node)) {
  1998. btrfs_warn(fs_info, "failed to read log tree");
  1999. ret = PTR_ERR(log_tree_root->node);
  2000. kfree(log_tree_root);
  2001. return ret;
  2002. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2003. btrfs_err(fs_info, "failed to read log tree");
  2004. free_extent_buffer(log_tree_root->node);
  2005. kfree(log_tree_root);
  2006. return -EIO;
  2007. }
  2008. /* returns with log_tree_root freed on success */
  2009. ret = btrfs_recover_log_trees(log_tree_root);
  2010. if (ret) {
  2011. btrfs_handle_fs_error(fs_info, ret,
  2012. "Failed to recover log tree");
  2013. free_extent_buffer(log_tree_root->node);
  2014. kfree(log_tree_root);
  2015. return ret;
  2016. }
  2017. if (sb_rdonly(fs_info->sb)) {
  2018. ret = btrfs_commit_super(fs_info);
  2019. if (ret)
  2020. return ret;
  2021. }
  2022. return 0;
  2023. }
  2024. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2025. {
  2026. struct btrfs_root *tree_root = fs_info->tree_root;
  2027. struct btrfs_root *root;
  2028. struct btrfs_key location;
  2029. int ret;
  2030. BUG_ON(!fs_info->tree_root);
  2031. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2032. location.type = BTRFS_ROOT_ITEM_KEY;
  2033. location.offset = 0;
  2034. root = btrfs_read_tree_root(tree_root, &location);
  2035. if (IS_ERR(root))
  2036. return PTR_ERR(root);
  2037. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2038. fs_info->extent_root = root;
  2039. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2040. root = btrfs_read_tree_root(tree_root, &location);
  2041. if (IS_ERR(root))
  2042. return PTR_ERR(root);
  2043. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2044. fs_info->dev_root = root;
  2045. btrfs_init_devices_late(fs_info);
  2046. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2047. root = btrfs_read_tree_root(tree_root, &location);
  2048. if (IS_ERR(root))
  2049. return PTR_ERR(root);
  2050. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2051. fs_info->csum_root = root;
  2052. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2053. root = btrfs_read_tree_root(tree_root, &location);
  2054. if (!IS_ERR(root)) {
  2055. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2056. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2057. fs_info->quota_root = root;
  2058. }
  2059. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2060. root = btrfs_read_tree_root(tree_root, &location);
  2061. if (IS_ERR(root)) {
  2062. ret = PTR_ERR(root);
  2063. if (ret != -ENOENT)
  2064. return ret;
  2065. } else {
  2066. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2067. fs_info->uuid_root = root;
  2068. }
  2069. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2070. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2071. root = btrfs_read_tree_root(tree_root, &location);
  2072. if (IS_ERR(root))
  2073. return PTR_ERR(root);
  2074. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2075. fs_info->free_space_root = root;
  2076. }
  2077. return 0;
  2078. }
  2079. int open_ctree(struct super_block *sb,
  2080. struct btrfs_fs_devices *fs_devices,
  2081. char *options)
  2082. {
  2083. u32 sectorsize;
  2084. u32 nodesize;
  2085. u32 stripesize;
  2086. u64 generation;
  2087. u64 features;
  2088. struct btrfs_key location;
  2089. struct buffer_head *bh;
  2090. struct btrfs_super_block *disk_super;
  2091. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2092. struct btrfs_root *tree_root;
  2093. struct btrfs_root *chunk_root;
  2094. int ret;
  2095. int err = -EINVAL;
  2096. int num_backups_tried = 0;
  2097. int backup_index = 0;
  2098. int max_active;
  2099. int clear_free_space_tree = 0;
  2100. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2101. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2102. if (!tree_root || !chunk_root) {
  2103. err = -ENOMEM;
  2104. goto fail;
  2105. }
  2106. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2107. if (ret) {
  2108. err = ret;
  2109. goto fail;
  2110. }
  2111. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2112. if (ret) {
  2113. err = ret;
  2114. goto fail_srcu;
  2115. }
  2116. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2117. (1 + ilog2(nr_cpu_ids));
  2118. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2119. if (ret) {
  2120. err = ret;
  2121. goto fail_dirty_metadata_bytes;
  2122. }
  2123. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2124. if (ret) {
  2125. err = ret;
  2126. goto fail_delalloc_bytes;
  2127. }
  2128. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2129. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2130. INIT_LIST_HEAD(&fs_info->trans_list);
  2131. INIT_LIST_HEAD(&fs_info->dead_roots);
  2132. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2133. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2134. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2135. spin_lock_init(&fs_info->delalloc_root_lock);
  2136. spin_lock_init(&fs_info->trans_lock);
  2137. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2138. spin_lock_init(&fs_info->delayed_iput_lock);
  2139. spin_lock_init(&fs_info->defrag_inodes_lock);
  2140. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2141. spin_lock_init(&fs_info->super_lock);
  2142. spin_lock_init(&fs_info->qgroup_op_lock);
  2143. spin_lock_init(&fs_info->buffer_lock);
  2144. spin_lock_init(&fs_info->unused_bgs_lock);
  2145. rwlock_init(&fs_info->tree_mod_log_lock);
  2146. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2147. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2148. mutex_init(&fs_info->reloc_mutex);
  2149. mutex_init(&fs_info->delalloc_root_mutex);
  2150. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2151. seqlock_init(&fs_info->profiles_lock);
  2152. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2153. INIT_LIST_HEAD(&fs_info->space_info);
  2154. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2155. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2156. btrfs_mapping_init(&fs_info->mapping_tree);
  2157. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2158. BTRFS_BLOCK_RSV_GLOBAL);
  2159. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2160. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2161. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2162. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2163. BTRFS_BLOCK_RSV_DELOPS);
  2164. atomic_set(&fs_info->async_delalloc_pages, 0);
  2165. atomic_set(&fs_info->defrag_running, 0);
  2166. atomic_set(&fs_info->qgroup_op_seq, 0);
  2167. atomic_set(&fs_info->reada_works_cnt, 0);
  2168. atomic64_set(&fs_info->tree_mod_seq, 0);
  2169. fs_info->sb = sb;
  2170. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2171. fs_info->metadata_ratio = 0;
  2172. fs_info->defrag_inodes = RB_ROOT;
  2173. atomic64_set(&fs_info->free_chunk_space, 0);
  2174. fs_info->tree_mod_log = RB_ROOT;
  2175. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2176. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2177. /* readahead state */
  2178. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2179. spin_lock_init(&fs_info->reada_lock);
  2180. btrfs_init_ref_verify(fs_info);
  2181. fs_info->thread_pool_size = min_t(unsigned long,
  2182. num_online_cpus() + 2, 8);
  2183. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2184. spin_lock_init(&fs_info->ordered_root_lock);
  2185. fs_info->btree_inode = new_inode(sb);
  2186. if (!fs_info->btree_inode) {
  2187. err = -ENOMEM;
  2188. goto fail_bio_counter;
  2189. }
  2190. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2191. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2192. GFP_KERNEL);
  2193. if (!fs_info->delayed_root) {
  2194. err = -ENOMEM;
  2195. goto fail_iput;
  2196. }
  2197. btrfs_init_delayed_root(fs_info->delayed_root);
  2198. btrfs_init_scrub(fs_info);
  2199. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2200. fs_info->check_integrity_print_mask = 0;
  2201. #endif
  2202. btrfs_init_balance(fs_info);
  2203. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2204. sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
  2205. sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
  2206. btrfs_init_btree_inode(fs_info);
  2207. spin_lock_init(&fs_info->block_group_cache_lock);
  2208. fs_info->block_group_cache_tree = RB_ROOT;
  2209. fs_info->first_logical_byte = (u64)-1;
  2210. extent_io_tree_init(&fs_info->freed_extents[0], NULL);
  2211. extent_io_tree_init(&fs_info->freed_extents[1], NULL);
  2212. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2213. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2214. mutex_init(&fs_info->ordered_operations_mutex);
  2215. mutex_init(&fs_info->tree_log_mutex);
  2216. mutex_init(&fs_info->chunk_mutex);
  2217. mutex_init(&fs_info->transaction_kthread_mutex);
  2218. mutex_init(&fs_info->cleaner_mutex);
  2219. mutex_init(&fs_info->volume_mutex);
  2220. mutex_init(&fs_info->ro_block_group_mutex);
  2221. init_rwsem(&fs_info->commit_root_sem);
  2222. init_rwsem(&fs_info->cleanup_work_sem);
  2223. init_rwsem(&fs_info->subvol_sem);
  2224. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2225. btrfs_init_dev_replace_locks(fs_info);
  2226. btrfs_init_qgroup(fs_info);
  2227. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2228. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2229. init_waitqueue_head(&fs_info->transaction_throttle);
  2230. init_waitqueue_head(&fs_info->transaction_wait);
  2231. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2232. init_waitqueue_head(&fs_info->async_submit_wait);
  2233. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2234. /* Usable values until the real ones are cached from the superblock */
  2235. fs_info->nodesize = 4096;
  2236. fs_info->sectorsize = 4096;
  2237. fs_info->stripesize = 4096;
  2238. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2239. if (ret) {
  2240. err = ret;
  2241. goto fail_alloc;
  2242. }
  2243. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2244. invalidate_bdev(fs_devices->latest_bdev);
  2245. /*
  2246. * Read super block and check the signature bytes only
  2247. */
  2248. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2249. if (IS_ERR(bh)) {
  2250. err = PTR_ERR(bh);
  2251. goto fail_alloc;
  2252. }
  2253. /*
  2254. * We want to check superblock checksum, the type is stored inside.
  2255. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2256. */
  2257. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2258. btrfs_err(fs_info, "superblock checksum mismatch");
  2259. err = -EINVAL;
  2260. brelse(bh);
  2261. goto fail_alloc;
  2262. }
  2263. /*
  2264. * super_copy is zeroed at allocation time and we never touch the
  2265. * following bytes up to INFO_SIZE, the checksum is calculated from
  2266. * the whole block of INFO_SIZE
  2267. */
  2268. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2269. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2270. sizeof(*fs_info->super_for_commit));
  2271. brelse(bh);
  2272. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2273. ret = btrfs_check_super_valid(fs_info);
  2274. if (ret) {
  2275. btrfs_err(fs_info, "superblock contains fatal errors");
  2276. err = -EINVAL;
  2277. goto fail_alloc;
  2278. }
  2279. disk_super = fs_info->super_copy;
  2280. if (!btrfs_super_root(disk_super))
  2281. goto fail_alloc;
  2282. /* check FS state, whether FS is broken. */
  2283. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2284. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2285. /*
  2286. * run through our array of backup supers and setup
  2287. * our ring pointer to the oldest one
  2288. */
  2289. generation = btrfs_super_generation(disk_super);
  2290. find_oldest_super_backup(fs_info, generation);
  2291. /*
  2292. * In the long term, we'll store the compression type in the super
  2293. * block, and it'll be used for per file compression control.
  2294. */
  2295. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2296. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2297. if (ret) {
  2298. err = ret;
  2299. goto fail_alloc;
  2300. }
  2301. features = btrfs_super_incompat_flags(disk_super) &
  2302. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2303. if (features) {
  2304. btrfs_err(fs_info,
  2305. "cannot mount because of unsupported optional features (%llx)",
  2306. features);
  2307. err = -EINVAL;
  2308. goto fail_alloc;
  2309. }
  2310. features = btrfs_super_incompat_flags(disk_super);
  2311. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2312. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2313. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2314. else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
  2315. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
  2316. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2317. btrfs_info(fs_info, "has skinny extents");
  2318. /*
  2319. * flag our filesystem as having big metadata blocks if
  2320. * they are bigger than the page size
  2321. */
  2322. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2323. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2324. btrfs_info(fs_info,
  2325. "flagging fs with big metadata feature");
  2326. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2327. }
  2328. nodesize = btrfs_super_nodesize(disk_super);
  2329. sectorsize = btrfs_super_sectorsize(disk_super);
  2330. stripesize = sectorsize;
  2331. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2332. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2333. /* Cache block sizes */
  2334. fs_info->nodesize = nodesize;
  2335. fs_info->sectorsize = sectorsize;
  2336. fs_info->stripesize = stripesize;
  2337. /*
  2338. * mixed block groups end up with duplicate but slightly offset
  2339. * extent buffers for the same range. It leads to corruptions
  2340. */
  2341. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2342. (sectorsize != nodesize)) {
  2343. btrfs_err(fs_info,
  2344. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2345. nodesize, sectorsize);
  2346. goto fail_alloc;
  2347. }
  2348. /*
  2349. * Needn't use the lock because there is no other task which will
  2350. * update the flag.
  2351. */
  2352. btrfs_set_super_incompat_flags(disk_super, features);
  2353. features = btrfs_super_compat_ro_flags(disk_super) &
  2354. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2355. if (!sb_rdonly(sb) && features) {
  2356. btrfs_err(fs_info,
  2357. "cannot mount read-write because of unsupported optional features (%llx)",
  2358. features);
  2359. err = -EINVAL;
  2360. goto fail_alloc;
  2361. }
  2362. max_active = fs_info->thread_pool_size;
  2363. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2364. if (ret) {
  2365. err = ret;
  2366. goto fail_sb_buffer;
  2367. }
  2368. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2369. sb->s_bdi->congested_data = fs_info;
  2370. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2371. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
  2372. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2373. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2374. sb->s_blocksize = sectorsize;
  2375. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2376. memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
  2377. mutex_lock(&fs_info->chunk_mutex);
  2378. ret = btrfs_read_sys_array(fs_info);
  2379. mutex_unlock(&fs_info->chunk_mutex);
  2380. if (ret) {
  2381. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2382. goto fail_sb_buffer;
  2383. }
  2384. generation = btrfs_super_chunk_root_generation(disk_super);
  2385. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2386. chunk_root->node = read_tree_block(fs_info,
  2387. btrfs_super_chunk_root(disk_super),
  2388. generation);
  2389. if (IS_ERR(chunk_root->node) ||
  2390. !extent_buffer_uptodate(chunk_root->node)) {
  2391. btrfs_err(fs_info, "failed to read chunk root");
  2392. if (!IS_ERR(chunk_root->node))
  2393. free_extent_buffer(chunk_root->node);
  2394. chunk_root->node = NULL;
  2395. goto fail_tree_roots;
  2396. }
  2397. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2398. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2399. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2400. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2401. ret = btrfs_read_chunk_tree(fs_info);
  2402. if (ret) {
  2403. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2404. goto fail_tree_roots;
  2405. }
  2406. /*
  2407. * keep the device that is marked to be the target device for the
  2408. * dev_replace procedure
  2409. */
  2410. btrfs_close_extra_devices(fs_devices, 0);
  2411. if (!fs_devices->latest_bdev) {
  2412. btrfs_err(fs_info, "failed to read devices");
  2413. goto fail_tree_roots;
  2414. }
  2415. retry_root_backup:
  2416. generation = btrfs_super_generation(disk_super);
  2417. tree_root->node = read_tree_block(fs_info,
  2418. btrfs_super_root(disk_super),
  2419. generation);
  2420. if (IS_ERR(tree_root->node) ||
  2421. !extent_buffer_uptodate(tree_root->node)) {
  2422. btrfs_warn(fs_info, "failed to read tree root");
  2423. if (!IS_ERR(tree_root->node))
  2424. free_extent_buffer(tree_root->node);
  2425. tree_root->node = NULL;
  2426. goto recovery_tree_root;
  2427. }
  2428. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2429. tree_root->commit_root = btrfs_root_node(tree_root);
  2430. btrfs_set_root_refs(&tree_root->root_item, 1);
  2431. mutex_lock(&tree_root->objectid_mutex);
  2432. ret = btrfs_find_highest_objectid(tree_root,
  2433. &tree_root->highest_objectid);
  2434. if (ret) {
  2435. mutex_unlock(&tree_root->objectid_mutex);
  2436. goto recovery_tree_root;
  2437. }
  2438. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2439. mutex_unlock(&tree_root->objectid_mutex);
  2440. ret = btrfs_read_roots(fs_info);
  2441. if (ret)
  2442. goto recovery_tree_root;
  2443. fs_info->generation = generation;
  2444. fs_info->last_trans_committed = generation;
  2445. ret = btrfs_recover_balance(fs_info);
  2446. if (ret) {
  2447. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2448. goto fail_block_groups;
  2449. }
  2450. ret = btrfs_init_dev_stats(fs_info);
  2451. if (ret) {
  2452. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2453. goto fail_block_groups;
  2454. }
  2455. ret = btrfs_init_dev_replace(fs_info);
  2456. if (ret) {
  2457. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2458. goto fail_block_groups;
  2459. }
  2460. btrfs_close_extra_devices(fs_devices, 1);
  2461. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2462. if (ret) {
  2463. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2464. ret);
  2465. goto fail_block_groups;
  2466. }
  2467. ret = btrfs_sysfs_add_device(fs_devices);
  2468. if (ret) {
  2469. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2470. ret);
  2471. goto fail_fsdev_sysfs;
  2472. }
  2473. ret = btrfs_sysfs_add_mounted(fs_info);
  2474. if (ret) {
  2475. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2476. goto fail_fsdev_sysfs;
  2477. }
  2478. ret = btrfs_init_space_info(fs_info);
  2479. if (ret) {
  2480. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2481. goto fail_sysfs;
  2482. }
  2483. ret = btrfs_read_block_groups(fs_info);
  2484. if (ret) {
  2485. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2486. goto fail_sysfs;
  2487. }
  2488. if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
  2489. btrfs_warn(fs_info,
  2490. "writeable mount is not allowed due to too many missing devices");
  2491. goto fail_sysfs;
  2492. }
  2493. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2494. "btrfs-cleaner");
  2495. if (IS_ERR(fs_info->cleaner_kthread))
  2496. goto fail_sysfs;
  2497. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2498. tree_root,
  2499. "btrfs-transaction");
  2500. if (IS_ERR(fs_info->transaction_kthread))
  2501. goto fail_cleaner;
  2502. if (!btrfs_test_opt(fs_info, NOSSD) &&
  2503. !fs_info->fs_devices->rotating) {
  2504. btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
  2505. }
  2506. /*
  2507. * Mount does not set all options immediately, we can do it now and do
  2508. * not have to wait for transaction commit
  2509. */
  2510. btrfs_apply_pending_changes(fs_info);
  2511. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2512. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2513. ret = btrfsic_mount(fs_info, fs_devices,
  2514. btrfs_test_opt(fs_info,
  2515. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2516. 1 : 0,
  2517. fs_info->check_integrity_print_mask);
  2518. if (ret)
  2519. btrfs_warn(fs_info,
  2520. "failed to initialize integrity check module: %d",
  2521. ret);
  2522. }
  2523. #endif
  2524. ret = btrfs_read_qgroup_config(fs_info);
  2525. if (ret)
  2526. goto fail_trans_kthread;
  2527. if (btrfs_build_ref_tree(fs_info))
  2528. btrfs_err(fs_info, "couldn't build ref tree");
  2529. /* do not make disk changes in broken FS or nologreplay is given */
  2530. if (btrfs_super_log_root(disk_super) != 0 &&
  2531. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2532. ret = btrfs_replay_log(fs_info, fs_devices);
  2533. if (ret) {
  2534. err = ret;
  2535. goto fail_qgroup;
  2536. }
  2537. }
  2538. ret = btrfs_find_orphan_roots(fs_info);
  2539. if (ret)
  2540. goto fail_qgroup;
  2541. if (!sb_rdonly(sb)) {
  2542. ret = btrfs_cleanup_fs_roots(fs_info);
  2543. if (ret)
  2544. goto fail_qgroup;
  2545. mutex_lock(&fs_info->cleaner_mutex);
  2546. ret = btrfs_recover_relocation(tree_root);
  2547. mutex_unlock(&fs_info->cleaner_mutex);
  2548. if (ret < 0) {
  2549. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2550. ret);
  2551. err = -EINVAL;
  2552. goto fail_qgroup;
  2553. }
  2554. }
  2555. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2556. location.type = BTRFS_ROOT_ITEM_KEY;
  2557. location.offset = 0;
  2558. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2559. if (IS_ERR(fs_info->fs_root)) {
  2560. err = PTR_ERR(fs_info->fs_root);
  2561. goto fail_qgroup;
  2562. }
  2563. if (sb_rdonly(sb))
  2564. return 0;
  2565. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2566. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2567. clear_free_space_tree = 1;
  2568. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2569. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2570. btrfs_warn(fs_info, "free space tree is invalid");
  2571. clear_free_space_tree = 1;
  2572. }
  2573. if (clear_free_space_tree) {
  2574. btrfs_info(fs_info, "clearing free space tree");
  2575. ret = btrfs_clear_free_space_tree(fs_info);
  2576. if (ret) {
  2577. btrfs_warn(fs_info,
  2578. "failed to clear free space tree: %d", ret);
  2579. close_ctree(fs_info);
  2580. return ret;
  2581. }
  2582. }
  2583. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2584. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2585. btrfs_info(fs_info, "creating free space tree");
  2586. ret = btrfs_create_free_space_tree(fs_info);
  2587. if (ret) {
  2588. btrfs_warn(fs_info,
  2589. "failed to create free space tree: %d", ret);
  2590. close_ctree(fs_info);
  2591. return ret;
  2592. }
  2593. }
  2594. down_read(&fs_info->cleanup_work_sem);
  2595. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2596. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2597. up_read(&fs_info->cleanup_work_sem);
  2598. close_ctree(fs_info);
  2599. return ret;
  2600. }
  2601. up_read(&fs_info->cleanup_work_sem);
  2602. ret = btrfs_resume_balance_async(fs_info);
  2603. if (ret) {
  2604. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2605. close_ctree(fs_info);
  2606. return ret;
  2607. }
  2608. ret = btrfs_resume_dev_replace_async(fs_info);
  2609. if (ret) {
  2610. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2611. close_ctree(fs_info);
  2612. return ret;
  2613. }
  2614. btrfs_qgroup_rescan_resume(fs_info);
  2615. if (!fs_info->uuid_root) {
  2616. btrfs_info(fs_info, "creating UUID tree");
  2617. ret = btrfs_create_uuid_tree(fs_info);
  2618. if (ret) {
  2619. btrfs_warn(fs_info,
  2620. "failed to create the UUID tree: %d", ret);
  2621. close_ctree(fs_info);
  2622. return ret;
  2623. }
  2624. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2625. fs_info->generation !=
  2626. btrfs_super_uuid_tree_generation(disk_super)) {
  2627. btrfs_info(fs_info, "checking UUID tree");
  2628. ret = btrfs_check_uuid_tree(fs_info);
  2629. if (ret) {
  2630. btrfs_warn(fs_info,
  2631. "failed to check the UUID tree: %d", ret);
  2632. close_ctree(fs_info);
  2633. return ret;
  2634. }
  2635. } else {
  2636. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2637. }
  2638. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2639. /*
  2640. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2641. * no need to keep the flag
  2642. */
  2643. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2644. return 0;
  2645. fail_qgroup:
  2646. btrfs_free_qgroup_config(fs_info);
  2647. fail_trans_kthread:
  2648. kthread_stop(fs_info->transaction_kthread);
  2649. btrfs_cleanup_transaction(fs_info);
  2650. btrfs_free_fs_roots(fs_info);
  2651. fail_cleaner:
  2652. kthread_stop(fs_info->cleaner_kthread);
  2653. /*
  2654. * make sure we're done with the btree inode before we stop our
  2655. * kthreads
  2656. */
  2657. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2658. fail_sysfs:
  2659. btrfs_sysfs_remove_mounted(fs_info);
  2660. fail_fsdev_sysfs:
  2661. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2662. fail_block_groups:
  2663. btrfs_put_block_group_cache(fs_info);
  2664. fail_tree_roots:
  2665. free_root_pointers(fs_info, 1);
  2666. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2667. fail_sb_buffer:
  2668. btrfs_stop_all_workers(fs_info);
  2669. btrfs_free_block_groups(fs_info);
  2670. fail_alloc:
  2671. fail_iput:
  2672. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2673. iput(fs_info->btree_inode);
  2674. fail_bio_counter:
  2675. percpu_counter_destroy(&fs_info->bio_counter);
  2676. fail_delalloc_bytes:
  2677. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2678. fail_dirty_metadata_bytes:
  2679. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2680. fail_srcu:
  2681. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2682. fail:
  2683. btrfs_free_stripe_hash_table(fs_info);
  2684. btrfs_close_devices(fs_info->fs_devices);
  2685. return err;
  2686. recovery_tree_root:
  2687. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2688. goto fail_tree_roots;
  2689. free_root_pointers(fs_info, 0);
  2690. /* don't use the log in recovery mode, it won't be valid */
  2691. btrfs_set_super_log_root(disk_super, 0);
  2692. /* we can't trust the free space cache either */
  2693. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2694. ret = next_root_backup(fs_info, fs_info->super_copy,
  2695. &num_backups_tried, &backup_index);
  2696. if (ret == -1)
  2697. goto fail_block_groups;
  2698. goto retry_root_backup;
  2699. }
  2700. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2701. {
  2702. if (uptodate) {
  2703. set_buffer_uptodate(bh);
  2704. } else {
  2705. struct btrfs_device *device = (struct btrfs_device *)
  2706. bh->b_private;
  2707. btrfs_warn_rl_in_rcu(device->fs_info,
  2708. "lost page write due to IO error on %s",
  2709. rcu_str_deref(device->name));
  2710. /* note, we don't set_buffer_write_io_error because we have
  2711. * our own ways of dealing with the IO errors
  2712. */
  2713. clear_buffer_uptodate(bh);
  2714. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2715. }
  2716. unlock_buffer(bh);
  2717. put_bh(bh);
  2718. }
  2719. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2720. struct buffer_head **bh_ret)
  2721. {
  2722. struct buffer_head *bh;
  2723. struct btrfs_super_block *super;
  2724. u64 bytenr;
  2725. bytenr = btrfs_sb_offset(copy_num);
  2726. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2727. return -EINVAL;
  2728. bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
  2729. /*
  2730. * If we fail to read from the underlying devices, as of now
  2731. * the best option we have is to mark it EIO.
  2732. */
  2733. if (!bh)
  2734. return -EIO;
  2735. super = (struct btrfs_super_block *)bh->b_data;
  2736. if (btrfs_super_bytenr(super) != bytenr ||
  2737. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2738. brelse(bh);
  2739. return -EINVAL;
  2740. }
  2741. *bh_ret = bh;
  2742. return 0;
  2743. }
  2744. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2745. {
  2746. struct buffer_head *bh;
  2747. struct buffer_head *latest = NULL;
  2748. struct btrfs_super_block *super;
  2749. int i;
  2750. u64 transid = 0;
  2751. int ret = -EINVAL;
  2752. /* we would like to check all the supers, but that would make
  2753. * a btrfs mount succeed after a mkfs from a different FS.
  2754. * So, we need to add a special mount option to scan for
  2755. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2756. */
  2757. for (i = 0; i < 1; i++) {
  2758. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2759. if (ret)
  2760. continue;
  2761. super = (struct btrfs_super_block *)bh->b_data;
  2762. if (!latest || btrfs_super_generation(super) > transid) {
  2763. brelse(latest);
  2764. latest = bh;
  2765. transid = btrfs_super_generation(super);
  2766. } else {
  2767. brelse(bh);
  2768. }
  2769. }
  2770. if (!latest)
  2771. return ERR_PTR(ret);
  2772. return latest;
  2773. }
  2774. /*
  2775. * Write superblock @sb to the @device. Do not wait for completion, all the
  2776. * buffer heads we write are pinned.
  2777. *
  2778. * Write @max_mirrors copies of the superblock, where 0 means default that fit
  2779. * the expected device size at commit time. Note that max_mirrors must be
  2780. * same for write and wait phases.
  2781. *
  2782. * Return number of errors when buffer head is not found or submission fails.
  2783. */
  2784. static int write_dev_supers(struct btrfs_device *device,
  2785. struct btrfs_super_block *sb, int max_mirrors)
  2786. {
  2787. struct buffer_head *bh;
  2788. int i;
  2789. int ret;
  2790. int errors = 0;
  2791. u32 crc;
  2792. u64 bytenr;
  2793. int op_flags;
  2794. if (max_mirrors == 0)
  2795. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2796. for (i = 0; i < max_mirrors; i++) {
  2797. bytenr = btrfs_sb_offset(i);
  2798. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2799. device->commit_total_bytes)
  2800. break;
  2801. btrfs_set_super_bytenr(sb, bytenr);
  2802. crc = ~(u32)0;
  2803. crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
  2804. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  2805. btrfs_csum_final(crc, sb->csum);
  2806. /* One reference for us, and we leave it for the caller */
  2807. bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
  2808. BTRFS_SUPER_INFO_SIZE);
  2809. if (!bh) {
  2810. btrfs_err(device->fs_info,
  2811. "couldn't get super buffer head for bytenr %llu",
  2812. bytenr);
  2813. errors++;
  2814. continue;
  2815. }
  2816. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2817. /* one reference for submit_bh */
  2818. get_bh(bh);
  2819. set_buffer_uptodate(bh);
  2820. lock_buffer(bh);
  2821. bh->b_end_io = btrfs_end_buffer_write_sync;
  2822. bh->b_private = device;
  2823. /*
  2824. * we fua the first super. The others we allow
  2825. * to go down lazy.
  2826. */
  2827. op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
  2828. if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
  2829. op_flags |= REQ_FUA;
  2830. ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
  2831. if (ret)
  2832. errors++;
  2833. }
  2834. return errors < i ? 0 : -1;
  2835. }
  2836. /*
  2837. * Wait for write completion of superblocks done by write_dev_supers,
  2838. * @max_mirrors same for write and wait phases.
  2839. *
  2840. * Return number of errors when buffer head is not found or not marked up to
  2841. * date.
  2842. */
  2843. static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
  2844. {
  2845. struct buffer_head *bh;
  2846. int i;
  2847. int errors = 0;
  2848. u64 bytenr;
  2849. if (max_mirrors == 0)
  2850. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2851. for (i = 0; i < max_mirrors; i++) {
  2852. bytenr = btrfs_sb_offset(i);
  2853. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2854. device->commit_total_bytes)
  2855. break;
  2856. bh = __find_get_block(device->bdev,
  2857. bytenr / BTRFS_BDEV_BLOCKSIZE,
  2858. BTRFS_SUPER_INFO_SIZE);
  2859. if (!bh) {
  2860. errors++;
  2861. continue;
  2862. }
  2863. wait_on_buffer(bh);
  2864. if (!buffer_uptodate(bh))
  2865. errors++;
  2866. /* drop our reference */
  2867. brelse(bh);
  2868. /* drop the reference from the writing run */
  2869. brelse(bh);
  2870. }
  2871. return errors < i ? 0 : -1;
  2872. }
  2873. /*
  2874. * endio for the write_dev_flush, this will wake anyone waiting
  2875. * for the barrier when it is done
  2876. */
  2877. static void btrfs_end_empty_barrier(struct bio *bio)
  2878. {
  2879. complete(bio->bi_private);
  2880. }
  2881. /*
  2882. * Submit a flush request to the device if it supports it. Error handling is
  2883. * done in the waiting counterpart.
  2884. */
  2885. static void write_dev_flush(struct btrfs_device *device)
  2886. {
  2887. struct request_queue *q = bdev_get_queue(device->bdev);
  2888. struct bio *bio = device->flush_bio;
  2889. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  2890. return;
  2891. bio_reset(bio);
  2892. bio->bi_end_io = btrfs_end_empty_barrier;
  2893. bio_set_dev(bio, device->bdev);
  2894. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  2895. init_completion(&device->flush_wait);
  2896. bio->bi_private = &device->flush_wait;
  2897. btrfsic_submit_bio(bio);
  2898. device->flush_bio_sent = 1;
  2899. }
  2900. /*
  2901. * If the flush bio has been submitted by write_dev_flush, wait for it.
  2902. */
  2903. static blk_status_t wait_dev_flush(struct btrfs_device *device)
  2904. {
  2905. struct bio *bio = device->flush_bio;
  2906. if (!device->flush_bio_sent)
  2907. return BLK_STS_OK;
  2908. device->flush_bio_sent = 0;
  2909. wait_for_completion_io(&device->flush_wait);
  2910. return bio->bi_status;
  2911. }
  2912. static int check_barrier_error(struct btrfs_fs_info *fs_info)
  2913. {
  2914. if (!btrfs_check_rw_degradable(fs_info))
  2915. return -EIO;
  2916. return 0;
  2917. }
  2918. /*
  2919. * send an empty flush down to each device in parallel,
  2920. * then wait for them
  2921. */
  2922. static int barrier_all_devices(struct btrfs_fs_info *info)
  2923. {
  2924. struct list_head *head;
  2925. struct btrfs_device *dev;
  2926. int errors_wait = 0;
  2927. blk_status_t ret;
  2928. /* send down all the barriers */
  2929. head = &info->fs_devices->devices;
  2930. list_for_each_entry_rcu(dev, head, dev_list) {
  2931. if (dev->missing)
  2932. continue;
  2933. if (!dev->bdev)
  2934. continue;
  2935. if (!dev->in_fs_metadata || !dev->writeable)
  2936. continue;
  2937. write_dev_flush(dev);
  2938. dev->last_flush_error = BLK_STS_OK;
  2939. }
  2940. /* wait for all the barriers */
  2941. list_for_each_entry_rcu(dev, head, dev_list) {
  2942. if (dev->missing)
  2943. continue;
  2944. if (!dev->bdev) {
  2945. errors_wait++;
  2946. continue;
  2947. }
  2948. if (!dev->in_fs_metadata || !dev->writeable)
  2949. continue;
  2950. ret = wait_dev_flush(dev);
  2951. if (ret) {
  2952. dev->last_flush_error = ret;
  2953. btrfs_dev_stat_inc_and_print(dev,
  2954. BTRFS_DEV_STAT_FLUSH_ERRS);
  2955. errors_wait++;
  2956. }
  2957. }
  2958. if (errors_wait) {
  2959. /*
  2960. * At some point we need the status of all disks
  2961. * to arrive at the volume status. So error checking
  2962. * is being pushed to a separate loop.
  2963. */
  2964. return check_barrier_error(info);
  2965. }
  2966. return 0;
  2967. }
  2968. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  2969. {
  2970. int raid_type;
  2971. int min_tolerated = INT_MAX;
  2972. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  2973. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  2974. min_tolerated = min(min_tolerated,
  2975. btrfs_raid_array[BTRFS_RAID_SINGLE].
  2976. tolerated_failures);
  2977. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  2978. if (raid_type == BTRFS_RAID_SINGLE)
  2979. continue;
  2980. if (!(flags & btrfs_raid_group[raid_type]))
  2981. continue;
  2982. min_tolerated = min(min_tolerated,
  2983. btrfs_raid_array[raid_type].
  2984. tolerated_failures);
  2985. }
  2986. if (min_tolerated == INT_MAX) {
  2987. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  2988. min_tolerated = 0;
  2989. }
  2990. return min_tolerated;
  2991. }
  2992. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  2993. {
  2994. struct list_head *head;
  2995. struct btrfs_device *dev;
  2996. struct btrfs_super_block *sb;
  2997. struct btrfs_dev_item *dev_item;
  2998. int ret;
  2999. int do_barriers;
  3000. int max_errors;
  3001. int total_errors = 0;
  3002. u64 flags;
  3003. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3004. /*
  3005. * max_mirrors == 0 indicates we're from commit_transaction,
  3006. * not from fsync where the tree roots in fs_info have not
  3007. * been consistent on disk.
  3008. */
  3009. if (max_mirrors == 0)
  3010. backup_super_roots(fs_info);
  3011. sb = fs_info->super_for_commit;
  3012. dev_item = &sb->dev_item;
  3013. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3014. head = &fs_info->fs_devices->devices;
  3015. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3016. if (do_barriers) {
  3017. ret = barrier_all_devices(fs_info);
  3018. if (ret) {
  3019. mutex_unlock(
  3020. &fs_info->fs_devices->device_list_mutex);
  3021. btrfs_handle_fs_error(fs_info, ret,
  3022. "errors while submitting device barriers.");
  3023. return ret;
  3024. }
  3025. }
  3026. list_for_each_entry_rcu(dev, head, dev_list) {
  3027. if (!dev->bdev) {
  3028. total_errors++;
  3029. continue;
  3030. }
  3031. if (!dev->in_fs_metadata || !dev->writeable)
  3032. continue;
  3033. btrfs_set_stack_device_generation(dev_item, 0);
  3034. btrfs_set_stack_device_type(dev_item, dev->type);
  3035. btrfs_set_stack_device_id(dev_item, dev->devid);
  3036. btrfs_set_stack_device_total_bytes(dev_item,
  3037. dev->commit_total_bytes);
  3038. btrfs_set_stack_device_bytes_used(dev_item,
  3039. dev->commit_bytes_used);
  3040. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3041. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3042. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3043. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3044. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
  3045. flags = btrfs_super_flags(sb);
  3046. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3047. ret = write_dev_supers(dev, sb, max_mirrors);
  3048. if (ret)
  3049. total_errors++;
  3050. }
  3051. if (total_errors > max_errors) {
  3052. btrfs_err(fs_info, "%d errors while writing supers",
  3053. total_errors);
  3054. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3055. /* FUA is masked off if unsupported and can't be the reason */
  3056. btrfs_handle_fs_error(fs_info, -EIO,
  3057. "%d errors while writing supers",
  3058. total_errors);
  3059. return -EIO;
  3060. }
  3061. total_errors = 0;
  3062. list_for_each_entry_rcu(dev, head, dev_list) {
  3063. if (!dev->bdev)
  3064. continue;
  3065. if (!dev->in_fs_metadata || !dev->writeable)
  3066. continue;
  3067. ret = wait_dev_supers(dev, max_mirrors);
  3068. if (ret)
  3069. total_errors++;
  3070. }
  3071. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3072. if (total_errors > max_errors) {
  3073. btrfs_handle_fs_error(fs_info, -EIO,
  3074. "%d errors while writing supers",
  3075. total_errors);
  3076. return -EIO;
  3077. }
  3078. return 0;
  3079. }
  3080. /* Drop a fs root from the radix tree and free it. */
  3081. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3082. struct btrfs_root *root)
  3083. {
  3084. spin_lock(&fs_info->fs_roots_radix_lock);
  3085. radix_tree_delete(&fs_info->fs_roots_radix,
  3086. (unsigned long)root->root_key.objectid);
  3087. spin_unlock(&fs_info->fs_roots_radix_lock);
  3088. if (btrfs_root_refs(&root->root_item) == 0)
  3089. synchronize_srcu(&fs_info->subvol_srcu);
  3090. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3091. btrfs_free_log(NULL, root);
  3092. if (root->reloc_root) {
  3093. free_extent_buffer(root->reloc_root->node);
  3094. free_extent_buffer(root->reloc_root->commit_root);
  3095. btrfs_put_fs_root(root->reloc_root);
  3096. root->reloc_root = NULL;
  3097. }
  3098. }
  3099. if (root->free_ino_pinned)
  3100. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3101. if (root->free_ino_ctl)
  3102. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3103. free_fs_root(root);
  3104. }
  3105. static void free_fs_root(struct btrfs_root *root)
  3106. {
  3107. iput(root->ino_cache_inode);
  3108. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3109. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3110. root->orphan_block_rsv = NULL;
  3111. if (root->anon_dev)
  3112. free_anon_bdev(root->anon_dev);
  3113. if (root->subv_writers)
  3114. btrfs_free_subvolume_writers(root->subv_writers);
  3115. free_extent_buffer(root->node);
  3116. free_extent_buffer(root->commit_root);
  3117. kfree(root->free_ino_ctl);
  3118. kfree(root->free_ino_pinned);
  3119. kfree(root->name);
  3120. btrfs_put_fs_root(root);
  3121. }
  3122. void btrfs_free_fs_root(struct btrfs_root *root)
  3123. {
  3124. free_fs_root(root);
  3125. }
  3126. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3127. {
  3128. u64 root_objectid = 0;
  3129. struct btrfs_root *gang[8];
  3130. int i = 0;
  3131. int err = 0;
  3132. unsigned int ret = 0;
  3133. int index;
  3134. while (1) {
  3135. index = srcu_read_lock(&fs_info->subvol_srcu);
  3136. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3137. (void **)gang, root_objectid,
  3138. ARRAY_SIZE(gang));
  3139. if (!ret) {
  3140. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3141. break;
  3142. }
  3143. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3144. for (i = 0; i < ret; i++) {
  3145. /* Avoid to grab roots in dead_roots */
  3146. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3147. gang[i] = NULL;
  3148. continue;
  3149. }
  3150. /* grab all the search result for later use */
  3151. gang[i] = btrfs_grab_fs_root(gang[i]);
  3152. }
  3153. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3154. for (i = 0; i < ret; i++) {
  3155. if (!gang[i])
  3156. continue;
  3157. root_objectid = gang[i]->root_key.objectid;
  3158. err = btrfs_orphan_cleanup(gang[i]);
  3159. if (err)
  3160. break;
  3161. btrfs_put_fs_root(gang[i]);
  3162. }
  3163. root_objectid++;
  3164. }
  3165. /* release the uncleaned roots due to error */
  3166. for (; i < ret; i++) {
  3167. if (gang[i])
  3168. btrfs_put_fs_root(gang[i]);
  3169. }
  3170. return err;
  3171. }
  3172. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3173. {
  3174. struct btrfs_root *root = fs_info->tree_root;
  3175. struct btrfs_trans_handle *trans;
  3176. mutex_lock(&fs_info->cleaner_mutex);
  3177. btrfs_run_delayed_iputs(fs_info);
  3178. mutex_unlock(&fs_info->cleaner_mutex);
  3179. wake_up_process(fs_info->cleaner_kthread);
  3180. /* wait until ongoing cleanup work done */
  3181. down_write(&fs_info->cleanup_work_sem);
  3182. up_write(&fs_info->cleanup_work_sem);
  3183. trans = btrfs_join_transaction(root);
  3184. if (IS_ERR(trans))
  3185. return PTR_ERR(trans);
  3186. return btrfs_commit_transaction(trans);
  3187. }
  3188. void close_ctree(struct btrfs_fs_info *fs_info)
  3189. {
  3190. struct btrfs_root *root = fs_info->tree_root;
  3191. int ret;
  3192. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3193. /* wait for the qgroup rescan worker to stop */
  3194. btrfs_qgroup_wait_for_completion(fs_info, false);
  3195. /* wait for the uuid_scan task to finish */
  3196. down(&fs_info->uuid_tree_rescan_sem);
  3197. /* avoid complains from lockdep et al., set sem back to initial state */
  3198. up(&fs_info->uuid_tree_rescan_sem);
  3199. /* pause restriper - we want to resume on mount */
  3200. btrfs_pause_balance(fs_info);
  3201. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3202. btrfs_scrub_cancel(fs_info);
  3203. /* wait for any defraggers to finish */
  3204. wait_event(fs_info->transaction_wait,
  3205. (atomic_read(&fs_info->defrag_running) == 0));
  3206. /* clear out the rbtree of defraggable inodes */
  3207. btrfs_cleanup_defrag_inodes(fs_info);
  3208. cancel_work_sync(&fs_info->async_reclaim_work);
  3209. if (!sb_rdonly(fs_info->sb)) {
  3210. /*
  3211. * If the cleaner thread is stopped and there are
  3212. * block groups queued for removal, the deletion will be
  3213. * skipped when we quit the cleaner thread.
  3214. */
  3215. btrfs_delete_unused_bgs(fs_info);
  3216. ret = btrfs_commit_super(fs_info);
  3217. if (ret)
  3218. btrfs_err(fs_info, "commit super ret %d", ret);
  3219. }
  3220. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3221. btrfs_error_commit_super(fs_info);
  3222. kthread_stop(fs_info->transaction_kthread);
  3223. kthread_stop(fs_info->cleaner_kthread);
  3224. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3225. btrfs_free_qgroup_config(fs_info);
  3226. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3227. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3228. percpu_counter_sum(&fs_info->delalloc_bytes));
  3229. }
  3230. btrfs_sysfs_remove_mounted(fs_info);
  3231. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3232. btrfs_free_fs_roots(fs_info);
  3233. btrfs_put_block_group_cache(fs_info);
  3234. /*
  3235. * we must make sure there is not any read request to
  3236. * submit after we stopping all workers.
  3237. */
  3238. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3239. btrfs_stop_all_workers(fs_info);
  3240. btrfs_free_block_groups(fs_info);
  3241. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3242. free_root_pointers(fs_info, 1);
  3243. iput(fs_info->btree_inode);
  3244. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3245. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3246. btrfsic_unmount(fs_info->fs_devices);
  3247. #endif
  3248. btrfs_close_devices(fs_info->fs_devices);
  3249. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3250. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3251. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3252. percpu_counter_destroy(&fs_info->bio_counter);
  3253. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3254. btrfs_free_stripe_hash_table(fs_info);
  3255. btrfs_free_ref_cache(fs_info);
  3256. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3257. root->orphan_block_rsv = NULL;
  3258. while (!list_empty(&fs_info->pinned_chunks)) {
  3259. struct extent_map *em;
  3260. em = list_first_entry(&fs_info->pinned_chunks,
  3261. struct extent_map, list);
  3262. list_del_init(&em->list);
  3263. free_extent_map(em);
  3264. }
  3265. }
  3266. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3267. int atomic)
  3268. {
  3269. int ret;
  3270. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3271. ret = extent_buffer_uptodate(buf);
  3272. if (!ret)
  3273. return ret;
  3274. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3275. parent_transid, atomic);
  3276. if (ret == -EAGAIN)
  3277. return ret;
  3278. return !ret;
  3279. }
  3280. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3281. {
  3282. struct btrfs_fs_info *fs_info;
  3283. struct btrfs_root *root;
  3284. u64 transid = btrfs_header_generation(buf);
  3285. int was_dirty;
  3286. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3287. /*
  3288. * This is a fast path so only do this check if we have sanity tests
  3289. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3290. * outside of the sanity tests.
  3291. */
  3292. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3293. return;
  3294. #endif
  3295. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3296. fs_info = root->fs_info;
  3297. btrfs_assert_tree_locked(buf);
  3298. if (transid != fs_info->generation)
  3299. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3300. buf->start, transid, fs_info->generation);
  3301. was_dirty = set_extent_buffer_dirty(buf);
  3302. if (!was_dirty)
  3303. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  3304. buf->len,
  3305. fs_info->dirty_metadata_batch);
  3306. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3307. /*
  3308. * Since btrfs_mark_buffer_dirty() can be called with item pointer set
  3309. * but item data not updated.
  3310. * So here we should only check item pointers, not item data.
  3311. */
  3312. if (btrfs_header_level(buf) == 0 &&
  3313. btrfs_check_leaf_relaxed(root, buf)) {
  3314. btrfs_print_leaf(buf);
  3315. ASSERT(0);
  3316. }
  3317. #endif
  3318. }
  3319. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3320. int flush_delayed)
  3321. {
  3322. /*
  3323. * looks as though older kernels can get into trouble with
  3324. * this code, they end up stuck in balance_dirty_pages forever
  3325. */
  3326. int ret;
  3327. if (current->flags & PF_MEMALLOC)
  3328. return;
  3329. if (flush_delayed)
  3330. btrfs_balance_delayed_items(fs_info);
  3331. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3332. BTRFS_DIRTY_METADATA_THRESH);
  3333. if (ret > 0) {
  3334. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3335. }
  3336. }
  3337. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3338. {
  3339. __btrfs_btree_balance_dirty(fs_info, 1);
  3340. }
  3341. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3342. {
  3343. __btrfs_btree_balance_dirty(fs_info, 0);
  3344. }
  3345. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3346. {
  3347. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3348. struct btrfs_fs_info *fs_info = root->fs_info;
  3349. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3350. }
  3351. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3352. {
  3353. struct btrfs_super_block *sb = fs_info->super_copy;
  3354. u64 nodesize = btrfs_super_nodesize(sb);
  3355. u64 sectorsize = btrfs_super_sectorsize(sb);
  3356. int ret = 0;
  3357. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3358. btrfs_err(fs_info, "no valid FS found");
  3359. ret = -EINVAL;
  3360. }
  3361. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3362. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3363. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3364. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3365. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3366. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3367. ret = -EINVAL;
  3368. }
  3369. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3370. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3371. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3372. ret = -EINVAL;
  3373. }
  3374. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3375. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3376. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3377. ret = -EINVAL;
  3378. }
  3379. /*
  3380. * Check sectorsize and nodesize first, other check will need it.
  3381. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3382. */
  3383. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3384. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3385. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3386. ret = -EINVAL;
  3387. }
  3388. /* Only PAGE SIZE is supported yet */
  3389. if (sectorsize != PAGE_SIZE) {
  3390. btrfs_err(fs_info,
  3391. "sectorsize %llu not supported yet, only support %lu",
  3392. sectorsize, PAGE_SIZE);
  3393. ret = -EINVAL;
  3394. }
  3395. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3396. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3397. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3398. ret = -EINVAL;
  3399. }
  3400. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3401. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3402. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3403. ret = -EINVAL;
  3404. }
  3405. /* Root alignment check */
  3406. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3407. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3408. btrfs_super_root(sb));
  3409. ret = -EINVAL;
  3410. }
  3411. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3412. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3413. btrfs_super_chunk_root(sb));
  3414. ret = -EINVAL;
  3415. }
  3416. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3417. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3418. btrfs_super_log_root(sb));
  3419. ret = -EINVAL;
  3420. }
  3421. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
  3422. btrfs_err(fs_info,
  3423. "dev_item UUID does not match fsid: %pU != %pU",
  3424. fs_info->fsid, sb->dev_item.fsid);
  3425. ret = -EINVAL;
  3426. }
  3427. /*
  3428. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3429. * done later
  3430. */
  3431. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3432. btrfs_err(fs_info, "bytes_used is too small %llu",
  3433. btrfs_super_bytes_used(sb));
  3434. ret = -EINVAL;
  3435. }
  3436. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3437. btrfs_err(fs_info, "invalid stripesize %u",
  3438. btrfs_super_stripesize(sb));
  3439. ret = -EINVAL;
  3440. }
  3441. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3442. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3443. btrfs_super_num_devices(sb));
  3444. if (btrfs_super_num_devices(sb) == 0) {
  3445. btrfs_err(fs_info, "number of devices is 0");
  3446. ret = -EINVAL;
  3447. }
  3448. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3449. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3450. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3451. ret = -EINVAL;
  3452. }
  3453. /*
  3454. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3455. * and one chunk
  3456. */
  3457. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3458. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3459. btrfs_super_sys_array_size(sb),
  3460. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3461. ret = -EINVAL;
  3462. }
  3463. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3464. + sizeof(struct btrfs_chunk)) {
  3465. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3466. btrfs_super_sys_array_size(sb),
  3467. sizeof(struct btrfs_disk_key)
  3468. + sizeof(struct btrfs_chunk));
  3469. ret = -EINVAL;
  3470. }
  3471. /*
  3472. * The generation is a global counter, we'll trust it more than the others
  3473. * but it's still possible that it's the one that's wrong.
  3474. */
  3475. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3476. btrfs_warn(fs_info,
  3477. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3478. btrfs_super_generation(sb),
  3479. btrfs_super_chunk_root_generation(sb));
  3480. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3481. && btrfs_super_cache_generation(sb) != (u64)-1)
  3482. btrfs_warn(fs_info,
  3483. "suspicious: generation < cache_generation: %llu < %llu",
  3484. btrfs_super_generation(sb),
  3485. btrfs_super_cache_generation(sb));
  3486. return ret;
  3487. }
  3488. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3489. {
  3490. mutex_lock(&fs_info->cleaner_mutex);
  3491. btrfs_run_delayed_iputs(fs_info);
  3492. mutex_unlock(&fs_info->cleaner_mutex);
  3493. down_write(&fs_info->cleanup_work_sem);
  3494. up_write(&fs_info->cleanup_work_sem);
  3495. /* cleanup FS via transaction */
  3496. btrfs_cleanup_transaction(fs_info);
  3497. }
  3498. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3499. {
  3500. struct btrfs_ordered_extent *ordered;
  3501. spin_lock(&root->ordered_extent_lock);
  3502. /*
  3503. * This will just short circuit the ordered completion stuff which will
  3504. * make sure the ordered extent gets properly cleaned up.
  3505. */
  3506. list_for_each_entry(ordered, &root->ordered_extents,
  3507. root_extent_list)
  3508. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3509. spin_unlock(&root->ordered_extent_lock);
  3510. }
  3511. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3512. {
  3513. struct btrfs_root *root;
  3514. struct list_head splice;
  3515. INIT_LIST_HEAD(&splice);
  3516. spin_lock(&fs_info->ordered_root_lock);
  3517. list_splice_init(&fs_info->ordered_roots, &splice);
  3518. while (!list_empty(&splice)) {
  3519. root = list_first_entry(&splice, struct btrfs_root,
  3520. ordered_root);
  3521. list_move_tail(&root->ordered_root,
  3522. &fs_info->ordered_roots);
  3523. spin_unlock(&fs_info->ordered_root_lock);
  3524. btrfs_destroy_ordered_extents(root);
  3525. cond_resched();
  3526. spin_lock(&fs_info->ordered_root_lock);
  3527. }
  3528. spin_unlock(&fs_info->ordered_root_lock);
  3529. }
  3530. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3531. struct btrfs_fs_info *fs_info)
  3532. {
  3533. struct rb_node *node;
  3534. struct btrfs_delayed_ref_root *delayed_refs;
  3535. struct btrfs_delayed_ref_node *ref;
  3536. int ret = 0;
  3537. delayed_refs = &trans->delayed_refs;
  3538. spin_lock(&delayed_refs->lock);
  3539. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3540. spin_unlock(&delayed_refs->lock);
  3541. btrfs_info(fs_info, "delayed_refs has NO entry");
  3542. return ret;
  3543. }
  3544. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3545. struct btrfs_delayed_ref_head *head;
  3546. struct rb_node *n;
  3547. bool pin_bytes = false;
  3548. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3549. href_node);
  3550. if (!mutex_trylock(&head->mutex)) {
  3551. refcount_inc(&head->refs);
  3552. spin_unlock(&delayed_refs->lock);
  3553. mutex_lock(&head->mutex);
  3554. mutex_unlock(&head->mutex);
  3555. btrfs_put_delayed_ref_head(head);
  3556. spin_lock(&delayed_refs->lock);
  3557. continue;
  3558. }
  3559. spin_lock(&head->lock);
  3560. while ((n = rb_first(&head->ref_tree)) != NULL) {
  3561. ref = rb_entry(n, struct btrfs_delayed_ref_node,
  3562. ref_node);
  3563. ref->in_tree = 0;
  3564. rb_erase(&ref->ref_node, &head->ref_tree);
  3565. RB_CLEAR_NODE(&ref->ref_node);
  3566. if (!list_empty(&ref->add_list))
  3567. list_del(&ref->add_list);
  3568. atomic_dec(&delayed_refs->num_entries);
  3569. btrfs_put_delayed_ref(ref);
  3570. }
  3571. if (head->must_insert_reserved)
  3572. pin_bytes = true;
  3573. btrfs_free_delayed_extent_op(head->extent_op);
  3574. delayed_refs->num_heads--;
  3575. if (head->processing == 0)
  3576. delayed_refs->num_heads_ready--;
  3577. atomic_dec(&delayed_refs->num_entries);
  3578. rb_erase(&head->href_node, &delayed_refs->href_root);
  3579. RB_CLEAR_NODE(&head->href_node);
  3580. spin_unlock(&head->lock);
  3581. spin_unlock(&delayed_refs->lock);
  3582. mutex_unlock(&head->mutex);
  3583. if (pin_bytes)
  3584. btrfs_pin_extent(fs_info, head->bytenr,
  3585. head->num_bytes, 1);
  3586. btrfs_put_delayed_ref_head(head);
  3587. cond_resched();
  3588. spin_lock(&delayed_refs->lock);
  3589. }
  3590. spin_unlock(&delayed_refs->lock);
  3591. return ret;
  3592. }
  3593. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3594. {
  3595. struct btrfs_inode *btrfs_inode;
  3596. struct list_head splice;
  3597. INIT_LIST_HEAD(&splice);
  3598. spin_lock(&root->delalloc_lock);
  3599. list_splice_init(&root->delalloc_inodes, &splice);
  3600. while (!list_empty(&splice)) {
  3601. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3602. delalloc_inodes);
  3603. list_del_init(&btrfs_inode->delalloc_inodes);
  3604. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3605. &btrfs_inode->runtime_flags);
  3606. spin_unlock(&root->delalloc_lock);
  3607. btrfs_invalidate_inodes(btrfs_inode->root);
  3608. spin_lock(&root->delalloc_lock);
  3609. }
  3610. spin_unlock(&root->delalloc_lock);
  3611. }
  3612. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3613. {
  3614. struct btrfs_root *root;
  3615. struct list_head splice;
  3616. INIT_LIST_HEAD(&splice);
  3617. spin_lock(&fs_info->delalloc_root_lock);
  3618. list_splice_init(&fs_info->delalloc_roots, &splice);
  3619. while (!list_empty(&splice)) {
  3620. root = list_first_entry(&splice, struct btrfs_root,
  3621. delalloc_root);
  3622. list_del_init(&root->delalloc_root);
  3623. root = btrfs_grab_fs_root(root);
  3624. BUG_ON(!root);
  3625. spin_unlock(&fs_info->delalloc_root_lock);
  3626. btrfs_destroy_delalloc_inodes(root);
  3627. btrfs_put_fs_root(root);
  3628. spin_lock(&fs_info->delalloc_root_lock);
  3629. }
  3630. spin_unlock(&fs_info->delalloc_root_lock);
  3631. }
  3632. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3633. struct extent_io_tree *dirty_pages,
  3634. int mark)
  3635. {
  3636. int ret;
  3637. struct extent_buffer *eb;
  3638. u64 start = 0;
  3639. u64 end;
  3640. while (1) {
  3641. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3642. mark, NULL);
  3643. if (ret)
  3644. break;
  3645. clear_extent_bits(dirty_pages, start, end, mark);
  3646. while (start <= end) {
  3647. eb = find_extent_buffer(fs_info, start);
  3648. start += fs_info->nodesize;
  3649. if (!eb)
  3650. continue;
  3651. wait_on_extent_buffer_writeback(eb);
  3652. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3653. &eb->bflags))
  3654. clear_extent_buffer_dirty(eb);
  3655. free_extent_buffer_stale(eb);
  3656. }
  3657. }
  3658. return ret;
  3659. }
  3660. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3661. struct extent_io_tree *pinned_extents)
  3662. {
  3663. struct extent_io_tree *unpin;
  3664. u64 start;
  3665. u64 end;
  3666. int ret;
  3667. bool loop = true;
  3668. unpin = pinned_extents;
  3669. again:
  3670. while (1) {
  3671. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3672. EXTENT_DIRTY, NULL);
  3673. if (ret)
  3674. break;
  3675. clear_extent_dirty(unpin, start, end);
  3676. btrfs_error_unpin_extent_range(fs_info, start, end);
  3677. cond_resched();
  3678. }
  3679. if (loop) {
  3680. if (unpin == &fs_info->freed_extents[0])
  3681. unpin = &fs_info->freed_extents[1];
  3682. else
  3683. unpin = &fs_info->freed_extents[0];
  3684. loop = false;
  3685. goto again;
  3686. }
  3687. return 0;
  3688. }
  3689. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3690. {
  3691. struct inode *inode;
  3692. inode = cache->io_ctl.inode;
  3693. if (inode) {
  3694. invalidate_inode_pages2(inode->i_mapping);
  3695. BTRFS_I(inode)->generation = 0;
  3696. cache->io_ctl.inode = NULL;
  3697. iput(inode);
  3698. }
  3699. btrfs_put_block_group(cache);
  3700. }
  3701. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3702. struct btrfs_fs_info *fs_info)
  3703. {
  3704. struct btrfs_block_group_cache *cache;
  3705. spin_lock(&cur_trans->dirty_bgs_lock);
  3706. while (!list_empty(&cur_trans->dirty_bgs)) {
  3707. cache = list_first_entry(&cur_trans->dirty_bgs,
  3708. struct btrfs_block_group_cache,
  3709. dirty_list);
  3710. if (!cache) {
  3711. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3712. spin_unlock(&cur_trans->dirty_bgs_lock);
  3713. return;
  3714. }
  3715. if (!list_empty(&cache->io_list)) {
  3716. spin_unlock(&cur_trans->dirty_bgs_lock);
  3717. list_del_init(&cache->io_list);
  3718. btrfs_cleanup_bg_io(cache);
  3719. spin_lock(&cur_trans->dirty_bgs_lock);
  3720. }
  3721. list_del_init(&cache->dirty_list);
  3722. spin_lock(&cache->lock);
  3723. cache->disk_cache_state = BTRFS_DC_ERROR;
  3724. spin_unlock(&cache->lock);
  3725. spin_unlock(&cur_trans->dirty_bgs_lock);
  3726. btrfs_put_block_group(cache);
  3727. spin_lock(&cur_trans->dirty_bgs_lock);
  3728. }
  3729. spin_unlock(&cur_trans->dirty_bgs_lock);
  3730. while (!list_empty(&cur_trans->io_bgs)) {
  3731. cache = list_first_entry(&cur_trans->io_bgs,
  3732. struct btrfs_block_group_cache,
  3733. io_list);
  3734. if (!cache) {
  3735. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3736. return;
  3737. }
  3738. list_del_init(&cache->io_list);
  3739. spin_lock(&cache->lock);
  3740. cache->disk_cache_state = BTRFS_DC_ERROR;
  3741. spin_unlock(&cache->lock);
  3742. btrfs_cleanup_bg_io(cache);
  3743. }
  3744. }
  3745. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3746. struct btrfs_fs_info *fs_info)
  3747. {
  3748. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3749. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3750. ASSERT(list_empty(&cur_trans->io_bgs));
  3751. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3752. cur_trans->state = TRANS_STATE_COMMIT_START;
  3753. wake_up(&fs_info->transaction_blocked_wait);
  3754. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3755. wake_up(&fs_info->transaction_wait);
  3756. btrfs_destroy_delayed_inodes(fs_info);
  3757. btrfs_assert_delayed_root_empty(fs_info);
  3758. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3759. EXTENT_DIRTY);
  3760. btrfs_destroy_pinned_extent(fs_info,
  3761. fs_info->pinned_extents);
  3762. cur_trans->state =TRANS_STATE_COMPLETED;
  3763. wake_up(&cur_trans->commit_wait);
  3764. }
  3765. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3766. {
  3767. struct btrfs_transaction *t;
  3768. mutex_lock(&fs_info->transaction_kthread_mutex);
  3769. spin_lock(&fs_info->trans_lock);
  3770. while (!list_empty(&fs_info->trans_list)) {
  3771. t = list_first_entry(&fs_info->trans_list,
  3772. struct btrfs_transaction, list);
  3773. if (t->state >= TRANS_STATE_COMMIT_START) {
  3774. refcount_inc(&t->use_count);
  3775. spin_unlock(&fs_info->trans_lock);
  3776. btrfs_wait_for_commit(fs_info, t->transid);
  3777. btrfs_put_transaction(t);
  3778. spin_lock(&fs_info->trans_lock);
  3779. continue;
  3780. }
  3781. if (t == fs_info->running_transaction) {
  3782. t->state = TRANS_STATE_COMMIT_DOING;
  3783. spin_unlock(&fs_info->trans_lock);
  3784. /*
  3785. * We wait for 0 num_writers since we don't hold a trans
  3786. * handle open currently for this transaction.
  3787. */
  3788. wait_event(t->writer_wait,
  3789. atomic_read(&t->num_writers) == 0);
  3790. } else {
  3791. spin_unlock(&fs_info->trans_lock);
  3792. }
  3793. btrfs_cleanup_one_transaction(t, fs_info);
  3794. spin_lock(&fs_info->trans_lock);
  3795. if (t == fs_info->running_transaction)
  3796. fs_info->running_transaction = NULL;
  3797. list_del_init(&t->list);
  3798. spin_unlock(&fs_info->trans_lock);
  3799. btrfs_put_transaction(t);
  3800. trace_btrfs_transaction_commit(fs_info->tree_root);
  3801. spin_lock(&fs_info->trans_lock);
  3802. }
  3803. spin_unlock(&fs_info->trans_lock);
  3804. btrfs_destroy_all_ordered_extents(fs_info);
  3805. btrfs_destroy_delayed_inodes(fs_info);
  3806. btrfs_assert_delayed_root_empty(fs_info);
  3807. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3808. btrfs_destroy_all_delalloc_inodes(fs_info);
  3809. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3810. return 0;
  3811. }
  3812. static struct btrfs_fs_info *btree_fs_info(void *private_data)
  3813. {
  3814. struct inode *inode = private_data;
  3815. return btrfs_sb(inode->i_sb);
  3816. }
  3817. static const struct extent_io_ops btree_extent_io_ops = {
  3818. /* mandatory callbacks */
  3819. .submit_bio_hook = btree_submit_bio_hook,
  3820. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3821. /* note we're sharing with inode.c for the merge bio hook */
  3822. .merge_bio_hook = btrfs_merge_bio_hook,
  3823. .readpage_io_failed_hook = btree_io_failed_hook,
  3824. .set_range_writeback = btrfs_set_range_writeback,
  3825. .tree_fs_info = btree_fs_info,
  3826. /* optional callbacks */
  3827. };