builtin-sched.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/evlist.h"
  5. #include "util/cache.h"
  6. #include "util/evsel.h"
  7. #include "util/symbol.h"
  8. #include "util/thread.h"
  9. #include "util/header.h"
  10. #include "util/session.h"
  11. #include "util/tool.h"
  12. #include "util/cloexec.h"
  13. #include "util/parse-options.h"
  14. #include "util/trace-event.h"
  15. #include "util/debug.h"
  16. #include <sys/prctl.h>
  17. #include <sys/resource.h>
  18. #include <semaphore.h>
  19. #include <pthread.h>
  20. #include <math.h>
  21. #include <api/fs/fs.h>
  22. #define PR_SET_NAME 15 /* Set process name */
  23. #define MAX_CPUS 4096
  24. #define COMM_LEN 20
  25. #define SYM_LEN 129
  26. #define MAX_PID 1024000
  27. struct sched_atom;
  28. struct task_desc {
  29. unsigned long nr;
  30. unsigned long pid;
  31. char comm[COMM_LEN];
  32. unsigned long nr_events;
  33. unsigned long curr_event;
  34. struct sched_atom **atoms;
  35. pthread_t thread;
  36. sem_t sleep_sem;
  37. sem_t ready_for_work;
  38. sem_t work_done_sem;
  39. u64 cpu_usage;
  40. };
  41. enum sched_event_type {
  42. SCHED_EVENT_RUN,
  43. SCHED_EVENT_SLEEP,
  44. SCHED_EVENT_WAKEUP,
  45. SCHED_EVENT_MIGRATION,
  46. };
  47. struct sched_atom {
  48. enum sched_event_type type;
  49. int specific_wait;
  50. u64 timestamp;
  51. u64 duration;
  52. unsigned long nr;
  53. sem_t *wait_sem;
  54. struct task_desc *wakee;
  55. };
  56. #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  57. enum thread_state {
  58. THREAD_SLEEPING = 0,
  59. THREAD_WAIT_CPU,
  60. THREAD_SCHED_IN,
  61. THREAD_IGNORE
  62. };
  63. struct work_atom {
  64. struct list_head list;
  65. enum thread_state state;
  66. u64 sched_out_time;
  67. u64 wake_up_time;
  68. u64 sched_in_time;
  69. u64 runtime;
  70. };
  71. struct work_atoms {
  72. struct list_head work_list;
  73. struct thread *thread;
  74. struct rb_node node;
  75. u64 max_lat;
  76. u64 max_lat_at;
  77. u64 total_lat;
  78. u64 nb_atoms;
  79. u64 total_runtime;
  80. int num_merged;
  81. };
  82. typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  83. struct perf_sched;
  84. struct trace_sched_handler {
  85. int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
  86. struct perf_sample *sample, struct machine *machine);
  87. int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
  88. struct perf_sample *sample, struct machine *machine);
  89. int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
  90. struct perf_sample *sample, struct machine *machine);
  91. /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
  92. int (*fork_event)(struct perf_sched *sched, union perf_event *event,
  93. struct machine *machine);
  94. int (*migrate_task_event)(struct perf_sched *sched,
  95. struct perf_evsel *evsel,
  96. struct perf_sample *sample,
  97. struct machine *machine);
  98. };
  99. struct perf_sched {
  100. struct perf_tool tool;
  101. const char *sort_order;
  102. unsigned long nr_tasks;
  103. struct task_desc **pid_to_task;
  104. struct task_desc **tasks;
  105. const struct trace_sched_handler *tp_handler;
  106. pthread_mutex_t start_work_mutex;
  107. pthread_mutex_t work_done_wait_mutex;
  108. int profile_cpu;
  109. /*
  110. * Track the current task - that way we can know whether there's any
  111. * weird events, such as a task being switched away that is not current.
  112. */
  113. int max_cpu;
  114. u32 curr_pid[MAX_CPUS];
  115. struct thread *curr_thread[MAX_CPUS];
  116. char next_shortname1;
  117. char next_shortname2;
  118. unsigned int replay_repeat;
  119. unsigned long nr_run_events;
  120. unsigned long nr_sleep_events;
  121. unsigned long nr_wakeup_events;
  122. unsigned long nr_sleep_corrections;
  123. unsigned long nr_run_events_optimized;
  124. unsigned long targetless_wakeups;
  125. unsigned long multitarget_wakeups;
  126. unsigned long nr_runs;
  127. unsigned long nr_timestamps;
  128. unsigned long nr_unordered_timestamps;
  129. unsigned long nr_context_switch_bugs;
  130. unsigned long nr_events;
  131. unsigned long nr_lost_chunks;
  132. unsigned long nr_lost_events;
  133. u64 run_measurement_overhead;
  134. u64 sleep_measurement_overhead;
  135. u64 start_time;
  136. u64 cpu_usage;
  137. u64 runavg_cpu_usage;
  138. u64 parent_cpu_usage;
  139. u64 runavg_parent_cpu_usage;
  140. u64 sum_runtime;
  141. u64 sum_fluct;
  142. u64 run_avg;
  143. u64 all_runtime;
  144. u64 all_count;
  145. u64 cpu_last_switched[MAX_CPUS];
  146. struct rb_root atom_root, sorted_atom_root, merged_atom_root;
  147. struct list_head sort_list, cmp_pid;
  148. bool force;
  149. bool skip_merge;
  150. };
  151. static u64 get_nsecs(void)
  152. {
  153. struct timespec ts;
  154. clock_gettime(CLOCK_MONOTONIC, &ts);
  155. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  156. }
  157. static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
  158. {
  159. u64 T0 = get_nsecs(), T1;
  160. do {
  161. T1 = get_nsecs();
  162. } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
  163. }
  164. static void sleep_nsecs(u64 nsecs)
  165. {
  166. struct timespec ts;
  167. ts.tv_nsec = nsecs % 999999999;
  168. ts.tv_sec = nsecs / 999999999;
  169. nanosleep(&ts, NULL);
  170. }
  171. static void calibrate_run_measurement_overhead(struct perf_sched *sched)
  172. {
  173. u64 T0, T1, delta, min_delta = 1000000000ULL;
  174. int i;
  175. for (i = 0; i < 10; i++) {
  176. T0 = get_nsecs();
  177. burn_nsecs(sched, 0);
  178. T1 = get_nsecs();
  179. delta = T1-T0;
  180. min_delta = min(min_delta, delta);
  181. }
  182. sched->run_measurement_overhead = min_delta;
  183. printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
  184. }
  185. static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
  186. {
  187. u64 T0, T1, delta, min_delta = 1000000000ULL;
  188. int i;
  189. for (i = 0; i < 10; i++) {
  190. T0 = get_nsecs();
  191. sleep_nsecs(10000);
  192. T1 = get_nsecs();
  193. delta = T1-T0;
  194. min_delta = min(min_delta, delta);
  195. }
  196. min_delta -= 10000;
  197. sched->sleep_measurement_overhead = min_delta;
  198. printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
  199. }
  200. static struct sched_atom *
  201. get_new_event(struct task_desc *task, u64 timestamp)
  202. {
  203. struct sched_atom *event = zalloc(sizeof(*event));
  204. unsigned long idx = task->nr_events;
  205. size_t size;
  206. event->timestamp = timestamp;
  207. event->nr = idx;
  208. task->nr_events++;
  209. size = sizeof(struct sched_atom *) * task->nr_events;
  210. task->atoms = realloc(task->atoms, size);
  211. BUG_ON(!task->atoms);
  212. task->atoms[idx] = event;
  213. return event;
  214. }
  215. static struct sched_atom *last_event(struct task_desc *task)
  216. {
  217. if (!task->nr_events)
  218. return NULL;
  219. return task->atoms[task->nr_events - 1];
  220. }
  221. static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
  222. u64 timestamp, u64 duration)
  223. {
  224. struct sched_atom *event, *curr_event = last_event(task);
  225. /*
  226. * optimize an existing RUN event by merging this one
  227. * to it:
  228. */
  229. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  230. sched->nr_run_events_optimized++;
  231. curr_event->duration += duration;
  232. return;
  233. }
  234. event = get_new_event(task, timestamp);
  235. event->type = SCHED_EVENT_RUN;
  236. event->duration = duration;
  237. sched->nr_run_events++;
  238. }
  239. static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
  240. u64 timestamp, struct task_desc *wakee)
  241. {
  242. struct sched_atom *event, *wakee_event;
  243. event = get_new_event(task, timestamp);
  244. event->type = SCHED_EVENT_WAKEUP;
  245. event->wakee = wakee;
  246. wakee_event = last_event(wakee);
  247. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  248. sched->targetless_wakeups++;
  249. return;
  250. }
  251. if (wakee_event->wait_sem) {
  252. sched->multitarget_wakeups++;
  253. return;
  254. }
  255. wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
  256. sem_init(wakee_event->wait_sem, 0, 0);
  257. wakee_event->specific_wait = 1;
  258. event->wait_sem = wakee_event->wait_sem;
  259. sched->nr_wakeup_events++;
  260. }
  261. static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
  262. u64 timestamp, u64 task_state __maybe_unused)
  263. {
  264. struct sched_atom *event = get_new_event(task, timestamp);
  265. event->type = SCHED_EVENT_SLEEP;
  266. sched->nr_sleep_events++;
  267. }
  268. static struct task_desc *register_pid(struct perf_sched *sched,
  269. unsigned long pid, const char *comm)
  270. {
  271. struct task_desc *task;
  272. static int pid_max;
  273. if (sched->pid_to_task == NULL) {
  274. if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
  275. pid_max = MAX_PID;
  276. BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
  277. }
  278. if (pid >= (unsigned long)pid_max) {
  279. BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
  280. sizeof(struct task_desc *))) == NULL);
  281. while (pid >= (unsigned long)pid_max)
  282. sched->pid_to_task[pid_max++] = NULL;
  283. }
  284. task = sched->pid_to_task[pid];
  285. if (task)
  286. return task;
  287. task = zalloc(sizeof(*task));
  288. task->pid = pid;
  289. task->nr = sched->nr_tasks;
  290. strcpy(task->comm, comm);
  291. /*
  292. * every task starts in sleeping state - this gets ignored
  293. * if there's no wakeup pointing to this sleep state:
  294. */
  295. add_sched_event_sleep(sched, task, 0, 0);
  296. sched->pid_to_task[pid] = task;
  297. sched->nr_tasks++;
  298. sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
  299. BUG_ON(!sched->tasks);
  300. sched->tasks[task->nr] = task;
  301. if (verbose)
  302. printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
  303. return task;
  304. }
  305. static void print_task_traces(struct perf_sched *sched)
  306. {
  307. struct task_desc *task;
  308. unsigned long i;
  309. for (i = 0; i < sched->nr_tasks; i++) {
  310. task = sched->tasks[i];
  311. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  312. task->nr, task->comm, task->pid, task->nr_events);
  313. }
  314. }
  315. static void add_cross_task_wakeups(struct perf_sched *sched)
  316. {
  317. struct task_desc *task1, *task2;
  318. unsigned long i, j;
  319. for (i = 0; i < sched->nr_tasks; i++) {
  320. task1 = sched->tasks[i];
  321. j = i + 1;
  322. if (j == sched->nr_tasks)
  323. j = 0;
  324. task2 = sched->tasks[j];
  325. add_sched_event_wakeup(sched, task1, 0, task2);
  326. }
  327. }
  328. static void perf_sched__process_event(struct perf_sched *sched,
  329. struct sched_atom *atom)
  330. {
  331. int ret = 0;
  332. switch (atom->type) {
  333. case SCHED_EVENT_RUN:
  334. burn_nsecs(sched, atom->duration);
  335. break;
  336. case SCHED_EVENT_SLEEP:
  337. if (atom->wait_sem)
  338. ret = sem_wait(atom->wait_sem);
  339. BUG_ON(ret);
  340. break;
  341. case SCHED_EVENT_WAKEUP:
  342. if (atom->wait_sem)
  343. ret = sem_post(atom->wait_sem);
  344. BUG_ON(ret);
  345. break;
  346. case SCHED_EVENT_MIGRATION:
  347. break;
  348. default:
  349. BUG_ON(1);
  350. }
  351. }
  352. static u64 get_cpu_usage_nsec_parent(void)
  353. {
  354. struct rusage ru;
  355. u64 sum;
  356. int err;
  357. err = getrusage(RUSAGE_SELF, &ru);
  358. BUG_ON(err);
  359. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  360. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  361. return sum;
  362. }
  363. static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
  364. {
  365. struct perf_event_attr attr;
  366. char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
  367. int fd;
  368. struct rlimit limit;
  369. bool need_privilege = false;
  370. memset(&attr, 0, sizeof(attr));
  371. attr.type = PERF_TYPE_SOFTWARE;
  372. attr.config = PERF_COUNT_SW_TASK_CLOCK;
  373. force_again:
  374. fd = sys_perf_event_open(&attr, 0, -1, -1,
  375. perf_event_open_cloexec_flag());
  376. if (fd < 0) {
  377. if (errno == EMFILE) {
  378. if (sched->force) {
  379. BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
  380. limit.rlim_cur += sched->nr_tasks - cur_task;
  381. if (limit.rlim_cur > limit.rlim_max) {
  382. limit.rlim_max = limit.rlim_cur;
  383. need_privilege = true;
  384. }
  385. if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
  386. if (need_privilege && errno == EPERM)
  387. strcpy(info, "Need privilege\n");
  388. } else
  389. goto force_again;
  390. } else
  391. strcpy(info, "Have a try with -f option\n");
  392. }
  393. pr_err("Error: sys_perf_event_open() syscall returned "
  394. "with %d (%s)\n%s", fd,
  395. strerror_r(errno, sbuf, sizeof(sbuf)), info);
  396. exit(EXIT_FAILURE);
  397. }
  398. return fd;
  399. }
  400. static u64 get_cpu_usage_nsec_self(int fd)
  401. {
  402. u64 runtime;
  403. int ret;
  404. ret = read(fd, &runtime, sizeof(runtime));
  405. BUG_ON(ret != sizeof(runtime));
  406. return runtime;
  407. }
  408. struct sched_thread_parms {
  409. struct task_desc *task;
  410. struct perf_sched *sched;
  411. int fd;
  412. };
  413. static void *thread_func(void *ctx)
  414. {
  415. struct sched_thread_parms *parms = ctx;
  416. struct task_desc *this_task = parms->task;
  417. struct perf_sched *sched = parms->sched;
  418. u64 cpu_usage_0, cpu_usage_1;
  419. unsigned long i, ret;
  420. char comm2[22];
  421. int fd = parms->fd;
  422. zfree(&parms);
  423. sprintf(comm2, ":%s", this_task->comm);
  424. prctl(PR_SET_NAME, comm2);
  425. if (fd < 0)
  426. return NULL;
  427. again:
  428. ret = sem_post(&this_task->ready_for_work);
  429. BUG_ON(ret);
  430. ret = pthread_mutex_lock(&sched->start_work_mutex);
  431. BUG_ON(ret);
  432. ret = pthread_mutex_unlock(&sched->start_work_mutex);
  433. BUG_ON(ret);
  434. cpu_usage_0 = get_cpu_usage_nsec_self(fd);
  435. for (i = 0; i < this_task->nr_events; i++) {
  436. this_task->curr_event = i;
  437. perf_sched__process_event(sched, this_task->atoms[i]);
  438. }
  439. cpu_usage_1 = get_cpu_usage_nsec_self(fd);
  440. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  441. ret = sem_post(&this_task->work_done_sem);
  442. BUG_ON(ret);
  443. ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
  444. BUG_ON(ret);
  445. ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
  446. BUG_ON(ret);
  447. goto again;
  448. }
  449. static void create_tasks(struct perf_sched *sched)
  450. {
  451. struct task_desc *task;
  452. pthread_attr_t attr;
  453. unsigned long i;
  454. int err;
  455. err = pthread_attr_init(&attr);
  456. BUG_ON(err);
  457. err = pthread_attr_setstacksize(&attr,
  458. (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
  459. BUG_ON(err);
  460. err = pthread_mutex_lock(&sched->start_work_mutex);
  461. BUG_ON(err);
  462. err = pthread_mutex_lock(&sched->work_done_wait_mutex);
  463. BUG_ON(err);
  464. for (i = 0; i < sched->nr_tasks; i++) {
  465. struct sched_thread_parms *parms = malloc(sizeof(*parms));
  466. BUG_ON(parms == NULL);
  467. parms->task = task = sched->tasks[i];
  468. parms->sched = sched;
  469. parms->fd = self_open_counters(sched, i);
  470. sem_init(&task->sleep_sem, 0, 0);
  471. sem_init(&task->ready_for_work, 0, 0);
  472. sem_init(&task->work_done_sem, 0, 0);
  473. task->curr_event = 0;
  474. err = pthread_create(&task->thread, &attr, thread_func, parms);
  475. BUG_ON(err);
  476. }
  477. }
  478. static void wait_for_tasks(struct perf_sched *sched)
  479. {
  480. u64 cpu_usage_0, cpu_usage_1;
  481. struct task_desc *task;
  482. unsigned long i, ret;
  483. sched->start_time = get_nsecs();
  484. sched->cpu_usage = 0;
  485. pthread_mutex_unlock(&sched->work_done_wait_mutex);
  486. for (i = 0; i < sched->nr_tasks; i++) {
  487. task = sched->tasks[i];
  488. ret = sem_wait(&task->ready_for_work);
  489. BUG_ON(ret);
  490. sem_init(&task->ready_for_work, 0, 0);
  491. }
  492. ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
  493. BUG_ON(ret);
  494. cpu_usage_0 = get_cpu_usage_nsec_parent();
  495. pthread_mutex_unlock(&sched->start_work_mutex);
  496. for (i = 0; i < sched->nr_tasks; i++) {
  497. task = sched->tasks[i];
  498. ret = sem_wait(&task->work_done_sem);
  499. BUG_ON(ret);
  500. sem_init(&task->work_done_sem, 0, 0);
  501. sched->cpu_usage += task->cpu_usage;
  502. task->cpu_usage = 0;
  503. }
  504. cpu_usage_1 = get_cpu_usage_nsec_parent();
  505. if (!sched->runavg_cpu_usage)
  506. sched->runavg_cpu_usage = sched->cpu_usage;
  507. sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
  508. sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  509. if (!sched->runavg_parent_cpu_usage)
  510. sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
  511. sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
  512. sched->parent_cpu_usage)/sched->replay_repeat;
  513. ret = pthread_mutex_lock(&sched->start_work_mutex);
  514. BUG_ON(ret);
  515. for (i = 0; i < sched->nr_tasks; i++) {
  516. task = sched->tasks[i];
  517. sem_init(&task->sleep_sem, 0, 0);
  518. task->curr_event = 0;
  519. }
  520. }
  521. static void run_one_test(struct perf_sched *sched)
  522. {
  523. u64 T0, T1, delta, avg_delta, fluct;
  524. T0 = get_nsecs();
  525. wait_for_tasks(sched);
  526. T1 = get_nsecs();
  527. delta = T1 - T0;
  528. sched->sum_runtime += delta;
  529. sched->nr_runs++;
  530. avg_delta = sched->sum_runtime / sched->nr_runs;
  531. if (delta < avg_delta)
  532. fluct = avg_delta - delta;
  533. else
  534. fluct = delta - avg_delta;
  535. sched->sum_fluct += fluct;
  536. if (!sched->run_avg)
  537. sched->run_avg = delta;
  538. sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
  539. printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
  540. printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
  541. printf("cpu: %0.2f / %0.2f",
  542. (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
  543. #if 0
  544. /*
  545. * rusage statistics done by the parent, these are less
  546. * accurate than the sched->sum_exec_runtime based statistics:
  547. */
  548. printf(" [%0.2f / %0.2f]",
  549. (double)sched->parent_cpu_usage/1e6,
  550. (double)sched->runavg_parent_cpu_usage/1e6);
  551. #endif
  552. printf("\n");
  553. if (sched->nr_sleep_corrections)
  554. printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
  555. sched->nr_sleep_corrections = 0;
  556. }
  557. static void test_calibrations(struct perf_sched *sched)
  558. {
  559. u64 T0, T1;
  560. T0 = get_nsecs();
  561. burn_nsecs(sched, 1e6);
  562. T1 = get_nsecs();
  563. printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
  564. T0 = get_nsecs();
  565. sleep_nsecs(1e6);
  566. T1 = get_nsecs();
  567. printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
  568. }
  569. static int
  570. replay_wakeup_event(struct perf_sched *sched,
  571. struct perf_evsel *evsel, struct perf_sample *sample,
  572. struct machine *machine __maybe_unused)
  573. {
  574. const char *comm = perf_evsel__strval(evsel, sample, "comm");
  575. const u32 pid = perf_evsel__intval(evsel, sample, "pid");
  576. struct task_desc *waker, *wakee;
  577. if (verbose) {
  578. printf("sched_wakeup event %p\n", evsel);
  579. printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
  580. }
  581. waker = register_pid(sched, sample->tid, "<unknown>");
  582. wakee = register_pid(sched, pid, comm);
  583. add_sched_event_wakeup(sched, waker, sample->time, wakee);
  584. return 0;
  585. }
  586. static int replay_switch_event(struct perf_sched *sched,
  587. struct perf_evsel *evsel,
  588. struct perf_sample *sample,
  589. struct machine *machine __maybe_unused)
  590. {
  591. const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
  592. *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
  593. const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
  594. next_pid = perf_evsel__intval(evsel, sample, "next_pid");
  595. const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
  596. struct task_desc *prev, __maybe_unused *next;
  597. u64 timestamp0, timestamp = sample->time;
  598. int cpu = sample->cpu;
  599. s64 delta;
  600. if (verbose)
  601. printf("sched_switch event %p\n", evsel);
  602. if (cpu >= MAX_CPUS || cpu < 0)
  603. return 0;
  604. timestamp0 = sched->cpu_last_switched[cpu];
  605. if (timestamp0)
  606. delta = timestamp - timestamp0;
  607. else
  608. delta = 0;
  609. if (delta < 0) {
  610. pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  611. return -1;
  612. }
  613. pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
  614. prev_comm, prev_pid, next_comm, next_pid, delta);
  615. prev = register_pid(sched, prev_pid, prev_comm);
  616. next = register_pid(sched, next_pid, next_comm);
  617. sched->cpu_last_switched[cpu] = timestamp;
  618. add_sched_event_run(sched, prev, timestamp, delta);
  619. add_sched_event_sleep(sched, prev, timestamp, prev_state);
  620. return 0;
  621. }
  622. static int replay_fork_event(struct perf_sched *sched,
  623. union perf_event *event,
  624. struct machine *machine)
  625. {
  626. struct thread *child, *parent;
  627. child = machine__findnew_thread(machine, event->fork.pid,
  628. event->fork.tid);
  629. parent = machine__findnew_thread(machine, event->fork.ppid,
  630. event->fork.ptid);
  631. if (child == NULL || parent == NULL) {
  632. pr_debug("thread does not exist on fork event: child %p, parent %p\n",
  633. child, parent);
  634. goto out_put;
  635. }
  636. if (verbose) {
  637. printf("fork event\n");
  638. printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
  639. printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
  640. }
  641. register_pid(sched, parent->tid, thread__comm_str(parent));
  642. register_pid(sched, child->tid, thread__comm_str(child));
  643. out_put:
  644. thread__put(child);
  645. thread__put(parent);
  646. return 0;
  647. }
  648. struct sort_dimension {
  649. const char *name;
  650. sort_fn_t cmp;
  651. struct list_head list;
  652. };
  653. static int
  654. thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
  655. {
  656. struct sort_dimension *sort;
  657. int ret = 0;
  658. BUG_ON(list_empty(list));
  659. list_for_each_entry(sort, list, list) {
  660. ret = sort->cmp(l, r);
  661. if (ret)
  662. return ret;
  663. }
  664. return ret;
  665. }
  666. static struct work_atoms *
  667. thread_atoms_search(struct rb_root *root, struct thread *thread,
  668. struct list_head *sort_list)
  669. {
  670. struct rb_node *node = root->rb_node;
  671. struct work_atoms key = { .thread = thread };
  672. while (node) {
  673. struct work_atoms *atoms;
  674. int cmp;
  675. atoms = container_of(node, struct work_atoms, node);
  676. cmp = thread_lat_cmp(sort_list, &key, atoms);
  677. if (cmp > 0)
  678. node = node->rb_left;
  679. else if (cmp < 0)
  680. node = node->rb_right;
  681. else {
  682. BUG_ON(thread != atoms->thread);
  683. return atoms;
  684. }
  685. }
  686. return NULL;
  687. }
  688. static void
  689. __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
  690. struct list_head *sort_list)
  691. {
  692. struct rb_node **new = &(root->rb_node), *parent = NULL;
  693. while (*new) {
  694. struct work_atoms *this;
  695. int cmp;
  696. this = container_of(*new, struct work_atoms, node);
  697. parent = *new;
  698. cmp = thread_lat_cmp(sort_list, data, this);
  699. if (cmp > 0)
  700. new = &((*new)->rb_left);
  701. else
  702. new = &((*new)->rb_right);
  703. }
  704. rb_link_node(&data->node, parent, new);
  705. rb_insert_color(&data->node, root);
  706. }
  707. static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
  708. {
  709. struct work_atoms *atoms = zalloc(sizeof(*atoms));
  710. if (!atoms) {
  711. pr_err("No memory at %s\n", __func__);
  712. return -1;
  713. }
  714. atoms->thread = thread__get(thread);
  715. INIT_LIST_HEAD(&atoms->work_list);
  716. __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
  717. return 0;
  718. }
  719. static char sched_out_state(u64 prev_state)
  720. {
  721. const char *str = TASK_STATE_TO_CHAR_STR;
  722. return str[prev_state];
  723. }
  724. static int
  725. add_sched_out_event(struct work_atoms *atoms,
  726. char run_state,
  727. u64 timestamp)
  728. {
  729. struct work_atom *atom = zalloc(sizeof(*atom));
  730. if (!atom) {
  731. pr_err("Non memory at %s", __func__);
  732. return -1;
  733. }
  734. atom->sched_out_time = timestamp;
  735. if (run_state == 'R') {
  736. atom->state = THREAD_WAIT_CPU;
  737. atom->wake_up_time = atom->sched_out_time;
  738. }
  739. list_add_tail(&atom->list, &atoms->work_list);
  740. return 0;
  741. }
  742. static void
  743. add_runtime_event(struct work_atoms *atoms, u64 delta,
  744. u64 timestamp __maybe_unused)
  745. {
  746. struct work_atom *atom;
  747. BUG_ON(list_empty(&atoms->work_list));
  748. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  749. atom->runtime += delta;
  750. atoms->total_runtime += delta;
  751. }
  752. static void
  753. add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
  754. {
  755. struct work_atom *atom;
  756. u64 delta;
  757. if (list_empty(&atoms->work_list))
  758. return;
  759. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  760. if (atom->state != THREAD_WAIT_CPU)
  761. return;
  762. if (timestamp < atom->wake_up_time) {
  763. atom->state = THREAD_IGNORE;
  764. return;
  765. }
  766. atom->state = THREAD_SCHED_IN;
  767. atom->sched_in_time = timestamp;
  768. delta = atom->sched_in_time - atom->wake_up_time;
  769. atoms->total_lat += delta;
  770. if (delta > atoms->max_lat) {
  771. atoms->max_lat = delta;
  772. atoms->max_lat_at = timestamp;
  773. }
  774. atoms->nb_atoms++;
  775. }
  776. static int latency_switch_event(struct perf_sched *sched,
  777. struct perf_evsel *evsel,
  778. struct perf_sample *sample,
  779. struct machine *machine)
  780. {
  781. const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
  782. next_pid = perf_evsel__intval(evsel, sample, "next_pid");
  783. const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
  784. struct work_atoms *out_events, *in_events;
  785. struct thread *sched_out, *sched_in;
  786. u64 timestamp0, timestamp = sample->time;
  787. int cpu = sample->cpu, err = -1;
  788. s64 delta;
  789. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  790. timestamp0 = sched->cpu_last_switched[cpu];
  791. sched->cpu_last_switched[cpu] = timestamp;
  792. if (timestamp0)
  793. delta = timestamp - timestamp0;
  794. else
  795. delta = 0;
  796. if (delta < 0) {
  797. pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  798. return -1;
  799. }
  800. sched_out = machine__findnew_thread(machine, -1, prev_pid);
  801. sched_in = machine__findnew_thread(machine, -1, next_pid);
  802. if (sched_out == NULL || sched_in == NULL)
  803. goto out_put;
  804. out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
  805. if (!out_events) {
  806. if (thread_atoms_insert(sched, sched_out))
  807. goto out_put;
  808. out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
  809. if (!out_events) {
  810. pr_err("out-event: Internal tree error");
  811. goto out_put;
  812. }
  813. }
  814. if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
  815. return -1;
  816. in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
  817. if (!in_events) {
  818. if (thread_atoms_insert(sched, sched_in))
  819. goto out_put;
  820. in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
  821. if (!in_events) {
  822. pr_err("in-event: Internal tree error");
  823. goto out_put;
  824. }
  825. /*
  826. * Take came in we have not heard about yet,
  827. * add in an initial atom in runnable state:
  828. */
  829. if (add_sched_out_event(in_events, 'R', timestamp))
  830. goto out_put;
  831. }
  832. add_sched_in_event(in_events, timestamp);
  833. err = 0;
  834. out_put:
  835. thread__put(sched_out);
  836. thread__put(sched_in);
  837. return err;
  838. }
  839. static int latency_runtime_event(struct perf_sched *sched,
  840. struct perf_evsel *evsel,
  841. struct perf_sample *sample,
  842. struct machine *machine)
  843. {
  844. const u32 pid = perf_evsel__intval(evsel, sample, "pid");
  845. const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
  846. struct thread *thread = machine__findnew_thread(machine, -1, pid);
  847. struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
  848. u64 timestamp = sample->time;
  849. int cpu = sample->cpu, err = -1;
  850. if (thread == NULL)
  851. return -1;
  852. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  853. if (!atoms) {
  854. if (thread_atoms_insert(sched, thread))
  855. goto out_put;
  856. atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
  857. if (!atoms) {
  858. pr_err("in-event: Internal tree error");
  859. goto out_put;
  860. }
  861. if (add_sched_out_event(atoms, 'R', timestamp))
  862. goto out_put;
  863. }
  864. add_runtime_event(atoms, runtime, timestamp);
  865. err = 0;
  866. out_put:
  867. thread__put(thread);
  868. return err;
  869. }
  870. static int latency_wakeup_event(struct perf_sched *sched,
  871. struct perf_evsel *evsel,
  872. struct perf_sample *sample,
  873. struct machine *machine)
  874. {
  875. const u32 pid = perf_evsel__intval(evsel, sample, "pid");
  876. struct work_atoms *atoms;
  877. struct work_atom *atom;
  878. struct thread *wakee;
  879. u64 timestamp = sample->time;
  880. int err = -1;
  881. wakee = machine__findnew_thread(machine, -1, pid);
  882. if (wakee == NULL)
  883. return -1;
  884. atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
  885. if (!atoms) {
  886. if (thread_atoms_insert(sched, wakee))
  887. goto out_put;
  888. atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
  889. if (!atoms) {
  890. pr_err("wakeup-event: Internal tree error");
  891. goto out_put;
  892. }
  893. if (add_sched_out_event(atoms, 'S', timestamp))
  894. goto out_put;
  895. }
  896. BUG_ON(list_empty(&atoms->work_list));
  897. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  898. /*
  899. * As we do not guarantee the wakeup event happens when
  900. * task is out of run queue, also may happen when task is
  901. * on run queue and wakeup only change ->state to TASK_RUNNING,
  902. * then we should not set the ->wake_up_time when wake up a
  903. * task which is on run queue.
  904. *
  905. * You WILL be missing events if you've recorded only
  906. * one CPU, or are only looking at only one, so don't
  907. * skip in this case.
  908. */
  909. if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
  910. goto out_ok;
  911. sched->nr_timestamps++;
  912. if (atom->sched_out_time > timestamp) {
  913. sched->nr_unordered_timestamps++;
  914. goto out_ok;
  915. }
  916. atom->state = THREAD_WAIT_CPU;
  917. atom->wake_up_time = timestamp;
  918. out_ok:
  919. err = 0;
  920. out_put:
  921. thread__put(wakee);
  922. return err;
  923. }
  924. static int latency_migrate_task_event(struct perf_sched *sched,
  925. struct perf_evsel *evsel,
  926. struct perf_sample *sample,
  927. struct machine *machine)
  928. {
  929. const u32 pid = perf_evsel__intval(evsel, sample, "pid");
  930. u64 timestamp = sample->time;
  931. struct work_atoms *atoms;
  932. struct work_atom *atom;
  933. struct thread *migrant;
  934. int err = -1;
  935. /*
  936. * Only need to worry about migration when profiling one CPU.
  937. */
  938. if (sched->profile_cpu == -1)
  939. return 0;
  940. migrant = machine__findnew_thread(machine, -1, pid);
  941. if (migrant == NULL)
  942. return -1;
  943. atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
  944. if (!atoms) {
  945. if (thread_atoms_insert(sched, migrant))
  946. goto out_put;
  947. register_pid(sched, migrant->tid, thread__comm_str(migrant));
  948. atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
  949. if (!atoms) {
  950. pr_err("migration-event: Internal tree error");
  951. goto out_put;
  952. }
  953. if (add_sched_out_event(atoms, 'R', timestamp))
  954. goto out_put;
  955. }
  956. BUG_ON(list_empty(&atoms->work_list));
  957. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  958. atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
  959. sched->nr_timestamps++;
  960. if (atom->sched_out_time > timestamp)
  961. sched->nr_unordered_timestamps++;
  962. err = 0;
  963. out_put:
  964. thread__put(migrant);
  965. return err;
  966. }
  967. static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
  968. {
  969. int i;
  970. int ret;
  971. u64 avg;
  972. if (!work_list->nb_atoms)
  973. return;
  974. /*
  975. * Ignore idle threads:
  976. */
  977. if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
  978. return;
  979. sched->all_runtime += work_list->total_runtime;
  980. sched->all_count += work_list->nb_atoms;
  981. if (work_list->num_merged > 1)
  982. ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
  983. else
  984. ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
  985. for (i = 0; i < 24 - ret; i++)
  986. printf(" ");
  987. avg = work_list->total_lat / work_list->nb_atoms;
  988. printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
  989. (double)work_list->total_runtime / 1e6,
  990. work_list->nb_atoms, (double)avg / 1e6,
  991. (double)work_list->max_lat / 1e6,
  992. (double)work_list->max_lat_at / 1e9);
  993. }
  994. static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
  995. {
  996. if (l->thread->tid < r->thread->tid)
  997. return -1;
  998. if (l->thread->tid > r->thread->tid)
  999. return 1;
  1000. return 0;
  1001. }
  1002. static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
  1003. {
  1004. u64 avgl, avgr;
  1005. if (!l->nb_atoms)
  1006. return -1;
  1007. if (!r->nb_atoms)
  1008. return 1;
  1009. avgl = l->total_lat / l->nb_atoms;
  1010. avgr = r->total_lat / r->nb_atoms;
  1011. if (avgl < avgr)
  1012. return -1;
  1013. if (avgl > avgr)
  1014. return 1;
  1015. return 0;
  1016. }
  1017. static int max_cmp(struct work_atoms *l, struct work_atoms *r)
  1018. {
  1019. if (l->max_lat < r->max_lat)
  1020. return -1;
  1021. if (l->max_lat > r->max_lat)
  1022. return 1;
  1023. return 0;
  1024. }
  1025. static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
  1026. {
  1027. if (l->nb_atoms < r->nb_atoms)
  1028. return -1;
  1029. if (l->nb_atoms > r->nb_atoms)
  1030. return 1;
  1031. return 0;
  1032. }
  1033. static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
  1034. {
  1035. if (l->total_runtime < r->total_runtime)
  1036. return -1;
  1037. if (l->total_runtime > r->total_runtime)
  1038. return 1;
  1039. return 0;
  1040. }
  1041. static int sort_dimension__add(const char *tok, struct list_head *list)
  1042. {
  1043. size_t i;
  1044. static struct sort_dimension avg_sort_dimension = {
  1045. .name = "avg",
  1046. .cmp = avg_cmp,
  1047. };
  1048. static struct sort_dimension max_sort_dimension = {
  1049. .name = "max",
  1050. .cmp = max_cmp,
  1051. };
  1052. static struct sort_dimension pid_sort_dimension = {
  1053. .name = "pid",
  1054. .cmp = pid_cmp,
  1055. };
  1056. static struct sort_dimension runtime_sort_dimension = {
  1057. .name = "runtime",
  1058. .cmp = runtime_cmp,
  1059. };
  1060. static struct sort_dimension switch_sort_dimension = {
  1061. .name = "switch",
  1062. .cmp = switch_cmp,
  1063. };
  1064. struct sort_dimension *available_sorts[] = {
  1065. &pid_sort_dimension,
  1066. &avg_sort_dimension,
  1067. &max_sort_dimension,
  1068. &switch_sort_dimension,
  1069. &runtime_sort_dimension,
  1070. };
  1071. for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
  1072. if (!strcmp(available_sorts[i]->name, tok)) {
  1073. list_add_tail(&available_sorts[i]->list, list);
  1074. return 0;
  1075. }
  1076. }
  1077. return -1;
  1078. }
  1079. static void perf_sched__sort_lat(struct perf_sched *sched)
  1080. {
  1081. struct rb_node *node;
  1082. struct rb_root *root = &sched->atom_root;
  1083. again:
  1084. for (;;) {
  1085. struct work_atoms *data;
  1086. node = rb_first(root);
  1087. if (!node)
  1088. break;
  1089. rb_erase(node, root);
  1090. data = rb_entry(node, struct work_atoms, node);
  1091. __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
  1092. }
  1093. if (root == &sched->atom_root) {
  1094. root = &sched->merged_atom_root;
  1095. goto again;
  1096. }
  1097. }
  1098. static int process_sched_wakeup_event(struct perf_tool *tool,
  1099. struct perf_evsel *evsel,
  1100. struct perf_sample *sample,
  1101. struct machine *machine)
  1102. {
  1103. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1104. if (sched->tp_handler->wakeup_event)
  1105. return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
  1106. return 0;
  1107. }
  1108. static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
  1109. struct perf_sample *sample, struct machine *machine)
  1110. {
  1111. const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
  1112. struct thread *sched_in;
  1113. int new_shortname;
  1114. u64 timestamp0, timestamp = sample->time;
  1115. s64 delta;
  1116. int cpu, this_cpu = sample->cpu;
  1117. BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
  1118. if (this_cpu > sched->max_cpu)
  1119. sched->max_cpu = this_cpu;
  1120. timestamp0 = sched->cpu_last_switched[this_cpu];
  1121. sched->cpu_last_switched[this_cpu] = timestamp;
  1122. if (timestamp0)
  1123. delta = timestamp - timestamp0;
  1124. else
  1125. delta = 0;
  1126. if (delta < 0) {
  1127. pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  1128. return -1;
  1129. }
  1130. sched_in = machine__findnew_thread(machine, -1, next_pid);
  1131. if (sched_in == NULL)
  1132. return -1;
  1133. sched->curr_thread[this_cpu] = thread__get(sched_in);
  1134. printf(" ");
  1135. new_shortname = 0;
  1136. if (!sched_in->shortname[0]) {
  1137. if (!strcmp(thread__comm_str(sched_in), "swapper")) {
  1138. /*
  1139. * Don't allocate a letter-number for swapper:0
  1140. * as a shortname. Instead, we use '.' for it.
  1141. */
  1142. sched_in->shortname[0] = '.';
  1143. sched_in->shortname[1] = ' ';
  1144. } else {
  1145. sched_in->shortname[0] = sched->next_shortname1;
  1146. sched_in->shortname[1] = sched->next_shortname2;
  1147. if (sched->next_shortname1 < 'Z') {
  1148. sched->next_shortname1++;
  1149. } else {
  1150. sched->next_shortname1 = 'A';
  1151. if (sched->next_shortname2 < '9')
  1152. sched->next_shortname2++;
  1153. else
  1154. sched->next_shortname2 = '0';
  1155. }
  1156. }
  1157. new_shortname = 1;
  1158. }
  1159. for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
  1160. if (cpu != this_cpu)
  1161. printf(" ");
  1162. else
  1163. printf("*");
  1164. if (sched->curr_thread[cpu])
  1165. printf("%2s ", sched->curr_thread[cpu]->shortname);
  1166. else
  1167. printf(" ");
  1168. }
  1169. printf(" %12.6f secs ", (double)timestamp/1e9);
  1170. if (new_shortname) {
  1171. printf("%s => %s:%d\n",
  1172. sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
  1173. } else {
  1174. printf("\n");
  1175. }
  1176. thread__put(sched_in);
  1177. return 0;
  1178. }
  1179. static int process_sched_switch_event(struct perf_tool *tool,
  1180. struct perf_evsel *evsel,
  1181. struct perf_sample *sample,
  1182. struct machine *machine)
  1183. {
  1184. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1185. int this_cpu = sample->cpu, err = 0;
  1186. u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
  1187. next_pid = perf_evsel__intval(evsel, sample, "next_pid");
  1188. if (sched->curr_pid[this_cpu] != (u32)-1) {
  1189. /*
  1190. * Are we trying to switch away a PID that is
  1191. * not current?
  1192. */
  1193. if (sched->curr_pid[this_cpu] != prev_pid)
  1194. sched->nr_context_switch_bugs++;
  1195. }
  1196. if (sched->tp_handler->switch_event)
  1197. err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
  1198. sched->curr_pid[this_cpu] = next_pid;
  1199. return err;
  1200. }
  1201. static int process_sched_runtime_event(struct perf_tool *tool,
  1202. struct perf_evsel *evsel,
  1203. struct perf_sample *sample,
  1204. struct machine *machine)
  1205. {
  1206. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1207. if (sched->tp_handler->runtime_event)
  1208. return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
  1209. return 0;
  1210. }
  1211. static int perf_sched__process_fork_event(struct perf_tool *tool,
  1212. union perf_event *event,
  1213. struct perf_sample *sample,
  1214. struct machine *machine)
  1215. {
  1216. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1217. /* run the fork event through the perf machineruy */
  1218. perf_event__process_fork(tool, event, sample, machine);
  1219. /* and then run additional processing needed for this command */
  1220. if (sched->tp_handler->fork_event)
  1221. return sched->tp_handler->fork_event(sched, event, machine);
  1222. return 0;
  1223. }
  1224. static int process_sched_migrate_task_event(struct perf_tool *tool,
  1225. struct perf_evsel *evsel,
  1226. struct perf_sample *sample,
  1227. struct machine *machine)
  1228. {
  1229. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1230. if (sched->tp_handler->migrate_task_event)
  1231. return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
  1232. return 0;
  1233. }
  1234. typedef int (*tracepoint_handler)(struct perf_tool *tool,
  1235. struct perf_evsel *evsel,
  1236. struct perf_sample *sample,
  1237. struct machine *machine);
  1238. static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
  1239. union perf_event *event __maybe_unused,
  1240. struct perf_sample *sample,
  1241. struct perf_evsel *evsel,
  1242. struct machine *machine)
  1243. {
  1244. int err = 0;
  1245. if (evsel->handler != NULL) {
  1246. tracepoint_handler f = evsel->handler;
  1247. err = f(tool, evsel, sample, machine);
  1248. }
  1249. return err;
  1250. }
  1251. static int perf_sched__read_events(struct perf_sched *sched)
  1252. {
  1253. const struct perf_evsel_str_handler handlers[] = {
  1254. { "sched:sched_switch", process_sched_switch_event, },
  1255. { "sched:sched_stat_runtime", process_sched_runtime_event, },
  1256. { "sched:sched_wakeup", process_sched_wakeup_event, },
  1257. { "sched:sched_wakeup_new", process_sched_wakeup_event, },
  1258. { "sched:sched_migrate_task", process_sched_migrate_task_event, },
  1259. };
  1260. struct perf_session *session;
  1261. struct perf_data_file file = {
  1262. .path = input_name,
  1263. .mode = PERF_DATA_MODE_READ,
  1264. .force = sched->force,
  1265. };
  1266. int rc = -1;
  1267. session = perf_session__new(&file, false, &sched->tool);
  1268. if (session == NULL) {
  1269. pr_debug("No Memory for session\n");
  1270. return -1;
  1271. }
  1272. symbol__init(&session->header.env);
  1273. if (perf_session__set_tracepoints_handlers(session, handlers))
  1274. goto out_delete;
  1275. if (perf_session__has_traces(session, "record -R")) {
  1276. int err = perf_session__process_events(session);
  1277. if (err) {
  1278. pr_err("Failed to process events, error %d", err);
  1279. goto out_delete;
  1280. }
  1281. sched->nr_events = session->evlist->stats.nr_events[0];
  1282. sched->nr_lost_events = session->evlist->stats.total_lost;
  1283. sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
  1284. }
  1285. rc = 0;
  1286. out_delete:
  1287. perf_session__delete(session);
  1288. return rc;
  1289. }
  1290. static void print_bad_events(struct perf_sched *sched)
  1291. {
  1292. if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
  1293. printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
  1294. (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
  1295. sched->nr_unordered_timestamps, sched->nr_timestamps);
  1296. }
  1297. if (sched->nr_lost_events && sched->nr_events) {
  1298. printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
  1299. (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
  1300. sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
  1301. }
  1302. if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
  1303. printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
  1304. (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
  1305. sched->nr_context_switch_bugs, sched->nr_timestamps);
  1306. if (sched->nr_lost_events)
  1307. printf(" (due to lost events?)");
  1308. printf("\n");
  1309. }
  1310. }
  1311. static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
  1312. {
  1313. struct rb_node **new = &(root->rb_node), *parent = NULL;
  1314. struct work_atoms *this;
  1315. const char *comm = thread__comm_str(data->thread), *this_comm;
  1316. while (*new) {
  1317. int cmp;
  1318. this = container_of(*new, struct work_atoms, node);
  1319. parent = *new;
  1320. this_comm = thread__comm_str(this->thread);
  1321. cmp = strcmp(comm, this_comm);
  1322. if (cmp > 0) {
  1323. new = &((*new)->rb_left);
  1324. } else if (cmp < 0) {
  1325. new = &((*new)->rb_right);
  1326. } else {
  1327. this->num_merged++;
  1328. this->total_runtime += data->total_runtime;
  1329. this->nb_atoms += data->nb_atoms;
  1330. this->total_lat += data->total_lat;
  1331. list_splice(&data->work_list, &this->work_list);
  1332. if (this->max_lat < data->max_lat) {
  1333. this->max_lat = data->max_lat;
  1334. this->max_lat_at = data->max_lat_at;
  1335. }
  1336. zfree(&data);
  1337. return;
  1338. }
  1339. }
  1340. data->num_merged++;
  1341. rb_link_node(&data->node, parent, new);
  1342. rb_insert_color(&data->node, root);
  1343. }
  1344. static void perf_sched__merge_lat(struct perf_sched *sched)
  1345. {
  1346. struct work_atoms *data;
  1347. struct rb_node *node;
  1348. if (sched->skip_merge)
  1349. return;
  1350. while ((node = rb_first(&sched->atom_root))) {
  1351. rb_erase(node, &sched->atom_root);
  1352. data = rb_entry(node, struct work_atoms, node);
  1353. __merge_work_atoms(&sched->merged_atom_root, data);
  1354. }
  1355. }
  1356. static int perf_sched__lat(struct perf_sched *sched)
  1357. {
  1358. struct rb_node *next;
  1359. setup_pager();
  1360. if (perf_sched__read_events(sched))
  1361. return -1;
  1362. perf_sched__merge_lat(sched);
  1363. perf_sched__sort_lat(sched);
  1364. printf("\n -----------------------------------------------------------------------------------------------------------------\n");
  1365. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
  1366. printf(" -----------------------------------------------------------------------------------------------------------------\n");
  1367. next = rb_first(&sched->sorted_atom_root);
  1368. while (next) {
  1369. struct work_atoms *work_list;
  1370. work_list = rb_entry(next, struct work_atoms, node);
  1371. output_lat_thread(sched, work_list);
  1372. next = rb_next(next);
  1373. thread__zput(work_list->thread);
  1374. }
  1375. printf(" -----------------------------------------------------------------------------------------------------------------\n");
  1376. printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
  1377. (double)sched->all_runtime / 1e6, sched->all_count);
  1378. printf(" ---------------------------------------------------\n");
  1379. print_bad_events(sched);
  1380. printf("\n");
  1381. return 0;
  1382. }
  1383. static int perf_sched__map(struct perf_sched *sched)
  1384. {
  1385. sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
  1386. setup_pager();
  1387. if (perf_sched__read_events(sched))
  1388. return -1;
  1389. print_bad_events(sched);
  1390. return 0;
  1391. }
  1392. static int perf_sched__replay(struct perf_sched *sched)
  1393. {
  1394. unsigned long i;
  1395. calibrate_run_measurement_overhead(sched);
  1396. calibrate_sleep_measurement_overhead(sched);
  1397. test_calibrations(sched);
  1398. if (perf_sched__read_events(sched))
  1399. return -1;
  1400. printf("nr_run_events: %ld\n", sched->nr_run_events);
  1401. printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
  1402. printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
  1403. if (sched->targetless_wakeups)
  1404. printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
  1405. if (sched->multitarget_wakeups)
  1406. printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
  1407. if (sched->nr_run_events_optimized)
  1408. printf("run atoms optimized: %ld\n",
  1409. sched->nr_run_events_optimized);
  1410. print_task_traces(sched);
  1411. add_cross_task_wakeups(sched);
  1412. create_tasks(sched);
  1413. printf("------------------------------------------------------------\n");
  1414. for (i = 0; i < sched->replay_repeat; i++)
  1415. run_one_test(sched);
  1416. return 0;
  1417. }
  1418. static void setup_sorting(struct perf_sched *sched, const struct option *options,
  1419. const char * const usage_msg[])
  1420. {
  1421. char *tmp, *tok, *str = strdup(sched->sort_order);
  1422. for (tok = strtok_r(str, ", ", &tmp);
  1423. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1424. if (sort_dimension__add(tok, &sched->sort_list) < 0) {
  1425. error("Unknown --sort key: `%s'", tok);
  1426. usage_with_options(usage_msg, options);
  1427. }
  1428. }
  1429. free(str);
  1430. sort_dimension__add("pid", &sched->cmp_pid);
  1431. }
  1432. static int __cmd_record(int argc, const char **argv)
  1433. {
  1434. unsigned int rec_argc, i, j;
  1435. const char **rec_argv;
  1436. const char * const record_args[] = {
  1437. "record",
  1438. "-a",
  1439. "-R",
  1440. "-m", "1024",
  1441. "-c", "1",
  1442. "-e", "sched:sched_switch",
  1443. "-e", "sched:sched_stat_wait",
  1444. "-e", "sched:sched_stat_sleep",
  1445. "-e", "sched:sched_stat_iowait",
  1446. "-e", "sched:sched_stat_runtime",
  1447. "-e", "sched:sched_process_fork",
  1448. "-e", "sched:sched_wakeup",
  1449. "-e", "sched:sched_wakeup_new",
  1450. "-e", "sched:sched_migrate_task",
  1451. };
  1452. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1453. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1454. if (rec_argv == NULL)
  1455. return -ENOMEM;
  1456. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1457. rec_argv[i] = strdup(record_args[i]);
  1458. for (j = 1; j < (unsigned int)argc; j++, i++)
  1459. rec_argv[i] = argv[j];
  1460. BUG_ON(i != rec_argc);
  1461. return cmd_record(i, rec_argv, NULL);
  1462. }
  1463. int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
  1464. {
  1465. const char default_sort_order[] = "avg, max, switch, runtime";
  1466. struct perf_sched sched = {
  1467. .tool = {
  1468. .sample = perf_sched__process_tracepoint_sample,
  1469. .comm = perf_event__process_comm,
  1470. .lost = perf_event__process_lost,
  1471. .fork = perf_sched__process_fork_event,
  1472. .ordered_events = true,
  1473. },
  1474. .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
  1475. .sort_list = LIST_HEAD_INIT(sched.sort_list),
  1476. .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
  1477. .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
  1478. .sort_order = default_sort_order,
  1479. .replay_repeat = 10,
  1480. .profile_cpu = -1,
  1481. .next_shortname1 = 'A',
  1482. .next_shortname2 = '0',
  1483. .skip_merge = 0,
  1484. };
  1485. const struct option latency_options[] = {
  1486. OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
  1487. "sort by key(s): runtime, switch, avg, max"),
  1488. OPT_INCR('v', "verbose", &verbose,
  1489. "be more verbose (show symbol address, etc)"),
  1490. OPT_INTEGER('C', "CPU", &sched.profile_cpu,
  1491. "CPU to profile on"),
  1492. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1493. "dump raw trace in ASCII"),
  1494. OPT_BOOLEAN('p', "pids", &sched.skip_merge,
  1495. "latency stats per pid instead of per comm"),
  1496. OPT_END()
  1497. };
  1498. const struct option replay_options[] = {
  1499. OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
  1500. "repeat the workload replay N times (-1: infinite)"),
  1501. OPT_INCR('v', "verbose", &verbose,
  1502. "be more verbose (show symbol address, etc)"),
  1503. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1504. "dump raw trace in ASCII"),
  1505. OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
  1506. OPT_END()
  1507. };
  1508. const struct option sched_options[] = {
  1509. OPT_STRING('i', "input", &input_name, "file",
  1510. "input file name"),
  1511. OPT_INCR('v', "verbose", &verbose,
  1512. "be more verbose (show symbol address, etc)"),
  1513. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1514. "dump raw trace in ASCII"),
  1515. OPT_END()
  1516. };
  1517. const char * const latency_usage[] = {
  1518. "perf sched latency [<options>]",
  1519. NULL
  1520. };
  1521. const char * const replay_usage[] = {
  1522. "perf sched replay [<options>]",
  1523. NULL
  1524. };
  1525. const char *const sched_subcommands[] = { "record", "latency", "map",
  1526. "replay", "script", NULL };
  1527. const char *sched_usage[] = {
  1528. NULL,
  1529. NULL
  1530. };
  1531. struct trace_sched_handler lat_ops = {
  1532. .wakeup_event = latency_wakeup_event,
  1533. .switch_event = latency_switch_event,
  1534. .runtime_event = latency_runtime_event,
  1535. .migrate_task_event = latency_migrate_task_event,
  1536. };
  1537. struct trace_sched_handler map_ops = {
  1538. .switch_event = map_switch_event,
  1539. };
  1540. struct trace_sched_handler replay_ops = {
  1541. .wakeup_event = replay_wakeup_event,
  1542. .switch_event = replay_switch_event,
  1543. .fork_event = replay_fork_event,
  1544. };
  1545. unsigned int i;
  1546. for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
  1547. sched.curr_pid[i] = -1;
  1548. argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
  1549. sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
  1550. if (!argc)
  1551. usage_with_options(sched_usage, sched_options);
  1552. /*
  1553. * Aliased to 'perf script' for now:
  1554. */
  1555. if (!strcmp(argv[0], "script"))
  1556. return cmd_script(argc, argv, prefix);
  1557. if (!strncmp(argv[0], "rec", 3)) {
  1558. return __cmd_record(argc, argv);
  1559. } else if (!strncmp(argv[0], "lat", 3)) {
  1560. sched.tp_handler = &lat_ops;
  1561. if (argc > 1) {
  1562. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1563. if (argc)
  1564. usage_with_options(latency_usage, latency_options);
  1565. }
  1566. setup_sorting(&sched, latency_options, latency_usage);
  1567. return perf_sched__lat(&sched);
  1568. } else if (!strcmp(argv[0], "map")) {
  1569. sched.tp_handler = &map_ops;
  1570. setup_sorting(&sched, latency_options, latency_usage);
  1571. return perf_sched__map(&sched);
  1572. } else if (!strncmp(argv[0], "rep", 3)) {
  1573. sched.tp_handler = &replay_ops;
  1574. if (argc) {
  1575. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1576. if (argc)
  1577. usage_with_options(replay_usage, replay_options);
  1578. }
  1579. return perf_sched__replay(&sched);
  1580. } else {
  1581. usage_with_options(sched_usage, sched_options);
  1582. }
  1583. return 0;
  1584. }