ib_recv.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-mapping.h>
  37. #include <rdma/rdma_cm.h>
  38. #include "rds.h"
  39. #include "ib.h"
  40. static struct kmem_cache *rds_ib_incoming_slab;
  41. static struct kmem_cache *rds_ib_frag_slab;
  42. static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  43. void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  44. {
  45. struct rds_ib_recv_work *recv;
  46. u32 i;
  47. for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  48. struct ib_sge *sge;
  49. recv->r_ibinc = NULL;
  50. recv->r_frag = NULL;
  51. recv->r_wr.next = NULL;
  52. recv->r_wr.wr_id = i;
  53. recv->r_wr.sg_list = recv->r_sge;
  54. recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  55. sge = &recv->r_sge[0];
  56. sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  57. sge->length = sizeof(struct rds_header);
  58. sge->lkey = ic->i_pd->local_dma_lkey;
  59. sge = &recv->r_sge[1];
  60. sge->addr = 0;
  61. sge->length = RDS_FRAG_SIZE;
  62. sge->lkey = ic->i_pd->local_dma_lkey;
  63. }
  64. }
  65. /*
  66. * The entire 'from' list, including the from element itself, is put on
  67. * to the tail of the 'to' list.
  68. */
  69. static void list_splice_entire_tail(struct list_head *from,
  70. struct list_head *to)
  71. {
  72. struct list_head *from_last = from->prev;
  73. list_splice_tail(from_last, to);
  74. list_add_tail(from_last, to);
  75. }
  76. static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  77. {
  78. struct list_head *tmp;
  79. tmp = xchg(&cache->xfer, NULL);
  80. if (tmp) {
  81. if (cache->ready)
  82. list_splice_entire_tail(tmp, cache->ready);
  83. else
  84. cache->ready = tmp;
  85. }
  86. }
  87. static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
  88. {
  89. struct rds_ib_cache_head *head;
  90. int cpu;
  91. cache->percpu = alloc_percpu(struct rds_ib_cache_head);
  92. if (!cache->percpu)
  93. return -ENOMEM;
  94. for_each_possible_cpu(cpu) {
  95. head = per_cpu_ptr(cache->percpu, cpu);
  96. head->first = NULL;
  97. head->count = 0;
  98. }
  99. cache->xfer = NULL;
  100. cache->ready = NULL;
  101. return 0;
  102. }
  103. int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
  104. {
  105. int ret;
  106. ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
  107. if (!ret) {
  108. ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
  109. if (ret)
  110. free_percpu(ic->i_cache_incs.percpu);
  111. }
  112. return ret;
  113. }
  114. static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
  115. struct list_head *caller_list)
  116. {
  117. struct rds_ib_cache_head *head;
  118. int cpu;
  119. for_each_possible_cpu(cpu) {
  120. head = per_cpu_ptr(cache->percpu, cpu);
  121. if (head->first) {
  122. list_splice_entire_tail(head->first, caller_list);
  123. head->first = NULL;
  124. }
  125. }
  126. if (cache->ready) {
  127. list_splice_entire_tail(cache->ready, caller_list);
  128. cache->ready = NULL;
  129. }
  130. }
  131. void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
  132. {
  133. struct rds_ib_incoming *inc;
  134. struct rds_ib_incoming *inc_tmp;
  135. struct rds_page_frag *frag;
  136. struct rds_page_frag *frag_tmp;
  137. LIST_HEAD(list);
  138. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  139. rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
  140. free_percpu(ic->i_cache_incs.percpu);
  141. list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
  142. list_del(&inc->ii_cache_entry);
  143. WARN_ON(!list_empty(&inc->ii_frags));
  144. kmem_cache_free(rds_ib_incoming_slab, inc);
  145. }
  146. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  147. rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
  148. free_percpu(ic->i_cache_frags.percpu);
  149. list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
  150. list_del(&frag->f_cache_entry);
  151. WARN_ON(!list_empty(&frag->f_item));
  152. kmem_cache_free(rds_ib_frag_slab, frag);
  153. }
  154. }
  155. /* fwd decl */
  156. static void rds_ib_recv_cache_put(struct list_head *new_item,
  157. struct rds_ib_refill_cache *cache);
  158. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
  159. /* Recycle frag and attached recv buffer f_sg */
  160. static void rds_ib_frag_free(struct rds_ib_connection *ic,
  161. struct rds_page_frag *frag)
  162. {
  163. rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
  164. rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
  165. }
  166. /* Recycle inc after freeing attached frags */
  167. void rds_ib_inc_free(struct rds_incoming *inc)
  168. {
  169. struct rds_ib_incoming *ibinc;
  170. struct rds_page_frag *frag;
  171. struct rds_page_frag *pos;
  172. struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
  173. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  174. /* Free attached frags */
  175. list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
  176. list_del_init(&frag->f_item);
  177. rds_ib_frag_free(ic, frag);
  178. }
  179. BUG_ON(!list_empty(&ibinc->ii_frags));
  180. rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
  181. rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
  182. }
  183. static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
  184. struct rds_ib_recv_work *recv)
  185. {
  186. if (recv->r_ibinc) {
  187. rds_inc_put(&recv->r_ibinc->ii_inc);
  188. recv->r_ibinc = NULL;
  189. }
  190. if (recv->r_frag) {
  191. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  192. rds_ib_frag_free(ic, recv->r_frag);
  193. recv->r_frag = NULL;
  194. }
  195. }
  196. void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
  197. {
  198. u32 i;
  199. for (i = 0; i < ic->i_recv_ring.w_nr; i++)
  200. rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
  201. }
  202. static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
  203. gfp_t slab_mask)
  204. {
  205. struct rds_ib_incoming *ibinc;
  206. struct list_head *cache_item;
  207. int avail_allocs;
  208. cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
  209. if (cache_item) {
  210. ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
  211. } else {
  212. avail_allocs = atomic_add_unless(&rds_ib_allocation,
  213. 1, rds_ib_sysctl_max_recv_allocation);
  214. if (!avail_allocs) {
  215. rds_ib_stats_inc(s_ib_rx_alloc_limit);
  216. return NULL;
  217. }
  218. ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
  219. if (!ibinc) {
  220. atomic_dec(&rds_ib_allocation);
  221. return NULL;
  222. }
  223. }
  224. INIT_LIST_HEAD(&ibinc->ii_frags);
  225. rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
  226. return ibinc;
  227. }
  228. static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
  229. gfp_t slab_mask, gfp_t page_mask)
  230. {
  231. struct rds_page_frag *frag;
  232. struct list_head *cache_item;
  233. int ret;
  234. cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
  235. if (cache_item) {
  236. frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
  237. } else {
  238. frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
  239. if (!frag)
  240. return NULL;
  241. sg_init_table(&frag->f_sg, 1);
  242. ret = rds_page_remainder_alloc(&frag->f_sg,
  243. RDS_FRAG_SIZE, page_mask);
  244. if (ret) {
  245. kmem_cache_free(rds_ib_frag_slab, frag);
  246. return NULL;
  247. }
  248. }
  249. INIT_LIST_HEAD(&frag->f_item);
  250. return frag;
  251. }
  252. static int rds_ib_recv_refill_one(struct rds_connection *conn,
  253. struct rds_ib_recv_work *recv, gfp_t gfp)
  254. {
  255. struct rds_ib_connection *ic = conn->c_transport_data;
  256. struct ib_sge *sge;
  257. int ret = -ENOMEM;
  258. gfp_t slab_mask = GFP_NOWAIT;
  259. gfp_t page_mask = GFP_NOWAIT;
  260. if (gfp & __GFP_WAIT) {
  261. slab_mask = GFP_KERNEL;
  262. page_mask = GFP_HIGHUSER;
  263. }
  264. if (!ic->i_cache_incs.ready)
  265. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  266. if (!ic->i_cache_frags.ready)
  267. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  268. /*
  269. * ibinc was taken from recv if recv contained the start of a message.
  270. * recvs that were continuations will still have this allocated.
  271. */
  272. if (!recv->r_ibinc) {
  273. recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
  274. if (!recv->r_ibinc)
  275. goto out;
  276. }
  277. WARN_ON(recv->r_frag); /* leak! */
  278. recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
  279. if (!recv->r_frag)
  280. goto out;
  281. ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
  282. 1, DMA_FROM_DEVICE);
  283. WARN_ON(ret != 1);
  284. sge = &recv->r_sge[0];
  285. sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
  286. sge->length = sizeof(struct rds_header);
  287. sge = &recv->r_sge[1];
  288. sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
  289. sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
  290. ret = 0;
  291. out:
  292. return ret;
  293. }
  294. static int acquire_refill(struct rds_connection *conn)
  295. {
  296. return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
  297. }
  298. static void release_refill(struct rds_connection *conn)
  299. {
  300. clear_bit(RDS_RECV_REFILL, &conn->c_flags);
  301. /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
  302. * hot path and finding waiters is very rare. We don't want to walk
  303. * the system-wide hashed waitqueue buckets in the fast path only to
  304. * almost never find waiters.
  305. */
  306. if (waitqueue_active(&conn->c_waitq))
  307. wake_up_all(&conn->c_waitq);
  308. }
  309. /*
  310. * This tries to allocate and post unused work requests after making sure that
  311. * they have all the allocations they need to queue received fragments into
  312. * sockets.
  313. *
  314. * -1 is returned if posting fails due to temporary resource exhaustion.
  315. */
  316. void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
  317. {
  318. struct rds_ib_connection *ic = conn->c_transport_data;
  319. struct rds_ib_recv_work *recv;
  320. struct ib_recv_wr *failed_wr;
  321. unsigned int posted = 0;
  322. int ret = 0;
  323. bool can_wait = !!(gfp & __GFP_WAIT);
  324. u32 pos;
  325. /* the goal here is to just make sure that someone, somewhere
  326. * is posting buffers. If we can't get the refill lock,
  327. * let them do their thing
  328. */
  329. if (!acquire_refill(conn))
  330. return;
  331. while ((prefill || rds_conn_up(conn)) &&
  332. rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
  333. if (pos >= ic->i_recv_ring.w_nr) {
  334. printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
  335. pos);
  336. break;
  337. }
  338. recv = &ic->i_recvs[pos];
  339. ret = rds_ib_recv_refill_one(conn, recv, gfp);
  340. if (ret) {
  341. break;
  342. }
  343. /* XXX when can this fail? */
  344. ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
  345. rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
  346. recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
  347. (long) ib_sg_dma_address(
  348. ic->i_cm_id->device,
  349. &recv->r_frag->f_sg),
  350. ret);
  351. if (ret) {
  352. rds_ib_conn_error(conn, "recv post on "
  353. "%pI4 returned %d, disconnecting and "
  354. "reconnecting\n", &conn->c_faddr,
  355. ret);
  356. break;
  357. }
  358. posted++;
  359. }
  360. /* We're doing flow control - update the window. */
  361. if (ic->i_flowctl && posted)
  362. rds_ib_advertise_credits(conn, posted);
  363. if (ret)
  364. rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
  365. release_refill(conn);
  366. /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
  367. * in this case the ring being low is going to lead to more interrupts
  368. * and we can safely let the softirq code take care of it unless the
  369. * ring is completely empty.
  370. *
  371. * if we're called from krdsd, we'll be GFP_KERNEL. In this case
  372. * we might have raced with the softirq code while we had the refill
  373. * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
  374. * if we should requeue.
  375. */
  376. if (rds_conn_up(conn) &&
  377. ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
  378. rds_ib_ring_empty(&ic->i_recv_ring))) {
  379. queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
  380. }
  381. }
  382. /*
  383. * We want to recycle several types of recv allocations, like incs and frags.
  384. * To use this, the *_free() function passes in the ptr to a list_head within
  385. * the recyclee, as well as the cache to put it on.
  386. *
  387. * First, we put the memory on a percpu list. When this reaches a certain size,
  388. * We move it to an intermediate non-percpu list in a lockless manner, with some
  389. * xchg/compxchg wizardry.
  390. *
  391. * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
  392. * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
  393. * list_empty() will return true with one element is actually present.
  394. */
  395. static void rds_ib_recv_cache_put(struct list_head *new_item,
  396. struct rds_ib_refill_cache *cache)
  397. {
  398. unsigned long flags;
  399. struct list_head *old, *chpfirst;
  400. local_irq_save(flags);
  401. chpfirst = __this_cpu_read(cache->percpu->first);
  402. if (!chpfirst)
  403. INIT_LIST_HEAD(new_item);
  404. else /* put on front */
  405. list_add_tail(new_item, chpfirst);
  406. __this_cpu_write(cache->percpu->first, new_item);
  407. __this_cpu_inc(cache->percpu->count);
  408. if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
  409. goto end;
  410. /*
  411. * Return our per-cpu first list to the cache's xfer by atomically
  412. * grabbing the current xfer list, appending it to our per-cpu list,
  413. * and then atomically returning that entire list back to the
  414. * cache's xfer list as long as it's still empty.
  415. */
  416. do {
  417. old = xchg(&cache->xfer, NULL);
  418. if (old)
  419. list_splice_entire_tail(old, chpfirst);
  420. old = cmpxchg(&cache->xfer, NULL, chpfirst);
  421. } while (old);
  422. __this_cpu_write(cache->percpu->first, NULL);
  423. __this_cpu_write(cache->percpu->count, 0);
  424. end:
  425. local_irq_restore(flags);
  426. }
  427. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
  428. {
  429. struct list_head *head = cache->ready;
  430. if (head) {
  431. if (!list_empty(head)) {
  432. cache->ready = head->next;
  433. list_del_init(head);
  434. } else
  435. cache->ready = NULL;
  436. }
  437. return head;
  438. }
  439. int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
  440. {
  441. struct rds_ib_incoming *ibinc;
  442. struct rds_page_frag *frag;
  443. unsigned long to_copy;
  444. unsigned long frag_off = 0;
  445. int copied = 0;
  446. int ret;
  447. u32 len;
  448. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  449. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  450. len = be32_to_cpu(inc->i_hdr.h_len);
  451. while (iov_iter_count(to) && copied < len) {
  452. if (frag_off == RDS_FRAG_SIZE) {
  453. frag = list_entry(frag->f_item.next,
  454. struct rds_page_frag, f_item);
  455. frag_off = 0;
  456. }
  457. to_copy = min_t(unsigned long, iov_iter_count(to),
  458. RDS_FRAG_SIZE - frag_off);
  459. to_copy = min_t(unsigned long, to_copy, len - copied);
  460. /* XXX needs + offset for multiple recvs per page */
  461. rds_stats_add(s_copy_to_user, to_copy);
  462. ret = copy_page_to_iter(sg_page(&frag->f_sg),
  463. frag->f_sg.offset + frag_off,
  464. to_copy,
  465. to);
  466. if (ret != to_copy)
  467. return -EFAULT;
  468. frag_off += to_copy;
  469. copied += to_copy;
  470. }
  471. return copied;
  472. }
  473. /* ic starts out kzalloc()ed */
  474. void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
  475. {
  476. struct ib_send_wr *wr = &ic->i_ack_wr;
  477. struct ib_sge *sge = &ic->i_ack_sge;
  478. sge->addr = ic->i_ack_dma;
  479. sge->length = sizeof(struct rds_header);
  480. sge->lkey = ic->i_pd->local_dma_lkey;
  481. wr->sg_list = sge;
  482. wr->num_sge = 1;
  483. wr->opcode = IB_WR_SEND;
  484. wr->wr_id = RDS_IB_ACK_WR_ID;
  485. wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  486. }
  487. /*
  488. * You'd think that with reliable IB connections you wouldn't need to ack
  489. * messages that have been received. The problem is that IB hardware generates
  490. * an ack message before it has DMAed the message into memory. This creates a
  491. * potential message loss if the HCA is disabled for any reason between when it
  492. * sends the ack and before the message is DMAed and processed. This is only a
  493. * potential issue if another HCA is available for fail-over.
  494. *
  495. * When the remote host receives our ack they'll free the sent message from
  496. * their send queue. To decrease the latency of this we always send an ack
  497. * immediately after we've received messages.
  498. *
  499. * For simplicity, we only have one ack in flight at a time. This puts
  500. * pressure on senders to have deep enough send queues to absorb the latency of
  501. * a single ack frame being in flight. This might not be good enough.
  502. *
  503. * This is implemented by have a long-lived send_wr and sge which point to a
  504. * statically allocated ack frame. This ack wr does not fall under the ring
  505. * accounting that the tx and rx wrs do. The QP attribute specifically makes
  506. * room for it beyond the ring size. Send completion notices its special
  507. * wr_id and avoids working with the ring in that case.
  508. */
  509. #ifndef KERNEL_HAS_ATOMIC64
  510. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  511. int ack_required)
  512. {
  513. unsigned long flags;
  514. spin_lock_irqsave(&ic->i_ack_lock, flags);
  515. ic->i_ack_next = seq;
  516. if (ack_required)
  517. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  518. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  519. }
  520. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  521. {
  522. unsigned long flags;
  523. u64 seq;
  524. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  525. spin_lock_irqsave(&ic->i_ack_lock, flags);
  526. seq = ic->i_ack_next;
  527. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  528. return seq;
  529. }
  530. #else
  531. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  532. int ack_required)
  533. {
  534. atomic64_set(&ic->i_ack_next, seq);
  535. if (ack_required) {
  536. smp_mb__before_atomic();
  537. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  538. }
  539. }
  540. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  541. {
  542. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  543. smp_mb__after_atomic();
  544. return atomic64_read(&ic->i_ack_next);
  545. }
  546. #endif
  547. static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
  548. {
  549. struct rds_header *hdr = ic->i_ack;
  550. struct ib_send_wr *failed_wr;
  551. u64 seq;
  552. int ret;
  553. seq = rds_ib_get_ack(ic);
  554. rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
  555. rds_message_populate_header(hdr, 0, 0, 0);
  556. hdr->h_ack = cpu_to_be64(seq);
  557. hdr->h_credit = adv_credits;
  558. rds_message_make_checksum(hdr);
  559. ic->i_ack_queued = jiffies;
  560. ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
  561. if (unlikely(ret)) {
  562. /* Failed to send. Release the WR, and
  563. * force another ACK.
  564. */
  565. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  566. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  567. rds_ib_stats_inc(s_ib_ack_send_failure);
  568. rds_ib_conn_error(ic->conn, "sending ack failed\n");
  569. } else
  570. rds_ib_stats_inc(s_ib_ack_sent);
  571. }
  572. /*
  573. * There are 3 ways of getting acknowledgements to the peer:
  574. * 1. We call rds_ib_attempt_ack from the recv completion handler
  575. * to send an ACK-only frame.
  576. * However, there can be only one such frame in the send queue
  577. * at any time, so we may have to postpone it.
  578. * 2. When another (data) packet is transmitted while there's
  579. * an ACK in the queue, we piggyback the ACK sequence number
  580. * on the data packet.
  581. * 3. If the ACK WR is done sending, we get called from the
  582. * send queue completion handler, and check whether there's
  583. * another ACK pending (postponed because the WR was on the
  584. * queue). If so, we transmit it.
  585. *
  586. * We maintain 2 variables:
  587. * - i_ack_flags, which keeps track of whether the ACK WR
  588. * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
  589. * - i_ack_next, which is the last sequence number we received
  590. *
  591. * Potentially, send queue and receive queue handlers can run concurrently.
  592. * It would be nice to not have to use a spinlock to synchronize things,
  593. * but the one problem that rules this out is that 64bit updates are
  594. * not atomic on all platforms. Things would be a lot simpler if
  595. * we had atomic64 or maybe cmpxchg64 everywhere.
  596. *
  597. * Reconnecting complicates this picture just slightly. When we
  598. * reconnect, we may be seeing duplicate packets. The peer
  599. * is retransmitting them, because it hasn't seen an ACK for
  600. * them. It is important that we ACK these.
  601. *
  602. * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
  603. * this flag set *MUST* be acknowledged immediately.
  604. */
  605. /*
  606. * When we get here, we're called from the recv queue handler.
  607. * Check whether we ought to transmit an ACK.
  608. */
  609. void rds_ib_attempt_ack(struct rds_ib_connection *ic)
  610. {
  611. unsigned int adv_credits;
  612. if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  613. return;
  614. if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
  615. rds_ib_stats_inc(s_ib_ack_send_delayed);
  616. return;
  617. }
  618. /* Can we get a send credit? */
  619. if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
  620. rds_ib_stats_inc(s_ib_tx_throttle);
  621. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  622. return;
  623. }
  624. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  625. rds_ib_send_ack(ic, adv_credits);
  626. }
  627. /*
  628. * We get here from the send completion handler, when the
  629. * adapter tells us the ACK frame was sent.
  630. */
  631. void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
  632. {
  633. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  634. rds_ib_attempt_ack(ic);
  635. }
  636. /*
  637. * This is called by the regular xmit code when it wants to piggyback
  638. * an ACK on an outgoing frame.
  639. */
  640. u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
  641. {
  642. if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  643. rds_ib_stats_inc(s_ib_ack_send_piggybacked);
  644. return rds_ib_get_ack(ic);
  645. }
  646. /*
  647. * It's kind of lame that we're copying from the posted receive pages into
  648. * long-lived bitmaps. We could have posted the bitmaps and rdma written into
  649. * them. But receiving new congestion bitmaps should be a *rare* event, so
  650. * hopefully we won't need to invest that complexity in making it more
  651. * efficient. By copying we can share a simpler core with TCP which has to
  652. * copy.
  653. */
  654. static void rds_ib_cong_recv(struct rds_connection *conn,
  655. struct rds_ib_incoming *ibinc)
  656. {
  657. struct rds_cong_map *map;
  658. unsigned int map_off;
  659. unsigned int map_page;
  660. struct rds_page_frag *frag;
  661. unsigned long frag_off;
  662. unsigned long to_copy;
  663. unsigned long copied;
  664. uint64_t uncongested = 0;
  665. void *addr;
  666. /* catch completely corrupt packets */
  667. if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
  668. return;
  669. map = conn->c_fcong;
  670. map_page = 0;
  671. map_off = 0;
  672. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  673. frag_off = 0;
  674. copied = 0;
  675. while (copied < RDS_CONG_MAP_BYTES) {
  676. uint64_t *src, *dst;
  677. unsigned int k;
  678. to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
  679. BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
  680. addr = kmap_atomic(sg_page(&frag->f_sg));
  681. src = addr + frag_off;
  682. dst = (void *)map->m_page_addrs[map_page] + map_off;
  683. for (k = 0; k < to_copy; k += 8) {
  684. /* Record ports that became uncongested, ie
  685. * bits that changed from 0 to 1. */
  686. uncongested |= ~(*src) & *dst;
  687. *dst++ = *src++;
  688. }
  689. kunmap_atomic(addr);
  690. copied += to_copy;
  691. map_off += to_copy;
  692. if (map_off == PAGE_SIZE) {
  693. map_off = 0;
  694. map_page++;
  695. }
  696. frag_off += to_copy;
  697. if (frag_off == RDS_FRAG_SIZE) {
  698. frag = list_entry(frag->f_item.next,
  699. struct rds_page_frag, f_item);
  700. frag_off = 0;
  701. }
  702. }
  703. /* the congestion map is in little endian order */
  704. uncongested = le64_to_cpu(uncongested);
  705. rds_cong_map_updated(map, uncongested);
  706. }
  707. /*
  708. * Rings are posted with all the allocations they'll need to queue the
  709. * incoming message to the receiving socket so this can't fail.
  710. * All fragments start with a header, so we can make sure we're not receiving
  711. * garbage, and we can tell a small 8 byte fragment from an ACK frame.
  712. */
  713. struct rds_ib_ack_state {
  714. u64 ack_next;
  715. u64 ack_recv;
  716. unsigned int ack_required:1;
  717. unsigned int ack_next_valid:1;
  718. unsigned int ack_recv_valid:1;
  719. };
  720. static void rds_ib_process_recv(struct rds_connection *conn,
  721. struct rds_ib_recv_work *recv, u32 data_len,
  722. struct rds_ib_ack_state *state)
  723. {
  724. struct rds_ib_connection *ic = conn->c_transport_data;
  725. struct rds_ib_incoming *ibinc = ic->i_ibinc;
  726. struct rds_header *ihdr, *hdr;
  727. /* XXX shut down the connection if port 0,0 are seen? */
  728. rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
  729. data_len);
  730. if (data_len < sizeof(struct rds_header)) {
  731. rds_ib_conn_error(conn, "incoming message "
  732. "from %pI4 didn't include a "
  733. "header, disconnecting and "
  734. "reconnecting\n",
  735. &conn->c_faddr);
  736. return;
  737. }
  738. data_len -= sizeof(struct rds_header);
  739. ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
  740. /* Validate the checksum. */
  741. if (!rds_message_verify_checksum(ihdr)) {
  742. rds_ib_conn_error(conn, "incoming message "
  743. "from %pI4 has corrupted header - "
  744. "forcing a reconnect\n",
  745. &conn->c_faddr);
  746. rds_stats_inc(s_recv_drop_bad_checksum);
  747. return;
  748. }
  749. /* Process the ACK sequence which comes with every packet */
  750. state->ack_recv = be64_to_cpu(ihdr->h_ack);
  751. state->ack_recv_valid = 1;
  752. /* Process the credits update if there was one */
  753. if (ihdr->h_credit)
  754. rds_ib_send_add_credits(conn, ihdr->h_credit);
  755. if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
  756. /* This is an ACK-only packet. The fact that it gets
  757. * special treatment here is that historically, ACKs
  758. * were rather special beasts.
  759. */
  760. rds_ib_stats_inc(s_ib_ack_received);
  761. /*
  762. * Usually the frags make their way on to incs and are then freed as
  763. * the inc is freed. We don't go that route, so we have to drop the
  764. * page ref ourselves. We can't just leave the page on the recv
  765. * because that confuses the dma mapping of pages and each recv's use
  766. * of a partial page.
  767. *
  768. * FIXME: Fold this into the code path below.
  769. */
  770. rds_ib_frag_free(ic, recv->r_frag);
  771. recv->r_frag = NULL;
  772. return;
  773. }
  774. /*
  775. * If we don't already have an inc on the connection then this
  776. * fragment has a header and starts a message.. copy its header
  777. * into the inc and save the inc so we can hang upcoming fragments
  778. * off its list.
  779. */
  780. if (!ibinc) {
  781. ibinc = recv->r_ibinc;
  782. recv->r_ibinc = NULL;
  783. ic->i_ibinc = ibinc;
  784. hdr = &ibinc->ii_inc.i_hdr;
  785. memcpy(hdr, ihdr, sizeof(*hdr));
  786. ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
  787. rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
  788. ic->i_recv_data_rem, hdr->h_flags);
  789. } else {
  790. hdr = &ibinc->ii_inc.i_hdr;
  791. /* We can't just use memcmp here; fragments of a
  792. * single message may carry different ACKs */
  793. if (hdr->h_sequence != ihdr->h_sequence ||
  794. hdr->h_len != ihdr->h_len ||
  795. hdr->h_sport != ihdr->h_sport ||
  796. hdr->h_dport != ihdr->h_dport) {
  797. rds_ib_conn_error(conn,
  798. "fragment header mismatch; forcing reconnect\n");
  799. return;
  800. }
  801. }
  802. list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
  803. recv->r_frag = NULL;
  804. if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
  805. ic->i_recv_data_rem -= RDS_FRAG_SIZE;
  806. else {
  807. ic->i_recv_data_rem = 0;
  808. ic->i_ibinc = NULL;
  809. if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
  810. rds_ib_cong_recv(conn, ibinc);
  811. else {
  812. rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
  813. &ibinc->ii_inc, GFP_ATOMIC);
  814. state->ack_next = be64_to_cpu(hdr->h_sequence);
  815. state->ack_next_valid = 1;
  816. }
  817. /* Evaluate the ACK_REQUIRED flag *after* we received
  818. * the complete frame, and after bumping the next_rx
  819. * sequence. */
  820. if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
  821. rds_stats_inc(s_recv_ack_required);
  822. state->ack_required = 1;
  823. }
  824. rds_inc_put(&ibinc->ii_inc);
  825. }
  826. }
  827. /*
  828. * Plucking the oldest entry from the ring can be done concurrently with
  829. * the thread refilling the ring. Each ring operation is protected by
  830. * spinlocks and the transient state of refilling doesn't change the
  831. * recording of which entry is oldest.
  832. *
  833. * This relies on IB only calling one cq comp_handler for each cq so that
  834. * there will only be one caller of rds_recv_incoming() per RDS connection.
  835. */
  836. void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
  837. {
  838. struct rds_connection *conn = context;
  839. struct rds_ib_connection *ic = conn->c_transport_data;
  840. rdsdebug("conn %p cq %p\n", conn, cq);
  841. rds_ib_stats_inc(s_ib_rx_cq_call);
  842. tasklet_schedule(&ic->i_recv_tasklet);
  843. }
  844. static inline void rds_poll_cq(struct rds_ib_connection *ic,
  845. struct rds_ib_ack_state *state)
  846. {
  847. struct rds_connection *conn = ic->conn;
  848. struct ib_wc wc;
  849. struct rds_ib_recv_work *recv;
  850. while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
  851. rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
  852. (unsigned long long)wc.wr_id, wc.status,
  853. ib_wc_status_msg(wc.status), wc.byte_len,
  854. be32_to_cpu(wc.ex.imm_data));
  855. rds_ib_stats_inc(s_ib_rx_cq_event);
  856. recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
  857. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  858. /*
  859. * Also process recvs in connecting state because it is possible
  860. * to get a recv completion _before_ the rdmacm ESTABLISHED
  861. * event is processed.
  862. */
  863. if (wc.status == IB_WC_SUCCESS) {
  864. rds_ib_process_recv(conn, recv, wc.byte_len, state);
  865. } else {
  866. /* We expect errors as the qp is drained during shutdown */
  867. if (rds_conn_up(conn) || rds_conn_connecting(conn))
  868. rds_ib_conn_error(conn, "recv completion on %pI4 had "
  869. "status %u (%s), disconnecting and "
  870. "reconnecting\n", &conn->c_faddr,
  871. wc.status,
  872. ib_wc_status_msg(wc.status));
  873. }
  874. /*
  875. * rds_ib_process_recv() doesn't always consume the frag, and
  876. * we might not have called it at all if the wc didn't indicate
  877. * success. We already unmapped the frag's pages, though, and
  878. * the following rds_ib_ring_free() call tells the refill path
  879. * that it will not find an allocated frag here. Make sure we
  880. * keep that promise by freeing a frag that's still on the ring.
  881. */
  882. if (recv->r_frag) {
  883. rds_ib_frag_free(ic, recv->r_frag);
  884. recv->r_frag = NULL;
  885. }
  886. rds_ib_ring_free(&ic->i_recv_ring, 1);
  887. }
  888. }
  889. void rds_ib_recv_tasklet_fn(unsigned long data)
  890. {
  891. struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
  892. struct rds_connection *conn = ic->conn;
  893. struct rds_ib_ack_state state = { 0, };
  894. rds_poll_cq(ic, &state);
  895. ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
  896. rds_poll_cq(ic, &state);
  897. if (state.ack_next_valid)
  898. rds_ib_set_ack(ic, state.ack_next, state.ack_required);
  899. if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
  900. rds_send_drop_acked(conn, state.ack_recv, NULL);
  901. ic->i_ack_recv = state.ack_recv;
  902. }
  903. if (rds_conn_up(conn))
  904. rds_ib_attempt_ack(ic);
  905. /* If we ever end up with a really empty receive ring, we're
  906. * in deep trouble, as the sender will definitely see RNR
  907. * timeouts. */
  908. if (rds_ib_ring_empty(&ic->i_recv_ring))
  909. rds_ib_stats_inc(s_ib_rx_ring_empty);
  910. if (rds_ib_ring_low(&ic->i_recv_ring))
  911. rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
  912. }
  913. int rds_ib_recv(struct rds_connection *conn)
  914. {
  915. struct rds_ib_connection *ic = conn->c_transport_data;
  916. int ret = 0;
  917. rdsdebug("conn %p\n", conn);
  918. if (rds_conn_up(conn)) {
  919. rds_ib_attempt_ack(ic);
  920. rds_ib_recv_refill(conn, 0, GFP_KERNEL);
  921. }
  922. return ret;
  923. }
  924. int rds_ib_recv_init(void)
  925. {
  926. struct sysinfo si;
  927. int ret = -ENOMEM;
  928. /* Default to 30% of all available RAM for recv memory */
  929. si_meminfo(&si);
  930. rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
  931. rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
  932. sizeof(struct rds_ib_incoming),
  933. 0, SLAB_HWCACHE_ALIGN, NULL);
  934. if (!rds_ib_incoming_slab)
  935. goto out;
  936. rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
  937. sizeof(struct rds_page_frag),
  938. 0, SLAB_HWCACHE_ALIGN, NULL);
  939. if (!rds_ib_frag_slab) {
  940. kmem_cache_destroy(rds_ib_incoming_slab);
  941. rds_ib_incoming_slab = NULL;
  942. } else
  943. ret = 0;
  944. out:
  945. return ret;
  946. }
  947. void rds_ib_recv_exit(void)
  948. {
  949. kmem_cache_destroy(rds_ib_incoming_slab);
  950. kmem_cache_destroy(rds_ib_frag_slab);
  951. }