ib_rdma.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/rculist.h>
  36. #include <linux/llist.h>
  37. #include "rds.h"
  38. #include "ib.h"
  39. static DEFINE_PER_CPU(unsigned long, clean_list_grace);
  40. #define CLEAN_LIST_BUSY_BIT 0
  41. /*
  42. * This is stored as mr->r_trans_private.
  43. */
  44. struct rds_ib_mr {
  45. struct rds_ib_device *device;
  46. struct rds_ib_mr_pool *pool;
  47. struct ib_fmr *fmr;
  48. struct llist_node llnode;
  49. /* unmap_list is for freeing */
  50. struct list_head unmap_list;
  51. unsigned int remap_count;
  52. struct scatterlist *sg;
  53. unsigned int sg_len;
  54. u64 *dma;
  55. int sg_dma_len;
  56. };
  57. /*
  58. * Our own little FMR pool
  59. */
  60. struct rds_ib_mr_pool {
  61. struct mutex flush_lock; /* serialize fmr invalidate */
  62. struct delayed_work flush_worker; /* flush worker */
  63. atomic_t item_count; /* total # of MRs */
  64. atomic_t dirty_count; /* # dirty of MRs */
  65. struct llist_head drop_list; /* MRs that have reached their max_maps limit */
  66. struct llist_head free_list; /* unused MRs */
  67. struct llist_head clean_list; /* global unused & unamapped MRs */
  68. wait_queue_head_t flush_wait;
  69. atomic_t free_pinned; /* memory pinned by free MRs */
  70. unsigned long max_items;
  71. unsigned long max_items_soft;
  72. unsigned long max_free_pinned;
  73. struct ib_fmr_attr fmr_attr;
  74. };
  75. struct workqueue_struct *rds_ib_fmr_wq;
  76. int rds_ib_fmr_init(void)
  77. {
  78. rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
  79. if (!rds_ib_fmr_wq)
  80. return -ENOMEM;
  81. return 0;
  82. }
  83. /* By the time this is called all the IB devices should have been torn down and
  84. * had their pools freed. As each pool is freed its work struct is waited on,
  85. * so the pool flushing work queue should be idle by the time we get here.
  86. */
  87. void rds_ib_fmr_exit(void)
  88. {
  89. destroy_workqueue(rds_ib_fmr_wq);
  90. }
  91. static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
  92. static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
  93. static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
  94. static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
  95. {
  96. struct rds_ib_device *rds_ibdev;
  97. struct rds_ib_ipaddr *i_ipaddr;
  98. rcu_read_lock();
  99. list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
  100. list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
  101. if (i_ipaddr->ipaddr == ipaddr) {
  102. atomic_inc(&rds_ibdev->refcount);
  103. rcu_read_unlock();
  104. return rds_ibdev;
  105. }
  106. }
  107. }
  108. rcu_read_unlock();
  109. return NULL;
  110. }
  111. static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  112. {
  113. struct rds_ib_ipaddr *i_ipaddr;
  114. i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
  115. if (!i_ipaddr)
  116. return -ENOMEM;
  117. i_ipaddr->ipaddr = ipaddr;
  118. spin_lock_irq(&rds_ibdev->spinlock);
  119. list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
  120. spin_unlock_irq(&rds_ibdev->spinlock);
  121. return 0;
  122. }
  123. static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  124. {
  125. struct rds_ib_ipaddr *i_ipaddr;
  126. struct rds_ib_ipaddr *to_free = NULL;
  127. spin_lock_irq(&rds_ibdev->spinlock);
  128. list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
  129. if (i_ipaddr->ipaddr == ipaddr) {
  130. list_del_rcu(&i_ipaddr->list);
  131. to_free = i_ipaddr;
  132. break;
  133. }
  134. }
  135. spin_unlock_irq(&rds_ibdev->spinlock);
  136. if (to_free) {
  137. synchronize_rcu();
  138. kfree(to_free);
  139. }
  140. }
  141. int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  142. {
  143. struct rds_ib_device *rds_ibdev_old;
  144. rds_ibdev_old = rds_ib_get_device(ipaddr);
  145. if (!rds_ibdev_old)
  146. return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
  147. if (rds_ibdev_old != rds_ibdev) {
  148. rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
  149. rds_ib_dev_put(rds_ibdev_old);
  150. return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
  151. }
  152. rds_ib_dev_put(rds_ibdev_old);
  153. return 0;
  154. }
  155. void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
  156. {
  157. struct rds_ib_connection *ic = conn->c_transport_data;
  158. /* conn was previously on the nodev_conns_list */
  159. spin_lock_irq(&ib_nodev_conns_lock);
  160. BUG_ON(list_empty(&ib_nodev_conns));
  161. BUG_ON(list_empty(&ic->ib_node));
  162. list_del(&ic->ib_node);
  163. spin_lock(&rds_ibdev->spinlock);
  164. list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
  165. spin_unlock(&rds_ibdev->spinlock);
  166. spin_unlock_irq(&ib_nodev_conns_lock);
  167. ic->rds_ibdev = rds_ibdev;
  168. atomic_inc(&rds_ibdev->refcount);
  169. }
  170. void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
  171. {
  172. struct rds_ib_connection *ic = conn->c_transport_data;
  173. /* place conn on nodev_conns_list */
  174. spin_lock(&ib_nodev_conns_lock);
  175. spin_lock_irq(&rds_ibdev->spinlock);
  176. BUG_ON(list_empty(&ic->ib_node));
  177. list_del(&ic->ib_node);
  178. spin_unlock_irq(&rds_ibdev->spinlock);
  179. list_add_tail(&ic->ib_node, &ib_nodev_conns);
  180. spin_unlock(&ib_nodev_conns_lock);
  181. ic->rds_ibdev = NULL;
  182. rds_ib_dev_put(rds_ibdev);
  183. }
  184. void rds_ib_destroy_nodev_conns(void)
  185. {
  186. struct rds_ib_connection *ic, *_ic;
  187. LIST_HEAD(tmp_list);
  188. /* avoid calling conn_destroy with irqs off */
  189. spin_lock_irq(&ib_nodev_conns_lock);
  190. list_splice(&ib_nodev_conns, &tmp_list);
  191. spin_unlock_irq(&ib_nodev_conns_lock);
  192. list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
  193. rds_conn_destroy(ic->conn);
  194. }
  195. struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
  196. {
  197. struct rds_ib_mr_pool *pool;
  198. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  199. if (!pool)
  200. return ERR_PTR(-ENOMEM);
  201. init_llist_head(&pool->free_list);
  202. init_llist_head(&pool->drop_list);
  203. init_llist_head(&pool->clean_list);
  204. mutex_init(&pool->flush_lock);
  205. init_waitqueue_head(&pool->flush_wait);
  206. INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
  207. pool->fmr_attr.max_pages = fmr_message_size;
  208. pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
  209. pool->fmr_attr.page_shift = PAGE_SHIFT;
  210. pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
  211. /* We never allow more than max_items MRs to be allocated.
  212. * When we exceed more than max_items_soft, we start freeing
  213. * items more aggressively.
  214. * Make sure that max_items > max_items_soft > max_items / 2
  215. */
  216. pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
  217. pool->max_items = rds_ibdev->max_fmrs;
  218. return pool;
  219. }
  220. void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
  221. {
  222. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  223. iinfo->rdma_mr_max = pool->max_items;
  224. iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
  225. }
  226. void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
  227. {
  228. cancel_delayed_work_sync(&pool->flush_worker);
  229. rds_ib_flush_mr_pool(pool, 1, NULL);
  230. WARN_ON(atomic_read(&pool->item_count));
  231. WARN_ON(atomic_read(&pool->free_pinned));
  232. kfree(pool);
  233. }
  234. static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
  235. {
  236. struct rds_ib_mr *ibmr = NULL;
  237. struct llist_node *ret;
  238. unsigned long *flag;
  239. preempt_disable();
  240. flag = this_cpu_ptr(&clean_list_grace);
  241. set_bit(CLEAN_LIST_BUSY_BIT, flag);
  242. ret = llist_del_first(&pool->clean_list);
  243. if (ret)
  244. ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
  245. clear_bit(CLEAN_LIST_BUSY_BIT, flag);
  246. preempt_enable();
  247. return ibmr;
  248. }
  249. static inline void wait_clean_list_grace(void)
  250. {
  251. int cpu;
  252. unsigned long *flag;
  253. for_each_online_cpu(cpu) {
  254. flag = &per_cpu(clean_list_grace, cpu);
  255. while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
  256. cpu_relax();
  257. }
  258. }
  259. static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
  260. {
  261. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  262. struct rds_ib_mr *ibmr = NULL;
  263. int err = 0, iter = 0;
  264. if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
  265. schedule_delayed_work(&pool->flush_worker, 10);
  266. while (1) {
  267. ibmr = rds_ib_reuse_fmr(pool);
  268. if (ibmr)
  269. return ibmr;
  270. /* No clean MRs - now we have the choice of either
  271. * allocating a fresh MR up to the limit imposed by the
  272. * driver, or flush any dirty unused MRs.
  273. * We try to avoid stalling in the send path if possible,
  274. * so we allocate as long as we're allowed to.
  275. *
  276. * We're fussy with enforcing the FMR limit, though. If the driver
  277. * tells us we can't use more than N fmrs, we shouldn't start
  278. * arguing with it */
  279. if (atomic_inc_return(&pool->item_count) <= pool->max_items)
  280. break;
  281. atomic_dec(&pool->item_count);
  282. if (++iter > 2) {
  283. rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
  284. return ERR_PTR(-EAGAIN);
  285. }
  286. /* We do have some empty MRs. Flush them out. */
  287. rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
  288. rds_ib_flush_mr_pool(pool, 0, &ibmr);
  289. if (ibmr)
  290. return ibmr;
  291. }
  292. ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
  293. if (!ibmr) {
  294. err = -ENOMEM;
  295. goto out_no_cigar;
  296. }
  297. ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
  298. (IB_ACCESS_LOCAL_WRITE |
  299. IB_ACCESS_REMOTE_READ |
  300. IB_ACCESS_REMOTE_WRITE|
  301. IB_ACCESS_REMOTE_ATOMIC),
  302. &pool->fmr_attr);
  303. if (IS_ERR(ibmr->fmr)) {
  304. err = PTR_ERR(ibmr->fmr);
  305. ibmr->fmr = NULL;
  306. printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
  307. goto out_no_cigar;
  308. }
  309. rds_ib_stats_inc(s_ib_rdma_mr_alloc);
  310. return ibmr;
  311. out_no_cigar:
  312. if (ibmr) {
  313. if (ibmr->fmr)
  314. ib_dealloc_fmr(ibmr->fmr);
  315. kfree(ibmr);
  316. }
  317. atomic_dec(&pool->item_count);
  318. return ERR_PTR(err);
  319. }
  320. static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
  321. struct scatterlist *sg, unsigned int nents)
  322. {
  323. struct ib_device *dev = rds_ibdev->dev;
  324. struct scatterlist *scat = sg;
  325. u64 io_addr = 0;
  326. u64 *dma_pages;
  327. u32 len;
  328. int page_cnt, sg_dma_len;
  329. int i, j;
  330. int ret;
  331. sg_dma_len = ib_dma_map_sg(dev, sg, nents,
  332. DMA_BIDIRECTIONAL);
  333. if (unlikely(!sg_dma_len)) {
  334. printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
  335. return -EBUSY;
  336. }
  337. len = 0;
  338. page_cnt = 0;
  339. for (i = 0; i < sg_dma_len; ++i) {
  340. unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
  341. u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
  342. if (dma_addr & ~PAGE_MASK) {
  343. if (i > 0)
  344. return -EINVAL;
  345. else
  346. ++page_cnt;
  347. }
  348. if ((dma_addr + dma_len) & ~PAGE_MASK) {
  349. if (i < sg_dma_len - 1)
  350. return -EINVAL;
  351. else
  352. ++page_cnt;
  353. }
  354. len += dma_len;
  355. }
  356. page_cnt += len >> PAGE_SHIFT;
  357. if (page_cnt > fmr_message_size)
  358. return -EINVAL;
  359. dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
  360. rdsibdev_to_node(rds_ibdev));
  361. if (!dma_pages)
  362. return -ENOMEM;
  363. page_cnt = 0;
  364. for (i = 0; i < sg_dma_len; ++i) {
  365. unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
  366. u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
  367. for (j = 0; j < dma_len; j += PAGE_SIZE)
  368. dma_pages[page_cnt++] =
  369. (dma_addr & PAGE_MASK) + j;
  370. }
  371. ret = ib_map_phys_fmr(ibmr->fmr,
  372. dma_pages, page_cnt, io_addr);
  373. if (ret)
  374. goto out;
  375. /* Success - we successfully remapped the MR, so we can
  376. * safely tear down the old mapping. */
  377. rds_ib_teardown_mr(ibmr);
  378. ibmr->sg = scat;
  379. ibmr->sg_len = nents;
  380. ibmr->sg_dma_len = sg_dma_len;
  381. ibmr->remap_count++;
  382. rds_ib_stats_inc(s_ib_rdma_mr_used);
  383. ret = 0;
  384. out:
  385. kfree(dma_pages);
  386. return ret;
  387. }
  388. void rds_ib_sync_mr(void *trans_private, int direction)
  389. {
  390. struct rds_ib_mr *ibmr = trans_private;
  391. struct rds_ib_device *rds_ibdev = ibmr->device;
  392. switch (direction) {
  393. case DMA_FROM_DEVICE:
  394. ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
  395. ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
  396. break;
  397. case DMA_TO_DEVICE:
  398. ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
  399. ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
  400. break;
  401. }
  402. }
  403. static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
  404. {
  405. struct rds_ib_device *rds_ibdev = ibmr->device;
  406. if (ibmr->sg_dma_len) {
  407. ib_dma_unmap_sg(rds_ibdev->dev,
  408. ibmr->sg, ibmr->sg_len,
  409. DMA_BIDIRECTIONAL);
  410. ibmr->sg_dma_len = 0;
  411. }
  412. /* Release the s/g list */
  413. if (ibmr->sg_len) {
  414. unsigned int i;
  415. for (i = 0; i < ibmr->sg_len; ++i) {
  416. struct page *page = sg_page(&ibmr->sg[i]);
  417. /* FIXME we need a way to tell a r/w MR
  418. * from a r/o MR */
  419. WARN_ON(!page->mapping && irqs_disabled());
  420. set_page_dirty(page);
  421. put_page(page);
  422. }
  423. kfree(ibmr->sg);
  424. ibmr->sg = NULL;
  425. ibmr->sg_len = 0;
  426. }
  427. }
  428. static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
  429. {
  430. unsigned int pinned = ibmr->sg_len;
  431. __rds_ib_teardown_mr(ibmr);
  432. if (pinned) {
  433. struct rds_ib_device *rds_ibdev = ibmr->device;
  434. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  435. atomic_sub(pinned, &pool->free_pinned);
  436. }
  437. }
  438. static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
  439. {
  440. unsigned int item_count;
  441. item_count = atomic_read(&pool->item_count);
  442. if (free_all)
  443. return item_count;
  444. return 0;
  445. }
  446. /*
  447. * given an llist of mrs, put them all into the list_head for more processing
  448. */
  449. static unsigned int llist_append_to_list(struct llist_head *llist,
  450. struct list_head *list)
  451. {
  452. struct rds_ib_mr *ibmr;
  453. struct llist_node *node;
  454. struct llist_node *next;
  455. unsigned int count = 0;
  456. node = llist_del_all(llist);
  457. while (node) {
  458. next = node->next;
  459. ibmr = llist_entry(node, struct rds_ib_mr, llnode);
  460. list_add_tail(&ibmr->unmap_list, list);
  461. node = next;
  462. count++;
  463. }
  464. return count;
  465. }
  466. /*
  467. * this takes a list head of mrs and turns it into linked llist nodes
  468. * of clusters. Each cluster has linked llist nodes of
  469. * MR_CLUSTER_SIZE mrs that are ready for reuse.
  470. */
  471. static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
  472. struct list_head *list,
  473. struct llist_node **nodes_head,
  474. struct llist_node **nodes_tail)
  475. {
  476. struct rds_ib_mr *ibmr;
  477. struct llist_node *cur = NULL;
  478. struct llist_node **next = nodes_head;
  479. list_for_each_entry(ibmr, list, unmap_list) {
  480. cur = &ibmr->llnode;
  481. *next = cur;
  482. next = &cur->next;
  483. }
  484. *next = NULL;
  485. *nodes_tail = cur;
  486. }
  487. /*
  488. * Flush our pool of MRs.
  489. * At a minimum, all currently unused MRs are unmapped.
  490. * If the number of MRs allocated exceeds the limit, we also try
  491. * to free as many MRs as needed to get back to this limit.
  492. */
  493. static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
  494. int free_all, struct rds_ib_mr **ibmr_ret)
  495. {
  496. struct rds_ib_mr *ibmr, *next;
  497. struct llist_node *clean_nodes;
  498. struct llist_node *clean_tail;
  499. LIST_HEAD(unmap_list);
  500. LIST_HEAD(fmr_list);
  501. unsigned long unpinned = 0;
  502. unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
  503. int ret = 0;
  504. rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
  505. if (ibmr_ret) {
  506. DEFINE_WAIT(wait);
  507. while(!mutex_trylock(&pool->flush_lock)) {
  508. ibmr = rds_ib_reuse_fmr(pool);
  509. if (ibmr) {
  510. *ibmr_ret = ibmr;
  511. finish_wait(&pool->flush_wait, &wait);
  512. goto out_nolock;
  513. }
  514. prepare_to_wait(&pool->flush_wait, &wait,
  515. TASK_UNINTERRUPTIBLE);
  516. if (llist_empty(&pool->clean_list))
  517. schedule();
  518. ibmr = rds_ib_reuse_fmr(pool);
  519. if (ibmr) {
  520. *ibmr_ret = ibmr;
  521. finish_wait(&pool->flush_wait, &wait);
  522. goto out_nolock;
  523. }
  524. }
  525. finish_wait(&pool->flush_wait, &wait);
  526. } else
  527. mutex_lock(&pool->flush_lock);
  528. if (ibmr_ret) {
  529. ibmr = rds_ib_reuse_fmr(pool);
  530. if (ibmr) {
  531. *ibmr_ret = ibmr;
  532. goto out;
  533. }
  534. }
  535. /* Get the list of all MRs to be dropped. Ordering matters -
  536. * we want to put drop_list ahead of free_list.
  537. */
  538. dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
  539. dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
  540. if (free_all)
  541. llist_append_to_list(&pool->clean_list, &unmap_list);
  542. free_goal = rds_ib_flush_goal(pool, free_all);
  543. if (list_empty(&unmap_list))
  544. goto out;
  545. /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
  546. list_for_each_entry(ibmr, &unmap_list, unmap_list)
  547. list_add(&ibmr->fmr->list, &fmr_list);
  548. ret = ib_unmap_fmr(&fmr_list);
  549. if (ret)
  550. printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
  551. /* Now we can destroy the DMA mapping and unpin any pages */
  552. list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
  553. unpinned += ibmr->sg_len;
  554. __rds_ib_teardown_mr(ibmr);
  555. if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
  556. rds_ib_stats_inc(s_ib_rdma_mr_free);
  557. list_del(&ibmr->unmap_list);
  558. ib_dealloc_fmr(ibmr->fmr);
  559. kfree(ibmr);
  560. nfreed++;
  561. }
  562. }
  563. if (!list_empty(&unmap_list)) {
  564. /* we have to make sure that none of the things we're about
  565. * to put on the clean list would race with other cpus trying
  566. * to pull items off. The llist would explode if we managed to
  567. * remove something from the clean list and then add it back again
  568. * while another CPU was spinning on that same item in llist_del_first.
  569. *
  570. * This is pretty unlikely, but just in case wait for an llist grace period
  571. * here before adding anything back into the clean list.
  572. */
  573. wait_clean_list_grace();
  574. list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
  575. if (ibmr_ret)
  576. *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
  577. /* more than one entry in llist nodes */
  578. if (clean_nodes->next)
  579. llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
  580. }
  581. atomic_sub(unpinned, &pool->free_pinned);
  582. atomic_sub(dirty_to_clean, &pool->dirty_count);
  583. atomic_sub(nfreed, &pool->item_count);
  584. out:
  585. mutex_unlock(&pool->flush_lock);
  586. if (waitqueue_active(&pool->flush_wait))
  587. wake_up(&pool->flush_wait);
  588. out_nolock:
  589. return ret;
  590. }
  591. static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
  592. {
  593. struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
  594. rds_ib_flush_mr_pool(pool, 0, NULL);
  595. }
  596. void rds_ib_free_mr(void *trans_private, int invalidate)
  597. {
  598. struct rds_ib_mr *ibmr = trans_private;
  599. struct rds_ib_device *rds_ibdev = ibmr->device;
  600. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  601. rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
  602. /* Return it to the pool's free list */
  603. if (ibmr->remap_count >= pool->fmr_attr.max_maps)
  604. llist_add(&ibmr->llnode, &pool->drop_list);
  605. else
  606. llist_add(&ibmr->llnode, &pool->free_list);
  607. atomic_add(ibmr->sg_len, &pool->free_pinned);
  608. atomic_inc(&pool->dirty_count);
  609. /* If we've pinned too many pages, request a flush */
  610. if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
  611. atomic_read(&pool->dirty_count) >= pool->max_items / 5)
  612. queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
  613. if (invalidate) {
  614. if (likely(!in_interrupt())) {
  615. rds_ib_flush_mr_pool(pool, 0, NULL);
  616. } else {
  617. /* We get here if the user created a MR marked
  618. * as use_once and invalidate at the same time.
  619. */
  620. queue_delayed_work(rds_ib_fmr_wq,
  621. &pool->flush_worker, 10);
  622. }
  623. }
  624. rds_ib_dev_put(rds_ibdev);
  625. }
  626. void rds_ib_flush_mrs(void)
  627. {
  628. struct rds_ib_device *rds_ibdev;
  629. down_read(&rds_ib_devices_lock);
  630. list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
  631. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  632. if (pool)
  633. rds_ib_flush_mr_pool(pool, 0, NULL);
  634. }
  635. up_read(&rds_ib_devices_lock);
  636. }
  637. void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
  638. struct rds_sock *rs, u32 *key_ret)
  639. {
  640. struct rds_ib_device *rds_ibdev;
  641. struct rds_ib_mr *ibmr = NULL;
  642. int ret;
  643. rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
  644. if (!rds_ibdev) {
  645. ret = -ENODEV;
  646. goto out;
  647. }
  648. if (!rds_ibdev->mr_pool) {
  649. ret = -ENODEV;
  650. goto out;
  651. }
  652. ibmr = rds_ib_alloc_fmr(rds_ibdev);
  653. if (IS_ERR(ibmr)) {
  654. rds_ib_dev_put(rds_ibdev);
  655. return ibmr;
  656. }
  657. ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
  658. if (ret == 0)
  659. *key_ret = ibmr->fmr->rkey;
  660. else
  661. printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
  662. ibmr->device = rds_ibdev;
  663. rds_ibdev = NULL;
  664. out:
  665. if (ret) {
  666. if (ibmr)
  667. rds_ib_free_mr(ibmr, 0);
  668. ibmr = ERR_PTR(ret);
  669. }
  670. if (rds_ibdev)
  671. rds_ib_dev_put(rds_ibdev);
  672. return ibmr;
  673. }