wpa.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245
  1. /*
  2. * Copyright 2002-2004, Instant802 Networks, Inc.
  3. * Copyright 2008, Jouni Malinen <j@w1.fi>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/netdevice.h>
  10. #include <linux/types.h>
  11. #include <linux/skbuff.h>
  12. #include <linux/compiler.h>
  13. #include <linux/ieee80211.h>
  14. #include <linux/gfp.h>
  15. #include <asm/unaligned.h>
  16. #include <net/mac80211.h>
  17. #include <crypto/aes.h>
  18. #include "ieee80211_i.h"
  19. #include "michael.h"
  20. #include "tkip.h"
  21. #include "aes_ccm.h"
  22. #include "aes_cmac.h"
  23. #include "aes_gmac.h"
  24. #include "aes_gcm.h"
  25. #include "wpa.h"
  26. ieee80211_tx_result
  27. ieee80211_tx_h_michael_mic_add(struct ieee80211_tx_data *tx)
  28. {
  29. u8 *data, *key, *mic;
  30. size_t data_len;
  31. unsigned int hdrlen;
  32. struct ieee80211_hdr *hdr;
  33. struct sk_buff *skb = tx->skb;
  34. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  35. int tail;
  36. hdr = (struct ieee80211_hdr *)skb->data;
  37. if (!tx->key || tx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP ||
  38. skb->len < 24 || !ieee80211_is_data_present(hdr->frame_control))
  39. return TX_CONTINUE;
  40. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  41. if (skb->len < hdrlen)
  42. return TX_DROP;
  43. data = skb->data + hdrlen;
  44. data_len = skb->len - hdrlen;
  45. if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE)) {
  46. /* Need to use software crypto for the test */
  47. info->control.hw_key = NULL;
  48. }
  49. if (info->control.hw_key &&
  50. (info->flags & IEEE80211_TX_CTL_DONTFRAG ||
  51. tx->local->ops->set_frag_threshold) &&
  52. !(tx->key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)) {
  53. /* hwaccel - with no need for SW-generated MMIC */
  54. return TX_CONTINUE;
  55. }
  56. tail = MICHAEL_MIC_LEN;
  57. if (!info->control.hw_key)
  58. tail += IEEE80211_TKIP_ICV_LEN;
  59. if (WARN(skb_tailroom(skb) < tail ||
  60. skb_headroom(skb) < IEEE80211_TKIP_IV_LEN,
  61. "mmic: not enough head/tail (%d/%d,%d/%d)\n",
  62. skb_headroom(skb), IEEE80211_TKIP_IV_LEN,
  63. skb_tailroom(skb), tail))
  64. return TX_DROP;
  65. key = &tx->key->conf.key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY];
  66. mic = skb_put(skb, MICHAEL_MIC_LEN);
  67. michael_mic(key, hdr, data, data_len, mic);
  68. if (unlikely(info->flags & IEEE80211_TX_INTFL_TKIP_MIC_FAILURE))
  69. mic[0]++;
  70. return TX_CONTINUE;
  71. }
  72. ieee80211_rx_result
  73. ieee80211_rx_h_michael_mic_verify(struct ieee80211_rx_data *rx)
  74. {
  75. u8 *data, *key = NULL;
  76. size_t data_len;
  77. unsigned int hdrlen;
  78. u8 mic[MICHAEL_MIC_LEN];
  79. struct sk_buff *skb = rx->skb;
  80. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  81. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  82. /*
  83. * it makes no sense to check for MIC errors on anything other
  84. * than data frames.
  85. */
  86. if (!ieee80211_is_data_present(hdr->frame_control))
  87. return RX_CONTINUE;
  88. /*
  89. * No way to verify the MIC if the hardware stripped it or
  90. * the IV with the key index. In this case we have solely rely
  91. * on the driver to set RX_FLAG_MMIC_ERROR in the event of a
  92. * MIC failure report.
  93. */
  94. if (status->flag & (RX_FLAG_MMIC_STRIPPED | RX_FLAG_IV_STRIPPED)) {
  95. if (status->flag & RX_FLAG_MMIC_ERROR)
  96. goto mic_fail_no_key;
  97. if (!(status->flag & RX_FLAG_IV_STRIPPED) && rx->key &&
  98. rx->key->conf.cipher == WLAN_CIPHER_SUITE_TKIP)
  99. goto update_iv;
  100. return RX_CONTINUE;
  101. }
  102. /*
  103. * Some hardware seems to generate Michael MIC failure reports; even
  104. * though, the frame was not encrypted with TKIP and therefore has no
  105. * MIC. Ignore the flag them to avoid triggering countermeasures.
  106. */
  107. if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_TKIP ||
  108. !(status->flag & RX_FLAG_DECRYPTED))
  109. return RX_CONTINUE;
  110. if (rx->sdata->vif.type == NL80211_IFTYPE_AP && rx->key->conf.keyidx) {
  111. /*
  112. * APs with pairwise keys should never receive Michael MIC
  113. * errors for non-zero keyidx because these are reserved for
  114. * group keys and only the AP is sending real multicast
  115. * frames in the BSS.
  116. */
  117. return RX_DROP_UNUSABLE;
  118. }
  119. if (status->flag & RX_FLAG_MMIC_ERROR)
  120. goto mic_fail;
  121. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  122. if (skb->len < hdrlen + MICHAEL_MIC_LEN)
  123. return RX_DROP_UNUSABLE;
  124. if (skb_linearize(rx->skb))
  125. return RX_DROP_UNUSABLE;
  126. hdr = (void *)skb->data;
  127. data = skb->data + hdrlen;
  128. data_len = skb->len - hdrlen - MICHAEL_MIC_LEN;
  129. key = &rx->key->conf.key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY];
  130. michael_mic(key, hdr, data, data_len, mic);
  131. if (memcmp(mic, data + data_len, MICHAEL_MIC_LEN) != 0)
  132. goto mic_fail;
  133. /* remove Michael MIC from payload */
  134. skb_trim(skb, skb->len - MICHAEL_MIC_LEN);
  135. update_iv:
  136. /* update IV in key information to be able to detect replays */
  137. rx->key->u.tkip.rx[rx->security_idx].iv32 = rx->tkip_iv32;
  138. rx->key->u.tkip.rx[rx->security_idx].iv16 = rx->tkip_iv16;
  139. return RX_CONTINUE;
  140. mic_fail:
  141. rx->key->u.tkip.mic_failures++;
  142. mic_fail_no_key:
  143. /*
  144. * In some cases the key can be unset - e.g. a multicast packet, in
  145. * a driver that supports HW encryption. Send up the key idx only if
  146. * the key is set.
  147. */
  148. mac80211_ev_michael_mic_failure(rx->sdata,
  149. rx->key ? rx->key->conf.keyidx : -1,
  150. (void *) skb->data, NULL, GFP_ATOMIC);
  151. return RX_DROP_UNUSABLE;
  152. }
  153. static int tkip_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
  154. {
  155. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  156. struct ieee80211_key *key = tx->key;
  157. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  158. unsigned int hdrlen;
  159. int len, tail;
  160. u8 *pos;
  161. if (info->control.hw_key &&
  162. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) &&
  163. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) {
  164. /* hwaccel - with no need for software-generated IV */
  165. return 0;
  166. }
  167. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  168. len = skb->len - hdrlen;
  169. if (info->control.hw_key)
  170. tail = 0;
  171. else
  172. tail = IEEE80211_TKIP_ICV_LEN;
  173. if (WARN_ON(skb_tailroom(skb) < tail ||
  174. skb_headroom(skb) < IEEE80211_TKIP_IV_LEN))
  175. return -1;
  176. pos = skb_push(skb, IEEE80211_TKIP_IV_LEN);
  177. memmove(pos, pos + IEEE80211_TKIP_IV_LEN, hdrlen);
  178. pos += hdrlen;
  179. /* the HW only needs room for the IV, but not the actual IV */
  180. if (info->control.hw_key &&
  181. (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))
  182. return 0;
  183. /* Increase IV for the frame */
  184. spin_lock(&key->u.tkip.txlock);
  185. key->u.tkip.tx.iv16++;
  186. if (key->u.tkip.tx.iv16 == 0)
  187. key->u.tkip.tx.iv32++;
  188. pos = ieee80211_tkip_add_iv(pos, key);
  189. spin_unlock(&key->u.tkip.txlock);
  190. /* hwaccel - with software IV */
  191. if (info->control.hw_key)
  192. return 0;
  193. /* Add room for ICV */
  194. skb_put(skb, IEEE80211_TKIP_ICV_LEN);
  195. return ieee80211_tkip_encrypt_data(tx->local->wep_tx_tfm,
  196. key, skb, pos, len);
  197. }
  198. ieee80211_tx_result
  199. ieee80211_crypto_tkip_encrypt(struct ieee80211_tx_data *tx)
  200. {
  201. struct sk_buff *skb;
  202. ieee80211_tx_set_protected(tx);
  203. skb_queue_walk(&tx->skbs, skb) {
  204. if (tkip_encrypt_skb(tx, skb) < 0)
  205. return TX_DROP;
  206. }
  207. return TX_CONTINUE;
  208. }
  209. ieee80211_rx_result
  210. ieee80211_crypto_tkip_decrypt(struct ieee80211_rx_data *rx)
  211. {
  212. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  213. int hdrlen, res, hwaccel = 0;
  214. struct ieee80211_key *key = rx->key;
  215. struct sk_buff *skb = rx->skb;
  216. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  217. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  218. if (!ieee80211_is_data(hdr->frame_control))
  219. return RX_CONTINUE;
  220. if (!rx->sta || skb->len - hdrlen < 12)
  221. return RX_DROP_UNUSABLE;
  222. /* it may be possible to optimize this a bit more */
  223. if (skb_linearize(rx->skb))
  224. return RX_DROP_UNUSABLE;
  225. hdr = (void *)skb->data;
  226. /*
  227. * Let TKIP code verify IV, but skip decryption.
  228. * In the case where hardware checks the IV as well,
  229. * we don't even get here, see ieee80211_rx_h_decrypt()
  230. */
  231. if (status->flag & RX_FLAG_DECRYPTED)
  232. hwaccel = 1;
  233. res = ieee80211_tkip_decrypt_data(rx->local->wep_rx_tfm,
  234. key, skb->data + hdrlen,
  235. skb->len - hdrlen, rx->sta->sta.addr,
  236. hdr->addr1, hwaccel, rx->security_idx,
  237. &rx->tkip_iv32,
  238. &rx->tkip_iv16);
  239. if (res != TKIP_DECRYPT_OK)
  240. return RX_DROP_UNUSABLE;
  241. /* Trim ICV */
  242. skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN);
  243. /* Remove IV */
  244. memmove(skb->data + IEEE80211_TKIP_IV_LEN, skb->data, hdrlen);
  245. skb_pull(skb, IEEE80211_TKIP_IV_LEN);
  246. return RX_CONTINUE;
  247. }
  248. static void ccmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *b_0, u8 *aad)
  249. {
  250. __le16 mask_fc;
  251. int a4_included, mgmt;
  252. u8 qos_tid;
  253. u16 len_a;
  254. unsigned int hdrlen;
  255. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  256. /*
  257. * Mask FC: zero subtype b4 b5 b6 (if not mgmt)
  258. * Retry, PwrMgt, MoreData; set Protected
  259. */
  260. mgmt = ieee80211_is_mgmt(hdr->frame_control);
  261. mask_fc = hdr->frame_control;
  262. mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY |
  263. IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA);
  264. if (!mgmt)
  265. mask_fc &= ~cpu_to_le16(0x0070);
  266. mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  267. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  268. len_a = hdrlen - 2;
  269. a4_included = ieee80211_has_a4(hdr->frame_control);
  270. if (ieee80211_is_data_qos(hdr->frame_control))
  271. qos_tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
  272. else
  273. qos_tid = 0;
  274. /* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC
  275. * mode authentication are not allowed to collide, yet both are derived
  276. * from this vector b_0. We only set L := 1 here to indicate that the
  277. * data size can be represented in (L+1) bytes. The CCM layer will take
  278. * care of storing the data length in the top (L+1) bytes and setting
  279. * and clearing the other bits as is required to derive the two IVs.
  280. */
  281. b_0[0] = 0x1;
  282. /* Nonce: Nonce Flags | A2 | PN
  283. * Nonce Flags: Priority (b0..b3) | Management (b4) | Reserved (b5..b7)
  284. */
  285. b_0[1] = qos_tid | (mgmt << 4);
  286. memcpy(&b_0[2], hdr->addr2, ETH_ALEN);
  287. memcpy(&b_0[8], pn, IEEE80211_CCMP_PN_LEN);
  288. /* AAD (extra authenticate-only data) / masked 802.11 header
  289. * FC | A1 | A2 | A3 | SC | [A4] | [QC] */
  290. put_unaligned_be16(len_a, &aad[0]);
  291. put_unaligned(mask_fc, (__le16 *)&aad[2]);
  292. memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN);
  293. /* Mask Seq#, leave Frag# */
  294. aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f;
  295. aad[23] = 0;
  296. if (a4_included) {
  297. memcpy(&aad[24], hdr->addr4, ETH_ALEN);
  298. aad[30] = qos_tid;
  299. aad[31] = 0;
  300. } else {
  301. memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN);
  302. aad[24] = qos_tid;
  303. }
  304. }
  305. static inline void ccmp_pn2hdr(u8 *hdr, u8 *pn, int key_id)
  306. {
  307. hdr[0] = pn[5];
  308. hdr[1] = pn[4];
  309. hdr[2] = 0;
  310. hdr[3] = 0x20 | (key_id << 6);
  311. hdr[4] = pn[3];
  312. hdr[5] = pn[2];
  313. hdr[6] = pn[1];
  314. hdr[7] = pn[0];
  315. }
  316. static inline void ccmp_hdr2pn(u8 *pn, u8 *hdr)
  317. {
  318. pn[0] = hdr[7];
  319. pn[1] = hdr[6];
  320. pn[2] = hdr[5];
  321. pn[3] = hdr[4];
  322. pn[4] = hdr[1];
  323. pn[5] = hdr[0];
  324. }
  325. static int ccmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb,
  326. unsigned int mic_len)
  327. {
  328. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  329. struct ieee80211_key *key = tx->key;
  330. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  331. int hdrlen, len, tail;
  332. u8 *pos;
  333. u8 pn[6];
  334. u64 pn64;
  335. u8 aad[2 * AES_BLOCK_SIZE];
  336. u8 b_0[AES_BLOCK_SIZE];
  337. if (info->control.hw_key &&
  338. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) &&
  339. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
  340. !((info->control.hw_key->flags &
  341. IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) &&
  342. ieee80211_is_mgmt(hdr->frame_control))) {
  343. /*
  344. * hwaccel has no need for preallocated room for CCMP
  345. * header or MIC fields
  346. */
  347. return 0;
  348. }
  349. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  350. len = skb->len - hdrlen;
  351. if (info->control.hw_key)
  352. tail = 0;
  353. else
  354. tail = mic_len;
  355. if (WARN_ON(skb_tailroom(skb) < tail ||
  356. skb_headroom(skb) < IEEE80211_CCMP_HDR_LEN))
  357. return -1;
  358. pos = skb_push(skb, IEEE80211_CCMP_HDR_LEN);
  359. memmove(pos, pos + IEEE80211_CCMP_HDR_LEN, hdrlen);
  360. /* the HW only needs room for the IV, but not the actual IV */
  361. if (info->control.hw_key &&
  362. (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))
  363. return 0;
  364. hdr = (struct ieee80211_hdr *) pos;
  365. pos += hdrlen;
  366. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  367. pn[5] = pn64;
  368. pn[4] = pn64 >> 8;
  369. pn[3] = pn64 >> 16;
  370. pn[2] = pn64 >> 24;
  371. pn[1] = pn64 >> 32;
  372. pn[0] = pn64 >> 40;
  373. ccmp_pn2hdr(pos, pn, key->conf.keyidx);
  374. /* hwaccel - with software CCMP header */
  375. if (info->control.hw_key)
  376. return 0;
  377. pos += IEEE80211_CCMP_HDR_LEN;
  378. ccmp_special_blocks(skb, pn, b_0, aad);
  379. ieee80211_aes_ccm_encrypt(key->u.ccmp.tfm, b_0, aad, pos, len,
  380. skb_put(skb, mic_len), mic_len);
  381. return 0;
  382. }
  383. ieee80211_tx_result
  384. ieee80211_crypto_ccmp_encrypt(struct ieee80211_tx_data *tx,
  385. unsigned int mic_len)
  386. {
  387. struct sk_buff *skb;
  388. ieee80211_tx_set_protected(tx);
  389. skb_queue_walk(&tx->skbs, skb) {
  390. if (ccmp_encrypt_skb(tx, skb, mic_len) < 0)
  391. return TX_DROP;
  392. }
  393. return TX_CONTINUE;
  394. }
  395. ieee80211_rx_result
  396. ieee80211_crypto_ccmp_decrypt(struct ieee80211_rx_data *rx,
  397. unsigned int mic_len)
  398. {
  399. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  400. int hdrlen;
  401. struct ieee80211_key *key = rx->key;
  402. struct sk_buff *skb = rx->skb;
  403. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  404. u8 pn[IEEE80211_CCMP_PN_LEN];
  405. int data_len;
  406. int queue;
  407. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  408. if (!ieee80211_is_data(hdr->frame_control) &&
  409. !ieee80211_is_robust_mgmt_frame(skb))
  410. return RX_CONTINUE;
  411. data_len = skb->len - hdrlen - IEEE80211_CCMP_HDR_LEN - mic_len;
  412. if (!rx->sta || data_len < 0)
  413. return RX_DROP_UNUSABLE;
  414. if (status->flag & RX_FLAG_DECRYPTED) {
  415. if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_CCMP_HDR_LEN))
  416. return RX_DROP_UNUSABLE;
  417. } else {
  418. if (skb_linearize(rx->skb))
  419. return RX_DROP_UNUSABLE;
  420. }
  421. if (!(status->flag & RX_FLAG_PN_VALIDATED)) {
  422. ccmp_hdr2pn(pn, skb->data + hdrlen);
  423. queue = rx->security_idx;
  424. if (memcmp(pn, key->u.ccmp.rx_pn[queue],
  425. IEEE80211_CCMP_PN_LEN) <= 0) {
  426. key->u.ccmp.replays++;
  427. return RX_DROP_UNUSABLE;
  428. }
  429. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  430. u8 aad[2 * AES_BLOCK_SIZE];
  431. u8 b_0[AES_BLOCK_SIZE];
  432. /* hardware didn't decrypt/verify MIC */
  433. ccmp_special_blocks(skb, pn, b_0, aad);
  434. if (ieee80211_aes_ccm_decrypt(
  435. key->u.ccmp.tfm, b_0, aad,
  436. skb->data + hdrlen + IEEE80211_CCMP_HDR_LEN,
  437. data_len,
  438. skb->data + skb->len - mic_len, mic_len))
  439. return RX_DROP_UNUSABLE;
  440. }
  441. memcpy(key->u.ccmp.rx_pn[queue], pn, IEEE80211_CCMP_PN_LEN);
  442. }
  443. /* Remove CCMP header and MIC */
  444. if (pskb_trim(skb, skb->len - mic_len))
  445. return RX_DROP_UNUSABLE;
  446. memmove(skb->data + IEEE80211_CCMP_HDR_LEN, skb->data, hdrlen);
  447. skb_pull(skb, IEEE80211_CCMP_HDR_LEN);
  448. return RX_CONTINUE;
  449. }
  450. static void gcmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *j_0, u8 *aad)
  451. {
  452. __le16 mask_fc;
  453. u8 qos_tid;
  454. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  455. memcpy(j_0, hdr->addr2, ETH_ALEN);
  456. memcpy(&j_0[ETH_ALEN], pn, IEEE80211_GCMP_PN_LEN);
  457. j_0[13] = 0;
  458. j_0[14] = 0;
  459. j_0[AES_BLOCK_SIZE - 1] = 0x01;
  460. /* AAD (extra authenticate-only data) / masked 802.11 header
  461. * FC | A1 | A2 | A3 | SC | [A4] | [QC]
  462. */
  463. put_unaligned_be16(ieee80211_hdrlen(hdr->frame_control) - 2, &aad[0]);
  464. /* Mask FC: zero subtype b4 b5 b6 (if not mgmt)
  465. * Retry, PwrMgt, MoreData; set Protected
  466. */
  467. mask_fc = hdr->frame_control;
  468. mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY |
  469. IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA);
  470. if (!ieee80211_is_mgmt(hdr->frame_control))
  471. mask_fc &= ~cpu_to_le16(0x0070);
  472. mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  473. put_unaligned(mask_fc, (__le16 *)&aad[2]);
  474. memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN);
  475. /* Mask Seq#, leave Frag# */
  476. aad[22] = *((u8 *)&hdr->seq_ctrl) & 0x0f;
  477. aad[23] = 0;
  478. if (ieee80211_is_data_qos(hdr->frame_control))
  479. qos_tid = *ieee80211_get_qos_ctl(hdr) &
  480. IEEE80211_QOS_CTL_TID_MASK;
  481. else
  482. qos_tid = 0;
  483. if (ieee80211_has_a4(hdr->frame_control)) {
  484. memcpy(&aad[24], hdr->addr4, ETH_ALEN);
  485. aad[30] = qos_tid;
  486. aad[31] = 0;
  487. } else {
  488. memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN);
  489. aad[24] = qos_tid;
  490. }
  491. }
  492. static inline void gcmp_pn2hdr(u8 *hdr, const u8 *pn, int key_id)
  493. {
  494. hdr[0] = pn[5];
  495. hdr[1] = pn[4];
  496. hdr[2] = 0;
  497. hdr[3] = 0x20 | (key_id << 6);
  498. hdr[4] = pn[3];
  499. hdr[5] = pn[2];
  500. hdr[6] = pn[1];
  501. hdr[7] = pn[0];
  502. }
  503. static inline void gcmp_hdr2pn(u8 *pn, const u8 *hdr)
  504. {
  505. pn[0] = hdr[7];
  506. pn[1] = hdr[6];
  507. pn[2] = hdr[5];
  508. pn[3] = hdr[4];
  509. pn[4] = hdr[1];
  510. pn[5] = hdr[0];
  511. }
  512. static int gcmp_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
  513. {
  514. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  515. struct ieee80211_key *key = tx->key;
  516. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  517. int hdrlen, len, tail;
  518. u8 *pos;
  519. u8 pn[6];
  520. u64 pn64;
  521. u8 aad[2 * AES_BLOCK_SIZE];
  522. u8 j_0[AES_BLOCK_SIZE];
  523. if (info->control.hw_key &&
  524. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) &&
  525. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
  526. !((info->control.hw_key->flags &
  527. IEEE80211_KEY_FLAG_GENERATE_IV_MGMT) &&
  528. ieee80211_is_mgmt(hdr->frame_control))) {
  529. /* hwaccel has no need for preallocated room for GCMP
  530. * header or MIC fields
  531. */
  532. return 0;
  533. }
  534. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  535. len = skb->len - hdrlen;
  536. if (info->control.hw_key)
  537. tail = 0;
  538. else
  539. tail = IEEE80211_GCMP_MIC_LEN;
  540. if (WARN_ON(skb_tailroom(skb) < tail ||
  541. skb_headroom(skb) < IEEE80211_GCMP_HDR_LEN))
  542. return -1;
  543. pos = skb_push(skb, IEEE80211_GCMP_HDR_LEN);
  544. memmove(pos, pos + IEEE80211_GCMP_HDR_LEN, hdrlen);
  545. skb_set_network_header(skb, skb_network_offset(skb) +
  546. IEEE80211_GCMP_HDR_LEN);
  547. /* the HW only needs room for the IV, but not the actual IV */
  548. if (info->control.hw_key &&
  549. (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))
  550. return 0;
  551. hdr = (struct ieee80211_hdr *)pos;
  552. pos += hdrlen;
  553. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  554. pn[5] = pn64;
  555. pn[4] = pn64 >> 8;
  556. pn[3] = pn64 >> 16;
  557. pn[2] = pn64 >> 24;
  558. pn[1] = pn64 >> 32;
  559. pn[0] = pn64 >> 40;
  560. gcmp_pn2hdr(pos, pn, key->conf.keyidx);
  561. /* hwaccel - with software GCMP header */
  562. if (info->control.hw_key)
  563. return 0;
  564. pos += IEEE80211_GCMP_HDR_LEN;
  565. gcmp_special_blocks(skb, pn, j_0, aad);
  566. ieee80211_aes_gcm_encrypt(key->u.gcmp.tfm, j_0, aad, pos, len,
  567. skb_put(skb, IEEE80211_GCMP_MIC_LEN));
  568. return 0;
  569. }
  570. ieee80211_tx_result
  571. ieee80211_crypto_gcmp_encrypt(struct ieee80211_tx_data *tx)
  572. {
  573. struct sk_buff *skb;
  574. ieee80211_tx_set_protected(tx);
  575. skb_queue_walk(&tx->skbs, skb) {
  576. if (gcmp_encrypt_skb(tx, skb) < 0)
  577. return TX_DROP;
  578. }
  579. return TX_CONTINUE;
  580. }
  581. ieee80211_rx_result
  582. ieee80211_crypto_gcmp_decrypt(struct ieee80211_rx_data *rx)
  583. {
  584. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  585. int hdrlen;
  586. struct ieee80211_key *key = rx->key;
  587. struct sk_buff *skb = rx->skb;
  588. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  589. u8 pn[IEEE80211_GCMP_PN_LEN];
  590. int data_len;
  591. int queue;
  592. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  593. if (!ieee80211_is_data(hdr->frame_control) &&
  594. !ieee80211_is_robust_mgmt_frame(skb))
  595. return RX_CONTINUE;
  596. data_len = skb->len - hdrlen - IEEE80211_GCMP_HDR_LEN -
  597. IEEE80211_GCMP_MIC_LEN;
  598. if (!rx->sta || data_len < 0)
  599. return RX_DROP_UNUSABLE;
  600. if (status->flag & RX_FLAG_DECRYPTED) {
  601. if (!pskb_may_pull(rx->skb, hdrlen + IEEE80211_GCMP_HDR_LEN))
  602. return RX_DROP_UNUSABLE;
  603. } else {
  604. if (skb_linearize(rx->skb))
  605. return RX_DROP_UNUSABLE;
  606. }
  607. if (!(status->flag & RX_FLAG_PN_VALIDATED)) {
  608. gcmp_hdr2pn(pn, skb->data + hdrlen);
  609. queue = rx->security_idx;
  610. if (memcmp(pn, key->u.gcmp.rx_pn[queue],
  611. IEEE80211_GCMP_PN_LEN) <= 0) {
  612. key->u.gcmp.replays++;
  613. return RX_DROP_UNUSABLE;
  614. }
  615. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  616. u8 aad[2 * AES_BLOCK_SIZE];
  617. u8 j_0[AES_BLOCK_SIZE];
  618. /* hardware didn't decrypt/verify MIC */
  619. gcmp_special_blocks(skb, pn, j_0, aad);
  620. if (ieee80211_aes_gcm_decrypt(
  621. key->u.gcmp.tfm, j_0, aad,
  622. skb->data + hdrlen + IEEE80211_GCMP_HDR_LEN,
  623. data_len,
  624. skb->data + skb->len -
  625. IEEE80211_GCMP_MIC_LEN))
  626. return RX_DROP_UNUSABLE;
  627. }
  628. memcpy(key->u.gcmp.rx_pn[queue], pn, IEEE80211_GCMP_PN_LEN);
  629. }
  630. /* Remove GCMP header and MIC */
  631. if (pskb_trim(skb, skb->len - IEEE80211_GCMP_MIC_LEN))
  632. return RX_DROP_UNUSABLE;
  633. memmove(skb->data + IEEE80211_GCMP_HDR_LEN, skb->data, hdrlen);
  634. skb_pull(skb, IEEE80211_GCMP_HDR_LEN);
  635. return RX_CONTINUE;
  636. }
  637. static ieee80211_tx_result
  638. ieee80211_crypto_cs_encrypt(struct ieee80211_tx_data *tx,
  639. struct sk_buff *skb)
  640. {
  641. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  642. struct ieee80211_key *key = tx->key;
  643. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  644. int hdrlen;
  645. u8 *pos, iv_len = key->conf.iv_len;
  646. if (info->control.hw_key &&
  647. !(info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) {
  648. /* hwaccel has no need for preallocated head room */
  649. return TX_CONTINUE;
  650. }
  651. if (unlikely(skb_headroom(skb) < iv_len &&
  652. pskb_expand_head(skb, iv_len, 0, GFP_ATOMIC)))
  653. return TX_DROP;
  654. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  655. pos = skb_push(skb, iv_len);
  656. memmove(pos, pos + iv_len, hdrlen);
  657. return TX_CONTINUE;
  658. }
  659. static inline int ieee80211_crypto_cs_pn_compare(u8 *pn1, u8 *pn2, int len)
  660. {
  661. int i;
  662. /* pn is little endian */
  663. for (i = len - 1; i >= 0; i--) {
  664. if (pn1[i] < pn2[i])
  665. return -1;
  666. else if (pn1[i] > pn2[i])
  667. return 1;
  668. }
  669. return 0;
  670. }
  671. static ieee80211_rx_result
  672. ieee80211_crypto_cs_decrypt(struct ieee80211_rx_data *rx)
  673. {
  674. struct ieee80211_key *key = rx->key;
  675. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
  676. const struct ieee80211_cipher_scheme *cs = NULL;
  677. int hdrlen = ieee80211_hdrlen(hdr->frame_control);
  678. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
  679. int data_len;
  680. u8 *rx_pn;
  681. u8 *skb_pn;
  682. u8 qos_tid;
  683. if (!rx->sta || !rx->sta->cipher_scheme ||
  684. !(status->flag & RX_FLAG_DECRYPTED))
  685. return RX_DROP_UNUSABLE;
  686. if (!ieee80211_is_data(hdr->frame_control))
  687. return RX_CONTINUE;
  688. cs = rx->sta->cipher_scheme;
  689. data_len = rx->skb->len - hdrlen - cs->hdr_len;
  690. if (data_len < 0)
  691. return RX_DROP_UNUSABLE;
  692. if (ieee80211_is_data_qos(hdr->frame_control))
  693. qos_tid = *ieee80211_get_qos_ctl(hdr) &
  694. IEEE80211_QOS_CTL_TID_MASK;
  695. else
  696. qos_tid = 0;
  697. if (skb_linearize(rx->skb))
  698. return RX_DROP_UNUSABLE;
  699. hdr = (struct ieee80211_hdr *)rx->skb->data;
  700. rx_pn = key->u.gen.rx_pn[qos_tid];
  701. skb_pn = rx->skb->data + hdrlen + cs->pn_off;
  702. if (ieee80211_crypto_cs_pn_compare(skb_pn, rx_pn, cs->pn_len) <= 0)
  703. return RX_DROP_UNUSABLE;
  704. memcpy(rx_pn, skb_pn, cs->pn_len);
  705. /* remove security header and MIC */
  706. if (pskb_trim(rx->skb, rx->skb->len - cs->mic_len))
  707. return RX_DROP_UNUSABLE;
  708. memmove(rx->skb->data + cs->hdr_len, rx->skb->data, hdrlen);
  709. skb_pull(rx->skb, cs->hdr_len);
  710. return RX_CONTINUE;
  711. }
  712. static void bip_aad(struct sk_buff *skb, u8 *aad)
  713. {
  714. __le16 mask_fc;
  715. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  716. /* BIP AAD: FC(masked) || A1 || A2 || A3 */
  717. /* FC type/subtype */
  718. /* Mask FC Retry, PwrMgt, MoreData flags to zero */
  719. mask_fc = hdr->frame_control;
  720. mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY | IEEE80211_FCTL_PM |
  721. IEEE80211_FCTL_MOREDATA);
  722. put_unaligned(mask_fc, (__le16 *) &aad[0]);
  723. /* A1 || A2 || A3 */
  724. memcpy(aad + 2, &hdr->addr1, 3 * ETH_ALEN);
  725. }
  726. static inline void bip_ipn_set64(u8 *d, u64 pn)
  727. {
  728. *d++ = pn;
  729. *d++ = pn >> 8;
  730. *d++ = pn >> 16;
  731. *d++ = pn >> 24;
  732. *d++ = pn >> 32;
  733. *d = pn >> 40;
  734. }
  735. static inline void bip_ipn_swap(u8 *d, const u8 *s)
  736. {
  737. *d++ = s[5];
  738. *d++ = s[4];
  739. *d++ = s[3];
  740. *d++ = s[2];
  741. *d++ = s[1];
  742. *d = s[0];
  743. }
  744. ieee80211_tx_result
  745. ieee80211_crypto_aes_cmac_encrypt(struct ieee80211_tx_data *tx)
  746. {
  747. struct sk_buff *skb;
  748. struct ieee80211_tx_info *info;
  749. struct ieee80211_key *key = tx->key;
  750. struct ieee80211_mmie *mmie;
  751. u8 aad[20];
  752. u64 pn64;
  753. if (WARN_ON(skb_queue_len(&tx->skbs) != 1))
  754. return TX_DROP;
  755. skb = skb_peek(&tx->skbs);
  756. info = IEEE80211_SKB_CB(skb);
  757. if (info->control.hw_key)
  758. return TX_CONTINUE;
  759. if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie)))
  760. return TX_DROP;
  761. mmie = (struct ieee80211_mmie *) skb_put(skb, sizeof(*mmie));
  762. mmie->element_id = WLAN_EID_MMIE;
  763. mmie->length = sizeof(*mmie) - 2;
  764. mmie->key_id = cpu_to_le16(key->conf.keyidx);
  765. /* PN = PN + 1 */
  766. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  767. bip_ipn_set64(mmie->sequence_number, pn64);
  768. bip_aad(skb, aad);
  769. /*
  770. * MIC = AES-128-CMAC(IGTK, AAD || Management Frame Body || MMIE, 64)
  771. */
  772. ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad,
  773. skb->data + 24, skb->len - 24, mmie->mic);
  774. return TX_CONTINUE;
  775. }
  776. ieee80211_tx_result
  777. ieee80211_crypto_aes_cmac_256_encrypt(struct ieee80211_tx_data *tx)
  778. {
  779. struct sk_buff *skb;
  780. struct ieee80211_tx_info *info;
  781. struct ieee80211_key *key = tx->key;
  782. struct ieee80211_mmie_16 *mmie;
  783. u8 aad[20];
  784. u64 pn64;
  785. if (WARN_ON(skb_queue_len(&tx->skbs) != 1))
  786. return TX_DROP;
  787. skb = skb_peek(&tx->skbs);
  788. info = IEEE80211_SKB_CB(skb);
  789. if (info->control.hw_key)
  790. return TX_CONTINUE;
  791. if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie)))
  792. return TX_DROP;
  793. mmie = (struct ieee80211_mmie_16 *)skb_put(skb, sizeof(*mmie));
  794. mmie->element_id = WLAN_EID_MMIE;
  795. mmie->length = sizeof(*mmie) - 2;
  796. mmie->key_id = cpu_to_le16(key->conf.keyidx);
  797. /* PN = PN + 1 */
  798. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  799. bip_ipn_set64(mmie->sequence_number, pn64);
  800. bip_aad(skb, aad);
  801. /* MIC = AES-256-CMAC(IGTK, AAD || Management Frame Body || MMIE, 128)
  802. */
  803. ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad,
  804. skb->data + 24, skb->len - 24, mmie->mic);
  805. return TX_CONTINUE;
  806. }
  807. ieee80211_rx_result
  808. ieee80211_crypto_aes_cmac_decrypt(struct ieee80211_rx_data *rx)
  809. {
  810. struct sk_buff *skb = rx->skb;
  811. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  812. struct ieee80211_key *key = rx->key;
  813. struct ieee80211_mmie *mmie;
  814. u8 aad[20], mic[8], ipn[6];
  815. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  816. if (!ieee80211_is_mgmt(hdr->frame_control))
  817. return RX_CONTINUE;
  818. /* management frames are already linear */
  819. if (skb->len < 24 + sizeof(*mmie))
  820. return RX_DROP_UNUSABLE;
  821. mmie = (struct ieee80211_mmie *)
  822. (skb->data + skb->len - sizeof(*mmie));
  823. if (mmie->element_id != WLAN_EID_MMIE ||
  824. mmie->length != sizeof(*mmie) - 2)
  825. return RX_DROP_UNUSABLE; /* Invalid MMIE */
  826. bip_ipn_swap(ipn, mmie->sequence_number);
  827. if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) {
  828. key->u.aes_cmac.replays++;
  829. return RX_DROP_UNUSABLE;
  830. }
  831. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  832. /* hardware didn't decrypt/verify MIC */
  833. bip_aad(skb, aad);
  834. ieee80211_aes_cmac(key->u.aes_cmac.tfm, aad,
  835. skb->data + 24, skb->len - 24, mic);
  836. if (memcmp(mic, mmie->mic, sizeof(mmie->mic)) != 0) {
  837. key->u.aes_cmac.icverrors++;
  838. return RX_DROP_UNUSABLE;
  839. }
  840. }
  841. memcpy(key->u.aes_cmac.rx_pn, ipn, 6);
  842. /* Remove MMIE */
  843. skb_trim(skb, skb->len - sizeof(*mmie));
  844. return RX_CONTINUE;
  845. }
  846. ieee80211_rx_result
  847. ieee80211_crypto_aes_cmac_256_decrypt(struct ieee80211_rx_data *rx)
  848. {
  849. struct sk_buff *skb = rx->skb;
  850. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  851. struct ieee80211_key *key = rx->key;
  852. struct ieee80211_mmie_16 *mmie;
  853. u8 aad[20], mic[16], ipn[6];
  854. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  855. if (!ieee80211_is_mgmt(hdr->frame_control))
  856. return RX_CONTINUE;
  857. /* management frames are already linear */
  858. if (skb->len < 24 + sizeof(*mmie))
  859. return RX_DROP_UNUSABLE;
  860. mmie = (struct ieee80211_mmie_16 *)
  861. (skb->data + skb->len - sizeof(*mmie));
  862. if (mmie->element_id != WLAN_EID_MMIE ||
  863. mmie->length != sizeof(*mmie) - 2)
  864. return RX_DROP_UNUSABLE; /* Invalid MMIE */
  865. bip_ipn_swap(ipn, mmie->sequence_number);
  866. if (memcmp(ipn, key->u.aes_cmac.rx_pn, 6) <= 0) {
  867. key->u.aes_cmac.replays++;
  868. return RX_DROP_UNUSABLE;
  869. }
  870. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  871. /* hardware didn't decrypt/verify MIC */
  872. bip_aad(skb, aad);
  873. ieee80211_aes_cmac_256(key->u.aes_cmac.tfm, aad,
  874. skb->data + 24, skb->len - 24, mic);
  875. if (memcmp(mic, mmie->mic, sizeof(mmie->mic)) != 0) {
  876. key->u.aes_cmac.icverrors++;
  877. return RX_DROP_UNUSABLE;
  878. }
  879. }
  880. memcpy(key->u.aes_cmac.rx_pn, ipn, 6);
  881. /* Remove MMIE */
  882. skb_trim(skb, skb->len - sizeof(*mmie));
  883. return RX_CONTINUE;
  884. }
  885. ieee80211_tx_result
  886. ieee80211_crypto_aes_gmac_encrypt(struct ieee80211_tx_data *tx)
  887. {
  888. struct sk_buff *skb;
  889. struct ieee80211_tx_info *info;
  890. struct ieee80211_key *key = tx->key;
  891. struct ieee80211_mmie_16 *mmie;
  892. struct ieee80211_hdr *hdr;
  893. u8 aad[20];
  894. u64 pn64;
  895. u8 nonce[12];
  896. if (WARN_ON(skb_queue_len(&tx->skbs) != 1))
  897. return TX_DROP;
  898. skb = skb_peek(&tx->skbs);
  899. info = IEEE80211_SKB_CB(skb);
  900. if (info->control.hw_key)
  901. return TX_CONTINUE;
  902. if (WARN_ON(skb_tailroom(skb) < sizeof(*mmie)))
  903. return TX_DROP;
  904. mmie = (struct ieee80211_mmie_16 *)skb_put(skb, sizeof(*mmie));
  905. mmie->element_id = WLAN_EID_MMIE;
  906. mmie->length = sizeof(*mmie) - 2;
  907. mmie->key_id = cpu_to_le16(key->conf.keyidx);
  908. /* PN = PN + 1 */
  909. pn64 = atomic64_inc_return(&key->conf.tx_pn);
  910. bip_ipn_set64(mmie->sequence_number, pn64);
  911. bip_aad(skb, aad);
  912. hdr = (struct ieee80211_hdr *)skb->data;
  913. memcpy(nonce, hdr->addr2, ETH_ALEN);
  914. bip_ipn_swap(nonce + ETH_ALEN, mmie->sequence_number);
  915. /* MIC = AES-GMAC(IGTK, AAD || Management Frame Body || MMIE, 128) */
  916. if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce,
  917. skb->data + 24, skb->len - 24, mmie->mic) < 0)
  918. return TX_DROP;
  919. return TX_CONTINUE;
  920. }
  921. ieee80211_rx_result
  922. ieee80211_crypto_aes_gmac_decrypt(struct ieee80211_rx_data *rx)
  923. {
  924. struct sk_buff *skb = rx->skb;
  925. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  926. struct ieee80211_key *key = rx->key;
  927. struct ieee80211_mmie_16 *mmie;
  928. u8 aad[20], mic[16], ipn[6], nonce[12];
  929. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  930. if (!ieee80211_is_mgmt(hdr->frame_control))
  931. return RX_CONTINUE;
  932. /* management frames are already linear */
  933. if (skb->len < 24 + sizeof(*mmie))
  934. return RX_DROP_UNUSABLE;
  935. mmie = (struct ieee80211_mmie_16 *)
  936. (skb->data + skb->len - sizeof(*mmie));
  937. if (mmie->element_id != WLAN_EID_MMIE ||
  938. mmie->length != sizeof(*mmie) - 2)
  939. return RX_DROP_UNUSABLE; /* Invalid MMIE */
  940. bip_ipn_swap(ipn, mmie->sequence_number);
  941. if (memcmp(ipn, key->u.aes_gmac.rx_pn, 6) <= 0) {
  942. key->u.aes_gmac.replays++;
  943. return RX_DROP_UNUSABLE;
  944. }
  945. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  946. /* hardware didn't decrypt/verify MIC */
  947. bip_aad(skb, aad);
  948. memcpy(nonce, hdr->addr2, ETH_ALEN);
  949. memcpy(nonce + ETH_ALEN, ipn, 6);
  950. if (ieee80211_aes_gmac(key->u.aes_gmac.tfm, aad, nonce,
  951. skb->data + 24, skb->len - 24,
  952. mic) < 0 ||
  953. memcmp(mic, mmie->mic, sizeof(mmie->mic)) != 0) {
  954. key->u.aes_gmac.icverrors++;
  955. return RX_DROP_UNUSABLE;
  956. }
  957. }
  958. memcpy(key->u.aes_gmac.rx_pn, ipn, 6);
  959. /* Remove MMIE */
  960. skb_trim(skb, skb->len - sizeof(*mmie));
  961. return RX_CONTINUE;
  962. }
  963. ieee80211_tx_result
  964. ieee80211_crypto_hw_encrypt(struct ieee80211_tx_data *tx)
  965. {
  966. struct sk_buff *skb;
  967. struct ieee80211_tx_info *info = NULL;
  968. ieee80211_tx_result res;
  969. skb_queue_walk(&tx->skbs, skb) {
  970. info = IEEE80211_SKB_CB(skb);
  971. /* handle hw-only algorithm */
  972. if (!info->control.hw_key)
  973. return TX_DROP;
  974. if (tx->key->flags & KEY_FLAG_CIPHER_SCHEME) {
  975. res = ieee80211_crypto_cs_encrypt(tx, skb);
  976. if (res != TX_CONTINUE)
  977. return res;
  978. }
  979. }
  980. ieee80211_tx_set_protected(tx);
  981. return TX_CONTINUE;
  982. }
  983. ieee80211_rx_result
  984. ieee80211_crypto_hw_decrypt(struct ieee80211_rx_data *rx)
  985. {
  986. if (rx->sta && rx->sta->cipher_scheme)
  987. return ieee80211_crypto_cs_decrypt(rx);
  988. return RX_DROP_UNUSABLE;
  989. }