tcp_input.c 178 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  80. int sysctl_tcp_max_reordering __read_mostly = 300;
  81. EXPORT_SYMBOL(sysctl_tcp_reordering);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 100;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_thin_dupack __read_mostly;
  93. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  94. int sysctl_tcp_early_retrans __read_mostly = 3;
  95. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  96. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  97. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  98. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  99. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  100. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  101. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  102. #define FLAG_ECE 0x40 /* ECE in this ACK */
  103. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  104. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  105. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  106. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  107. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  108. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  109. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  110. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  111. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  112. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  113. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  114. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  115. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  116. /* Adapt the MSS value used to make delayed ack decision to the
  117. * real world.
  118. */
  119. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  120. {
  121. struct inet_connection_sock *icsk = inet_csk(sk);
  122. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  123. unsigned int len;
  124. icsk->icsk_ack.last_seg_size = 0;
  125. /* skb->len may jitter because of SACKs, even if peer
  126. * sends good full-sized frames.
  127. */
  128. len = skb_shinfo(skb)->gso_size ? : skb->len;
  129. if (len >= icsk->icsk_ack.rcv_mss) {
  130. icsk->icsk_ack.rcv_mss = len;
  131. } else {
  132. /* Otherwise, we make more careful check taking into account,
  133. * that SACKs block is variable.
  134. *
  135. * "len" is invariant segment length, including TCP header.
  136. */
  137. len += skb->data - skb_transport_header(skb);
  138. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  139. /* If PSH is not set, packet should be
  140. * full sized, provided peer TCP is not badly broken.
  141. * This observation (if it is correct 8)) allows
  142. * to handle super-low mtu links fairly.
  143. */
  144. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  145. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  146. /* Subtract also invariant (if peer is RFC compliant),
  147. * tcp header plus fixed timestamp option length.
  148. * Resulting "len" is MSS free of SACK jitter.
  149. */
  150. len -= tcp_sk(sk)->tcp_header_len;
  151. icsk->icsk_ack.last_seg_size = len;
  152. if (len == lss) {
  153. icsk->icsk_ack.rcv_mss = len;
  154. return;
  155. }
  156. }
  157. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  159. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  160. }
  161. }
  162. static void tcp_incr_quickack(struct sock *sk)
  163. {
  164. struct inet_connection_sock *icsk = inet_csk(sk);
  165. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  166. if (quickacks == 0)
  167. quickacks = 2;
  168. if (quickacks > icsk->icsk_ack.quick)
  169. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  170. }
  171. static void tcp_enter_quickack_mode(struct sock *sk)
  172. {
  173. struct inet_connection_sock *icsk = inet_csk(sk);
  174. tcp_incr_quickack(sk);
  175. icsk->icsk_ack.pingpong = 0;
  176. icsk->icsk_ack.ato = TCP_ATO_MIN;
  177. }
  178. /* Send ACKs quickly, if "quick" count is not exhausted
  179. * and the session is not interactive.
  180. */
  181. static bool tcp_in_quickack_mode(struct sock *sk)
  182. {
  183. const struct inet_connection_sock *icsk = inet_csk(sk);
  184. const struct dst_entry *dst = __sk_dst_get(sk);
  185. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  186. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  187. }
  188. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  189. {
  190. if (tp->ecn_flags & TCP_ECN_OK)
  191. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  192. }
  193. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  194. {
  195. if (tcp_hdr(skb)->cwr)
  196. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  197. }
  198. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  199. {
  200. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  201. }
  202. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  203. {
  204. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  205. case INET_ECN_NOT_ECT:
  206. /* Funny extension: if ECT is not set on a segment,
  207. * and we already seen ECT on a previous segment,
  208. * it is probably a retransmit.
  209. */
  210. if (tp->ecn_flags & TCP_ECN_SEEN)
  211. tcp_enter_quickack_mode((struct sock *)tp);
  212. break;
  213. case INET_ECN_CE:
  214. if (tcp_ca_needs_ecn((struct sock *)tp))
  215. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  216. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  217. /* Better not delay acks, sender can have a very low cwnd */
  218. tcp_enter_quickack_mode((struct sock *)tp);
  219. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  220. }
  221. tp->ecn_flags |= TCP_ECN_SEEN;
  222. break;
  223. default:
  224. if (tcp_ca_needs_ecn((struct sock *)tp))
  225. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  226. tp->ecn_flags |= TCP_ECN_SEEN;
  227. break;
  228. }
  229. }
  230. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  231. {
  232. if (tp->ecn_flags & TCP_ECN_OK)
  233. __tcp_ecn_check_ce(tp, skb);
  234. }
  235. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  236. {
  237. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  238. tp->ecn_flags &= ~TCP_ECN_OK;
  239. }
  240. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  241. {
  242. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  243. tp->ecn_flags &= ~TCP_ECN_OK;
  244. }
  245. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  246. {
  247. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  248. return true;
  249. return false;
  250. }
  251. /* Buffer size and advertised window tuning.
  252. *
  253. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  254. */
  255. static void tcp_sndbuf_expand(struct sock *sk)
  256. {
  257. const struct tcp_sock *tp = tcp_sk(sk);
  258. int sndmem, per_mss;
  259. u32 nr_segs;
  260. /* Worst case is non GSO/TSO : each frame consumes one skb
  261. * and skb->head is kmalloced using power of two area of memory
  262. */
  263. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  264. MAX_TCP_HEADER +
  265. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  266. per_mss = roundup_pow_of_two(per_mss) +
  267. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  268. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  269. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  270. /* Fast Recovery (RFC 5681 3.2) :
  271. * Cubic needs 1.7 factor, rounded to 2 to include
  272. * extra cushion (application might react slowly to POLLOUT)
  273. */
  274. sndmem = 2 * nr_segs * per_mss;
  275. if (sk->sk_sndbuf < sndmem)
  276. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  277. }
  278. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  279. *
  280. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  281. * forward and advertised in receiver window (tp->rcv_wnd) and
  282. * "application buffer", required to isolate scheduling/application
  283. * latencies from network.
  284. * window_clamp is maximal advertised window. It can be less than
  285. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  286. * is reserved for "application" buffer. The less window_clamp is
  287. * the smoother our behaviour from viewpoint of network, but the lower
  288. * throughput and the higher sensitivity of the connection to losses. 8)
  289. *
  290. * rcv_ssthresh is more strict window_clamp used at "slow start"
  291. * phase to predict further behaviour of this connection.
  292. * It is used for two goals:
  293. * - to enforce header prediction at sender, even when application
  294. * requires some significant "application buffer". It is check #1.
  295. * - to prevent pruning of receive queue because of misprediction
  296. * of receiver window. Check #2.
  297. *
  298. * The scheme does not work when sender sends good segments opening
  299. * window and then starts to feed us spaghetti. But it should work
  300. * in common situations. Otherwise, we have to rely on queue collapsing.
  301. */
  302. /* Slow part of check#2. */
  303. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  304. {
  305. struct tcp_sock *tp = tcp_sk(sk);
  306. /* Optimize this! */
  307. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  308. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  309. while (tp->rcv_ssthresh <= window) {
  310. if (truesize <= skb->len)
  311. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  312. truesize >>= 1;
  313. window >>= 1;
  314. }
  315. return 0;
  316. }
  317. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  318. {
  319. struct tcp_sock *tp = tcp_sk(sk);
  320. /* Check #1 */
  321. if (tp->rcv_ssthresh < tp->window_clamp &&
  322. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  323. !tcp_under_memory_pressure(sk)) {
  324. int incr;
  325. /* Check #2. Increase window, if skb with such overhead
  326. * will fit to rcvbuf in future.
  327. */
  328. if (tcp_win_from_space(skb->truesize) <= skb->len)
  329. incr = 2 * tp->advmss;
  330. else
  331. incr = __tcp_grow_window(sk, skb);
  332. if (incr) {
  333. incr = max_t(int, incr, 2 * skb->len);
  334. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  335. tp->window_clamp);
  336. inet_csk(sk)->icsk_ack.quick |= 1;
  337. }
  338. }
  339. }
  340. /* 3. Tuning rcvbuf, when connection enters established state. */
  341. static void tcp_fixup_rcvbuf(struct sock *sk)
  342. {
  343. u32 mss = tcp_sk(sk)->advmss;
  344. int rcvmem;
  345. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  346. tcp_default_init_rwnd(mss);
  347. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  348. * Allow enough cushion so that sender is not limited by our window
  349. */
  350. if (sysctl_tcp_moderate_rcvbuf)
  351. rcvmem <<= 2;
  352. if (sk->sk_rcvbuf < rcvmem)
  353. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  354. }
  355. /* 4. Try to fixup all. It is made immediately after connection enters
  356. * established state.
  357. */
  358. void tcp_init_buffer_space(struct sock *sk)
  359. {
  360. struct tcp_sock *tp = tcp_sk(sk);
  361. int maxwin;
  362. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  363. tcp_fixup_rcvbuf(sk);
  364. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  365. tcp_sndbuf_expand(sk);
  366. tp->rcvq_space.space = tp->rcv_wnd;
  367. tp->rcvq_space.time = tcp_time_stamp;
  368. tp->rcvq_space.seq = tp->copied_seq;
  369. maxwin = tcp_full_space(sk);
  370. if (tp->window_clamp >= maxwin) {
  371. tp->window_clamp = maxwin;
  372. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  373. tp->window_clamp = max(maxwin -
  374. (maxwin >> sysctl_tcp_app_win),
  375. 4 * tp->advmss);
  376. }
  377. /* Force reservation of one segment. */
  378. if (sysctl_tcp_app_win &&
  379. tp->window_clamp > 2 * tp->advmss &&
  380. tp->window_clamp + tp->advmss > maxwin)
  381. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  382. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  383. tp->snd_cwnd_stamp = tcp_time_stamp;
  384. }
  385. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  386. static void tcp_clamp_window(struct sock *sk)
  387. {
  388. struct tcp_sock *tp = tcp_sk(sk);
  389. struct inet_connection_sock *icsk = inet_csk(sk);
  390. icsk->icsk_ack.quick = 0;
  391. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  392. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  393. !tcp_under_memory_pressure(sk) &&
  394. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  395. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  396. sysctl_tcp_rmem[2]);
  397. }
  398. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  399. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  400. }
  401. /* Initialize RCV_MSS value.
  402. * RCV_MSS is an our guess about MSS used by the peer.
  403. * We haven't any direct information about the MSS.
  404. * It's better to underestimate the RCV_MSS rather than overestimate.
  405. * Overestimations make us ACKing less frequently than needed.
  406. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  407. */
  408. void tcp_initialize_rcv_mss(struct sock *sk)
  409. {
  410. const struct tcp_sock *tp = tcp_sk(sk);
  411. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  412. hint = min(hint, tp->rcv_wnd / 2);
  413. hint = min(hint, TCP_MSS_DEFAULT);
  414. hint = max(hint, TCP_MIN_MSS);
  415. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  416. }
  417. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  418. /* Receiver "autotuning" code.
  419. *
  420. * The algorithm for RTT estimation w/o timestamps is based on
  421. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  422. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  423. *
  424. * More detail on this code can be found at
  425. * <http://staff.psc.edu/jheffner/>,
  426. * though this reference is out of date. A new paper
  427. * is pending.
  428. */
  429. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  430. {
  431. u32 new_sample = tp->rcv_rtt_est.rtt;
  432. long m = sample;
  433. if (m == 0)
  434. m = 1;
  435. if (new_sample != 0) {
  436. /* If we sample in larger samples in the non-timestamp
  437. * case, we could grossly overestimate the RTT especially
  438. * with chatty applications or bulk transfer apps which
  439. * are stalled on filesystem I/O.
  440. *
  441. * Also, since we are only going for a minimum in the
  442. * non-timestamp case, we do not smooth things out
  443. * else with timestamps disabled convergence takes too
  444. * long.
  445. */
  446. if (!win_dep) {
  447. m -= (new_sample >> 3);
  448. new_sample += m;
  449. } else {
  450. m <<= 3;
  451. if (m < new_sample)
  452. new_sample = m;
  453. }
  454. } else {
  455. /* No previous measure. */
  456. new_sample = m << 3;
  457. }
  458. if (tp->rcv_rtt_est.rtt != new_sample)
  459. tp->rcv_rtt_est.rtt = new_sample;
  460. }
  461. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  462. {
  463. if (tp->rcv_rtt_est.time == 0)
  464. goto new_measure;
  465. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  466. return;
  467. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  468. new_measure:
  469. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  470. tp->rcv_rtt_est.time = tcp_time_stamp;
  471. }
  472. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  473. const struct sk_buff *skb)
  474. {
  475. struct tcp_sock *tp = tcp_sk(sk);
  476. if (tp->rx_opt.rcv_tsecr &&
  477. (TCP_SKB_CB(skb)->end_seq -
  478. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  479. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  480. }
  481. /*
  482. * This function should be called every time data is copied to user space.
  483. * It calculates the appropriate TCP receive buffer space.
  484. */
  485. void tcp_rcv_space_adjust(struct sock *sk)
  486. {
  487. struct tcp_sock *tp = tcp_sk(sk);
  488. int time;
  489. int copied;
  490. time = tcp_time_stamp - tp->rcvq_space.time;
  491. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  492. return;
  493. /* Number of bytes copied to user in last RTT */
  494. copied = tp->copied_seq - tp->rcvq_space.seq;
  495. if (copied <= tp->rcvq_space.space)
  496. goto new_measure;
  497. /* A bit of theory :
  498. * copied = bytes received in previous RTT, our base window
  499. * To cope with packet losses, we need a 2x factor
  500. * To cope with slow start, and sender growing its cwin by 100 %
  501. * every RTT, we need a 4x factor, because the ACK we are sending
  502. * now is for the next RTT, not the current one :
  503. * <prev RTT . ><current RTT .. ><next RTT .... >
  504. */
  505. if (sysctl_tcp_moderate_rcvbuf &&
  506. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  507. int rcvwin, rcvmem, rcvbuf;
  508. /* minimal window to cope with packet losses, assuming
  509. * steady state. Add some cushion because of small variations.
  510. */
  511. rcvwin = (copied << 1) + 16 * tp->advmss;
  512. /* If rate increased by 25%,
  513. * assume slow start, rcvwin = 3 * copied
  514. * If rate increased by 50%,
  515. * assume sender can use 2x growth, rcvwin = 4 * copied
  516. */
  517. if (copied >=
  518. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  519. if (copied >=
  520. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  521. rcvwin <<= 1;
  522. else
  523. rcvwin += (rcvwin >> 1);
  524. }
  525. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  526. while (tcp_win_from_space(rcvmem) < tp->advmss)
  527. rcvmem += 128;
  528. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  529. if (rcvbuf > sk->sk_rcvbuf) {
  530. sk->sk_rcvbuf = rcvbuf;
  531. /* Make the window clamp follow along. */
  532. tp->window_clamp = rcvwin;
  533. }
  534. }
  535. tp->rcvq_space.space = copied;
  536. new_measure:
  537. tp->rcvq_space.seq = tp->copied_seq;
  538. tp->rcvq_space.time = tcp_time_stamp;
  539. }
  540. /* There is something which you must keep in mind when you analyze the
  541. * behavior of the tp->ato delayed ack timeout interval. When a
  542. * connection starts up, we want to ack as quickly as possible. The
  543. * problem is that "good" TCP's do slow start at the beginning of data
  544. * transmission. The means that until we send the first few ACK's the
  545. * sender will sit on his end and only queue most of his data, because
  546. * he can only send snd_cwnd unacked packets at any given time. For
  547. * each ACK we send, he increments snd_cwnd and transmits more of his
  548. * queue. -DaveM
  549. */
  550. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  551. {
  552. struct tcp_sock *tp = tcp_sk(sk);
  553. struct inet_connection_sock *icsk = inet_csk(sk);
  554. u32 now;
  555. inet_csk_schedule_ack(sk);
  556. tcp_measure_rcv_mss(sk, skb);
  557. tcp_rcv_rtt_measure(tp);
  558. now = tcp_time_stamp;
  559. if (!icsk->icsk_ack.ato) {
  560. /* The _first_ data packet received, initialize
  561. * delayed ACK engine.
  562. */
  563. tcp_incr_quickack(sk);
  564. icsk->icsk_ack.ato = TCP_ATO_MIN;
  565. } else {
  566. int m = now - icsk->icsk_ack.lrcvtime;
  567. if (m <= TCP_ATO_MIN / 2) {
  568. /* The fastest case is the first. */
  569. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  570. } else if (m < icsk->icsk_ack.ato) {
  571. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  572. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  573. icsk->icsk_ack.ato = icsk->icsk_rto;
  574. } else if (m > icsk->icsk_rto) {
  575. /* Too long gap. Apparently sender failed to
  576. * restart window, so that we send ACKs quickly.
  577. */
  578. tcp_incr_quickack(sk);
  579. sk_mem_reclaim(sk);
  580. }
  581. }
  582. icsk->icsk_ack.lrcvtime = now;
  583. tcp_ecn_check_ce(tp, skb);
  584. if (skb->len >= 128)
  585. tcp_grow_window(sk, skb);
  586. }
  587. /* Called to compute a smoothed rtt estimate. The data fed to this
  588. * routine either comes from timestamps, or from segments that were
  589. * known _not_ to have been retransmitted [see Karn/Partridge
  590. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  591. * piece by Van Jacobson.
  592. * NOTE: the next three routines used to be one big routine.
  593. * To save cycles in the RFC 1323 implementation it was better to break
  594. * it up into three procedures. -- erics
  595. */
  596. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  597. {
  598. struct tcp_sock *tp = tcp_sk(sk);
  599. long m = mrtt_us; /* RTT */
  600. u32 srtt = tp->srtt_us;
  601. /* The following amusing code comes from Jacobson's
  602. * article in SIGCOMM '88. Note that rtt and mdev
  603. * are scaled versions of rtt and mean deviation.
  604. * This is designed to be as fast as possible
  605. * m stands for "measurement".
  606. *
  607. * On a 1990 paper the rto value is changed to:
  608. * RTO = rtt + 4 * mdev
  609. *
  610. * Funny. This algorithm seems to be very broken.
  611. * These formulae increase RTO, when it should be decreased, increase
  612. * too slowly, when it should be increased quickly, decrease too quickly
  613. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  614. * does not matter how to _calculate_ it. Seems, it was trap
  615. * that VJ failed to avoid. 8)
  616. */
  617. if (srtt != 0) {
  618. m -= (srtt >> 3); /* m is now error in rtt est */
  619. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  620. if (m < 0) {
  621. m = -m; /* m is now abs(error) */
  622. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  623. /* This is similar to one of Eifel findings.
  624. * Eifel blocks mdev updates when rtt decreases.
  625. * This solution is a bit different: we use finer gain
  626. * for mdev in this case (alpha*beta).
  627. * Like Eifel it also prevents growth of rto,
  628. * but also it limits too fast rto decreases,
  629. * happening in pure Eifel.
  630. */
  631. if (m > 0)
  632. m >>= 3;
  633. } else {
  634. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  635. }
  636. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  637. if (tp->mdev_us > tp->mdev_max_us) {
  638. tp->mdev_max_us = tp->mdev_us;
  639. if (tp->mdev_max_us > tp->rttvar_us)
  640. tp->rttvar_us = tp->mdev_max_us;
  641. }
  642. if (after(tp->snd_una, tp->rtt_seq)) {
  643. if (tp->mdev_max_us < tp->rttvar_us)
  644. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  645. tp->rtt_seq = tp->snd_nxt;
  646. tp->mdev_max_us = tcp_rto_min_us(sk);
  647. }
  648. } else {
  649. /* no previous measure. */
  650. srtt = m << 3; /* take the measured time to be rtt */
  651. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  652. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  653. tp->mdev_max_us = tp->rttvar_us;
  654. tp->rtt_seq = tp->snd_nxt;
  655. }
  656. tp->srtt_us = max(1U, srtt);
  657. }
  658. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  659. * Note: TCP stack does not yet implement pacing.
  660. * FQ packet scheduler can be used to implement cheap but effective
  661. * TCP pacing, to smooth the burst on large writes when packets
  662. * in flight is significantly lower than cwnd (or rwin)
  663. */
  664. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  665. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  666. static void tcp_update_pacing_rate(struct sock *sk)
  667. {
  668. const struct tcp_sock *tp = tcp_sk(sk);
  669. u64 rate;
  670. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  671. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  672. /* current rate is (cwnd * mss) / srtt
  673. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  674. * In Congestion Avoidance phase, set it to 120 % the current rate.
  675. *
  676. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  677. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  678. * end of slow start and should slow down.
  679. */
  680. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  681. rate *= sysctl_tcp_pacing_ss_ratio;
  682. else
  683. rate *= sysctl_tcp_pacing_ca_ratio;
  684. rate *= max(tp->snd_cwnd, tp->packets_out);
  685. if (likely(tp->srtt_us))
  686. do_div(rate, tp->srtt_us);
  687. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  688. * without any lock. We want to make sure compiler wont store
  689. * intermediate values in this location.
  690. */
  691. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  692. sk->sk_max_pacing_rate);
  693. }
  694. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  695. * routine referred to above.
  696. */
  697. static void tcp_set_rto(struct sock *sk)
  698. {
  699. const struct tcp_sock *tp = tcp_sk(sk);
  700. /* Old crap is replaced with new one. 8)
  701. *
  702. * More seriously:
  703. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  704. * It cannot be less due to utterly erratic ACK generation made
  705. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  706. * to do with delayed acks, because at cwnd>2 true delack timeout
  707. * is invisible. Actually, Linux-2.4 also generates erratic
  708. * ACKs in some circumstances.
  709. */
  710. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  711. /* 2. Fixups made earlier cannot be right.
  712. * If we do not estimate RTO correctly without them,
  713. * all the algo is pure shit and should be replaced
  714. * with correct one. It is exactly, which we pretend to do.
  715. */
  716. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  717. * guarantees that rto is higher.
  718. */
  719. tcp_bound_rto(sk);
  720. }
  721. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  722. {
  723. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  724. if (!cwnd)
  725. cwnd = TCP_INIT_CWND;
  726. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  727. }
  728. /*
  729. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  730. * disables it when reordering is detected
  731. */
  732. void tcp_disable_fack(struct tcp_sock *tp)
  733. {
  734. /* RFC3517 uses different metric in lost marker => reset on change */
  735. if (tcp_is_fack(tp))
  736. tp->lost_skb_hint = NULL;
  737. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  738. }
  739. /* Take a notice that peer is sending D-SACKs */
  740. static void tcp_dsack_seen(struct tcp_sock *tp)
  741. {
  742. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  743. }
  744. static void tcp_update_reordering(struct sock *sk, const int metric,
  745. const int ts)
  746. {
  747. struct tcp_sock *tp = tcp_sk(sk);
  748. if (metric > tp->reordering) {
  749. int mib_idx;
  750. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  751. /* This exciting event is worth to be remembered. 8) */
  752. if (ts)
  753. mib_idx = LINUX_MIB_TCPTSREORDER;
  754. else if (tcp_is_reno(tp))
  755. mib_idx = LINUX_MIB_TCPRENOREORDER;
  756. else if (tcp_is_fack(tp))
  757. mib_idx = LINUX_MIB_TCPFACKREORDER;
  758. else
  759. mib_idx = LINUX_MIB_TCPSACKREORDER;
  760. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  761. #if FASTRETRANS_DEBUG > 1
  762. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  763. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  764. tp->reordering,
  765. tp->fackets_out,
  766. tp->sacked_out,
  767. tp->undo_marker ? tp->undo_retrans : 0);
  768. #endif
  769. tcp_disable_fack(tp);
  770. }
  771. if (metric > 0)
  772. tcp_disable_early_retrans(tp);
  773. }
  774. /* This must be called before lost_out is incremented */
  775. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  776. {
  777. if (!tp->retransmit_skb_hint ||
  778. before(TCP_SKB_CB(skb)->seq,
  779. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  780. tp->retransmit_skb_hint = skb;
  781. if (!tp->lost_out ||
  782. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  783. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  784. }
  785. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  786. {
  787. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  788. tcp_verify_retransmit_hint(tp, skb);
  789. tp->lost_out += tcp_skb_pcount(skb);
  790. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  791. }
  792. }
  793. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  794. struct sk_buff *skb)
  795. {
  796. tcp_verify_retransmit_hint(tp, skb);
  797. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  798. tp->lost_out += tcp_skb_pcount(skb);
  799. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  800. }
  801. }
  802. /* This procedure tags the retransmission queue when SACKs arrive.
  803. *
  804. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  805. * Packets in queue with these bits set are counted in variables
  806. * sacked_out, retrans_out and lost_out, correspondingly.
  807. *
  808. * Valid combinations are:
  809. * Tag InFlight Description
  810. * 0 1 - orig segment is in flight.
  811. * S 0 - nothing flies, orig reached receiver.
  812. * L 0 - nothing flies, orig lost by net.
  813. * R 2 - both orig and retransmit are in flight.
  814. * L|R 1 - orig is lost, retransmit is in flight.
  815. * S|R 1 - orig reached receiver, retrans is still in flight.
  816. * (L|S|R is logically valid, it could occur when L|R is sacked,
  817. * but it is equivalent to plain S and code short-curcuits it to S.
  818. * L|S is logically invalid, it would mean -1 packet in flight 8))
  819. *
  820. * These 6 states form finite state machine, controlled by the following events:
  821. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  822. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  823. * 3. Loss detection event of two flavors:
  824. * A. Scoreboard estimator decided the packet is lost.
  825. * A'. Reno "three dupacks" marks head of queue lost.
  826. * A''. Its FACK modification, head until snd.fack is lost.
  827. * B. SACK arrives sacking SND.NXT at the moment, when the
  828. * segment was retransmitted.
  829. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  830. *
  831. * It is pleasant to note, that state diagram turns out to be commutative,
  832. * so that we are allowed not to be bothered by order of our actions,
  833. * when multiple events arrive simultaneously. (see the function below).
  834. *
  835. * Reordering detection.
  836. * --------------------
  837. * Reordering metric is maximal distance, which a packet can be displaced
  838. * in packet stream. With SACKs we can estimate it:
  839. *
  840. * 1. SACK fills old hole and the corresponding segment was not
  841. * ever retransmitted -> reordering. Alas, we cannot use it
  842. * when segment was retransmitted.
  843. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  844. * for retransmitted and already SACKed segment -> reordering..
  845. * Both of these heuristics are not used in Loss state, when we cannot
  846. * account for retransmits accurately.
  847. *
  848. * SACK block validation.
  849. * ----------------------
  850. *
  851. * SACK block range validation checks that the received SACK block fits to
  852. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  853. * Note that SND.UNA is not included to the range though being valid because
  854. * it means that the receiver is rather inconsistent with itself reporting
  855. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  856. * perfectly valid, however, in light of RFC2018 which explicitly states
  857. * that "SACK block MUST reflect the newest segment. Even if the newest
  858. * segment is going to be discarded ...", not that it looks very clever
  859. * in case of head skb. Due to potentional receiver driven attacks, we
  860. * choose to avoid immediate execution of a walk in write queue due to
  861. * reneging and defer head skb's loss recovery to standard loss recovery
  862. * procedure that will eventually trigger (nothing forbids us doing this).
  863. *
  864. * Implements also blockage to start_seq wrap-around. Problem lies in the
  865. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  866. * there's no guarantee that it will be before snd_nxt (n). The problem
  867. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  868. * wrap (s_w):
  869. *
  870. * <- outs wnd -> <- wrapzone ->
  871. * u e n u_w e_w s n_w
  872. * | | | | | | |
  873. * |<------------+------+----- TCP seqno space --------------+---------->|
  874. * ...-- <2^31 ->| |<--------...
  875. * ...---- >2^31 ------>| |<--------...
  876. *
  877. * Current code wouldn't be vulnerable but it's better still to discard such
  878. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  879. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  880. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  881. * equal to the ideal case (infinite seqno space without wrap caused issues).
  882. *
  883. * With D-SACK the lower bound is extended to cover sequence space below
  884. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  885. * again, D-SACK block must not to go across snd_una (for the same reason as
  886. * for the normal SACK blocks, explained above). But there all simplicity
  887. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  888. * fully below undo_marker they do not affect behavior in anyway and can
  889. * therefore be safely ignored. In rare cases (which are more or less
  890. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  891. * fragmentation and packet reordering past skb's retransmission. To consider
  892. * them correctly, the acceptable range must be extended even more though
  893. * the exact amount is rather hard to quantify. However, tp->max_window can
  894. * be used as an exaggerated estimate.
  895. */
  896. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  897. u32 start_seq, u32 end_seq)
  898. {
  899. /* Too far in future, or reversed (interpretation is ambiguous) */
  900. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  901. return false;
  902. /* Nasty start_seq wrap-around check (see comments above) */
  903. if (!before(start_seq, tp->snd_nxt))
  904. return false;
  905. /* In outstanding window? ...This is valid exit for D-SACKs too.
  906. * start_seq == snd_una is non-sensical (see comments above)
  907. */
  908. if (after(start_seq, tp->snd_una))
  909. return true;
  910. if (!is_dsack || !tp->undo_marker)
  911. return false;
  912. /* ...Then it's D-SACK, and must reside below snd_una completely */
  913. if (after(end_seq, tp->snd_una))
  914. return false;
  915. if (!before(start_seq, tp->undo_marker))
  916. return true;
  917. /* Too old */
  918. if (!after(end_seq, tp->undo_marker))
  919. return false;
  920. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  921. * start_seq < undo_marker and end_seq >= undo_marker.
  922. */
  923. return !before(start_seq, end_seq - tp->max_window);
  924. }
  925. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  926. * Event "B". Later note: FACK people cheated me again 8), we have to account
  927. * for reordering! Ugly, but should help.
  928. *
  929. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  930. * less than what is now known to be received by the other end (derived from
  931. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  932. * retransmitted skbs to avoid some costly processing per ACKs.
  933. */
  934. static void tcp_mark_lost_retrans(struct sock *sk, int *flag)
  935. {
  936. const struct inet_connection_sock *icsk = inet_csk(sk);
  937. struct tcp_sock *tp = tcp_sk(sk);
  938. struct sk_buff *skb;
  939. int cnt = 0;
  940. u32 new_low_seq = tp->snd_nxt;
  941. u32 received_upto = tcp_highest_sack_seq(tp);
  942. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  943. !after(received_upto, tp->lost_retrans_low) ||
  944. icsk->icsk_ca_state != TCP_CA_Recovery)
  945. return;
  946. tcp_for_write_queue(skb, sk) {
  947. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  948. if (skb == tcp_send_head(sk))
  949. break;
  950. if (cnt == tp->retrans_out)
  951. break;
  952. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  953. continue;
  954. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  955. continue;
  956. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  957. * constraint here (see above) but figuring out that at
  958. * least tp->reordering SACK blocks reside between ack_seq
  959. * and received_upto is not easy task to do cheaply with
  960. * the available datastructures.
  961. *
  962. * Whether FACK should check here for tp->reordering segs
  963. * in-between one could argue for either way (it would be
  964. * rather simple to implement as we could count fack_count
  965. * during the walk and do tp->fackets_out - fack_count).
  966. */
  967. if (after(received_upto, ack_seq)) {
  968. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  969. tp->retrans_out -= tcp_skb_pcount(skb);
  970. *flag |= FLAG_LOST_RETRANS;
  971. tcp_skb_mark_lost_uncond_verify(tp, skb);
  972. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  973. } else {
  974. if (before(ack_seq, new_low_seq))
  975. new_low_seq = ack_seq;
  976. cnt += tcp_skb_pcount(skb);
  977. }
  978. }
  979. if (tp->retrans_out)
  980. tp->lost_retrans_low = new_low_seq;
  981. }
  982. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  983. struct tcp_sack_block_wire *sp, int num_sacks,
  984. u32 prior_snd_una)
  985. {
  986. struct tcp_sock *tp = tcp_sk(sk);
  987. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  988. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  989. bool dup_sack = false;
  990. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  991. dup_sack = true;
  992. tcp_dsack_seen(tp);
  993. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  994. } else if (num_sacks > 1) {
  995. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  996. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  997. if (!after(end_seq_0, end_seq_1) &&
  998. !before(start_seq_0, start_seq_1)) {
  999. dup_sack = true;
  1000. tcp_dsack_seen(tp);
  1001. NET_INC_STATS_BH(sock_net(sk),
  1002. LINUX_MIB_TCPDSACKOFORECV);
  1003. }
  1004. }
  1005. /* D-SACK for already forgotten data... Do dumb counting. */
  1006. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  1007. !after(end_seq_0, prior_snd_una) &&
  1008. after(end_seq_0, tp->undo_marker))
  1009. tp->undo_retrans--;
  1010. return dup_sack;
  1011. }
  1012. struct tcp_sacktag_state {
  1013. int reord;
  1014. int fack_count;
  1015. /* Timestamps for earliest and latest never-retransmitted segment
  1016. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  1017. * but congestion control should still get an accurate delay signal.
  1018. */
  1019. struct skb_mstamp first_sackt;
  1020. struct skb_mstamp last_sackt;
  1021. int flag;
  1022. };
  1023. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1024. * the incoming SACK may not exactly match but we can find smaller MSS
  1025. * aligned portion of it that matches. Therefore we might need to fragment
  1026. * which may fail and creates some hassle (caller must handle error case
  1027. * returns).
  1028. *
  1029. * FIXME: this could be merged to shift decision code
  1030. */
  1031. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1032. u32 start_seq, u32 end_seq)
  1033. {
  1034. int err;
  1035. bool in_sack;
  1036. unsigned int pkt_len;
  1037. unsigned int mss;
  1038. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1039. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1040. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1041. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1042. mss = tcp_skb_mss(skb);
  1043. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1044. if (!in_sack) {
  1045. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1046. if (pkt_len < mss)
  1047. pkt_len = mss;
  1048. } else {
  1049. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1050. if (pkt_len < mss)
  1051. return -EINVAL;
  1052. }
  1053. /* Round if necessary so that SACKs cover only full MSSes
  1054. * and/or the remaining small portion (if present)
  1055. */
  1056. if (pkt_len > mss) {
  1057. unsigned int new_len = (pkt_len / mss) * mss;
  1058. if (!in_sack && new_len < pkt_len) {
  1059. new_len += mss;
  1060. if (new_len >= skb->len)
  1061. return 0;
  1062. }
  1063. pkt_len = new_len;
  1064. }
  1065. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1066. if (err < 0)
  1067. return err;
  1068. }
  1069. return in_sack;
  1070. }
  1071. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1072. static u8 tcp_sacktag_one(struct sock *sk,
  1073. struct tcp_sacktag_state *state, u8 sacked,
  1074. u32 start_seq, u32 end_seq,
  1075. int dup_sack, int pcount,
  1076. const struct skb_mstamp *xmit_time)
  1077. {
  1078. struct tcp_sock *tp = tcp_sk(sk);
  1079. int fack_count = state->fack_count;
  1080. /* Account D-SACK for retransmitted packet. */
  1081. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1082. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1083. after(end_seq, tp->undo_marker))
  1084. tp->undo_retrans--;
  1085. if (sacked & TCPCB_SACKED_ACKED)
  1086. state->reord = min(fack_count, state->reord);
  1087. }
  1088. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1089. if (!after(end_seq, tp->snd_una))
  1090. return sacked;
  1091. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1092. if (sacked & TCPCB_SACKED_RETRANS) {
  1093. /* If the segment is not tagged as lost,
  1094. * we do not clear RETRANS, believing
  1095. * that retransmission is still in flight.
  1096. */
  1097. if (sacked & TCPCB_LOST) {
  1098. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1099. tp->lost_out -= pcount;
  1100. tp->retrans_out -= pcount;
  1101. }
  1102. } else {
  1103. if (!(sacked & TCPCB_RETRANS)) {
  1104. /* New sack for not retransmitted frame,
  1105. * which was in hole. It is reordering.
  1106. */
  1107. if (before(start_seq,
  1108. tcp_highest_sack_seq(tp)))
  1109. state->reord = min(fack_count,
  1110. state->reord);
  1111. if (!after(end_seq, tp->high_seq))
  1112. state->flag |= FLAG_ORIG_SACK_ACKED;
  1113. if (state->first_sackt.v64 == 0)
  1114. state->first_sackt = *xmit_time;
  1115. state->last_sackt = *xmit_time;
  1116. }
  1117. if (sacked & TCPCB_LOST) {
  1118. sacked &= ~TCPCB_LOST;
  1119. tp->lost_out -= pcount;
  1120. }
  1121. }
  1122. sacked |= TCPCB_SACKED_ACKED;
  1123. state->flag |= FLAG_DATA_SACKED;
  1124. tp->sacked_out += pcount;
  1125. fack_count += pcount;
  1126. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1127. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1128. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1129. tp->lost_cnt_hint += pcount;
  1130. if (fack_count > tp->fackets_out)
  1131. tp->fackets_out = fack_count;
  1132. }
  1133. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1134. * frames and clear it. undo_retrans is decreased above, L|R frames
  1135. * are accounted above as well.
  1136. */
  1137. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1138. sacked &= ~TCPCB_SACKED_RETRANS;
  1139. tp->retrans_out -= pcount;
  1140. }
  1141. return sacked;
  1142. }
  1143. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1144. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1145. */
  1146. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1147. struct tcp_sacktag_state *state,
  1148. unsigned int pcount, int shifted, int mss,
  1149. bool dup_sack)
  1150. {
  1151. struct tcp_sock *tp = tcp_sk(sk);
  1152. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1153. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1154. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1155. BUG_ON(!pcount);
  1156. /* Adjust counters and hints for the newly sacked sequence
  1157. * range but discard the return value since prev is already
  1158. * marked. We must tag the range first because the seq
  1159. * advancement below implicitly advances
  1160. * tcp_highest_sack_seq() when skb is highest_sack.
  1161. */
  1162. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1163. start_seq, end_seq, dup_sack, pcount,
  1164. &skb->skb_mstamp);
  1165. if (skb == tp->lost_skb_hint)
  1166. tp->lost_cnt_hint += pcount;
  1167. TCP_SKB_CB(prev)->end_seq += shifted;
  1168. TCP_SKB_CB(skb)->seq += shifted;
  1169. tcp_skb_pcount_add(prev, pcount);
  1170. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1171. tcp_skb_pcount_add(skb, -pcount);
  1172. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1173. * in theory this shouldn't be necessary but as long as DSACK
  1174. * code can come after this skb later on it's better to keep
  1175. * setting gso_size to something.
  1176. */
  1177. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1178. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1179. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1180. if (tcp_skb_pcount(skb) <= 1)
  1181. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1182. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1183. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1184. if (skb->len > 0) {
  1185. BUG_ON(!tcp_skb_pcount(skb));
  1186. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1187. return false;
  1188. }
  1189. /* Whole SKB was eaten :-) */
  1190. if (skb == tp->retransmit_skb_hint)
  1191. tp->retransmit_skb_hint = prev;
  1192. if (skb == tp->lost_skb_hint) {
  1193. tp->lost_skb_hint = prev;
  1194. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1195. }
  1196. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1197. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1198. TCP_SKB_CB(prev)->end_seq++;
  1199. if (skb == tcp_highest_sack(sk))
  1200. tcp_advance_highest_sack(sk, skb);
  1201. tcp_unlink_write_queue(skb, sk);
  1202. sk_wmem_free_skb(sk, skb);
  1203. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1204. return true;
  1205. }
  1206. /* I wish gso_size would have a bit more sane initialization than
  1207. * something-or-zero which complicates things
  1208. */
  1209. static int tcp_skb_seglen(const struct sk_buff *skb)
  1210. {
  1211. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1212. }
  1213. /* Shifting pages past head area doesn't work */
  1214. static int skb_can_shift(const struct sk_buff *skb)
  1215. {
  1216. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1217. }
  1218. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1219. * skb.
  1220. */
  1221. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1222. struct tcp_sacktag_state *state,
  1223. u32 start_seq, u32 end_seq,
  1224. bool dup_sack)
  1225. {
  1226. struct tcp_sock *tp = tcp_sk(sk);
  1227. struct sk_buff *prev;
  1228. int mss;
  1229. int pcount = 0;
  1230. int len;
  1231. int in_sack;
  1232. if (!sk_can_gso(sk))
  1233. goto fallback;
  1234. /* Normally R but no L won't result in plain S */
  1235. if (!dup_sack &&
  1236. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1237. goto fallback;
  1238. if (!skb_can_shift(skb))
  1239. goto fallback;
  1240. /* This frame is about to be dropped (was ACKed). */
  1241. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1242. goto fallback;
  1243. /* Can only happen with delayed DSACK + discard craziness */
  1244. if (unlikely(skb == tcp_write_queue_head(sk)))
  1245. goto fallback;
  1246. prev = tcp_write_queue_prev(sk, skb);
  1247. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1248. goto fallback;
  1249. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1250. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1251. if (in_sack) {
  1252. len = skb->len;
  1253. pcount = tcp_skb_pcount(skb);
  1254. mss = tcp_skb_seglen(skb);
  1255. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1256. * drop this restriction as unnecessary
  1257. */
  1258. if (mss != tcp_skb_seglen(prev))
  1259. goto fallback;
  1260. } else {
  1261. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1262. goto noop;
  1263. /* CHECKME: This is non-MSS split case only?, this will
  1264. * cause skipped skbs due to advancing loop btw, original
  1265. * has that feature too
  1266. */
  1267. if (tcp_skb_pcount(skb) <= 1)
  1268. goto noop;
  1269. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1270. if (!in_sack) {
  1271. /* TODO: head merge to next could be attempted here
  1272. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1273. * though it might not be worth of the additional hassle
  1274. *
  1275. * ...we can probably just fallback to what was done
  1276. * previously. We could try merging non-SACKed ones
  1277. * as well but it probably isn't going to buy off
  1278. * because later SACKs might again split them, and
  1279. * it would make skb timestamp tracking considerably
  1280. * harder problem.
  1281. */
  1282. goto fallback;
  1283. }
  1284. len = end_seq - TCP_SKB_CB(skb)->seq;
  1285. BUG_ON(len < 0);
  1286. BUG_ON(len > skb->len);
  1287. /* MSS boundaries should be honoured or else pcount will
  1288. * severely break even though it makes things bit trickier.
  1289. * Optimize common case to avoid most of the divides
  1290. */
  1291. mss = tcp_skb_mss(skb);
  1292. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1293. * drop this restriction as unnecessary
  1294. */
  1295. if (mss != tcp_skb_seglen(prev))
  1296. goto fallback;
  1297. if (len == mss) {
  1298. pcount = 1;
  1299. } else if (len < mss) {
  1300. goto noop;
  1301. } else {
  1302. pcount = len / mss;
  1303. len = pcount * mss;
  1304. }
  1305. }
  1306. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1307. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1308. goto fallback;
  1309. if (!skb_shift(prev, skb, len))
  1310. goto fallback;
  1311. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1312. goto out;
  1313. /* Hole filled allows collapsing with the next as well, this is very
  1314. * useful when hole on every nth skb pattern happens
  1315. */
  1316. if (prev == tcp_write_queue_tail(sk))
  1317. goto out;
  1318. skb = tcp_write_queue_next(sk, prev);
  1319. if (!skb_can_shift(skb) ||
  1320. (skb == tcp_send_head(sk)) ||
  1321. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1322. (mss != tcp_skb_seglen(skb)))
  1323. goto out;
  1324. len = skb->len;
  1325. if (skb_shift(prev, skb, len)) {
  1326. pcount += tcp_skb_pcount(skb);
  1327. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1328. }
  1329. out:
  1330. state->fack_count += pcount;
  1331. return prev;
  1332. noop:
  1333. return skb;
  1334. fallback:
  1335. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1336. return NULL;
  1337. }
  1338. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1339. struct tcp_sack_block *next_dup,
  1340. struct tcp_sacktag_state *state,
  1341. u32 start_seq, u32 end_seq,
  1342. bool dup_sack_in)
  1343. {
  1344. struct tcp_sock *tp = tcp_sk(sk);
  1345. struct sk_buff *tmp;
  1346. tcp_for_write_queue_from(skb, sk) {
  1347. int in_sack = 0;
  1348. bool dup_sack = dup_sack_in;
  1349. if (skb == tcp_send_head(sk))
  1350. break;
  1351. /* queue is in-order => we can short-circuit the walk early */
  1352. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1353. break;
  1354. if (next_dup &&
  1355. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1356. in_sack = tcp_match_skb_to_sack(sk, skb,
  1357. next_dup->start_seq,
  1358. next_dup->end_seq);
  1359. if (in_sack > 0)
  1360. dup_sack = true;
  1361. }
  1362. /* skb reference here is a bit tricky to get right, since
  1363. * shifting can eat and free both this skb and the next,
  1364. * so not even _safe variant of the loop is enough.
  1365. */
  1366. if (in_sack <= 0) {
  1367. tmp = tcp_shift_skb_data(sk, skb, state,
  1368. start_seq, end_seq, dup_sack);
  1369. if (tmp) {
  1370. if (tmp != skb) {
  1371. skb = tmp;
  1372. continue;
  1373. }
  1374. in_sack = 0;
  1375. } else {
  1376. in_sack = tcp_match_skb_to_sack(sk, skb,
  1377. start_seq,
  1378. end_seq);
  1379. }
  1380. }
  1381. if (unlikely(in_sack < 0))
  1382. break;
  1383. if (in_sack) {
  1384. TCP_SKB_CB(skb)->sacked =
  1385. tcp_sacktag_one(sk,
  1386. state,
  1387. TCP_SKB_CB(skb)->sacked,
  1388. TCP_SKB_CB(skb)->seq,
  1389. TCP_SKB_CB(skb)->end_seq,
  1390. dup_sack,
  1391. tcp_skb_pcount(skb),
  1392. &skb->skb_mstamp);
  1393. if (!before(TCP_SKB_CB(skb)->seq,
  1394. tcp_highest_sack_seq(tp)))
  1395. tcp_advance_highest_sack(sk, skb);
  1396. }
  1397. state->fack_count += tcp_skb_pcount(skb);
  1398. }
  1399. return skb;
  1400. }
  1401. /* Avoid all extra work that is being done by sacktag while walking in
  1402. * a normal way
  1403. */
  1404. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1405. struct tcp_sacktag_state *state,
  1406. u32 skip_to_seq)
  1407. {
  1408. tcp_for_write_queue_from(skb, sk) {
  1409. if (skb == tcp_send_head(sk))
  1410. break;
  1411. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1412. break;
  1413. state->fack_count += tcp_skb_pcount(skb);
  1414. }
  1415. return skb;
  1416. }
  1417. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1418. struct sock *sk,
  1419. struct tcp_sack_block *next_dup,
  1420. struct tcp_sacktag_state *state,
  1421. u32 skip_to_seq)
  1422. {
  1423. if (!next_dup)
  1424. return skb;
  1425. if (before(next_dup->start_seq, skip_to_seq)) {
  1426. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1427. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1428. next_dup->start_seq, next_dup->end_seq,
  1429. 1);
  1430. }
  1431. return skb;
  1432. }
  1433. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1434. {
  1435. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1436. }
  1437. static int
  1438. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1439. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1440. {
  1441. struct tcp_sock *tp = tcp_sk(sk);
  1442. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1443. TCP_SKB_CB(ack_skb)->sacked);
  1444. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1445. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1446. struct tcp_sack_block *cache;
  1447. struct sk_buff *skb;
  1448. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1449. int used_sacks;
  1450. bool found_dup_sack = false;
  1451. int i, j;
  1452. int first_sack_index;
  1453. state->flag = 0;
  1454. state->reord = tp->packets_out;
  1455. if (!tp->sacked_out) {
  1456. if (WARN_ON(tp->fackets_out))
  1457. tp->fackets_out = 0;
  1458. tcp_highest_sack_reset(sk);
  1459. }
  1460. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1461. num_sacks, prior_snd_una);
  1462. if (found_dup_sack)
  1463. state->flag |= FLAG_DSACKING_ACK;
  1464. /* Eliminate too old ACKs, but take into
  1465. * account more or less fresh ones, they can
  1466. * contain valid SACK info.
  1467. */
  1468. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1469. return 0;
  1470. if (!tp->packets_out)
  1471. goto out;
  1472. used_sacks = 0;
  1473. first_sack_index = 0;
  1474. for (i = 0; i < num_sacks; i++) {
  1475. bool dup_sack = !i && found_dup_sack;
  1476. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1477. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1478. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1479. sp[used_sacks].start_seq,
  1480. sp[used_sacks].end_seq)) {
  1481. int mib_idx;
  1482. if (dup_sack) {
  1483. if (!tp->undo_marker)
  1484. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1485. else
  1486. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1487. } else {
  1488. /* Don't count olds caused by ACK reordering */
  1489. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1490. !after(sp[used_sacks].end_seq, tp->snd_una))
  1491. continue;
  1492. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1493. }
  1494. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1495. if (i == 0)
  1496. first_sack_index = -1;
  1497. continue;
  1498. }
  1499. /* Ignore very old stuff early */
  1500. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1501. continue;
  1502. used_sacks++;
  1503. }
  1504. /* order SACK blocks to allow in order walk of the retrans queue */
  1505. for (i = used_sacks - 1; i > 0; i--) {
  1506. for (j = 0; j < i; j++) {
  1507. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1508. swap(sp[j], sp[j + 1]);
  1509. /* Track where the first SACK block goes to */
  1510. if (j == first_sack_index)
  1511. first_sack_index = j + 1;
  1512. }
  1513. }
  1514. }
  1515. skb = tcp_write_queue_head(sk);
  1516. state->fack_count = 0;
  1517. i = 0;
  1518. if (!tp->sacked_out) {
  1519. /* It's already past, so skip checking against it */
  1520. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1521. } else {
  1522. cache = tp->recv_sack_cache;
  1523. /* Skip empty blocks in at head of the cache */
  1524. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1525. !cache->end_seq)
  1526. cache++;
  1527. }
  1528. while (i < used_sacks) {
  1529. u32 start_seq = sp[i].start_seq;
  1530. u32 end_seq = sp[i].end_seq;
  1531. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1532. struct tcp_sack_block *next_dup = NULL;
  1533. if (found_dup_sack && ((i + 1) == first_sack_index))
  1534. next_dup = &sp[i + 1];
  1535. /* Skip too early cached blocks */
  1536. while (tcp_sack_cache_ok(tp, cache) &&
  1537. !before(start_seq, cache->end_seq))
  1538. cache++;
  1539. /* Can skip some work by looking recv_sack_cache? */
  1540. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1541. after(end_seq, cache->start_seq)) {
  1542. /* Head todo? */
  1543. if (before(start_seq, cache->start_seq)) {
  1544. skb = tcp_sacktag_skip(skb, sk, state,
  1545. start_seq);
  1546. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1547. state,
  1548. start_seq,
  1549. cache->start_seq,
  1550. dup_sack);
  1551. }
  1552. /* Rest of the block already fully processed? */
  1553. if (!after(end_seq, cache->end_seq))
  1554. goto advance_sp;
  1555. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1556. state,
  1557. cache->end_seq);
  1558. /* ...tail remains todo... */
  1559. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1560. /* ...but better entrypoint exists! */
  1561. skb = tcp_highest_sack(sk);
  1562. if (!skb)
  1563. break;
  1564. state->fack_count = tp->fackets_out;
  1565. cache++;
  1566. goto walk;
  1567. }
  1568. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1569. /* Check overlap against next cached too (past this one already) */
  1570. cache++;
  1571. continue;
  1572. }
  1573. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1574. skb = tcp_highest_sack(sk);
  1575. if (!skb)
  1576. break;
  1577. state->fack_count = tp->fackets_out;
  1578. }
  1579. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1580. walk:
  1581. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1582. start_seq, end_seq, dup_sack);
  1583. advance_sp:
  1584. i++;
  1585. }
  1586. /* Clear the head of the cache sack blocks so we can skip it next time */
  1587. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1588. tp->recv_sack_cache[i].start_seq = 0;
  1589. tp->recv_sack_cache[i].end_seq = 0;
  1590. }
  1591. for (j = 0; j < used_sacks; j++)
  1592. tp->recv_sack_cache[i++] = sp[j];
  1593. if ((state->reord < tp->fackets_out) &&
  1594. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1595. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1596. tcp_mark_lost_retrans(sk, &state->flag);
  1597. tcp_verify_left_out(tp);
  1598. out:
  1599. #if FASTRETRANS_DEBUG > 0
  1600. WARN_ON((int)tp->sacked_out < 0);
  1601. WARN_ON((int)tp->lost_out < 0);
  1602. WARN_ON((int)tp->retrans_out < 0);
  1603. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1604. #endif
  1605. return state->flag;
  1606. }
  1607. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1608. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1609. */
  1610. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1611. {
  1612. u32 holes;
  1613. holes = max(tp->lost_out, 1U);
  1614. holes = min(holes, tp->packets_out);
  1615. if ((tp->sacked_out + holes) > tp->packets_out) {
  1616. tp->sacked_out = tp->packets_out - holes;
  1617. return true;
  1618. }
  1619. return false;
  1620. }
  1621. /* If we receive more dupacks than we expected counting segments
  1622. * in assumption of absent reordering, interpret this as reordering.
  1623. * The only another reason could be bug in receiver TCP.
  1624. */
  1625. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1626. {
  1627. struct tcp_sock *tp = tcp_sk(sk);
  1628. if (tcp_limit_reno_sacked(tp))
  1629. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1630. }
  1631. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1632. static void tcp_add_reno_sack(struct sock *sk)
  1633. {
  1634. struct tcp_sock *tp = tcp_sk(sk);
  1635. tp->sacked_out++;
  1636. tcp_check_reno_reordering(sk, 0);
  1637. tcp_verify_left_out(tp);
  1638. }
  1639. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1640. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1641. {
  1642. struct tcp_sock *tp = tcp_sk(sk);
  1643. if (acked > 0) {
  1644. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1645. if (acked - 1 >= tp->sacked_out)
  1646. tp->sacked_out = 0;
  1647. else
  1648. tp->sacked_out -= acked - 1;
  1649. }
  1650. tcp_check_reno_reordering(sk, acked);
  1651. tcp_verify_left_out(tp);
  1652. }
  1653. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1654. {
  1655. tp->sacked_out = 0;
  1656. }
  1657. void tcp_clear_retrans(struct tcp_sock *tp)
  1658. {
  1659. tp->retrans_out = 0;
  1660. tp->lost_out = 0;
  1661. tp->undo_marker = 0;
  1662. tp->undo_retrans = -1;
  1663. tp->fackets_out = 0;
  1664. tp->sacked_out = 0;
  1665. }
  1666. static inline void tcp_init_undo(struct tcp_sock *tp)
  1667. {
  1668. tp->undo_marker = tp->snd_una;
  1669. /* Retransmission still in flight may cause DSACKs later. */
  1670. tp->undo_retrans = tp->retrans_out ? : -1;
  1671. }
  1672. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1673. * and reset tags completely, otherwise preserve SACKs. If receiver
  1674. * dropped its ofo queue, we will know this due to reneging detection.
  1675. */
  1676. void tcp_enter_loss(struct sock *sk)
  1677. {
  1678. const struct inet_connection_sock *icsk = inet_csk(sk);
  1679. struct tcp_sock *tp = tcp_sk(sk);
  1680. struct sk_buff *skb;
  1681. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1682. bool is_reneg; /* is receiver reneging on SACKs? */
  1683. /* Reduce ssthresh if it has not yet been made inside this window. */
  1684. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1685. !after(tp->high_seq, tp->snd_una) ||
  1686. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1687. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1688. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1689. tcp_ca_event(sk, CA_EVENT_LOSS);
  1690. tcp_init_undo(tp);
  1691. }
  1692. tp->snd_cwnd = 1;
  1693. tp->snd_cwnd_cnt = 0;
  1694. tp->snd_cwnd_stamp = tcp_time_stamp;
  1695. tp->retrans_out = 0;
  1696. tp->lost_out = 0;
  1697. if (tcp_is_reno(tp))
  1698. tcp_reset_reno_sack(tp);
  1699. skb = tcp_write_queue_head(sk);
  1700. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1701. if (is_reneg) {
  1702. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1703. tp->sacked_out = 0;
  1704. tp->fackets_out = 0;
  1705. }
  1706. tcp_clear_all_retrans_hints(tp);
  1707. tcp_for_write_queue(skb, sk) {
  1708. if (skb == tcp_send_head(sk))
  1709. break;
  1710. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1711. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1712. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1713. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1714. tp->lost_out += tcp_skb_pcount(skb);
  1715. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1716. }
  1717. }
  1718. tcp_verify_left_out(tp);
  1719. /* Timeout in disordered state after receiving substantial DUPACKs
  1720. * suggests that the degree of reordering is over-estimated.
  1721. */
  1722. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1723. tp->sacked_out >= sysctl_tcp_reordering)
  1724. tp->reordering = min_t(unsigned int, tp->reordering,
  1725. sysctl_tcp_reordering);
  1726. tcp_set_ca_state(sk, TCP_CA_Loss);
  1727. tp->high_seq = tp->snd_nxt;
  1728. tcp_ecn_queue_cwr(tp);
  1729. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1730. * loss recovery is underway except recurring timeout(s) on
  1731. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1732. */
  1733. tp->frto = sysctl_tcp_frto &&
  1734. (new_recovery || icsk->icsk_retransmits) &&
  1735. !inet_csk(sk)->icsk_mtup.probe_size;
  1736. }
  1737. /* If ACK arrived pointing to a remembered SACK, it means that our
  1738. * remembered SACKs do not reflect real state of receiver i.e.
  1739. * receiver _host_ is heavily congested (or buggy).
  1740. *
  1741. * To avoid big spurious retransmission bursts due to transient SACK
  1742. * scoreboard oddities that look like reneging, we give the receiver a
  1743. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1744. * restore sanity to the SACK scoreboard. If the apparent reneging
  1745. * persists until this RTO then we'll clear the SACK scoreboard.
  1746. */
  1747. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1748. {
  1749. if (flag & FLAG_SACK_RENEGING) {
  1750. struct tcp_sock *tp = tcp_sk(sk);
  1751. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1752. msecs_to_jiffies(10));
  1753. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1754. delay, TCP_RTO_MAX);
  1755. return true;
  1756. }
  1757. return false;
  1758. }
  1759. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1760. {
  1761. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1762. }
  1763. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1764. * counter when SACK is enabled (without SACK, sacked_out is used for
  1765. * that purpose).
  1766. *
  1767. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1768. * segments up to the highest received SACK block so far and holes in
  1769. * between them.
  1770. *
  1771. * With reordering, holes may still be in flight, so RFC3517 recovery
  1772. * uses pure sacked_out (total number of SACKed segments) even though
  1773. * it violates the RFC that uses duplicate ACKs, often these are equal
  1774. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1775. * they differ. Since neither occurs due to loss, TCP should really
  1776. * ignore them.
  1777. */
  1778. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1779. {
  1780. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1781. }
  1782. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1783. {
  1784. struct tcp_sock *tp = tcp_sk(sk);
  1785. unsigned long delay;
  1786. /* Delay early retransmit and entering fast recovery for
  1787. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1788. * available, or RTO is scheduled to fire first.
  1789. */
  1790. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1791. (flag & FLAG_ECE) || !tp->srtt_us)
  1792. return false;
  1793. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1794. msecs_to_jiffies(2));
  1795. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1796. return false;
  1797. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1798. TCP_RTO_MAX);
  1799. return true;
  1800. }
  1801. /* Linux NewReno/SACK/FACK/ECN state machine.
  1802. * --------------------------------------
  1803. *
  1804. * "Open" Normal state, no dubious events, fast path.
  1805. * "Disorder" In all the respects it is "Open",
  1806. * but requires a bit more attention. It is entered when
  1807. * we see some SACKs or dupacks. It is split of "Open"
  1808. * mainly to move some processing from fast path to slow one.
  1809. * "CWR" CWND was reduced due to some Congestion Notification event.
  1810. * It can be ECN, ICMP source quench, local device congestion.
  1811. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1812. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1813. *
  1814. * tcp_fastretrans_alert() is entered:
  1815. * - each incoming ACK, if state is not "Open"
  1816. * - when arrived ACK is unusual, namely:
  1817. * * SACK
  1818. * * Duplicate ACK.
  1819. * * ECN ECE.
  1820. *
  1821. * Counting packets in flight is pretty simple.
  1822. *
  1823. * in_flight = packets_out - left_out + retrans_out
  1824. *
  1825. * packets_out is SND.NXT-SND.UNA counted in packets.
  1826. *
  1827. * retrans_out is number of retransmitted segments.
  1828. *
  1829. * left_out is number of segments left network, but not ACKed yet.
  1830. *
  1831. * left_out = sacked_out + lost_out
  1832. *
  1833. * sacked_out: Packets, which arrived to receiver out of order
  1834. * and hence not ACKed. With SACKs this number is simply
  1835. * amount of SACKed data. Even without SACKs
  1836. * it is easy to give pretty reliable estimate of this number,
  1837. * counting duplicate ACKs.
  1838. *
  1839. * lost_out: Packets lost by network. TCP has no explicit
  1840. * "loss notification" feedback from network (for now).
  1841. * It means that this number can be only _guessed_.
  1842. * Actually, it is the heuristics to predict lossage that
  1843. * distinguishes different algorithms.
  1844. *
  1845. * F.e. after RTO, when all the queue is considered as lost,
  1846. * lost_out = packets_out and in_flight = retrans_out.
  1847. *
  1848. * Essentially, we have now two algorithms counting
  1849. * lost packets.
  1850. *
  1851. * FACK: It is the simplest heuristics. As soon as we decided
  1852. * that something is lost, we decide that _all_ not SACKed
  1853. * packets until the most forward SACK are lost. I.e.
  1854. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1855. * It is absolutely correct estimate, if network does not reorder
  1856. * packets. And it loses any connection to reality when reordering
  1857. * takes place. We use FACK by default until reordering
  1858. * is suspected on the path to this destination.
  1859. *
  1860. * NewReno: when Recovery is entered, we assume that one segment
  1861. * is lost (classic Reno). While we are in Recovery and
  1862. * a partial ACK arrives, we assume that one more packet
  1863. * is lost (NewReno). This heuristics are the same in NewReno
  1864. * and SACK.
  1865. *
  1866. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1867. * deflation etc. CWND is real congestion window, never inflated, changes
  1868. * only according to classic VJ rules.
  1869. *
  1870. * Really tricky (and requiring careful tuning) part of algorithm
  1871. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1872. * The first determines the moment _when_ we should reduce CWND and,
  1873. * hence, slow down forward transmission. In fact, it determines the moment
  1874. * when we decide that hole is caused by loss, rather than by a reorder.
  1875. *
  1876. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1877. * holes, caused by lost packets.
  1878. *
  1879. * And the most logically complicated part of algorithm is undo
  1880. * heuristics. We detect false retransmits due to both too early
  1881. * fast retransmit (reordering) and underestimated RTO, analyzing
  1882. * timestamps and D-SACKs. When we detect that some segments were
  1883. * retransmitted by mistake and CWND reduction was wrong, we undo
  1884. * window reduction and abort recovery phase. This logic is hidden
  1885. * inside several functions named tcp_try_undo_<something>.
  1886. */
  1887. /* This function decides, when we should leave Disordered state
  1888. * and enter Recovery phase, reducing congestion window.
  1889. *
  1890. * Main question: may we further continue forward transmission
  1891. * with the same cwnd?
  1892. */
  1893. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1894. {
  1895. struct tcp_sock *tp = tcp_sk(sk);
  1896. __u32 packets_out;
  1897. /* Trick#1: The loss is proven. */
  1898. if (tp->lost_out)
  1899. return true;
  1900. /* Not-A-Trick#2 : Classic rule... */
  1901. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1902. return true;
  1903. /* Trick#4: It is still not OK... But will it be useful to delay
  1904. * recovery more?
  1905. */
  1906. packets_out = tp->packets_out;
  1907. if (packets_out <= tp->reordering &&
  1908. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1909. !tcp_may_send_now(sk)) {
  1910. /* We have nothing to send. This connection is limited
  1911. * either by receiver window or by application.
  1912. */
  1913. return true;
  1914. }
  1915. /* If a thin stream is detected, retransmit after first
  1916. * received dupack. Employ only if SACK is supported in order
  1917. * to avoid possible corner-case series of spurious retransmissions
  1918. * Use only if there are no unsent data.
  1919. */
  1920. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1921. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1922. tcp_is_sack(tp) && !tcp_send_head(sk))
  1923. return true;
  1924. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1925. * retransmissions due to small network reorderings, we implement
  1926. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1927. * interval if appropriate.
  1928. */
  1929. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1930. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1931. !tcp_may_send_now(sk))
  1932. return !tcp_pause_early_retransmit(sk, flag);
  1933. return false;
  1934. }
  1935. /* Detect loss in event "A" above by marking head of queue up as lost.
  1936. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1937. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1938. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1939. * the maximum SACKed segments to pass before reaching this limit.
  1940. */
  1941. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1942. {
  1943. struct tcp_sock *tp = tcp_sk(sk);
  1944. struct sk_buff *skb;
  1945. int cnt, oldcnt;
  1946. int err;
  1947. unsigned int mss;
  1948. /* Use SACK to deduce losses of new sequences sent during recovery */
  1949. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1950. WARN_ON(packets > tp->packets_out);
  1951. if (tp->lost_skb_hint) {
  1952. skb = tp->lost_skb_hint;
  1953. cnt = tp->lost_cnt_hint;
  1954. /* Head already handled? */
  1955. if (mark_head && skb != tcp_write_queue_head(sk))
  1956. return;
  1957. } else {
  1958. skb = tcp_write_queue_head(sk);
  1959. cnt = 0;
  1960. }
  1961. tcp_for_write_queue_from(skb, sk) {
  1962. if (skb == tcp_send_head(sk))
  1963. break;
  1964. /* TODO: do this better */
  1965. /* this is not the most efficient way to do this... */
  1966. tp->lost_skb_hint = skb;
  1967. tp->lost_cnt_hint = cnt;
  1968. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1969. break;
  1970. oldcnt = cnt;
  1971. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1972. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1973. cnt += tcp_skb_pcount(skb);
  1974. if (cnt > packets) {
  1975. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1976. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1977. (oldcnt >= packets))
  1978. break;
  1979. mss = tcp_skb_mss(skb);
  1980. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
  1981. mss, GFP_ATOMIC);
  1982. if (err < 0)
  1983. break;
  1984. cnt = packets;
  1985. }
  1986. tcp_skb_mark_lost(tp, skb);
  1987. if (mark_head)
  1988. break;
  1989. }
  1990. tcp_verify_left_out(tp);
  1991. }
  1992. /* Account newly detected lost packet(s) */
  1993. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1994. {
  1995. struct tcp_sock *tp = tcp_sk(sk);
  1996. if (tcp_is_reno(tp)) {
  1997. tcp_mark_head_lost(sk, 1, 1);
  1998. } else if (tcp_is_fack(tp)) {
  1999. int lost = tp->fackets_out - tp->reordering;
  2000. if (lost <= 0)
  2001. lost = 1;
  2002. tcp_mark_head_lost(sk, lost, 0);
  2003. } else {
  2004. int sacked_upto = tp->sacked_out - tp->reordering;
  2005. if (sacked_upto >= 0)
  2006. tcp_mark_head_lost(sk, sacked_upto, 0);
  2007. else if (fast_rexmit)
  2008. tcp_mark_head_lost(sk, 1, 1);
  2009. }
  2010. }
  2011. /* CWND moderation, preventing bursts due to too big ACKs
  2012. * in dubious situations.
  2013. */
  2014. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2015. {
  2016. tp->snd_cwnd = min(tp->snd_cwnd,
  2017. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2018. tp->snd_cwnd_stamp = tcp_time_stamp;
  2019. }
  2020. /* Nothing was retransmitted or returned timestamp is less
  2021. * than timestamp of the first retransmission.
  2022. */
  2023. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2024. {
  2025. return !tp->retrans_stamp ||
  2026. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2027. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2028. }
  2029. /* Undo procedures. */
  2030. /* We can clear retrans_stamp when there are no retransmissions in the
  2031. * window. It would seem that it is trivially available for us in
  2032. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2033. * what will happen if errors occur when sending retransmission for the
  2034. * second time. ...It could the that such segment has only
  2035. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2036. * the head skb is enough except for some reneging corner cases that
  2037. * are not worth the effort.
  2038. *
  2039. * Main reason for all this complexity is the fact that connection dying
  2040. * time now depends on the validity of the retrans_stamp, in particular,
  2041. * that successive retransmissions of a segment must not advance
  2042. * retrans_stamp under any conditions.
  2043. */
  2044. static bool tcp_any_retrans_done(const struct sock *sk)
  2045. {
  2046. const struct tcp_sock *tp = tcp_sk(sk);
  2047. struct sk_buff *skb;
  2048. if (tp->retrans_out)
  2049. return true;
  2050. skb = tcp_write_queue_head(sk);
  2051. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2052. return true;
  2053. return false;
  2054. }
  2055. #if FASTRETRANS_DEBUG > 1
  2056. static void DBGUNDO(struct sock *sk, const char *msg)
  2057. {
  2058. struct tcp_sock *tp = tcp_sk(sk);
  2059. struct inet_sock *inet = inet_sk(sk);
  2060. if (sk->sk_family == AF_INET) {
  2061. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2062. msg,
  2063. &inet->inet_daddr, ntohs(inet->inet_dport),
  2064. tp->snd_cwnd, tcp_left_out(tp),
  2065. tp->snd_ssthresh, tp->prior_ssthresh,
  2066. tp->packets_out);
  2067. }
  2068. #if IS_ENABLED(CONFIG_IPV6)
  2069. else if (sk->sk_family == AF_INET6) {
  2070. struct ipv6_pinfo *np = inet6_sk(sk);
  2071. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2072. msg,
  2073. &np->daddr, ntohs(inet->inet_dport),
  2074. tp->snd_cwnd, tcp_left_out(tp),
  2075. tp->snd_ssthresh, tp->prior_ssthresh,
  2076. tp->packets_out);
  2077. }
  2078. #endif
  2079. }
  2080. #else
  2081. #define DBGUNDO(x...) do { } while (0)
  2082. #endif
  2083. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2084. {
  2085. struct tcp_sock *tp = tcp_sk(sk);
  2086. if (unmark_loss) {
  2087. struct sk_buff *skb;
  2088. tcp_for_write_queue(skb, sk) {
  2089. if (skb == tcp_send_head(sk))
  2090. break;
  2091. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2092. }
  2093. tp->lost_out = 0;
  2094. tcp_clear_all_retrans_hints(tp);
  2095. }
  2096. if (tp->prior_ssthresh) {
  2097. const struct inet_connection_sock *icsk = inet_csk(sk);
  2098. if (icsk->icsk_ca_ops->undo_cwnd)
  2099. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2100. else
  2101. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2102. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2103. tp->snd_ssthresh = tp->prior_ssthresh;
  2104. tcp_ecn_withdraw_cwr(tp);
  2105. }
  2106. } else {
  2107. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2108. }
  2109. tp->snd_cwnd_stamp = tcp_time_stamp;
  2110. tp->undo_marker = 0;
  2111. }
  2112. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2113. {
  2114. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2115. }
  2116. /* People celebrate: "We love our President!" */
  2117. static bool tcp_try_undo_recovery(struct sock *sk)
  2118. {
  2119. struct tcp_sock *tp = tcp_sk(sk);
  2120. if (tcp_may_undo(tp)) {
  2121. int mib_idx;
  2122. /* Happy end! We did not retransmit anything
  2123. * or our original transmission succeeded.
  2124. */
  2125. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2126. tcp_undo_cwnd_reduction(sk, false);
  2127. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2128. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2129. else
  2130. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2131. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2132. }
  2133. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2134. /* Hold old state until something *above* high_seq
  2135. * is ACKed. For Reno it is MUST to prevent false
  2136. * fast retransmits (RFC2582). SACK TCP is safe. */
  2137. tcp_moderate_cwnd(tp);
  2138. if (!tcp_any_retrans_done(sk))
  2139. tp->retrans_stamp = 0;
  2140. return true;
  2141. }
  2142. tcp_set_ca_state(sk, TCP_CA_Open);
  2143. return false;
  2144. }
  2145. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2146. static bool tcp_try_undo_dsack(struct sock *sk)
  2147. {
  2148. struct tcp_sock *tp = tcp_sk(sk);
  2149. if (tp->undo_marker && !tp->undo_retrans) {
  2150. DBGUNDO(sk, "D-SACK");
  2151. tcp_undo_cwnd_reduction(sk, false);
  2152. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2153. return true;
  2154. }
  2155. return false;
  2156. }
  2157. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2158. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2159. {
  2160. struct tcp_sock *tp = tcp_sk(sk);
  2161. if (frto_undo || tcp_may_undo(tp)) {
  2162. tcp_undo_cwnd_reduction(sk, true);
  2163. DBGUNDO(sk, "partial loss");
  2164. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2165. if (frto_undo)
  2166. NET_INC_STATS_BH(sock_net(sk),
  2167. LINUX_MIB_TCPSPURIOUSRTOS);
  2168. inet_csk(sk)->icsk_retransmits = 0;
  2169. if (frto_undo || tcp_is_sack(tp))
  2170. tcp_set_ca_state(sk, TCP_CA_Open);
  2171. return true;
  2172. }
  2173. return false;
  2174. }
  2175. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2176. * It computes the number of packets to send (sndcnt) based on packets newly
  2177. * delivered:
  2178. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2179. * cwnd reductions across a full RTT.
  2180. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2181. * But when the retransmits are acked without further losses, PRR
  2182. * slow starts cwnd up to ssthresh to speed up the recovery.
  2183. */
  2184. static void tcp_init_cwnd_reduction(struct sock *sk)
  2185. {
  2186. struct tcp_sock *tp = tcp_sk(sk);
  2187. tp->high_seq = tp->snd_nxt;
  2188. tp->tlp_high_seq = 0;
  2189. tp->snd_cwnd_cnt = 0;
  2190. tp->prior_cwnd = tp->snd_cwnd;
  2191. tp->prr_delivered = 0;
  2192. tp->prr_out = 0;
  2193. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2194. tcp_ecn_queue_cwr(tp);
  2195. }
  2196. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2197. int fast_rexmit, int flag)
  2198. {
  2199. struct tcp_sock *tp = tcp_sk(sk);
  2200. int sndcnt = 0;
  2201. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2202. int newly_acked_sacked = prior_unsacked -
  2203. (tp->packets_out - tp->sacked_out);
  2204. tp->prr_delivered += newly_acked_sacked;
  2205. if (delta < 0) {
  2206. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2207. tp->prior_cwnd - 1;
  2208. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2209. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2210. !(flag & FLAG_LOST_RETRANS)) {
  2211. sndcnt = min_t(int, delta,
  2212. max_t(int, tp->prr_delivered - tp->prr_out,
  2213. newly_acked_sacked) + 1);
  2214. } else {
  2215. sndcnt = min(delta, newly_acked_sacked);
  2216. }
  2217. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2218. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2219. }
  2220. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2221. {
  2222. struct tcp_sock *tp = tcp_sk(sk);
  2223. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2224. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2225. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2226. tp->snd_cwnd = tp->snd_ssthresh;
  2227. tp->snd_cwnd_stamp = tcp_time_stamp;
  2228. }
  2229. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2230. }
  2231. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2232. void tcp_enter_cwr(struct sock *sk)
  2233. {
  2234. struct tcp_sock *tp = tcp_sk(sk);
  2235. tp->prior_ssthresh = 0;
  2236. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2237. tp->undo_marker = 0;
  2238. tcp_init_cwnd_reduction(sk);
  2239. tcp_set_ca_state(sk, TCP_CA_CWR);
  2240. }
  2241. }
  2242. EXPORT_SYMBOL(tcp_enter_cwr);
  2243. static void tcp_try_keep_open(struct sock *sk)
  2244. {
  2245. struct tcp_sock *tp = tcp_sk(sk);
  2246. int state = TCP_CA_Open;
  2247. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2248. state = TCP_CA_Disorder;
  2249. if (inet_csk(sk)->icsk_ca_state != state) {
  2250. tcp_set_ca_state(sk, state);
  2251. tp->high_seq = tp->snd_nxt;
  2252. }
  2253. }
  2254. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2255. {
  2256. struct tcp_sock *tp = tcp_sk(sk);
  2257. tcp_verify_left_out(tp);
  2258. if (!tcp_any_retrans_done(sk))
  2259. tp->retrans_stamp = 0;
  2260. if (flag & FLAG_ECE)
  2261. tcp_enter_cwr(sk);
  2262. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2263. tcp_try_keep_open(sk);
  2264. } else {
  2265. tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
  2266. }
  2267. }
  2268. static void tcp_mtup_probe_failed(struct sock *sk)
  2269. {
  2270. struct inet_connection_sock *icsk = inet_csk(sk);
  2271. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2272. icsk->icsk_mtup.probe_size = 0;
  2273. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2274. }
  2275. static void tcp_mtup_probe_success(struct sock *sk)
  2276. {
  2277. struct tcp_sock *tp = tcp_sk(sk);
  2278. struct inet_connection_sock *icsk = inet_csk(sk);
  2279. /* FIXME: breaks with very large cwnd */
  2280. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2281. tp->snd_cwnd = tp->snd_cwnd *
  2282. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2283. icsk->icsk_mtup.probe_size;
  2284. tp->snd_cwnd_cnt = 0;
  2285. tp->snd_cwnd_stamp = tcp_time_stamp;
  2286. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2287. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2288. icsk->icsk_mtup.probe_size = 0;
  2289. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2290. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2291. }
  2292. /* Do a simple retransmit without using the backoff mechanisms in
  2293. * tcp_timer. This is used for path mtu discovery.
  2294. * The socket is already locked here.
  2295. */
  2296. void tcp_simple_retransmit(struct sock *sk)
  2297. {
  2298. const struct inet_connection_sock *icsk = inet_csk(sk);
  2299. struct tcp_sock *tp = tcp_sk(sk);
  2300. struct sk_buff *skb;
  2301. unsigned int mss = tcp_current_mss(sk);
  2302. u32 prior_lost = tp->lost_out;
  2303. tcp_for_write_queue(skb, sk) {
  2304. if (skb == tcp_send_head(sk))
  2305. break;
  2306. if (tcp_skb_seglen(skb) > mss &&
  2307. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2308. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2309. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2310. tp->retrans_out -= tcp_skb_pcount(skb);
  2311. }
  2312. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2313. }
  2314. }
  2315. tcp_clear_retrans_hints_partial(tp);
  2316. if (prior_lost == tp->lost_out)
  2317. return;
  2318. if (tcp_is_reno(tp))
  2319. tcp_limit_reno_sacked(tp);
  2320. tcp_verify_left_out(tp);
  2321. /* Don't muck with the congestion window here.
  2322. * Reason is that we do not increase amount of _data_
  2323. * in network, but units changed and effective
  2324. * cwnd/ssthresh really reduced now.
  2325. */
  2326. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2327. tp->high_seq = tp->snd_nxt;
  2328. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2329. tp->prior_ssthresh = 0;
  2330. tp->undo_marker = 0;
  2331. tcp_set_ca_state(sk, TCP_CA_Loss);
  2332. }
  2333. tcp_xmit_retransmit_queue(sk);
  2334. }
  2335. EXPORT_SYMBOL(tcp_simple_retransmit);
  2336. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2337. {
  2338. struct tcp_sock *tp = tcp_sk(sk);
  2339. int mib_idx;
  2340. if (tcp_is_reno(tp))
  2341. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2342. else
  2343. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2344. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2345. tp->prior_ssthresh = 0;
  2346. tcp_init_undo(tp);
  2347. if (!tcp_in_cwnd_reduction(sk)) {
  2348. if (!ece_ack)
  2349. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2350. tcp_init_cwnd_reduction(sk);
  2351. }
  2352. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2353. }
  2354. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2355. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2356. */
  2357. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2358. {
  2359. struct tcp_sock *tp = tcp_sk(sk);
  2360. bool recovered = !before(tp->snd_una, tp->high_seq);
  2361. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2362. tcp_try_undo_loss(sk, false))
  2363. return;
  2364. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2365. /* Step 3.b. A timeout is spurious if not all data are
  2366. * lost, i.e., never-retransmitted data are (s)acked.
  2367. */
  2368. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2369. tcp_try_undo_loss(sk, true))
  2370. return;
  2371. if (after(tp->snd_nxt, tp->high_seq)) {
  2372. if (flag & FLAG_DATA_SACKED || is_dupack)
  2373. tp->frto = 0; /* Step 3.a. loss was real */
  2374. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2375. tp->high_seq = tp->snd_nxt;
  2376. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2377. TCP_NAGLE_OFF);
  2378. if (after(tp->snd_nxt, tp->high_seq))
  2379. return; /* Step 2.b */
  2380. tp->frto = 0;
  2381. }
  2382. }
  2383. if (recovered) {
  2384. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2385. tcp_try_undo_recovery(sk);
  2386. return;
  2387. }
  2388. if (tcp_is_reno(tp)) {
  2389. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2390. * delivered. Lower inflight to clock out (re)tranmissions.
  2391. */
  2392. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2393. tcp_add_reno_sack(sk);
  2394. else if (flag & FLAG_SND_UNA_ADVANCED)
  2395. tcp_reset_reno_sack(tp);
  2396. }
  2397. tcp_xmit_retransmit_queue(sk);
  2398. }
  2399. /* Undo during fast recovery after partial ACK. */
  2400. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2401. const int prior_unsacked, int flag)
  2402. {
  2403. struct tcp_sock *tp = tcp_sk(sk);
  2404. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2405. /* Plain luck! Hole if filled with delayed
  2406. * packet, rather than with a retransmit.
  2407. */
  2408. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2409. /* We are getting evidence that the reordering degree is higher
  2410. * than we realized. If there are no retransmits out then we
  2411. * can undo. Otherwise we clock out new packets but do not
  2412. * mark more packets lost or retransmit more.
  2413. */
  2414. if (tp->retrans_out) {
  2415. tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
  2416. return true;
  2417. }
  2418. if (!tcp_any_retrans_done(sk))
  2419. tp->retrans_stamp = 0;
  2420. DBGUNDO(sk, "partial recovery");
  2421. tcp_undo_cwnd_reduction(sk, true);
  2422. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2423. tcp_try_keep_open(sk);
  2424. return true;
  2425. }
  2426. return false;
  2427. }
  2428. /* Process an event, which can update packets-in-flight not trivially.
  2429. * Main goal of this function is to calculate new estimate for left_out,
  2430. * taking into account both packets sitting in receiver's buffer and
  2431. * packets lost by network.
  2432. *
  2433. * Besides that it does CWND reduction, when packet loss is detected
  2434. * and changes state of machine.
  2435. *
  2436. * It does _not_ decide what to send, it is made in function
  2437. * tcp_xmit_retransmit_queue().
  2438. */
  2439. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2440. const int prior_unsacked,
  2441. bool is_dupack, int flag)
  2442. {
  2443. struct inet_connection_sock *icsk = inet_csk(sk);
  2444. struct tcp_sock *tp = tcp_sk(sk);
  2445. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2446. (tcp_fackets_out(tp) > tp->reordering));
  2447. int fast_rexmit = 0;
  2448. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2449. tp->sacked_out = 0;
  2450. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2451. tp->fackets_out = 0;
  2452. /* Now state machine starts.
  2453. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2454. if (flag & FLAG_ECE)
  2455. tp->prior_ssthresh = 0;
  2456. /* B. In all the states check for reneging SACKs. */
  2457. if (tcp_check_sack_reneging(sk, flag))
  2458. return;
  2459. /* C. Check consistency of the current state. */
  2460. tcp_verify_left_out(tp);
  2461. /* D. Check state exit conditions. State can be terminated
  2462. * when high_seq is ACKed. */
  2463. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2464. WARN_ON(tp->retrans_out != 0);
  2465. tp->retrans_stamp = 0;
  2466. } else if (!before(tp->snd_una, tp->high_seq)) {
  2467. switch (icsk->icsk_ca_state) {
  2468. case TCP_CA_CWR:
  2469. /* CWR is to be held something *above* high_seq
  2470. * is ACKed for CWR bit to reach receiver. */
  2471. if (tp->snd_una != tp->high_seq) {
  2472. tcp_end_cwnd_reduction(sk);
  2473. tcp_set_ca_state(sk, TCP_CA_Open);
  2474. }
  2475. break;
  2476. case TCP_CA_Recovery:
  2477. if (tcp_is_reno(tp))
  2478. tcp_reset_reno_sack(tp);
  2479. if (tcp_try_undo_recovery(sk))
  2480. return;
  2481. tcp_end_cwnd_reduction(sk);
  2482. break;
  2483. }
  2484. }
  2485. /* E. Process state. */
  2486. switch (icsk->icsk_ca_state) {
  2487. case TCP_CA_Recovery:
  2488. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2489. if (tcp_is_reno(tp) && is_dupack)
  2490. tcp_add_reno_sack(sk);
  2491. } else {
  2492. if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
  2493. return;
  2494. /* Partial ACK arrived. Force fast retransmit. */
  2495. do_lost = tcp_is_reno(tp) ||
  2496. tcp_fackets_out(tp) > tp->reordering;
  2497. }
  2498. if (tcp_try_undo_dsack(sk)) {
  2499. tcp_try_keep_open(sk);
  2500. return;
  2501. }
  2502. break;
  2503. case TCP_CA_Loss:
  2504. tcp_process_loss(sk, flag, is_dupack);
  2505. if (icsk->icsk_ca_state != TCP_CA_Open &&
  2506. !(flag & FLAG_LOST_RETRANS))
  2507. return;
  2508. /* Change state if cwnd is undone or retransmits are lost */
  2509. default:
  2510. if (tcp_is_reno(tp)) {
  2511. if (flag & FLAG_SND_UNA_ADVANCED)
  2512. tcp_reset_reno_sack(tp);
  2513. if (is_dupack)
  2514. tcp_add_reno_sack(sk);
  2515. }
  2516. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2517. tcp_try_undo_dsack(sk);
  2518. if (!tcp_time_to_recover(sk, flag)) {
  2519. tcp_try_to_open(sk, flag, prior_unsacked);
  2520. return;
  2521. }
  2522. /* MTU probe failure: don't reduce cwnd */
  2523. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2524. icsk->icsk_mtup.probe_size &&
  2525. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2526. tcp_mtup_probe_failed(sk);
  2527. /* Restores the reduction we did in tcp_mtup_probe() */
  2528. tp->snd_cwnd++;
  2529. tcp_simple_retransmit(sk);
  2530. return;
  2531. }
  2532. /* Otherwise enter Recovery state */
  2533. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2534. fast_rexmit = 1;
  2535. }
  2536. if (do_lost)
  2537. tcp_update_scoreboard(sk, fast_rexmit);
  2538. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
  2539. tcp_xmit_retransmit_queue(sk);
  2540. }
  2541. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2542. long seq_rtt_us, long sack_rtt_us)
  2543. {
  2544. const struct tcp_sock *tp = tcp_sk(sk);
  2545. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2546. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2547. * Karn's algorithm forbids taking RTT if some retransmitted data
  2548. * is acked (RFC6298).
  2549. */
  2550. if (flag & FLAG_RETRANS_DATA_ACKED)
  2551. seq_rtt_us = -1L;
  2552. if (seq_rtt_us < 0)
  2553. seq_rtt_us = sack_rtt_us;
  2554. /* RTTM Rule: A TSecr value received in a segment is used to
  2555. * update the averaged RTT measurement only if the segment
  2556. * acknowledges some new data, i.e., only if it advances the
  2557. * left edge of the send window.
  2558. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2559. */
  2560. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2561. flag & FLAG_ACKED)
  2562. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2563. if (seq_rtt_us < 0)
  2564. return false;
  2565. tcp_rtt_estimator(sk, seq_rtt_us);
  2566. tcp_set_rto(sk);
  2567. /* RFC6298: only reset backoff on valid RTT measurement. */
  2568. inet_csk(sk)->icsk_backoff = 0;
  2569. return true;
  2570. }
  2571. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2572. static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
  2573. {
  2574. struct tcp_sock *tp = tcp_sk(sk);
  2575. long seq_rtt_us = -1L;
  2576. if (synack_stamp && !tp->total_retrans)
  2577. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
  2578. /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
  2579. * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
  2580. */
  2581. if (!tp->srtt_us)
  2582. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
  2583. }
  2584. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2585. {
  2586. const struct inet_connection_sock *icsk = inet_csk(sk);
  2587. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2588. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2589. }
  2590. /* Restart timer after forward progress on connection.
  2591. * RFC2988 recommends to restart timer to now+rto.
  2592. */
  2593. void tcp_rearm_rto(struct sock *sk)
  2594. {
  2595. const struct inet_connection_sock *icsk = inet_csk(sk);
  2596. struct tcp_sock *tp = tcp_sk(sk);
  2597. /* If the retrans timer is currently being used by Fast Open
  2598. * for SYN-ACK retrans purpose, stay put.
  2599. */
  2600. if (tp->fastopen_rsk)
  2601. return;
  2602. if (!tp->packets_out) {
  2603. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2604. } else {
  2605. u32 rto = inet_csk(sk)->icsk_rto;
  2606. /* Offset the time elapsed after installing regular RTO */
  2607. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2608. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2609. struct sk_buff *skb = tcp_write_queue_head(sk);
  2610. const u32 rto_time_stamp =
  2611. tcp_skb_timestamp(skb) + rto;
  2612. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2613. /* delta may not be positive if the socket is locked
  2614. * when the retrans timer fires and is rescheduled.
  2615. */
  2616. if (delta > 0)
  2617. rto = delta;
  2618. }
  2619. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2620. TCP_RTO_MAX);
  2621. }
  2622. }
  2623. /* This function is called when the delayed ER timer fires. TCP enters
  2624. * fast recovery and performs fast-retransmit.
  2625. */
  2626. void tcp_resume_early_retransmit(struct sock *sk)
  2627. {
  2628. struct tcp_sock *tp = tcp_sk(sk);
  2629. tcp_rearm_rto(sk);
  2630. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2631. if (!tp->do_early_retrans)
  2632. return;
  2633. tcp_enter_recovery(sk, false);
  2634. tcp_update_scoreboard(sk, 1);
  2635. tcp_xmit_retransmit_queue(sk);
  2636. }
  2637. /* If we get here, the whole TSO packet has not been acked. */
  2638. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2639. {
  2640. struct tcp_sock *tp = tcp_sk(sk);
  2641. u32 packets_acked;
  2642. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2643. packets_acked = tcp_skb_pcount(skb);
  2644. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2645. return 0;
  2646. packets_acked -= tcp_skb_pcount(skb);
  2647. if (packets_acked) {
  2648. BUG_ON(tcp_skb_pcount(skb) == 0);
  2649. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2650. }
  2651. return packets_acked;
  2652. }
  2653. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2654. u32 prior_snd_una)
  2655. {
  2656. const struct skb_shared_info *shinfo;
  2657. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2658. if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
  2659. return;
  2660. shinfo = skb_shinfo(skb);
  2661. if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
  2662. between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
  2663. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2664. }
  2665. /* Remove acknowledged frames from the retransmission queue. If our packet
  2666. * is before the ack sequence we can discard it as it's confirmed to have
  2667. * arrived at the other end.
  2668. */
  2669. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2670. u32 prior_snd_una,
  2671. struct tcp_sacktag_state *sack)
  2672. {
  2673. const struct inet_connection_sock *icsk = inet_csk(sk);
  2674. struct skb_mstamp first_ackt, last_ackt, now;
  2675. struct tcp_sock *tp = tcp_sk(sk);
  2676. u32 prior_sacked = tp->sacked_out;
  2677. u32 reord = tp->packets_out;
  2678. bool fully_acked = true;
  2679. long sack_rtt_us = -1L;
  2680. long seq_rtt_us = -1L;
  2681. long ca_rtt_us = -1L;
  2682. struct sk_buff *skb;
  2683. u32 pkts_acked = 0;
  2684. bool rtt_update;
  2685. int flag = 0;
  2686. first_ackt.v64 = 0;
  2687. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2688. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2689. u8 sacked = scb->sacked;
  2690. u32 acked_pcount;
  2691. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2692. /* Determine how many packets and what bytes were acked, tso and else */
  2693. if (after(scb->end_seq, tp->snd_una)) {
  2694. if (tcp_skb_pcount(skb) == 1 ||
  2695. !after(tp->snd_una, scb->seq))
  2696. break;
  2697. acked_pcount = tcp_tso_acked(sk, skb);
  2698. if (!acked_pcount)
  2699. break;
  2700. fully_acked = false;
  2701. } else {
  2702. /* Speedup tcp_unlink_write_queue() and next loop */
  2703. prefetchw(skb->next);
  2704. acked_pcount = tcp_skb_pcount(skb);
  2705. }
  2706. if (unlikely(sacked & TCPCB_RETRANS)) {
  2707. if (sacked & TCPCB_SACKED_RETRANS)
  2708. tp->retrans_out -= acked_pcount;
  2709. flag |= FLAG_RETRANS_DATA_ACKED;
  2710. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2711. last_ackt = skb->skb_mstamp;
  2712. WARN_ON_ONCE(last_ackt.v64 == 0);
  2713. if (!first_ackt.v64)
  2714. first_ackt = last_ackt;
  2715. reord = min(pkts_acked, reord);
  2716. if (!after(scb->end_seq, tp->high_seq))
  2717. flag |= FLAG_ORIG_SACK_ACKED;
  2718. }
  2719. if (sacked & TCPCB_SACKED_ACKED)
  2720. tp->sacked_out -= acked_pcount;
  2721. if (sacked & TCPCB_LOST)
  2722. tp->lost_out -= acked_pcount;
  2723. tp->packets_out -= acked_pcount;
  2724. pkts_acked += acked_pcount;
  2725. /* Initial outgoing SYN's get put onto the write_queue
  2726. * just like anything else we transmit. It is not
  2727. * true data, and if we misinform our callers that
  2728. * this ACK acks real data, we will erroneously exit
  2729. * connection startup slow start one packet too
  2730. * quickly. This is severely frowned upon behavior.
  2731. */
  2732. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2733. flag |= FLAG_DATA_ACKED;
  2734. } else {
  2735. flag |= FLAG_SYN_ACKED;
  2736. tp->retrans_stamp = 0;
  2737. }
  2738. if (!fully_acked)
  2739. break;
  2740. tcp_unlink_write_queue(skb, sk);
  2741. sk_wmem_free_skb(sk, skb);
  2742. if (unlikely(skb == tp->retransmit_skb_hint))
  2743. tp->retransmit_skb_hint = NULL;
  2744. if (unlikely(skb == tp->lost_skb_hint))
  2745. tp->lost_skb_hint = NULL;
  2746. }
  2747. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2748. tp->snd_up = tp->snd_una;
  2749. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2750. flag |= FLAG_SACK_RENEGING;
  2751. skb_mstamp_get(&now);
  2752. if (likely(first_ackt.v64)) {
  2753. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2754. ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2755. }
  2756. if (sack->first_sackt.v64) {
  2757. sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
  2758. ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
  2759. }
  2760. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
  2761. if (flag & FLAG_ACKED) {
  2762. tcp_rearm_rto(sk);
  2763. if (unlikely(icsk->icsk_mtup.probe_size &&
  2764. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2765. tcp_mtup_probe_success(sk);
  2766. }
  2767. if (tcp_is_reno(tp)) {
  2768. tcp_remove_reno_sacks(sk, pkts_acked);
  2769. } else {
  2770. int delta;
  2771. /* Non-retransmitted hole got filled? That's reordering */
  2772. if (reord < prior_fackets)
  2773. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2774. delta = tcp_is_fack(tp) ? pkts_acked :
  2775. prior_sacked - tp->sacked_out;
  2776. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2777. }
  2778. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2779. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2780. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2781. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2782. * after when the head was last (re)transmitted. Otherwise the
  2783. * timeout may continue to extend in loss recovery.
  2784. */
  2785. tcp_rearm_rto(sk);
  2786. }
  2787. if (icsk->icsk_ca_ops->pkts_acked)
  2788. icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
  2789. #if FASTRETRANS_DEBUG > 0
  2790. WARN_ON((int)tp->sacked_out < 0);
  2791. WARN_ON((int)tp->lost_out < 0);
  2792. WARN_ON((int)tp->retrans_out < 0);
  2793. if (!tp->packets_out && tcp_is_sack(tp)) {
  2794. icsk = inet_csk(sk);
  2795. if (tp->lost_out) {
  2796. pr_debug("Leak l=%u %d\n",
  2797. tp->lost_out, icsk->icsk_ca_state);
  2798. tp->lost_out = 0;
  2799. }
  2800. if (tp->sacked_out) {
  2801. pr_debug("Leak s=%u %d\n",
  2802. tp->sacked_out, icsk->icsk_ca_state);
  2803. tp->sacked_out = 0;
  2804. }
  2805. if (tp->retrans_out) {
  2806. pr_debug("Leak r=%u %d\n",
  2807. tp->retrans_out, icsk->icsk_ca_state);
  2808. tp->retrans_out = 0;
  2809. }
  2810. }
  2811. #endif
  2812. return flag;
  2813. }
  2814. static void tcp_ack_probe(struct sock *sk)
  2815. {
  2816. const struct tcp_sock *tp = tcp_sk(sk);
  2817. struct inet_connection_sock *icsk = inet_csk(sk);
  2818. /* Was it a usable window open? */
  2819. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2820. icsk->icsk_backoff = 0;
  2821. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2822. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2823. * This function is not for random using!
  2824. */
  2825. } else {
  2826. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2827. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2828. when, TCP_RTO_MAX);
  2829. }
  2830. }
  2831. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2832. {
  2833. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2834. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2835. }
  2836. /* Decide wheather to run the increase function of congestion control. */
  2837. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2838. {
  2839. if (tcp_in_cwnd_reduction(sk))
  2840. return false;
  2841. /* If reordering is high then always grow cwnd whenever data is
  2842. * delivered regardless of its ordering. Otherwise stay conservative
  2843. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2844. * new SACK or ECE mark may first advance cwnd here and later reduce
  2845. * cwnd in tcp_fastretrans_alert() based on more states.
  2846. */
  2847. if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
  2848. return flag & FLAG_FORWARD_PROGRESS;
  2849. return flag & FLAG_DATA_ACKED;
  2850. }
  2851. /* Check that window update is acceptable.
  2852. * The function assumes that snd_una<=ack<=snd_next.
  2853. */
  2854. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2855. const u32 ack, const u32 ack_seq,
  2856. const u32 nwin)
  2857. {
  2858. return after(ack, tp->snd_una) ||
  2859. after(ack_seq, tp->snd_wl1) ||
  2860. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2861. }
  2862. /* If we update tp->snd_una, also update tp->bytes_acked */
  2863. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2864. {
  2865. u32 delta = ack - tp->snd_una;
  2866. u64_stats_update_begin(&tp->syncp);
  2867. tp->bytes_acked += delta;
  2868. u64_stats_update_end(&tp->syncp);
  2869. tp->snd_una = ack;
  2870. }
  2871. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2872. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2873. {
  2874. u32 delta = seq - tp->rcv_nxt;
  2875. u64_stats_update_begin(&tp->syncp);
  2876. tp->bytes_received += delta;
  2877. u64_stats_update_end(&tp->syncp);
  2878. tp->rcv_nxt = seq;
  2879. }
  2880. /* Update our send window.
  2881. *
  2882. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2883. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2884. */
  2885. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2886. u32 ack_seq)
  2887. {
  2888. struct tcp_sock *tp = tcp_sk(sk);
  2889. int flag = 0;
  2890. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2891. if (likely(!tcp_hdr(skb)->syn))
  2892. nwin <<= tp->rx_opt.snd_wscale;
  2893. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2894. flag |= FLAG_WIN_UPDATE;
  2895. tcp_update_wl(tp, ack_seq);
  2896. if (tp->snd_wnd != nwin) {
  2897. tp->snd_wnd = nwin;
  2898. /* Note, it is the only place, where
  2899. * fast path is recovered for sending TCP.
  2900. */
  2901. tp->pred_flags = 0;
  2902. tcp_fast_path_check(sk);
  2903. if (tcp_send_head(sk))
  2904. tcp_slow_start_after_idle_check(sk);
  2905. if (nwin > tp->max_window) {
  2906. tp->max_window = nwin;
  2907. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2908. }
  2909. }
  2910. }
  2911. tcp_snd_una_update(tp, ack);
  2912. return flag;
  2913. }
  2914. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2915. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2916. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2917. * attacks that send repeated SYNs or ACKs for the same connection. To
  2918. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2919. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2920. */
  2921. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2922. int mib_idx, u32 *last_oow_ack_time)
  2923. {
  2924. /* Data packets without SYNs are not likely part of an ACK loop. */
  2925. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2926. !tcp_hdr(skb)->syn)
  2927. goto not_rate_limited;
  2928. if (*last_oow_ack_time) {
  2929. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2930. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2931. NET_INC_STATS_BH(net, mib_idx);
  2932. return true; /* rate-limited: don't send yet! */
  2933. }
  2934. }
  2935. *last_oow_ack_time = tcp_time_stamp;
  2936. not_rate_limited:
  2937. return false; /* not rate-limited: go ahead, send dupack now! */
  2938. }
  2939. /* RFC 5961 7 [ACK Throttling] */
  2940. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2941. {
  2942. /* unprotected vars, we dont care of overwrites */
  2943. static u32 challenge_timestamp;
  2944. static unsigned int challenge_count;
  2945. struct tcp_sock *tp = tcp_sk(sk);
  2946. u32 now;
  2947. /* First check our per-socket dupack rate limit. */
  2948. if (tcp_oow_rate_limited(sock_net(sk), skb,
  2949. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2950. &tp->last_oow_ack_time))
  2951. return;
  2952. /* Then check the check host-wide RFC 5961 rate limit. */
  2953. now = jiffies / HZ;
  2954. if (now != challenge_timestamp) {
  2955. challenge_timestamp = now;
  2956. challenge_count = 0;
  2957. }
  2958. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2959. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2960. tcp_send_ack(sk);
  2961. }
  2962. }
  2963. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2964. {
  2965. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2966. tp->rx_opt.ts_recent_stamp = get_seconds();
  2967. }
  2968. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2969. {
  2970. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2971. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2972. * extra check below makes sure this can only happen
  2973. * for pure ACK frames. -DaveM
  2974. *
  2975. * Not only, also it occurs for expired timestamps.
  2976. */
  2977. if (tcp_paws_check(&tp->rx_opt, 0))
  2978. tcp_store_ts_recent(tp);
  2979. }
  2980. }
  2981. /* This routine deals with acks during a TLP episode.
  2982. * We mark the end of a TLP episode on receiving TLP dupack or when
  2983. * ack is after tlp_high_seq.
  2984. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2985. */
  2986. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2987. {
  2988. struct tcp_sock *tp = tcp_sk(sk);
  2989. if (before(ack, tp->tlp_high_seq))
  2990. return;
  2991. if (flag & FLAG_DSACKING_ACK) {
  2992. /* This DSACK means original and TLP probe arrived; no loss */
  2993. tp->tlp_high_seq = 0;
  2994. } else if (after(ack, tp->tlp_high_seq)) {
  2995. /* ACK advances: there was a loss, so reduce cwnd. Reset
  2996. * tlp_high_seq in tcp_init_cwnd_reduction()
  2997. */
  2998. tcp_init_cwnd_reduction(sk);
  2999. tcp_set_ca_state(sk, TCP_CA_CWR);
  3000. tcp_end_cwnd_reduction(sk);
  3001. tcp_try_keep_open(sk);
  3002. NET_INC_STATS_BH(sock_net(sk),
  3003. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3004. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3005. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3006. /* Pure dupack: original and TLP probe arrived; no loss */
  3007. tp->tlp_high_seq = 0;
  3008. }
  3009. }
  3010. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3011. {
  3012. const struct inet_connection_sock *icsk = inet_csk(sk);
  3013. if (icsk->icsk_ca_ops->in_ack_event)
  3014. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3015. }
  3016. /* This routine deals with incoming acks, but not outgoing ones. */
  3017. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3018. {
  3019. struct inet_connection_sock *icsk = inet_csk(sk);
  3020. struct tcp_sock *tp = tcp_sk(sk);
  3021. struct tcp_sacktag_state sack_state;
  3022. u32 prior_snd_una = tp->snd_una;
  3023. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3024. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3025. bool is_dupack = false;
  3026. u32 prior_fackets;
  3027. int prior_packets = tp->packets_out;
  3028. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  3029. int acked = 0; /* Number of packets newly acked */
  3030. sack_state.first_sackt.v64 = 0;
  3031. /* We very likely will need to access write queue head. */
  3032. prefetchw(sk->sk_write_queue.next);
  3033. /* If the ack is older than previous acks
  3034. * then we can probably ignore it.
  3035. */
  3036. if (before(ack, prior_snd_una)) {
  3037. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3038. if (before(ack, prior_snd_una - tp->max_window)) {
  3039. tcp_send_challenge_ack(sk, skb);
  3040. return -1;
  3041. }
  3042. goto old_ack;
  3043. }
  3044. /* If the ack includes data we haven't sent yet, discard
  3045. * this segment (RFC793 Section 3.9).
  3046. */
  3047. if (after(ack, tp->snd_nxt))
  3048. goto invalid_ack;
  3049. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3050. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3051. tcp_rearm_rto(sk);
  3052. if (after(ack, prior_snd_una)) {
  3053. flag |= FLAG_SND_UNA_ADVANCED;
  3054. icsk->icsk_retransmits = 0;
  3055. }
  3056. prior_fackets = tp->fackets_out;
  3057. /* ts_recent update must be made after we are sure that the packet
  3058. * is in window.
  3059. */
  3060. if (flag & FLAG_UPDATE_TS_RECENT)
  3061. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3062. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3063. /* Window is constant, pure forward advance.
  3064. * No more checks are required.
  3065. * Note, we use the fact that SND.UNA>=SND.WL2.
  3066. */
  3067. tcp_update_wl(tp, ack_seq);
  3068. tcp_snd_una_update(tp, ack);
  3069. flag |= FLAG_WIN_UPDATE;
  3070. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3071. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3072. } else {
  3073. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3074. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3075. flag |= FLAG_DATA;
  3076. else
  3077. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3078. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3079. if (TCP_SKB_CB(skb)->sacked)
  3080. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3081. &sack_state);
  3082. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3083. flag |= FLAG_ECE;
  3084. ack_ev_flags |= CA_ACK_ECE;
  3085. }
  3086. if (flag & FLAG_WIN_UPDATE)
  3087. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3088. tcp_in_ack_event(sk, ack_ev_flags);
  3089. }
  3090. /* We passed data and got it acked, remove any soft error
  3091. * log. Something worked...
  3092. */
  3093. sk->sk_err_soft = 0;
  3094. icsk->icsk_probes_out = 0;
  3095. tp->rcv_tstamp = tcp_time_stamp;
  3096. if (!prior_packets)
  3097. goto no_queue;
  3098. /* See if we can take anything off of the retransmit queue. */
  3099. acked = tp->packets_out;
  3100. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
  3101. &sack_state);
  3102. acked -= tp->packets_out;
  3103. if (tcp_ack_is_dubious(sk, flag)) {
  3104. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3105. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3106. is_dupack, flag);
  3107. }
  3108. if (tp->tlp_high_seq)
  3109. tcp_process_tlp_ack(sk, ack, flag);
  3110. /* Advance cwnd if state allows */
  3111. if (tcp_may_raise_cwnd(sk, flag))
  3112. tcp_cong_avoid(sk, ack, acked);
  3113. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3114. struct dst_entry *dst = __sk_dst_get(sk);
  3115. if (dst)
  3116. dst_confirm(dst);
  3117. }
  3118. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3119. tcp_schedule_loss_probe(sk);
  3120. tcp_update_pacing_rate(sk);
  3121. return 1;
  3122. no_queue:
  3123. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3124. if (flag & FLAG_DSACKING_ACK)
  3125. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3126. is_dupack, flag);
  3127. /* If this ack opens up a zero window, clear backoff. It was
  3128. * being used to time the probes, and is probably far higher than
  3129. * it needs to be for normal retransmission.
  3130. */
  3131. if (tcp_send_head(sk))
  3132. tcp_ack_probe(sk);
  3133. if (tp->tlp_high_seq)
  3134. tcp_process_tlp_ack(sk, ack, flag);
  3135. return 1;
  3136. invalid_ack:
  3137. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3138. return -1;
  3139. old_ack:
  3140. /* If data was SACKed, tag it and see if we should send more data.
  3141. * If data was DSACKed, see if we can undo a cwnd reduction.
  3142. */
  3143. if (TCP_SKB_CB(skb)->sacked) {
  3144. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3145. &sack_state);
  3146. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3147. is_dupack, flag);
  3148. }
  3149. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3150. return 0;
  3151. }
  3152. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3153. bool syn, struct tcp_fastopen_cookie *foc,
  3154. bool exp_opt)
  3155. {
  3156. /* Valid only in SYN or SYN-ACK with an even length. */
  3157. if (!foc || !syn || len < 0 || (len & 1))
  3158. return;
  3159. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3160. len <= TCP_FASTOPEN_COOKIE_MAX)
  3161. memcpy(foc->val, cookie, len);
  3162. else if (len != 0)
  3163. len = -1;
  3164. foc->len = len;
  3165. foc->exp = exp_opt;
  3166. }
  3167. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3168. * But, this can also be called on packets in the established flow when
  3169. * the fast version below fails.
  3170. */
  3171. void tcp_parse_options(const struct sk_buff *skb,
  3172. struct tcp_options_received *opt_rx, int estab,
  3173. struct tcp_fastopen_cookie *foc)
  3174. {
  3175. const unsigned char *ptr;
  3176. const struct tcphdr *th = tcp_hdr(skb);
  3177. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3178. ptr = (const unsigned char *)(th + 1);
  3179. opt_rx->saw_tstamp = 0;
  3180. while (length > 0) {
  3181. int opcode = *ptr++;
  3182. int opsize;
  3183. switch (opcode) {
  3184. case TCPOPT_EOL:
  3185. return;
  3186. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3187. length--;
  3188. continue;
  3189. default:
  3190. opsize = *ptr++;
  3191. if (opsize < 2) /* "silly options" */
  3192. return;
  3193. if (opsize > length)
  3194. return; /* don't parse partial options */
  3195. switch (opcode) {
  3196. case TCPOPT_MSS:
  3197. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3198. u16 in_mss = get_unaligned_be16(ptr);
  3199. if (in_mss) {
  3200. if (opt_rx->user_mss &&
  3201. opt_rx->user_mss < in_mss)
  3202. in_mss = opt_rx->user_mss;
  3203. opt_rx->mss_clamp = in_mss;
  3204. }
  3205. }
  3206. break;
  3207. case TCPOPT_WINDOW:
  3208. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3209. !estab && sysctl_tcp_window_scaling) {
  3210. __u8 snd_wscale = *(__u8 *)ptr;
  3211. opt_rx->wscale_ok = 1;
  3212. if (snd_wscale > 14) {
  3213. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3214. __func__,
  3215. snd_wscale);
  3216. snd_wscale = 14;
  3217. }
  3218. opt_rx->snd_wscale = snd_wscale;
  3219. }
  3220. break;
  3221. case TCPOPT_TIMESTAMP:
  3222. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3223. ((estab && opt_rx->tstamp_ok) ||
  3224. (!estab && sysctl_tcp_timestamps))) {
  3225. opt_rx->saw_tstamp = 1;
  3226. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3227. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3228. }
  3229. break;
  3230. case TCPOPT_SACK_PERM:
  3231. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3232. !estab && sysctl_tcp_sack) {
  3233. opt_rx->sack_ok = TCP_SACK_SEEN;
  3234. tcp_sack_reset(opt_rx);
  3235. }
  3236. break;
  3237. case TCPOPT_SACK:
  3238. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3239. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3240. opt_rx->sack_ok) {
  3241. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3242. }
  3243. break;
  3244. #ifdef CONFIG_TCP_MD5SIG
  3245. case TCPOPT_MD5SIG:
  3246. /*
  3247. * The MD5 Hash has already been
  3248. * checked (see tcp_v{4,6}_do_rcv()).
  3249. */
  3250. break;
  3251. #endif
  3252. case TCPOPT_FASTOPEN:
  3253. tcp_parse_fastopen_option(
  3254. opsize - TCPOLEN_FASTOPEN_BASE,
  3255. ptr, th->syn, foc, false);
  3256. break;
  3257. case TCPOPT_EXP:
  3258. /* Fast Open option shares code 254 using a
  3259. * 16 bits magic number.
  3260. */
  3261. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3262. get_unaligned_be16(ptr) ==
  3263. TCPOPT_FASTOPEN_MAGIC)
  3264. tcp_parse_fastopen_option(opsize -
  3265. TCPOLEN_EXP_FASTOPEN_BASE,
  3266. ptr + 2, th->syn, foc, true);
  3267. break;
  3268. }
  3269. ptr += opsize-2;
  3270. length -= opsize;
  3271. }
  3272. }
  3273. }
  3274. EXPORT_SYMBOL(tcp_parse_options);
  3275. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3276. {
  3277. const __be32 *ptr = (const __be32 *)(th + 1);
  3278. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3279. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3280. tp->rx_opt.saw_tstamp = 1;
  3281. ++ptr;
  3282. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3283. ++ptr;
  3284. if (*ptr)
  3285. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3286. else
  3287. tp->rx_opt.rcv_tsecr = 0;
  3288. return true;
  3289. }
  3290. return false;
  3291. }
  3292. /* Fast parse options. This hopes to only see timestamps.
  3293. * If it is wrong it falls back on tcp_parse_options().
  3294. */
  3295. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3296. const struct tcphdr *th, struct tcp_sock *tp)
  3297. {
  3298. /* In the spirit of fast parsing, compare doff directly to constant
  3299. * values. Because equality is used, short doff can be ignored here.
  3300. */
  3301. if (th->doff == (sizeof(*th) / 4)) {
  3302. tp->rx_opt.saw_tstamp = 0;
  3303. return false;
  3304. } else if (tp->rx_opt.tstamp_ok &&
  3305. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3306. if (tcp_parse_aligned_timestamp(tp, th))
  3307. return true;
  3308. }
  3309. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3310. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3311. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3312. return true;
  3313. }
  3314. #ifdef CONFIG_TCP_MD5SIG
  3315. /*
  3316. * Parse MD5 Signature option
  3317. */
  3318. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3319. {
  3320. int length = (th->doff << 2) - sizeof(*th);
  3321. const u8 *ptr = (const u8 *)(th + 1);
  3322. /* If the TCP option is too short, we can short cut */
  3323. if (length < TCPOLEN_MD5SIG)
  3324. return NULL;
  3325. while (length > 0) {
  3326. int opcode = *ptr++;
  3327. int opsize;
  3328. switch (opcode) {
  3329. case TCPOPT_EOL:
  3330. return NULL;
  3331. case TCPOPT_NOP:
  3332. length--;
  3333. continue;
  3334. default:
  3335. opsize = *ptr++;
  3336. if (opsize < 2 || opsize > length)
  3337. return NULL;
  3338. if (opcode == TCPOPT_MD5SIG)
  3339. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3340. }
  3341. ptr += opsize - 2;
  3342. length -= opsize;
  3343. }
  3344. return NULL;
  3345. }
  3346. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3347. #endif
  3348. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3349. *
  3350. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3351. * it can pass through stack. So, the following predicate verifies that
  3352. * this segment is not used for anything but congestion avoidance or
  3353. * fast retransmit. Moreover, we even are able to eliminate most of such
  3354. * second order effects, if we apply some small "replay" window (~RTO)
  3355. * to timestamp space.
  3356. *
  3357. * All these measures still do not guarantee that we reject wrapped ACKs
  3358. * on networks with high bandwidth, when sequence space is recycled fastly,
  3359. * but it guarantees that such events will be very rare and do not affect
  3360. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3361. * buggy extension.
  3362. *
  3363. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3364. * states that events when retransmit arrives after original data are rare.
  3365. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3366. * the biggest problem on large power networks even with minor reordering.
  3367. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3368. * up to bandwidth of 18Gigabit/sec. 8) ]
  3369. */
  3370. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3371. {
  3372. const struct tcp_sock *tp = tcp_sk(sk);
  3373. const struct tcphdr *th = tcp_hdr(skb);
  3374. u32 seq = TCP_SKB_CB(skb)->seq;
  3375. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3376. return (/* 1. Pure ACK with correct sequence number. */
  3377. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3378. /* 2. ... and duplicate ACK. */
  3379. ack == tp->snd_una &&
  3380. /* 3. ... and does not update window. */
  3381. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3382. /* 4. ... and sits in replay window. */
  3383. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3384. }
  3385. static inline bool tcp_paws_discard(const struct sock *sk,
  3386. const struct sk_buff *skb)
  3387. {
  3388. const struct tcp_sock *tp = tcp_sk(sk);
  3389. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3390. !tcp_disordered_ack(sk, skb);
  3391. }
  3392. /* Check segment sequence number for validity.
  3393. *
  3394. * Segment controls are considered valid, if the segment
  3395. * fits to the window after truncation to the window. Acceptability
  3396. * of data (and SYN, FIN, of course) is checked separately.
  3397. * See tcp_data_queue(), for example.
  3398. *
  3399. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3400. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3401. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3402. * (borrowed from freebsd)
  3403. */
  3404. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3405. {
  3406. return !before(end_seq, tp->rcv_wup) &&
  3407. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3408. }
  3409. /* When we get a reset we do this. */
  3410. void tcp_reset(struct sock *sk)
  3411. {
  3412. /* We want the right error as BSD sees it (and indeed as we do). */
  3413. switch (sk->sk_state) {
  3414. case TCP_SYN_SENT:
  3415. sk->sk_err = ECONNREFUSED;
  3416. break;
  3417. case TCP_CLOSE_WAIT:
  3418. sk->sk_err = EPIPE;
  3419. break;
  3420. case TCP_CLOSE:
  3421. return;
  3422. default:
  3423. sk->sk_err = ECONNRESET;
  3424. }
  3425. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3426. smp_wmb();
  3427. if (!sock_flag(sk, SOCK_DEAD))
  3428. sk->sk_error_report(sk);
  3429. tcp_done(sk);
  3430. }
  3431. /*
  3432. * Process the FIN bit. This now behaves as it is supposed to work
  3433. * and the FIN takes effect when it is validly part of sequence
  3434. * space. Not before when we get holes.
  3435. *
  3436. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3437. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3438. * TIME-WAIT)
  3439. *
  3440. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3441. * close and we go into CLOSING (and later onto TIME-WAIT)
  3442. *
  3443. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3444. */
  3445. static void tcp_fin(struct sock *sk)
  3446. {
  3447. struct tcp_sock *tp = tcp_sk(sk);
  3448. inet_csk_schedule_ack(sk);
  3449. sk->sk_shutdown |= RCV_SHUTDOWN;
  3450. sock_set_flag(sk, SOCK_DONE);
  3451. switch (sk->sk_state) {
  3452. case TCP_SYN_RECV:
  3453. case TCP_ESTABLISHED:
  3454. /* Move to CLOSE_WAIT */
  3455. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3456. inet_csk(sk)->icsk_ack.pingpong = 1;
  3457. break;
  3458. case TCP_CLOSE_WAIT:
  3459. case TCP_CLOSING:
  3460. /* Received a retransmission of the FIN, do
  3461. * nothing.
  3462. */
  3463. break;
  3464. case TCP_LAST_ACK:
  3465. /* RFC793: Remain in the LAST-ACK state. */
  3466. break;
  3467. case TCP_FIN_WAIT1:
  3468. /* This case occurs when a simultaneous close
  3469. * happens, we must ack the received FIN and
  3470. * enter the CLOSING state.
  3471. */
  3472. tcp_send_ack(sk);
  3473. tcp_set_state(sk, TCP_CLOSING);
  3474. break;
  3475. case TCP_FIN_WAIT2:
  3476. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3477. tcp_send_ack(sk);
  3478. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3479. break;
  3480. default:
  3481. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3482. * cases we should never reach this piece of code.
  3483. */
  3484. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3485. __func__, sk->sk_state);
  3486. break;
  3487. }
  3488. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3489. * Probably, we should reset in this case. For now drop them.
  3490. */
  3491. __skb_queue_purge(&tp->out_of_order_queue);
  3492. if (tcp_is_sack(tp))
  3493. tcp_sack_reset(&tp->rx_opt);
  3494. sk_mem_reclaim(sk);
  3495. if (!sock_flag(sk, SOCK_DEAD)) {
  3496. sk->sk_state_change(sk);
  3497. /* Do not send POLL_HUP for half duplex close. */
  3498. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3499. sk->sk_state == TCP_CLOSE)
  3500. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3501. else
  3502. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3503. }
  3504. }
  3505. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3506. u32 end_seq)
  3507. {
  3508. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3509. if (before(seq, sp->start_seq))
  3510. sp->start_seq = seq;
  3511. if (after(end_seq, sp->end_seq))
  3512. sp->end_seq = end_seq;
  3513. return true;
  3514. }
  3515. return false;
  3516. }
  3517. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3518. {
  3519. struct tcp_sock *tp = tcp_sk(sk);
  3520. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3521. int mib_idx;
  3522. if (before(seq, tp->rcv_nxt))
  3523. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3524. else
  3525. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3526. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3527. tp->rx_opt.dsack = 1;
  3528. tp->duplicate_sack[0].start_seq = seq;
  3529. tp->duplicate_sack[0].end_seq = end_seq;
  3530. }
  3531. }
  3532. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3533. {
  3534. struct tcp_sock *tp = tcp_sk(sk);
  3535. if (!tp->rx_opt.dsack)
  3536. tcp_dsack_set(sk, seq, end_seq);
  3537. else
  3538. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3539. }
  3540. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3541. {
  3542. struct tcp_sock *tp = tcp_sk(sk);
  3543. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3544. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3545. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3546. tcp_enter_quickack_mode(sk);
  3547. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3548. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3549. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3550. end_seq = tp->rcv_nxt;
  3551. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3552. }
  3553. }
  3554. tcp_send_ack(sk);
  3555. }
  3556. /* These routines update the SACK block as out-of-order packets arrive or
  3557. * in-order packets close up the sequence space.
  3558. */
  3559. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3560. {
  3561. int this_sack;
  3562. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3563. struct tcp_sack_block *swalk = sp + 1;
  3564. /* See if the recent change to the first SACK eats into
  3565. * or hits the sequence space of other SACK blocks, if so coalesce.
  3566. */
  3567. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3568. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3569. int i;
  3570. /* Zap SWALK, by moving every further SACK up by one slot.
  3571. * Decrease num_sacks.
  3572. */
  3573. tp->rx_opt.num_sacks--;
  3574. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3575. sp[i] = sp[i + 1];
  3576. continue;
  3577. }
  3578. this_sack++, swalk++;
  3579. }
  3580. }
  3581. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3582. {
  3583. struct tcp_sock *tp = tcp_sk(sk);
  3584. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3585. int cur_sacks = tp->rx_opt.num_sacks;
  3586. int this_sack;
  3587. if (!cur_sacks)
  3588. goto new_sack;
  3589. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3590. if (tcp_sack_extend(sp, seq, end_seq)) {
  3591. /* Rotate this_sack to the first one. */
  3592. for (; this_sack > 0; this_sack--, sp--)
  3593. swap(*sp, *(sp - 1));
  3594. if (cur_sacks > 1)
  3595. tcp_sack_maybe_coalesce(tp);
  3596. return;
  3597. }
  3598. }
  3599. /* Could not find an adjacent existing SACK, build a new one,
  3600. * put it at the front, and shift everyone else down. We
  3601. * always know there is at least one SACK present already here.
  3602. *
  3603. * If the sack array is full, forget about the last one.
  3604. */
  3605. if (this_sack >= TCP_NUM_SACKS) {
  3606. this_sack--;
  3607. tp->rx_opt.num_sacks--;
  3608. sp--;
  3609. }
  3610. for (; this_sack > 0; this_sack--, sp--)
  3611. *sp = *(sp - 1);
  3612. new_sack:
  3613. /* Build the new head SACK, and we're done. */
  3614. sp->start_seq = seq;
  3615. sp->end_seq = end_seq;
  3616. tp->rx_opt.num_sacks++;
  3617. }
  3618. /* RCV.NXT advances, some SACKs should be eaten. */
  3619. static void tcp_sack_remove(struct tcp_sock *tp)
  3620. {
  3621. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3622. int num_sacks = tp->rx_opt.num_sacks;
  3623. int this_sack;
  3624. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3625. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3626. tp->rx_opt.num_sacks = 0;
  3627. return;
  3628. }
  3629. for (this_sack = 0; this_sack < num_sacks;) {
  3630. /* Check if the start of the sack is covered by RCV.NXT. */
  3631. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3632. int i;
  3633. /* RCV.NXT must cover all the block! */
  3634. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3635. /* Zap this SACK, by moving forward any other SACKS. */
  3636. for (i = this_sack+1; i < num_sacks; i++)
  3637. tp->selective_acks[i-1] = tp->selective_acks[i];
  3638. num_sacks--;
  3639. continue;
  3640. }
  3641. this_sack++;
  3642. sp++;
  3643. }
  3644. tp->rx_opt.num_sacks = num_sacks;
  3645. }
  3646. /**
  3647. * tcp_try_coalesce - try to merge skb to prior one
  3648. * @sk: socket
  3649. * @to: prior buffer
  3650. * @from: buffer to add in queue
  3651. * @fragstolen: pointer to boolean
  3652. *
  3653. * Before queueing skb @from after @to, try to merge them
  3654. * to reduce overall memory use and queue lengths, if cost is small.
  3655. * Packets in ofo or receive queues can stay a long time.
  3656. * Better try to coalesce them right now to avoid future collapses.
  3657. * Returns true if caller should free @from instead of queueing it
  3658. */
  3659. static bool tcp_try_coalesce(struct sock *sk,
  3660. struct sk_buff *to,
  3661. struct sk_buff *from,
  3662. bool *fragstolen)
  3663. {
  3664. int delta;
  3665. *fragstolen = false;
  3666. /* Its possible this segment overlaps with prior segment in queue */
  3667. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3668. return false;
  3669. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3670. return false;
  3671. atomic_add(delta, &sk->sk_rmem_alloc);
  3672. sk_mem_charge(sk, delta);
  3673. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3674. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3675. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3676. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3677. return true;
  3678. }
  3679. /* This one checks to see if we can put data from the
  3680. * out_of_order queue into the receive_queue.
  3681. */
  3682. static void tcp_ofo_queue(struct sock *sk)
  3683. {
  3684. struct tcp_sock *tp = tcp_sk(sk);
  3685. __u32 dsack_high = tp->rcv_nxt;
  3686. struct sk_buff *skb, *tail;
  3687. bool fragstolen, eaten;
  3688. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3689. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3690. break;
  3691. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3692. __u32 dsack = dsack_high;
  3693. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3694. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3695. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3696. }
  3697. __skb_unlink(skb, &tp->out_of_order_queue);
  3698. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3699. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3700. __kfree_skb(skb);
  3701. continue;
  3702. }
  3703. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3704. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3705. TCP_SKB_CB(skb)->end_seq);
  3706. tail = skb_peek_tail(&sk->sk_receive_queue);
  3707. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3708. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3709. if (!eaten)
  3710. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3711. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3712. tcp_fin(sk);
  3713. if (eaten)
  3714. kfree_skb_partial(skb, fragstolen);
  3715. }
  3716. }
  3717. static bool tcp_prune_ofo_queue(struct sock *sk);
  3718. static int tcp_prune_queue(struct sock *sk);
  3719. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3720. unsigned int size)
  3721. {
  3722. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3723. !sk_rmem_schedule(sk, skb, size)) {
  3724. if (tcp_prune_queue(sk) < 0)
  3725. return -1;
  3726. if (!sk_rmem_schedule(sk, skb, size)) {
  3727. if (!tcp_prune_ofo_queue(sk))
  3728. return -1;
  3729. if (!sk_rmem_schedule(sk, skb, size))
  3730. return -1;
  3731. }
  3732. }
  3733. return 0;
  3734. }
  3735. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3736. {
  3737. struct tcp_sock *tp = tcp_sk(sk);
  3738. struct sk_buff *skb1;
  3739. u32 seq, end_seq;
  3740. tcp_ecn_check_ce(tp, skb);
  3741. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3742. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3743. __kfree_skb(skb);
  3744. return;
  3745. }
  3746. /* Disable header prediction. */
  3747. tp->pred_flags = 0;
  3748. inet_csk_schedule_ack(sk);
  3749. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3750. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3751. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3752. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3753. if (!skb1) {
  3754. /* Initial out of order segment, build 1 SACK. */
  3755. if (tcp_is_sack(tp)) {
  3756. tp->rx_opt.num_sacks = 1;
  3757. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3758. tp->selective_acks[0].end_seq =
  3759. TCP_SKB_CB(skb)->end_seq;
  3760. }
  3761. __skb_queue_head(&tp->out_of_order_queue, skb);
  3762. goto end;
  3763. }
  3764. seq = TCP_SKB_CB(skb)->seq;
  3765. end_seq = TCP_SKB_CB(skb)->end_seq;
  3766. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3767. bool fragstolen;
  3768. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3769. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3770. } else {
  3771. tcp_grow_window(sk, skb);
  3772. kfree_skb_partial(skb, fragstolen);
  3773. skb = NULL;
  3774. }
  3775. if (!tp->rx_opt.num_sacks ||
  3776. tp->selective_acks[0].end_seq != seq)
  3777. goto add_sack;
  3778. /* Common case: data arrive in order after hole. */
  3779. tp->selective_acks[0].end_seq = end_seq;
  3780. goto end;
  3781. }
  3782. /* Find place to insert this segment. */
  3783. while (1) {
  3784. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3785. break;
  3786. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3787. skb1 = NULL;
  3788. break;
  3789. }
  3790. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3791. }
  3792. /* Do skb overlap to previous one? */
  3793. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3794. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3795. /* All the bits are present. Drop. */
  3796. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3797. __kfree_skb(skb);
  3798. skb = NULL;
  3799. tcp_dsack_set(sk, seq, end_seq);
  3800. goto add_sack;
  3801. }
  3802. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3803. /* Partial overlap. */
  3804. tcp_dsack_set(sk, seq,
  3805. TCP_SKB_CB(skb1)->end_seq);
  3806. } else {
  3807. if (skb_queue_is_first(&tp->out_of_order_queue,
  3808. skb1))
  3809. skb1 = NULL;
  3810. else
  3811. skb1 = skb_queue_prev(
  3812. &tp->out_of_order_queue,
  3813. skb1);
  3814. }
  3815. }
  3816. if (!skb1)
  3817. __skb_queue_head(&tp->out_of_order_queue, skb);
  3818. else
  3819. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3820. /* And clean segments covered by new one as whole. */
  3821. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3822. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3823. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3824. break;
  3825. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3826. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3827. end_seq);
  3828. break;
  3829. }
  3830. __skb_unlink(skb1, &tp->out_of_order_queue);
  3831. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3832. TCP_SKB_CB(skb1)->end_seq);
  3833. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3834. __kfree_skb(skb1);
  3835. }
  3836. add_sack:
  3837. if (tcp_is_sack(tp))
  3838. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3839. end:
  3840. if (skb) {
  3841. tcp_grow_window(sk, skb);
  3842. skb_set_owner_r(skb, sk);
  3843. }
  3844. }
  3845. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3846. bool *fragstolen)
  3847. {
  3848. int eaten;
  3849. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3850. __skb_pull(skb, hdrlen);
  3851. eaten = (tail &&
  3852. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3853. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3854. if (!eaten) {
  3855. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3856. skb_set_owner_r(skb, sk);
  3857. }
  3858. return eaten;
  3859. }
  3860. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3861. {
  3862. struct sk_buff *skb;
  3863. bool fragstolen;
  3864. if (size == 0)
  3865. return 0;
  3866. skb = alloc_skb(size, sk->sk_allocation);
  3867. if (!skb)
  3868. goto err;
  3869. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3870. goto err_free;
  3871. if (memcpy_from_msg(skb_put(skb, size), msg, size))
  3872. goto err_free;
  3873. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3874. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3875. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3876. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3877. WARN_ON_ONCE(fragstolen); /* should not happen */
  3878. __kfree_skb(skb);
  3879. }
  3880. return size;
  3881. err_free:
  3882. kfree_skb(skb);
  3883. err:
  3884. return -ENOMEM;
  3885. }
  3886. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3887. {
  3888. struct tcp_sock *tp = tcp_sk(sk);
  3889. int eaten = -1;
  3890. bool fragstolen = false;
  3891. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3892. goto drop;
  3893. skb_dst_drop(skb);
  3894. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3895. tcp_ecn_accept_cwr(tp, skb);
  3896. tp->rx_opt.dsack = 0;
  3897. /* Queue data for delivery to the user.
  3898. * Packets in sequence go to the receive queue.
  3899. * Out of sequence packets to the out_of_order_queue.
  3900. */
  3901. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3902. if (tcp_receive_window(tp) == 0)
  3903. goto out_of_window;
  3904. /* Ok. In sequence. In window. */
  3905. if (tp->ucopy.task == current &&
  3906. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3907. sock_owned_by_user(sk) && !tp->urg_data) {
  3908. int chunk = min_t(unsigned int, skb->len,
  3909. tp->ucopy.len);
  3910. __set_current_state(TASK_RUNNING);
  3911. local_bh_enable();
  3912. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  3913. tp->ucopy.len -= chunk;
  3914. tp->copied_seq += chunk;
  3915. eaten = (chunk == skb->len);
  3916. tcp_rcv_space_adjust(sk);
  3917. }
  3918. local_bh_disable();
  3919. }
  3920. if (eaten <= 0) {
  3921. queue_and_out:
  3922. if (eaten < 0) {
  3923. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  3924. sk_forced_mem_schedule(sk, skb->truesize);
  3925. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3926. goto drop;
  3927. }
  3928. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3929. }
  3930. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3931. if (skb->len)
  3932. tcp_event_data_recv(sk, skb);
  3933. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3934. tcp_fin(sk);
  3935. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3936. tcp_ofo_queue(sk);
  3937. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3938. * gap in queue is filled.
  3939. */
  3940. if (skb_queue_empty(&tp->out_of_order_queue))
  3941. inet_csk(sk)->icsk_ack.pingpong = 0;
  3942. }
  3943. if (tp->rx_opt.num_sacks)
  3944. tcp_sack_remove(tp);
  3945. tcp_fast_path_check(sk);
  3946. if (eaten > 0)
  3947. kfree_skb_partial(skb, fragstolen);
  3948. if (!sock_flag(sk, SOCK_DEAD))
  3949. sk->sk_data_ready(sk);
  3950. return;
  3951. }
  3952. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3953. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3954. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3955. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3956. out_of_window:
  3957. tcp_enter_quickack_mode(sk);
  3958. inet_csk_schedule_ack(sk);
  3959. drop:
  3960. __kfree_skb(skb);
  3961. return;
  3962. }
  3963. /* Out of window. F.e. zero window probe. */
  3964. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3965. goto out_of_window;
  3966. tcp_enter_quickack_mode(sk);
  3967. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3968. /* Partial packet, seq < rcv_next < end_seq */
  3969. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3970. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3971. TCP_SKB_CB(skb)->end_seq);
  3972. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3973. /* If window is closed, drop tail of packet. But after
  3974. * remembering D-SACK for its head made in previous line.
  3975. */
  3976. if (!tcp_receive_window(tp))
  3977. goto out_of_window;
  3978. goto queue_and_out;
  3979. }
  3980. tcp_data_queue_ofo(sk, skb);
  3981. }
  3982. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3983. struct sk_buff_head *list)
  3984. {
  3985. struct sk_buff *next = NULL;
  3986. if (!skb_queue_is_last(list, skb))
  3987. next = skb_queue_next(list, skb);
  3988. __skb_unlink(skb, list);
  3989. __kfree_skb(skb);
  3990. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3991. return next;
  3992. }
  3993. /* Collapse contiguous sequence of skbs head..tail with
  3994. * sequence numbers start..end.
  3995. *
  3996. * If tail is NULL, this means until the end of the list.
  3997. *
  3998. * Segments with FIN/SYN are not collapsed (only because this
  3999. * simplifies code)
  4000. */
  4001. static void
  4002. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4003. struct sk_buff *head, struct sk_buff *tail,
  4004. u32 start, u32 end)
  4005. {
  4006. struct sk_buff *skb, *n;
  4007. bool end_of_skbs;
  4008. /* First, check that queue is collapsible and find
  4009. * the point where collapsing can be useful. */
  4010. skb = head;
  4011. restart:
  4012. end_of_skbs = true;
  4013. skb_queue_walk_from_safe(list, skb, n) {
  4014. if (skb == tail)
  4015. break;
  4016. /* No new bits? It is possible on ofo queue. */
  4017. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4018. skb = tcp_collapse_one(sk, skb, list);
  4019. if (!skb)
  4020. break;
  4021. goto restart;
  4022. }
  4023. /* The first skb to collapse is:
  4024. * - not SYN/FIN and
  4025. * - bloated or contains data before "start" or
  4026. * overlaps to the next one.
  4027. */
  4028. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4029. (tcp_win_from_space(skb->truesize) > skb->len ||
  4030. before(TCP_SKB_CB(skb)->seq, start))) {
  4031. end_of_skbs = false;
  4032. break;
  4033. }
  4034. if (!skb_queue_is_last(list, skb)) {
  4035. struct sk_buff *next = skb_queue_next(list, skb);
  4036. if (next != tail &&
  4037. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4038. end_of_skbs = false;
  4039. break;
  4040. }
  4041. }
  4042. /* Decided to skip this, advance start seq. */
  4043. start = TCP_SKB_CB(skb)->end_seq;
  4044. }
  4045. if (end_of_skbs ||
  4046. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4047. return;
  4048. while (before(start, end)) {
  4049. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4050. struct sk_buff *nskb;
  4051. nskb = alloc_skb(copy, GFP_ATOMIC);
  4052. if (!nskb)
  4053. return;
  4054. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4055. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4056. __skb_queue_before(list, skb, nskb);
  4057. skb_set_owner_r(nskb, sk);
  4058. /* Copy data, releasing collapsed skbs. */
  4059. while (copy > 0) {
  4060. int offset = start - TCP_SKB_CB(skb)->seq;
  4061. int size = TCP_SKB_CB(skb)->end_seq - start;
  4062. BUG_ON(offset < 0);
  4063. if (size > 0) {
  4064. size = min(copy, size);
  4065. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4066. BUG();
  4067. TCP_SKB_CB(nskb)->end_seq += size;
  4068. copy -= size;
  4069. start += size;
  4070. }
  4071. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4072. skb = tcp_collapse_one(sk, skb, list);
  4073. if (!skb ||
  4074. skb == tail ||
  4075. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4076. return;
  4077. }
  4078. }
  4079. }
  4080. }
  4081. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4082. * and tcp_collapse() them until all the queue is collapsed.
  4083. */
  4084. static void tcp_collapse_ofo_queue(struct sock *sk)
  4085. {
  4086. struct tcp_sock *tp = tcp_sk(sk);
  4087. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4088. struct sk_buff *head;
  4089. u32 start, end;
  4090. if (!skb)
  4091. return;
  4092. start = TCP_SKB_CB(skb)->seq;
  4093. end = TCP_SKB_CB(skb)->end_seq;
  4094. head = skb;
  4095. for (;;) {
  4096. struct sk_buff *next = NULL;
  4097. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4098. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4099. skb = next;
  4100. /* Segment is terminated when we see gap or when
  4101. * we are at the end of all the queue. */
  4102. if (!skb ||
  4103. after(TCP_SKB_CB(skb)->seq, end) ||
  4104. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4105. tcp_collapse(sk, &tp->out_of_order_queue,
  4106. head, skb, start, end);
  4107. head = skb;
  4108. if (!skb)
  4109. break;
  4110. /* Start new segment */
  4111. start = TCP_SKB_CB(skb)->seq;
  4112. end = TCP_SKB_CB(skb)->end_seq;
  4113. } else {
  4114. if (before(TCP_SKB_CB(skb)->seq, start))
  4115. start = TCP_SKB_CB(skb)->seq;
  4116. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4117. end = TCP_SKB_CB(skb)->end_seq;
  4118. }
  4119. }
  4120. }
  4121. /*
  4122. * Purge the out-of-order queue.
  4123. * Return true if queue was pruned.
  4124. */
  4125. static bool tcp_prune_ofo_queue(struct sock *sk)
  4126. {
  4127. struct tcp_sock *tp = tcp_sk(sk);
  4128. bool res = false;
  4129. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4130. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4131. __skb_queue_purge(&tp->out_of_order_queue);
  4132. /* Reset SACK state. A conforming SACK implementation will
  4133. * do the same at a timeout based retransmit. When a connection
  4134. * is in a sad state like this, we care only about integrity
  4135. * of the connection not performance.
  4136. */
  4137. if (tp->rx_opt.sack_ok)
  4138. tcp_sack_reset(&tp->rx_opt);
  4139. sk_mem_reclaim(sk);
  4140. res = true;
  4141. }
  4142. return res;
  4143. }
  4144. /* Reduce allocated memory if we can, trying to get
  4145. * the socket within its memory limits again.
  4146. *
  4147. * Return less than zero if we should start dropping frames
  4148. * until the socket owning process reads some of the data
  4149. * to stabilize the situation.
  4150. */
  4151. static int tcp_prune_queue(struct sock *sk)
  4152. {
  4153. struct tcp_sock *tp = tcp_sk(sk);
  4154. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4155. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4156. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4157. tcp_clamp_window(sk);
  4158. else if (tcp_under_memory_pressure(sk))
  4159. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4160. tcp_collapse_ofo_queue(sk);
  4161. if (!skb_queue_empty(&sk->sk_receive_queue))
  4162. tcp_collapse(sk, &sk->sk_receive_queue,
  4163. skb_peek(&sk->sk_receive_queue),
  4164. NULL,
  4165. tp->copied_seq, tp->rcv_nxt);
  4166. sk_mem_reclaim(sk);
  4167. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4168. return 0;
  4169. /* Collapsing did not help, destructive actions follow.
  4170. * This must not ever occur. */
  4171. tcp_prune_ofo_queue(sk);
  4172. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4173. return 0;
  4174. /* If we are really being abused, tell the caller to silently
  4175. * drop receive data on the floor. It will get retransmitted
  4176. * and hopefully then we'll have sufficient space.
  4177. */
  4178. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4179. /* Massive buffer overcommit. */
  4180. tp->pred_flags = 0;
  4181. return -1;
  4182. }
  4183. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4184. {
  4185. const struct tcp_sock *tp = tcp_sk(sk);
  4186. /* If the user specified a specific send buffer setting, do
  4187. * not modify it.
  4188. */
  4189. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4190. return false;
  4191. /* If we are under global TCP memory pressure, do not expand. */
  4192. if (tcp_under_memory_pressure(sk))
  4193. return false;
  4194. /* If we are under soft global TCP memory pressure, do not expand. */
  4195. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4196. return false;
  4197. /* If we filled the congestion window, do not expand. */
  4198. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4199. return false;
  4200. return true;
  4201. }
  4202. /* When incoming ACK allowed to free some skb from write_queue,
  4203. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4204. * on the exit from tcp input handler.
  4205. *
  4206. * PROBLEM: sndbuf expansion does not work well with largesend.
  4207. */
  4208. static void tcp_new_space(struct sock *sk)
  4209. {
  4210. struct tcp_sock *tp = tcp_sk(sk);
  4211. if (tcp_should_expand_sndbuf(sk)) {
  4212. tcp_sndbuf_expand(sk);
  4213. tp->snd_cwnd_stamp = tcp_time_stamp;
  4214. }
  4215. sk->sk_write_space(sk);
  4216. }
  4217. static void tcp_check_space(struct sock *sk)
  4218. {
  4219. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4220. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4221. /* pairs with tcp_poll() */
  4222. smp_mb__after_atomic();
  4223. if (sk->sk_socket &&
  4224. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4225. tcp_new_space(sk);
  4226. }
  4227. }
  4228. static inline void tcp_data_snd_check(struct sock *sk)
  4229. {
  4230. tcp_push_pending_frames(sk);
  4231. tcp_check_space(sk);
  4232. }
  4233. /*
  4234. * Check if sending an ack is needed.
  4235. */
  4236. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4237. {
  4238. struct tcp_sock *tp = tcp_sk(sk);
  4239. /* More than one full frame received... */
  4240. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4241. /* ... and right edge of window advances far enough.
  4242. * (tcp_recvmsg() will send ACK otherwise). Or...
  4243. */
  4244. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4245. /* We ACK each frame or... */
  4246. tcp_in_quickack_mode(sk) ||
  4247. /* We have out of order data. */
  4248. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4249. /* Then ack it now */
  4250. tcp_send_ack(sk);
  4251. } else {
  4252. /* Else, send delayed ack. */
  4253. tcp_send_delayed_ack(sk);
  4254. }
  4255. }
  4256. static inline void tcp_ack_snd_check(struct sock *sk)
  4257. {
  4258. if (!inet_csk_ack_scheduled(sk)) {
  4259. /* We sent a data segment already. */
  4260. return;
  4261. }
  4262. __tcp_ack_snd_check(sk, 1);
  4263. }
  4264. /*
  4265. * This routine is only called when we have urgent data
  4266. * signaled. Its the 'slow' part of tcp_urg. It could be
  4267. * moved inline now as tcp_urg is only called from one
  4268. * place. We handle URGent data wrong. We have to - as
  4269. * BSD still doesn't use the correction from RFC961.
  4270. * For 1003.1g we should support a new option TCP_STDURG to permit
  4271. * either form (or just set the sysctl tcp_stdurg).
  4272. */
  4273. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4274. {
  4275. struct tcp_sock *tp = tcp_sk(sk);
  4276. u32 ptr = ntohs(th->urg_ptr);
  4277. if (ptr && !sysctl_tcp_stdurg)
  4278. ptr--;
  4279. ptr += ntohl(th->seq);
  4280. /* Ignore urgent data that we've already seen and read. */
  4281. if (after(tp->copied_seq, ptr))
  4282. return;
  4283. /* Do not replay urg ptr.
  4284. *
  4285. * NOTE: interesting situation not covered by specs.
  4286. * Misbehaving sender may send urg ptr, pointing to segment,
  4287. * which we already have in ofo queue. We are not able to fetch
  4288. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4289. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4290. * situations. But it is worth to think about possibility of some
  4291. * DoSes using some hypothetical application level deadlock.
  4292. */
  4293. if (before(ptr, tp->rcv_nxt))
  4294. return;
  4295. /* Do we already have a newer (or duplicate) urgent pointer? */
  4296. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4297. return;
  4298. /* Tell the world about our new urgent pointer. */
  4299. sk_send_sigurg(sk);
  4300. /* We may be adding urgent data when the last byte read was
  4301. * urgent. To do this requires some care. We cannot just ignore
  4302. * tp->copied_seq since we would read the last urgent byte again
  4303. * as data, nor can we alter copied_seq until this data arrives
  4304. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4305. *
  4306. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4307. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4308. * and expect that both A and B disappear from stream. This is _wrong_.
  4309. * Though this happens in BSD with high probability, this is occasional.
  4310. * Any application relying on this is buggy. Note also, that fix "works"
  4311. * only in this artificial test. Insert some normal data between A and B and we will
  4312. * decline of BSD again. Verdict: it is better to remove to trap
  4313. * buggy users.
  4314. */
  4315. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4316. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4317. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4318. tp->copied_seq++;
  4319. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4320. __skb_unlink(skb, &sk->sk_receive_queue);
  4321. __kfree_skb(skb);
  4322. }
  4323. }
  4324. tp->urg_data = TCP_URG_NOTYET;
  4325. tp->urg_seq = ptr;
  4326. /* Disable header prediction. */
  4327. tp->pred_flags = 0;
  4328. }
  4329. /* This is the 'fast' part of urgent handling. */
  4330. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4331. {
  4332. struct tcp_sock *tp = tcp_sk(sk);
  4333. /* Check if we get a new urgent pointer - normally not. */
  4334. if (th->urg)
  4335. tcp_check_urg(sk, th);
  4336. /* Do we wait for any urgent data? - normally not... */
  4337. if (tp->urg_data == TCP_URG_NOTYET) {
  4338. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4339. th->syn;
  4340. /* Is the urgent pointer pointing into this packet? */
  4341. if (ptr < skb->len) {
  4342. u8 tmp;
  4343. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4344. BUG();
  4345. tp->urg_data = TCP_URG_VALID | tmp;
  4346. if (!sock_flag(sk, SOCK_DEAD))
  4347. sk->sk_data_ready(sk);
  4348. }
  4349. }
  4350. }
  4351. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4352. {
  4353. struct tcp_sock *tp = tcp_sk(sk);
  4354. int chunk = skb->len - hlen;
  4355. int err;
  4356. local_bh_enable();
  4357. if (skb_csum_unnecessary(skb))
  4358. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4359. else
  4360. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4361. if (!err) {
  4362. tp->ucopy.len -= chunk;
  4363. tp->copied_seq += chunk;
  4364. tcp_rcv_space_adjust(sk);
  4365. }
  4366. local_bh_disable();
  4367. return err;
  4368. }
  4369. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4370. struct sk_buff *skb)
  4371. {
  4372. __sum16 result;
  4373. if (sock_owned_by_user(sk)) {
  4374. local_bh_enable();
  4375. result = __tcp_checksum_complete(skb);
  4376. local_bh_disable();
  4377. } else {
  4378. result = __tcp_checksum_complete(skb);
  4379. }
  4380. return result;
  4381. }
  4382. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4383. struct sk_buff *skb)
  4384. {
  4385. return !skb_csum_unnecessary(skb) &&
  4386. __tcp_checksum_complete_user(sk, skb);
  4387. }
  4388. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4389. * play significant role here.
  4390. */
  4391. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4392. const struct tcphdr *th, int syn_inerr)
  4393. {
  4394. struct tcp_sock *tp = tcp_sk(sk);
  4395. /* RFC1323: H1. Apply PAWS check first. */
  4396. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4397. tcp_paws_discard(sk, skb)) {
  4398. if (!th->rst) {
  4399. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4400. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4401. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4402. &tp->last_oow_ack_time))
  4403. tcp_send_dupack(sk, skb);
  4404. goto discard;
  4405. }
  4406. /* Reset is accepted even if it did not pass PAWS. */
  4407. }
  4408. /* Step 1: check sequence number */
  4409. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4410. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4411. * (RST) segments are validated by checking their SEQ-fields."
  4412. * And page 69: "If an incoming segment is not acceptable,
  4413. * an acknowledgment should be sent in reply (unless the RST
  4414. * bit is set, if so drop the segment and return)".
  4415. */
  4416. if (!th->rst) {
  4417. if (th->syn)
  4418. goto syn_challenge;
  4419. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4420. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4421. &tp->last_oow_ack_time))
  4422. tcp_send_dupack(sk, skb);
  4423. }
  4424. goto discard;
  4425. }
  4426. /* Step 2: check RST bit */
  4427. if (th->rst) {
  4428. /* RFC 5961 3.2 :
  4429. * If sequence number exactly matches RCV.NXT, then
  4430. * RESET the connection
  4431. * else
  4432. * Send a challenge ACK
  4433. */
  4434. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4435. tcp_reset(sk);
  4436. else
  4437. tcp_send_challenge_ack(sk, skb);
  4438. goto discard;
  4439. }
  4440. /* step 3: check security and precedence [ignored] */
  4441. /* step 4: Check for a SYN
  4442. * RFC 5961 4.2 : Send a challenge ack
  4443. */
  4444. if (th->syn) {
  4445. syn_challenge:
  4446. if (syn_inerr)
  4447. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4448. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4449. tcp_send_challenge_ack(sk, skb);
  4450. goto discard;
  4451. }
  4452. return true;
  4453. discard:
  4454. __kfree_skb(skb);
  4455. return false;
  4456. }
  4457. /*
  4458. * TCP receive function for the ESTABLISHED state.
  4459. *
  4460. * It is split into a fast path and a slow path. The fast path is
  4461. * disabled when:
  4462. * - A zero window was announced from us - zero window probing
  4463. * is only handled properly in the slow path.
  4464. * - Out of order segments arrived.
  4465. * - Urgent data is expected.
  4466. * - There is no buffer space left
  4467. * - Unexpected TCP flags/window values/header lengths are received
  4468. * (detected by checking the TCP header against pred_flags)
  4469. * - Data is sent in both directions. Fast path only supports pure senders
  4470. * or pure receivers (this means either the sequence number or the ack
  4471. * value must stay constant)
  4472. * - Unexpected TCP option.
  4473. *
  4474. * When these conditions are not satisfied it drops into a standard
  4475. * receive procedure patterned after RFC793 to handle all cases.
  4476. * The first three cases are guaranteed by proper pred_flags setting,
  4477. * the rest is checked inline. Fast processing is turned on in
  4478. * tcp_data_queue when everything is OK.
  4479. */
  4480. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4481. const struct tcphdr *th, unsigned int len)
  4482. {
  4483. struct tcp_sock *tp = tcp_sk(sk);
  4484. if (unlikely(!sk->sk_rx_dst))
  4485. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4486. /*
  4487. * Header prediction.
  4488. * The code loosely follows the one in the famous
  4489. * "30 instruction TCP receive" Van Jacobson mail.
  4490. *
  4491. * Van's trick is to deposit buffers into socket queue
  4492. * on a device interrupt, to call tcp_recv function
  4493. * on the receive process context and checksum and copy
  4494. * the buffer to user space. smart...
  4495. *
  4496. * Our current scheme is not silly either but we take the
  4497. * extra cost of the net_bh soft interrupt processing...
  4498. * We do checksum and copy also but from device to kernel.
  4499. */
  4500. tp->rx_opt.saw_tstamp = 0;
  4501. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4502. * if header_prediction is to be made
  4503. * 'S' will always be tp->tcp_header_len >> 2
  4504. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4505. * turn it off (when there are holes in the receive
  4506. * space for instance)
  4507. * PSH flag is ignored.
  4508. */
  4509. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4510. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4511. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4512. int tcp_header_len = tp->tcp_header_len;
  4513. /* Timestamp header prediction: tcp_header_len
  4514. * is automatically equal to th->doff*4 due to pred_flags
  4515. * match.
  4516. */
  4517. /* Check timestamp */
  4518. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4519. /* No? Slow path! */
  4520. if (!tcp_parse_aligned_timestamp(tp, th))
  4521. goto slow_path;
  4522. /* If PAWS failed, check it more carefully in slow path */
  4523. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4524. goto slow_path;
  4525. /* DO NOT update ts_recent here, if checksum fails
  4526. * and timestamp was corrupted part, it will result
  4527. * in a hung connection since we will drop all
  4528. * future packets due to the PAWS test.
  4529. */
  4530. }
  4531. if (len <= tcp_header_len) {
  4532. /* Bulk data transfer: sender */
  4533. if (len == tcp_header_len) {
  4534. /* Predicted packet is in window by definition.
  4535. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4536. * Hence, check seq<=rcv_wup reduces to:
  4537. */
  4538. if (tcp_header_len ==
  4539. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4540. tp->rcv_nxt == tp->rcv_wup)
  4541. tcp_store_ts_recent(tp);
  4542. /* We know that such packets are checksummed
  4543. * on entry.
  4544. */
  4545. tcp_ack(sk, skb, 0);
  4546. __kfree_skb(skb);
  4547. tcp_data_snd_check(sk);
  4548. return;
  4549. } else { /* Header too small */
  4550. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4551. goto discard;
  4552. }
  4553. } else {
  4554. int eaten = 0;
  4555. bool fragstolen = false;
  4556. if (tp->ucopy.task == current &&
  4557. tp->copied_seq == tp->rcv_nxt &&
  4558. len - tcp_header_len <= tp->ucopy.len &&
  4559. sock_owned_by_user(sk)) {
  4560. __set_current_state(TASK_RUNNING);
  4561. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4562. /* Predicted packet is in window by definition.
  4563. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4564. * Hence, check seq<=rcv_wup reduces to:
  4565. */
  4566. if (tcp_header_len ==
  4567. (sizeof(struct tcphdr) +
  4568. TCPOLEN_TSTAMP_ALIGNED) &&
  4569. tp->rcv_nxt == tp->rcv_wup)
  4570. tcp_store_ts_recent(tp);
  4571. tcp_rcv_rtt_measure_ts(sk, skb);
  4572. __skb_pull(skb, tcp_header_len);
  4573. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4574. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4575. eaten = 1;
  4576. }
  4577. }
  4578. if (!eaten) {
  4579. if (tcp_checksum_complete_user(sk, skb))
  4580. goto csum_error;
  4581. if ((int)skb->truesize > sk->sk_forward_alloc)
  4582. goto step5;
  4583. /* Predicted packet is in window by definition.
  4584. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4585. * Hence, check seq<=rcv_wup reduces to:
  4586. */
  4587. if (tcp_header_len ==
  4588. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4589. tp->rcv_nxt == tp->rcv_wup)
  4590. tcp_store_ts_recent(tp);
  4591. tcp_rcv_rtt_measure_ts(sk, skb);
  4592. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4593. /* Bulk data transfer: receiver */
  4594. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4595. &fragstolen);
  4596. }
  4597. tcp_event_data_recv(sk, skb);
  4598. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4599. /* Well, only one small jumplet in fast path... */
  4600. tcp_ack(sk, skb, FLAG_DATA);
  4601. tcp_data_snd_check(sk);
  4602. if (!inet_csk_ack_scheduled(sk))
  4603. goto no_ack;
  4604. }
  4605. __tcp_ack_snd_check(sk, 0);
  4606. no_ack:
  4607. if (eaten)
  4608. kfree_skb_partial(skb, fragstolen);
  4609. sk->sk_data_ready(sk);
  4610. return;
  4611. }
  4612. }
  4613. slow_path:
  4614. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4615. goto csum_error;
  4616. if (!th->ack && !th->rst && !th->syn)
  4617. goto discard;
  4618. /*
  4619. * Standard slow path.
  4620. */
  4621. if (!tcp_validate_incoming(sk, skb, th, 1))
  4622. return;
  4623. step5:
  4624. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4625. goto discard;
  4626. tcp_rcv_rtt_measure_ts(sk, skb);
  4627. /* Process urgent data. */
  4628. tcp_urg(sk, skb, th);
  4629. /* step 7: process the segment text */
  4630. tcp_data_queue(sk, skb);
  4631. tcp_data_snd_check(sk);
  4632. tcp_ack_snd_check(sk);
  4633. return;
  4634. csum_error:
  4635. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4636. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4637. discard:
  4638. __kfree_skb(skb);
  4639. }
  4640. EXPORT_SYMBOL(tcp_rcv_established);
  4641. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4642. {
  4643. struct tcp_sock *tp = tcp_sk(sk);
  4644. struct inet_connection_sock *icsk = inet_csk(sk);
  4645. tcp_set_state(sk, TCP_ESTABLISHED);
  4646. if (skb) {
  4647. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4648. security_inet_conn_established(sk, skb);
  4649. }
  4650. /* Make sure socket is routed, for correct metrics. */
  4651. icsk->icsk_af_ops->rebuild_header(sk);
  4652. tcp_init_metrics(sk);
  4653. tcp_init_congestion_control(sk);
  4654. /* Prevent spurious tcp_cwnd_restart() on first data
  4655. * packet.
  4656. */
  4657. tp->lsndtime = tcp_time_stamp;
  4658. tcp_init_buffer_space(sk);
  4659. if (sock_flag(sk, SOCK_KEEPOPEN))
  4660. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4661. if (!tp->rx_opt.snd_wscale)
  4662. __tcp_fast_path_on(tp, tp->snd_wnd);
  4663. else
  4664. tp->pred_flags = 0;
  4665. if (!sock_flag(sk, SOCK_DEAD)) {
  4666. sk->sk_state_change(sk);
  4667. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4668. }
  4669. }
  4670. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4671. struct tcp_fastopen_cookie *cookie)
  4672. {
  4673. struct tcp_sock *tp = tcp_sk(sk);
  4674. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4675. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4676. bool syn_drop = false;
  4677. if (mss == tp->rx_opt.user_mss) {
  4678. struct tcp_options_received opt;
  4679. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4680. tcp_clear_options(&opt);
  4681. opt.user_mss = opt.mss_clamp = 0;
  4682. tcp_parse_options(synack, &opt, 0, NULL);
  4683. mss = opt.mss_clamp;
  4684. }
  4685. if (!tp->syn_fastopen) {
  4686. /* Ignore an unsolicited cookie */
  4687. cookie->len = -1;
  4688. } else if (tp->total_retrans) {
  4689. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4690. * acknowledges data. Presumably the remote received only
  4691. * the retransmitted (regular) SYNs: either the original
  4692. * SYN-data or the corresponding SYN-ACK was dropped.
  4693. */
  4694. syn_drop = (cookie->len < 0 && data);
  4695. } else if (cookie->len < 0 && !tp->syn_data) {
  4696. /* We requested a cookie but didn't get it. If we did not use
  4697. * the (old) exp opt format then try so next time (try_exp=1).
  4698. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4699. */
  4700. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4701. }
  4702. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4703. if (data) { /* Retransmit unacked data in SYN */
  4704. tcp_for_write_queue_from(data, sk) {
  4705. if (data == tcp_send_head(sk) ||
  4706. __tcp_retransmit_skb(sk, data))
  4707. break;
  4708. }
  4709. tcp_rearm_rto(sk);
  4710. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4711. return true;
  4712. }
  4713. tp->syn_data_acked = tp->syn_data;
  4714. if (tp->syn_data_acked)
  4715. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
  4716. return false;
  4717. }
  4718. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4719. const struct tcphdr *th, unsigned int len)
  4720. {
  4721. struct inet_connection_sock *icsk = inet_csk(sk);
  4722. struct tcp_sock *tp = tcp_sk(sk);
  4723. struct tcp_fastopen_cookie foc = { .len = -1 };
  4724. int saved_clamp = tp->rx_opt.mss_clamp;
  4725. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4726. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4727. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4728. if (th->ack) {
  4729. /* rfc793:
  4730. * "If the state is SYN-SENT then
  4731. * first check the ACK bit
  4732. * If the ACK bit is set
  4733. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4734. * a reset (unless the RST bit is set, if so drop
  4735. * the segment and return)"
  4736. */
  4737. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4738. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4739. goto reset_and_undo;
  4740. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4741. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4742. tcp_time_stamp)) {
  4743. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4744. goto reset_and_undo;
  4745. }
  4746. /* Now ACK is acceptable.
  4747. *
  4748. * "If the RST bit is set
  4749. * If the ACK was acceptable then signal the user "error:
  4750. * connection reset", drop the segment, enter CLOSED state,
  4751. * delete TCB, and return."
  4752. */
  4753. if (th->rst) {
  4754. tcp_reset(sk);
  4755. goto discard;
  4756. }
  4757. /* rfc793:
  4758. * "fifth, if neither of the SYN or RST bits is set then
  4759. * drop the segment and return."
  4760. *
  4761. * See note below!
  4762. * --ANK(990513)
  4763. */
  4764. if (!th->syn)
  4765. goto discard_and_undo;
  4766. /* rfc793:
  4767. * "If the SYN bit is on ...
  4768. * are acceptable then ...
  4769. * (our SYN has been ACKed), change the connection
  4770. * state to ESTABLISHED..."
  4771. */
  4772. tcp_ecn_rcv_synack(tp, th);
  4773. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4774. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4775. /* Ok.. it's good. Set up sequence numbers and
  4776. * move to established.
  4777. */
  4778. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4779. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4780. /* RFC1323: The window in SYN & SYN/ACK segments is
  4781. * never scaled.
  4782. */
  4783. tp->snd_wnd = ntohs(th->window);
  4784. if (!tp->rx_opt.wscale_ok) {
  4785. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4786. tp->window_clamp = min(tp->window_clamp, 65535U);
  4787. }
  4788. if (tp->rx_opt.saw_tstamp) {
  4789. tp->rx_opt.tstamp_ok = 1;
  4790. tp->tcp_header_len =
  4791. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4792. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4793. tcp_store_ts_recent(tp);
  4794. } else {
  4795. tp->tcp_header_len = sizeof(struct tcphdr);
  4796. }
  4797. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4798. tcp_enable_fack(tp);
  4799. tcp_mtup_init(sk);
  4800. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4801. tcp_initialize_rcv_mss(sk);
  4802. /* Remember, tcp_poll() does not lock socket!
  4803. * Change state from SYN-SENT only after copied_seq
  4804. * is initialized. */
  4805. tp->copied_seq = tp->rcv_nxt;
  4806. smp_mb();
  4807. tcp_finish_connect(sk, skb);
  4808. if ((tp->syn_fastopen || tp->syn_data) &&
  4809. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4810. return -1;
  4811. if (sk->sk_write_pending ||
  4812. icsk->icsk_accept_queue.rskq_defer_accept ||
  4813. icsk->icsk_ack.pingpong) {
  4814. /* Save one ACK. Data will be ready after
  4815. * several ticks, if write_pending is set.
  4816. *
  4817. * It may be deleted, but with this feature tcpdumps
  4818. * look so _wonderfully_ clever, that I was not able
  4819. * to stand against the temptation 8) --ANK
  4820. */
  4821. inet_csk_schedule_ack(sk);
  4822. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4823. tcp_enter_quickack_mode(sk);
  4824. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4825. TCP_DELACK_MAX, TCP_RTO_MAX);
  4826. discard:
  4827. __kfree_skb(skb);
  4828. return 0;
  4829. } else {
  4830. tcp_send_ack(sk);
  4831. }
  4832. return -1;
  4833. }
  4834. /* No ACK in the segment */
  4835. if (th->rst) {
  4836. /* rfc793:
  4837. * "If the RST bit is set
  4838. *
  4839. * Otherwise (no ACK) drop the segment and return."
  4840. */
  4841. goto discard_and_undo;
  4842. }
  4843. /* PAWS check. */
  4844. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4845. tcp_paws_reject(&tp->rx_opt, 0))
  4846. goto discard_and_undo;
  4847. if (th->syn) {
  4848. /* We see SYN without ACK. It is attempt of
  4849. * simultaneous connect with crossed SYNs.
  4850. * Particularly, it can be connect to self.
  4851. */
  4852. tcp_set_state(sk, TCP_SYN_RECV);
  4853. if (tp->rx_opt.saw_tstamp) {
  4854. tp->rx_opt.tstamp_ok = 1;
  4855. tcp_store_ts_recent(tp);
  4856. tp->tcp_header_len =
  4857. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4858. } else {
  4859. tp->tcp_header_len = sizeof(struct tcphdr);
  4860. }
  4861. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4862. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4863. /* RFC1323: The window in SYN & SYN/ACK segments is
  4864. * never scaled.
  4865. */
  4866. tp->snd_wnd = ntohs(th->window);
  4867. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4868. tp->max_window = tp->snd_wnd;
  4869. tcp_ecn_rcv_syn(tp, th);
  4870. tcp_mtup_init(sk);
  4871. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4872. tcp_initialize_rcv_mss(sk);
  4873. tcp_send_synack(sk);
  4874. #if 0
  4875. /* Note, we could accept data and URG from this segment.
  4876. * There are no obstacles to make this (except that we must
  4877. * either change tcp_recvmsg() to prevent it from returning data
  4878. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4879. *
  4880. * However, if we ignore data in ACKless segments sometimes,
  4881. * we have no reasons to accept it sometimes.
  4882. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4883. * is not flawless. So, discard packet for sanity.
  4884. * Uncomment this return to process the data.
  4885. */
  4886. return -1;
  4887. #else
  4888. goto discard;
  4889. #endif
  4890. }
  4891. /* "fifth, if neither of the SYN or RST bits is set then
  4892. * drop the segment and return."
  4893. */
  4894. discard_and_undo:
  4895. tcp_clear_options(&tp->rx_opt);
  4896. tp->rx_opt.mss_clamp = saved_clamp;
  4897. goto discard;
  4898. reset_and_undo:
  4899. tcp_clear_options(&tp->rx_opt);
  4900. tp->rx_opt.mss_clamp = saved_clamp;
  4901. return 1;
  4902. }
  4903. /*
  4904. * This function implements the receiving procedure of RFC 793 for
  4905. * all states except ESTABLISHED and TIME_WAIT.
  4906. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4907. * address independent.
  4908. */
  4909. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4910. const struct tcphdr *th, unsigned int len)
  4911. {
  4912. struct tcp_sock *tp = tcp_sk(sk);
  4913. struct inet_connection_sock *icsk = inet_csk(sk);
  4914. struct request_sock *req;
  4915. int queued = 0;
  4916. bool acceptable;
  4917. u32 synack_stamp;
  4918. tp->rx_opt.saw_tstamp = 0;
  4919. switch (sk->sk_state) {
  4920. case TCP_CLOSE:
  4921. goto discard;
  4922. case TCP_LISTEN:
  4923. if (th->ack)
  4924. return 1;
  4925. if (th->rst)
  4926. goto discard;
  4927. if (th->syn) {
  4928. if (th->fin)
  4929. goto discard;
  4930. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4931. return 1;
  4932. /* Now we have several options: In theory there is
  4933. * nothing else in the frame. KA9Q has an option to
  4934. * send data with the syn, BSD accepts data with the
  4935. * syn up to the [to be] advertised window and
  4936. * Solaris 2.1 gives you a protocol error. For now
  4937. * we just ignore it, that fits the spec precisely
  4938. * and avoids incompatibilities. It would be nice in
  4939. * future to drop through and process the data.
  4940. *
  4941. * Now that TTCP is starting to be used we ought to
  4942. * queue this data.
  4943. * But, this leaves one open to an easy denial of
  4944. * service attack, and SYN cookies can't defend
  4945. * against this problem. So, we drop the data
  4946. * in the interest of security over speed unless
  4947. * it's still in use.
  4948. */
  4949. kfree_skb(skb);
  4950. return 0;
  4951. }
  4952. goto discard;
  4953. case TCP_SYN_SENT:
  4954. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4955. if (queued >= 0)
  4956. return queued;
  4957. /* Do step6 onward by hand. */
  4958. tcp_urg(sk, skb, th);
  4959. __kfree_skb(skb);
  4960. tcp_data_snd_check(sk);
  4961. return 0;
  4962. }
  4963. req = tp->fastopen_rsk;
  4964. if (req) {
  4965. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4966. sk->sk_state != TCP_FIN_WAIT1);
  4967. if (!tcp_check_req(sk, skb, req, true))
  4968. goto discard;
  4969. }
  4970. if (!th->ack && !th->rst && !th->syn)
  4971. goto discard;
  4972. if (!tcp_validate_incoming(sk, skb, th, 0))
  4973. return 0;
  4974. /* step 5: check the ACK field */
  4975. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4976. FLAG_UPDATE_TS_RECENT) > 0;
  4977. switch (sk->sk_state) {
  4978. case TCP_SYN_RECV:
  4979. if (!acceptable)
  4980. return 1;
  4981. /* Once we leave TCP_SYN_RECV, we no longer need req
  4982. * so release it.
  4983. */
  4984. if (req) {
  4985. synack_stamp = tcp_rsk(req)->snt_synack;
  4986. tp->total_retrans = req->num_retrans;
  4987. reqsk_fastopen_remove(sk, req, false);
  4988. } else {
  4989. synack_stamp = tp->lsndtime;
  4990. /* Make sure socket is routed, for correct metrics. */
  4991. icsk->icsk_af_ops->rebuild_header(sk);
  4992. tcp_init_congestion_control(sk);
  4993. tcp_mtup_init(sk);
  4994. tp->copied_seq = tp->rcv_nxt;
  4995. tcp_init_buffer_space(sk);
  4996. }
  4997. smp_mb();
  4998. tcp_set_state(sk, TCP_ESTABLISHED);
  4999. sk->sk_state_change(sk);
  5000. /* Note, that this wakeup is only for marginal crossed SYN case.
  5001. * Passively open sockets are not waked up, because
  5002. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5003. */
  5004. if (sk->sk_socket)
  5005. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5006. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5007. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5008. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5009. tcp_synack_rtt_meas(sk, synack_stamp);
  5010. if (tp->rx_opt.tstamp_ok)
  5011. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5012. if (req) {
  5013. /* Re-arm the timer because data may have been sent out.
  5014. * This is similar to the regular data transmission case
  5015. * when new data has just been ack'ed.
  5016. *
  5017. * (TFO) - we could try to be more aggressive and
  5018. * retransmitting any data sooner based on when they
  5019. * are sent out.
  5020. */
  5021. tcp_rearm_rto(sk);
  5022. } else
  5023. tcp_init_metrics(sk);
  5024. tcp_update_pacing_rate(sk);
  5025. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5026. tp->lsndtime = tcp_time_stamp;
  5027. tcp_initialize_rcv_mss(sk);
  5028. tcp_fast_path_on(tp);
  5029. break;
  5030. case TCP_FIN_WAIT1: {
  5031. struct dst_entry *dst;
  5032. int tmo;
  5033. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5034. * Fast Open socket and this is the first acceptable
  5035. * ACK we have received, this would have acknowledged
  5036. * our SYNACK so stop the SYNACK timer.
  5037. */
  5038. if (req) {
  5039. /* Return RST if ack_seq is invalid.
  5040. * Note that RFC793 only says to generate a
  5041. * DUPACK for it but for TCP Fast Open it seems
  5042. * better to treat this case like TCP_SYN_RECV
  5043. * above.
  5044. */
  5045. if (!acceptable)
  5046. return 1;
  5047. /* We no longer need the request sock. */
  5048. reqsk_fastopen_remove(sk, req, false);
  5049. tcp_rearm_rto(sk);
  5050. }
  5051. if (tp->snd_una != tp->write_seq)
  5052. break;
  5053. tcp_set_state(sk, TCP_FIN_WAIT2);
  5054. sk->sk_shutdown |= SEND_SHUTDOWN;
  5055. dst = __sk_dst_get(sk);
  5056. if (dst)
  5057. dst_confirm(dst);
  5058. if (!sock_flag(sk, SOCK_DEAD)) {
  5059. /* Wake up lingering close() */
  5060. sk->sk_state_change(sk);
  5061. break;
  5062. }
  5063. if (tp->linger2 < 0 ||
  5064. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5065. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5066. tcp_done(sk);
  5067. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5068. return 1;
  5069. }
  5070. tmo = tcp_fin_time(sk);
  5071. if (tmo > TCP_TIMEWAIT_LEN) {
  5072. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5073. } else if (th->fin || sock_owned_by_user(sk)) {
  5074. /* Bad case. We could lose such FIN otherwise.
  5075. * It is not a big problem, but it looks confusing
  5076. * and not so rare event. We still can lose it now,
  5077. * if it spins in bh_lock_sock(), but it is really
  5078. * marginal case.
  5079. */
  5080. inet_csk_reset_keepalive_timer(sk, tmo);
  5081. } else {
  5082. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5083. goto discard;
  5084. }
  5085. break;
  5086. }
  5087. case TCP_CLOSING:
  5088. if (tp->snd_una == tp->write_seq) {
  5089. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5090. goto discard;
  5091. }
  5092. break;
  5093. case TCP_LAST_ACK:
  5094. if (tp->snd_una == tp->write_seq) {
  5095. tcp_update_metrics(sk);
  5096. tcp_done(sk);
  5097. goto discard;
  5098. }
  5099. break;
  5100. }
  5101. /* step 6: check the URG bit */
  5102. tcp_urg(sk, skb, th);
  5103. /* step 7: process the segment text */
  5104. switch (sk->sk_state) {
  5105. case TCP_CLOSE_WAIT:
  5106. case TCP_CLOSING:
  5107. case TCP_LAST_ACK:
  5108. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5109. break;
  5110. case TCP_FIN_WAIT1:
  5111. case TCP_FIN_WAIT2:
  5112. /* RFC 793 says to queue data in these states,
  5113. * RFC 1122 says we MUST send a reset.
  5114. * BSD 4.4 also does reset.
  5115. */
  5116. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5117. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5118. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5119. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5120. tcp_reset(sk);
  5121. return 1;
  5122. }
  5123. }
  5124. /* Fall through */
  5125. case TCP_ESTABLISHED:
  5126. tcp_data_queue(sk, skb);
  5127. queued = 1;
  5128. break;
  5129. }
  5130. /* tcp_data could move socket to TIME-WAIT */
  5131. if (sk->sk_state != TCP_CLOSE) {
  5132. tcp_data_snd_check(sk);
  5133. tcp_ack_snd_check(sk);
  5134. }
  5135. if (!queued) {
  5136. discard:
  5137. __kfree_skb(skb);
  5138. }
  5139. return 0;
  5140. }
  5141. EXPORT_SYMBOL(tcp_rcv_state_process);
  5142. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5143. {
  5144. struct inet_request_sock *ireq = inet_rsk(req);
  5145. if (family == AF_INET)
  5146. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5147. &ireq->ir_rmt_addr, port);
  5148. #if IS_ENABLED(CONFIG_IPV6)
  5149. else if (family == AF_INET6)
  5150. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5151. &ireq->ir_v6_rmt_addr, port);
  5152. #endif
  5153. }
  5154. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5155. *
  5156. * If we receive a SYN packet with these bits set, it means a
  5157. * network is playing bad games with TOS bits. In order to
  5158. * avoid possible false congestion notifications, we disable
  5159. * TCP ECN negotiation.
  5160. *
  5161. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5162. * congestion control: Linux DCTCP asserts ECT on all packets,
  5163. * including SYN, which is most optimal solution; however,
  5164. * others, such as FreeBSD do not.
  5165. */
  5166. static void tcp_ecn_create_request(struct request_sock *req,
  5167. const struct sk_buff *skb,
  5168. const struct sock *listen_sk,
  5169. const struct dst_entry *dst)
  5170. {
  5171. const struct tcphdr *th = tcp_hdr(skb);
  5172. const struct net *net = sock_net(listen_sk);
  5173. bool th_ecn = th->ece && th->cwr;
  5174. bool ect, ecn_ok;
  5175. u32 ecn_ok_dst;
  5176. if (!th_ecn)
  5177. return;
  5178. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5179. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5180. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5181. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5182. (ecn_ok_dst & DST_FEATURE_ECN_CA))
  5183. inet_rsk(req)->ecn_ok = 1;
  5184. }
  5185. static void tcp_openreq_init(struct request_sock *req,
  5186. const struct tcp_options_received *rx_opt,
  5187. struct sk_buff *skb, const struct sock *sk)
  5188. {
  5189. struct inet_request_sock *ireq = inet_rsk(req);
  5190. req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5191. req->cookie_ts = 0;
  5192. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5193. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5194. tcp_rsk(req)->snt_synack = tcp_time_stamp;
  5195. tcp_rsk(req)->last_oow_ack_time = 0;
  5196. req->mss = rx_opt->mss_clamp;
  5197. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5198. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5199. ireq->sack_ok = rx_opt->sack_ok;
  5200. ireq->snd_wscale = rx_opt->snd_wscale;
  5201. ireq->wscale_ok = rx_opt->wscale_ok;
  5202. ireq->acked = 0;
  5203. ireq->ecn_ok = 0;
  5204. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5205. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5206. ireq->ir_mark = inet_request_mark(sk, skb);
  5207. }
  5208. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5209. struct sock *sk_listener)
  5210. {
  5211. struct request_sock *req = reqsk_alloc(ops, sk_listener);
  5212. if (req) {
  5213. struct inet_request_sock *ireq = inet_rsk(req);
  5214. kmemcheck_annotate_bitfield(ireq, flags);
  5215. ireq->opt = NULL;
  5216. atomic64_set(&ireq->ir_cookie, 0);
  5217. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5218. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5219. ireq->ireq_family = sk_listener->sk_family;
  5220. }
  5221. return req;
  5222. }
  5223. EXPORT_SYMBOL(inet_reqsk_alloc);
  5224. /*
  5225. * Return true if a syncookie should be sent
  5226. */
  5227. static bool tcp_syn_flood_action(struct sock *sk,
  5228. const struct sk_buff *skb,
  5229. const char *proto)
  5230. {
  5231. const char *msg = "Dropping request";
  5232. bool want_cookie = false;
  5233. struct listen_sock *lopt;
  5234. #ifdef CONFIG_SYN_COOKIES
  5235. if (sysctl_tcp_syncookies) {
  5236. msg = "Sending cookies";
  5237. want_cookie = true;
  5238. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5239. } else
  5240. #endif
  5241. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5242. lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
  5243. if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
  5244. lopt->synflood_warned = 1;
  5245. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5246. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5247. }
  5248. return want_cookie;
  5249. }
  5250. static void tcp_reqsk_record_syn(const struct sock *sk,
  5251. struct request_sock *req,
  5252. const struct sk_buff *skb)
  5253. {
  5254. if (tcp_sk(sk)->save_syn) {
  5255. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5256. u32 *copy;
  5257. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5258. if (copy) {
  5259. copy[0] = len;
  5260. memcpy(&copy[1], skb_network_header(skb), len);
  5261. req->saved_syn = copy;
  5262. }
  5263. }
  5264. }
  5265. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5266. const struct tcp_request_sock_ops *af_ops,
  5267. struct sock *sk, struct sk_buff *skb)
  5268. {
  5269. struct tcp_options_received tmp_opt;
  5270. struct request_sock *req;
  5271. struct tcp_sock *tp = tcp_sk(sk);
  5272. struct dst_entry *dst = NULL;
  5273. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5274. bool want_cookie = false, fastopen;
  5275. struct flowi fl;
  5276. struct tcp_fastopen_cookie foc = { .len = -1 };
  5277. int err;
  5278. /* TW buckets are converted to open requests without
  5279. * limitations, they conserve resources and peer is
  5280. * evidently real one.
  5281. */
  5282. if ((sysctl_tcp_syncookies == 2 ||
  5283. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5284. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5285. if (!want_cookie)
  5286. goto drop;
  5287. }
  5288. /* Accept backlog is full. If we have already queued enough
  5289. * of warm entries in syn queue, drop request. It is better than
  5290. * clogging syn queue with openreqs with exponentially increasing
  5291. * timeout.
  5292. */
  5293. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5294. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5295. goto drop;
  5296. }
  5297. req = inet_reqsk_alloc(rsk_ops, sk);
  5298. if (!req)
  5299. goto drop;
  5300. tcp_rsk(req)->af_specific = af_ops;
  5301. tcp_clear_options(&tmp_opt);
  5302. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5303. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5304. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5305. if (want_cookie && !tmp_opt.saw_tstamp)
  5306. tcp_clear_options(&tmp_opt);
  5307. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5308. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5309. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5310. inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
  5311. af_ops->init_req(req, sk, skb);
  5312. if (security_inet_conn_request(sk, skb, req))
  5313. goto drop_and_free;
  5314. if (!want_cookie && !isn) {
  5315. /* VJ's idea. We save last timestamp seen
  5316. * from the destination in peer table, when entering
  5317. * state TIME-WAIT, and check against it before
  5318. * accepting new connection request.
  5319. *
  5320. * If "isn" is not zero, this request hit alive
  5321. * timewait bucket, so that all the necessary checks
  5322. * are made in the function processing timewait state.
  5323. */
  5324. if (tcp_death_row.sysctl_tw_recycle) {
  5325. bool strict;
  5326. dst = af_ops->route_req(sk, &fl, req, &strict);
  5327. if (dst && strict &&
  5328. !tcp_peer_is_proven(req, dst, true,
  5329. tmp_opt.saw_tstamp)) {
  5330. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5331. goto drop_and_release;
  5332. }
  5333. }
  5334. /* Kill the following clause, if you dislike this way. */
  5335. else if (!sysctl_tcp_syncookies &&
  5336. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5337. (sysctl_max_syn_backlog >> 2)) &&
  5338. !tcp_peer_is_proven(req, dst, false,
  5339. tmp_opt.saw_tstamp)) {
  5340. /* Without syncookies last quarter of
  5341. * backlog is filled with destinations,
  5342. * proven to be alive.
  5343. * It means that we continue to communicate
  5344. * to destinations, already remembered
  5345. * to the moment of synflood.
  5346. */
  5347. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5348. rsk_ops->family);
  5349. goto drop_and_release;
  5350. }
  5351. isn = af_ops->init_seq(skb);
  5352. }
  5353. if (!dst) {
  5354. dst = af_ops->route_req(sk, &fl, req, NULL);
  5355. if (!dst)
  5356. goto drop_and_free;
  5357. }
  5358. tcp_ecn_create_request(req, skb, sk, dst);
  5359. if (want_cookie) {
  5360. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5361. req->cookie_ts = tmp_opt.tstamp_ok;
  5362. if (!tmp_opt.tstamp_ok)
  5363. inet_rsk(req)->ecn_ok = 0;
  5364. }
  5365. tcp_rsk(req)->snt_isn = isn;
  5366. tcp_openreq_init_rwin(req, sk, dst);
  5367. fastopen = !want_cookie &&
  5368. tcp_try_fastopen(sk, skb, req, &foc, dst);
  5369. err = af_ops->send_synack(sk, dst, &fl, req,
  5370. skb_get_queue_mapping(skb), &foc);
  5371. if (!fastopen) {
  5372. if (err || want_cookie)
  5373. goto drop_and_free;
  5374. tcp_rsk(req)->tfo_listener = false;
  5375. af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5376. }
  5377. tcp_reqsk_record_syn(sk, req, skb);
  5378. return 0;
  5379. drop_and_release:
  5380. dst_release(dst);
  5381. drop_and_free:
  5382. reqsk_free(req);
  5383. drop:
  5384. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
  5385. return 0;
  5386. }
  5387. EXPORT_SYMBOL(tcp_conn_request);