tcp_fastopen.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. #include <linux/err.h>
  2. #include <linux/init.h>
  3. #include <linux/kernel.h>
  4. #include <linux/list.h>
  5. #include <linux/tcp.h>
  6. #include <linux/rcupdate.h>
  7. #include <linux/rculist.h>
  8. #include <net/inetpeer.h>
  9. #include <net/tcp.h>
  10. int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
  11. struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
  12. static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
  13. void tcp_fastopen_init_key_once(bool publish)
  14. {
  15. static u8 key[TCP_FASTOPEN_KEY_LENGTH];
  16. /* tcp_fastopen_reset_cipher publishes the new context
  17. * atomically, so we allow this race happening here.
  18. *
  19. * All call sites of tcp_fastopen_cookie_gen also check
  20. * for a valid cookie, so this is an acceptable risk.
  21. */
  22. if (net_get_random_once(key, sizeof(key)) && publish)
  23. tcp_fastopen_reset_cipher(key, sizeof(key));
  24. }
  25. static void tcp_fastopen_ctx_free(struct rcu_head *head)
  26. {
  27. struct tcp_fastopen_context *ctx =
  28. container_of(head, struct tcp_fastopen_context, rcu);
  29. crypto_free_cipher(ctx->tfm);
  30. kfree(ctx);
  31. }
  32. int tcp_fastopen_reset_cipher(void *key, unsigned int len)
  33. {
  34. int err;
  35. struct tcp_fastopen_context *ctx, *octx;
  36. ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  37. if (!ctx)
  38. return -ENOMEM;
  39. ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
  40. if (IS_ERR(ctx->tfm)) {
  41. err = PTR_ERR(ctx->tfm);
  42. error: kfree(ctx);
  43. pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
  44. return err;
  45. }
  46. err = crypto_cipher_setkey(ctx->tfm, key, len);
  47. if (err) {
  48. pr_err("TCP: TFO cipher key error: %d\n", err);
  49. crypto_free_cipher(ctx->tfm);
  50. goto error;
  51. }
  52. memcpy(ctx->key, key, len);
  53. spin_lock(&tcp_fastopen_ctx_lock);
  54. octx = rcu_dereference_protected(tcp_fastopen_ctx,
  55. lockdep_is_held(&tcp_fastopen_ctx_lock));
  56. rcu_assign_pointer(tcp_fastopen_ctx, ctx);
  57. spin_unlock(&tcp_fastopen_ctx_lock);
  58. if (octx)
  59. call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
  60. return err;
  61. }
  62. static bool __tcp_fastopen_cookie_gen(const void *path,
  63. struct tcp_fastopen_cookie *foc)
  64. {
  65. struct tcp_fastopen_context *ctx;
  66. bool ok = false;
  67. rcu_read_lock();
  68. ctx = rcu_dereference(tcp_fastopen_ctx);
  69. if (ctx) {
  70. crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
  71. foc->len = TCP_FASTOPEN_COOKIE_SIZE;
  72. ok = true;
  73. }
  74. rcu_read_unlock();
  75. return ok;
  76. }
  77. /* Generate the fastopen cookie by doing aes128 encryption on both
  78. * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
  79. * addresses. For the longer IPv6 addresses use CBC-MAC.
  80. *
  81. * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
  82. */
  83. static bool tcp_fastopen_cookie_gen(struct request_sock *req,
  84. struct sk_buff *syn,
  85. struct tcp_fastopen_cookie *foc)
  86. {
  87. if (req->rsk_ops->family == AF_INET) {
  88. const struct iphdr *iph = ip_hdr(syn);
  89. __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
  90. return __tcp_fastopen_cookie_gen(path, foc);
  91. }
  92. #if IS_ENABLED(CONFIG_IPV6)
  93. if (req->rsk_ops->family == AF_INET6) {
  94. const struct ipv6hdr *ip6h = ipv6_hdr(syn);
  95. struct tcp_fastopen_cookie tmp;
  96. if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
  97. struct in6_addr *buf = (struct in6_addr *) tmp.val;
  98. int i;
  99. for (i = 0; i < 4; i++)
  100. buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
  101. return __tcp_fastopen_cookie_gen(buf, foc);
  102. }
  103. }
  104. #endif
  105. return false;
  106. }
  107. static bool tcp_fastopen_create_child(struct sock *sk,
  108. struct sk_buff *skb,
  109. struct dst_entry *dst,
  110. struct request_sock *req)
  111. {
  112. struct tcp_sock *tp;
  113. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  114. struct sock *child;
  115. u32 end_seq;
  116. req->num_retrans = 0;
  117. req->num_timeout = 0;
  118. req->sk = NULL;
  119. child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
  120. if (!child)
  121. return false;
  122. spin_lock(&queue->fastopenq->lock);
  123. queue->fastopenq->qlen++;
  124. spin_unlock(&queue->fastopenq->lock);
  125. /* Initialize the child socket. Have to fix some values to take
  126. * into account the child is a Fast Open socket and is created
  127. * only out of the bits carried in the SYN packet.
  128. */
  129. tp = tcp_sk(child);
  130. tp->fastopen_rsk = req;
  131. tcp_rsk(req)->tfo_listener = true;
  132. /* RFC1323: The window in SYN & SYN/ACK segments is never
  133. * scaled. So correct it appropriately.
  134. */
  135. tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
  136. /* Activate the retrans timer so that SYNACK can be retransmitted.
  137. * The request socket is not added to the SYN table of the parent
  138. * because it's been added to the accept queue directly.
  139. */
  140. inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
  141. TCP_TIMEOUT_INIT, TCP_RTO_MAX);
  142. atomic_set(&req->rsk_refcnt, 1);
  143. /* Add the child socket directly into the accept queue */
  144. inet_csk_reqsk_queue_add(sk, req, child);
  145. /* Now finish processing the fastopen child socket. */
  146. inet_csk(child)->icsk_af_ops->rebuild_header(child);
  147. tcp_init_congestion_control(child);
  148. tcp_mtup_init(child);
  149. tcp_init_metrics(child);
  150. tcp_init_buffer_space(child);
  151. /* Queue the data carried in the SYN packet. We need to first
  152. * bump skb's refcnt because the caller will attempt to free it.
  153. * Note that IPv6 might also have used skb_get() trick
  154. * in tcp_v6_conn_request() to keep this SYN around (treq->pktopts)
  155. * So we need to eventually get a clone of the packet,
  156. * before inserting it in sk_receive_queue.
  157. *
  158. * XXX (TFO) - we honor a zero-payload TFO request for now,
  159. * (any reason not to?) but no need to queue the skb since
  160. * there is no data. How about SYN+FIN?
  161. */
  162. end_seq = TCP_SKB_CB(skb)->end_seq;
  163. if (end_seq != TCP_SKB_CB(skb)->seq + 1) {
  164. struct sk_buff *skb2;
  165. if (unlikely(skb_shared(skb)))
  166. skb2 = skb_clone(skb, GFP_ATOMIC);
  167. else
  168. skb2 = skb_get(skb);
  169. if (likely(skb2)) {
  170. skb_dst_drop(skb2);
  171. __skb_pull(skb2, tcp_hdrlen(skb));
  172. skb_set_owner_r(skb2, child);
  173. __skb_queue_tail(&child->sk_receive_queue, skb2);
  174. tp->syn_data_acked = 1;
  175. /* u64_stats_update_begin(&tp->syncp) not needed here,
  176. * as we certainly are not changing upper 32bit value (0)
  177. */
  178. tp->bytes_received = end_seq - TCP_SKB_CB(skb)->seq - 1;
  179. } else {
  180. end_seq = TCP_SKB_CB(skb)->seq + 1;
  181. }
  182. }
  183. tcp_rsk(req)->rcv_nxt = tp->rcv_nxt = end_seq;
  184. sk->sk_data_ready(sk);
  185. bh_unlock_sock(child);
  186. sock_put(child);
  187. WARN_ON(!req->sk);
  188. return true;
  189. }
  190. static bool tcp_fastopen_queue_check(struct sock *sk)
  191. {
  192. struct fastopen_queue *fastopenq;
  193. /* Make sure the listener has enabled fastopen, and we don't
  194. * exceed the max # of pending TFO requests allowed before trying
  195. * to validating the cookie in order to avoid burning CPU cycles
  196. * unnecessarily.
  197. *
  198. * XXX (TFO) - The implication of checking the max_qlen before
  199. * processing a cookie request is that clients can't differentiate
  200. * between qlen overflow causing Fast Open to be disabled
  201. * temporarily vs a server not supporting Fast Open at all.
  202. */
  203. fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
  204. if (!fastopenq || fastopenq->max_qlen == 0)
  205. return false;
  206. if (fastopenq->qlen >= fastopenq->max_qlen) {
  207. struct request_sock *req1;
  208. spin_lock(&fastopenq->lock);
  209. req1 = fastopenq->rskq_rst_head;
  210. if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
  211. spin_unlock(&fastopenq->lock);
  212. NET_INC_STATS_BH(sock_net(sk),
  213. LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
  214. return false;
  215. }
  216. fastopenq->rskq_rst_head = req1->dl_next;
  217. fastopenq->qlen--;
  218. spin_unlock(&fastopenq->lock);
  219. reqsk_put(req1);
  220. }
  221. return true;
  222. }
  223. /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
  224. * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
  225. * cookie request (foc->len == 0).
  226. */
  227. bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
  228. struct request_sock *req,
  229. struct tcp_fastopen_cookie *foc,
  230. struct dst_entry *dst)
  231. {
  232. struct tcp_fastopen_cookie valid_foc = { .len = -1 };
  233. bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
  234. if (foc->len == 0) /* Client requests a cookie */
  235. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
  236. if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
  237. (syn_data || foc->len >= 0) &&
  238. tcp_fastopen_queue_check(sk))) {
  239. foc->len = -1;
  240. return false;
  241. }
  242. if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
  243. goto fastopen;
  244. if (foc->len >= 0 && /* Client presents or requests a cookie */
  245. tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
  246. foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
  247. foc->len == valid_foc.len &&
  248. !memcmp(foc->val, valid_foc.val, foc->len)) {
  249. /* Cookie is valid. Create a (full) child socket to accept
  250. * the data in SYN before returning a SYN-ACK to ack the
  251. * data. If we fail to create the socket, fall back and
  252. * ack the ISN only but includes the same cookie.
  253. *
  254. * Note: Data-less SYN with valid cookie is allowed to send
  255. * data in SYN_RECV state.
  256. */
  257. fastopen:
  258. if (tcp_fastopen_create_child(sk, skb, dst, req)) {
  259. foc->len = -1;
  260. NET_INC_STATS_BH(sock_net(sk),
  261. LINUX_MIB_TCPFASTOPENPASSIVE);
  262. return true;
  263. }
  264. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
  265. } else if (foc->len > 0) /* Client presents an invalid cookie */
  266. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
  267. valid_foc.exp = foc->exp;
  268. *foc = valid_foc;
  269. return false;
  270. }
  271. EXPORT_SYMBOL(tcp_try_fastopen);