ipmr.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <asm/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ip_tunnels.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #include <linux/netconf.h>
  68. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  69. #define CONFIG_IP_PIMSM 1
  70. #endif
  71. struct mr_table {
  72. struct list_head list;
  73. possible_net_t net;
  74. u32 id;
  75. struct sock __rcu *mroute_sk;
  76. struct timer_list ipmr_expire_timer;
  77. struct list_head mfc_unres_queue;
  78. struct list_head mfc_cache_array[MFC_LINES];
  79. struct vif_device vif_table[MAXVIFS];
  80. int maxvif;
  81. atomic_t cache_resolve_queue_len;
  82. bool mroute_do_assert;
  83. bool mroute_do_pim;
  84. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  85. int mroute_reg_vif_num;
  86. #endif
  87. };
  88. struct ipmr_rule {
  89. struct fib_rule common;
  90. };
  91. struct ipmr_result {
  92. struct mr_table *mrt;
  93. };
  94. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  95. * Note that the changes are semaphored via rtnl_lock.
  96. */
  97. static DEFINE_RWLOCK(mrt_lock);
  98. /*
  99. * Multicast router control variables
  100. */
  101. #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
  102. /* Special spinlock for queue of unresolved entries */
  103. static DEFINE_SPINLOCK(mfc_unres_lock);
  104. /* We return to original Alan's scheme. Hash table of resolved
  105. * entries is changed only in process context and protected
  106. * with weak lock mrt_lock. Queue of unresolved entries is protected
  107. * with strong spinlock mfc_unres_lock.
  108. *
  109. * In this case data path is free of exclusive locks at all.
  110. */
  111. static struct kmem_cache *mrt_cachep __read_mostly;
  112. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  113. static void ipmr_free_table(struct mr_table *mrt);
  114. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  115. struct sk_buff *skb, struct mfc_cache *cache,
  116. int local);
  117. static int ipmr_cache_report(struct mr_table *mrt,
  118. struct sk_buff *pkt, vifi_t vifi, int assert);
  119. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  120. struct mfc_cache *c, struct rtmsg *rtm);
  121. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  122. int cmd);
  123. static void mroute_clean_tables(struct mr_table *mrt);
  124. static void ipmr_expire_process(unsigned long arg);
  125. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  126. #define ipmr_for_each_table(mrt, net) \
  127. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  128. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  129. {
  130. struct mr_table *mrt;
  131. ipmr_for_each_table(mrt, net) {
  132. if (mrt->id == id)
  133. return mrt;
  134. }
  135. return NULL;
  136. }
  137. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  138. struct mr_table **mrt)
  139. {
  140. int err;
  141. struct ipmr_result res;
  142. struct fib_lookup_arg arg = {
  143. .result = &res,
  144. .flags = FIB_LOOKUP_NOREF,
  145. };
  146. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  147. flowi4_to_flowi(flp4), 0, &arg);
  148. if (err < 0)
  149. return err;
  150. *mrt = res.mrt;
  151. return 0;
  152. }
  153. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  154. int flags, struct fib_lookup_arg *arg)
  155. {
  156. struct ipmr_result *res = arg->result;
  157. struct mr_table *mrt;
  158. switch (rule->action) {
  159. case FR_ACT_TO_TBL:
  160. break;
  161. case FR_ACT_UNREACHABLE:
  162. return -ENETUNREACH;
  163. case FR_ACT_PROHIBIT:
  164. return -EACCES;
  165. case FR_ACT_BLACKHOLE:
  166. default:
  167. return -EINVAL;
  168. }
  169. mrt = ipmr_get_table(rule->fr_net, rule->table);
  170. if (!mrt)
  171. return -EAGAIN;
  172. res->mrt = mrt;
  173. return 0;
  174. }
  175. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  176. {
  177. return 1;
  178. }
  179. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  180. FRA_GENERIC_POLICY,
  181. };
  182. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  183. struct fib_rule_hdr *frh, struct nlattr **tb)
  184. {
  185. return 0;
  186. }
  187. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  188. struct nlattr **tb)
  189. {
  190. return 1;
  191. }
  192. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  193. struct fib_rule_hdr *frh)
  194. {
  195. frh->dst_len = 0;
  196. frh->src_len = 0;
  197. frh->tos = 0;
  198. return 0;
  199. }
  200. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  201. .family = RTNL_FAMILY_IPMR,
  202. .rule_size = sizeof(struct ipmr_rule),
  203. .addr_size = sizeof(u32),
  204. .action = ipmr_rule_action,
  205. .match = ipmr_rule_match,
  206. .configure = ipmr_rule_configure,
  207. .compare = ipmr_rule_compare,
  208. .fill = ipmr_rule_fill,
  209. .nlgroup = RTNLGRP_IPV4_RULE,
  210. .policy = ipmr_rule_policy,
  211. .owner = THIS_MODULE,
  212. };
  213. static int __net_init ipmr_rules_init(struct net *net)
  214. {
  215. struct fib_rules_ops *ops;
  216. struct mr_table *mrt;
  217. int err;
  218. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  219. if (IS_ERR(ops))
  220. return PTR_ERR(ops);
  221. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  222. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  223. if (!mrt) {
  224. err = -ENOMEM;
  225. goto err1;
  226. }
  227. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  228. if (err < 0)
  229. goto err2;
  230. net->ipv4.mr_rules_ops = ops;
  231. return 0;
  232. err2:
  233. ipmr_free_table(mrt);
  234. err1:
  235. fib_rules_unregister(ops);
  236. return err;
  237. }
  238. static void __net_exit ipmr_rules_exit(struct net *net)
  239. {
  240. struct mr_table *mrt, *next;
  241. rtnl_lock();
  242. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  243. list_del(&mrt->list);
  244. ipmr_free_table(mrt);
  245. }
  246. fib_rules_unregister(net->ipv4.mr_rules_ops);
  247. rtnl_unlock();
  248. }
  249. #else
  250. #define ipmr_for_each_table(mrt, net) \
  251. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  252. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  253. {
  254. return net->ipv4.mrt;
  255. }
  256. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  257. struct mr_table **mrt)
  258. {
  259. *mrt = net->ipv4.mrt;
  260. return 0;
  261. }
  262. static int __net_init ipmr_rules_init(struct net *net)
  263. {
  264. net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  265. return net->ipv4.mrt ? 0 : -ENOMEM;
  266. }
  267. static void __net_exit ipmr_rules_exit(struct net *net)
  268. {
  269. rtnl_lock();
  270. ipmr_free_table(net->ipv4.mrt);
  271. net->ipv4.mrt = NULL;
  272. rtnl_unlock();
  273. }
  274. #endif
  275. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  276. {
  277. struct mr_table *mrt;
  278. unsigned int i;
  279. mrt = ipmr_get_table(net, id);
  280. if (mrt)
  281. return mrt;
  282. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  283. if (!mrt)
  284. return NULL;
  285. write_pnet(&mrt->net, net);
  286. mrt->id = id;
  287. /* Forwarding cache */
  288. for (i = 0; i < MFC_LINES; i++)
  289. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  290. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  291. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  292. (unsigned long)mrt);
  293. #ifdef CONFIG_IP_PIMSM
  294. mrt->mroute_reg_vif_num = -1;
  295. #endif
  296. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  297. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  298. #endif
  299. return mrt;
  300. }
  301. static void ipmr_free_table(struct mr_table *mrt)
  302. {
  303. del_timer_sync(&mrt->ipmr_expire_timer);
  304. mroute_clean_tables(mrt);
  305. kfree(mrt);
  306. }
  307. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  308. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  309. {
  310. struct net *net = dev_net(dev);
  311. dev_close(dev);
  312. dev = __dev_get_by_name(net, "tunl0");
  313. if (dev) {
  314. const struct net_device_ops *ops = dev->netdev_ops;
  315. struct ifreq ifr;
  316. struct ip_tunnel_parm p;
  317. memset(&p, 0, sizeof(p));
  318. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  319. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  320. p.iph.version = 4;
  321. p.iph.ihl = 5;
  322. p.iph.protocol = IPPROTO_IPIP;
  323. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  324. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  325. if (ops->ndo_do_ioctl) {
  326. mm_segment_t oldfs = get_fs();
  327. set_fs(KERNEL_DS);
  328. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  329. set_fs(oldfs);
  330. }
  331. }
  332. }
  333. static
  334. struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  335. {
  336. struct net_device *dev;
  337. dev = __dev_get_by_name(net, "tunl0");
  338. if (dev) {
  339. const struct net_device_ops *ops = dev->netdev_ops;
  340. int err;
  341. struct ifreq ifr;
  342. struct ip_tunnel_parm p;
  343. struct in_device *in_dev;
  344. memset(&p, 0, sizeof(p));
  345. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  346. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  347. p.iph.version = 4;
  348. p.iph.ihl = 5;
  349. p.iph.protocol = IPPROTO_IPIP;
  350. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  351. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  352. if (ops->ndo_do_ioctl) {
  353. mm_segment_t oldfs = get_fs();
  354. set_fs(KERNEL_DS);
  355. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  356. set_fs(oldfs);
  357. } else {
  358. err = -EOPNOTSUPP;
  359. }
  360. dev = NULL;
  361. if (err == 0 &&
  362. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  363. dev->flags |= IFF_MULTICAST;
  364. in_dev = __in_dev_get_rtnl(dev);
  365. if (!in_dev)
  366. goto failure;
  367. ipv4_devconf_setall(in_dev);
  368. neigh_parms_data_state_setall(in_dev->arp_parms);
  369. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  370. if (dev_open(dev))
  371. goto failure;
  372. dev_hold(dev);
  373. }
  374. }
  375. return dev;
  376. failure:
  377. /* allow the register to be completed before unregistering. */
  378. rtnl_unlock();
  379. rtnl_lock();
  380. unregister_netdevice(dev);
  381. return NULL;
  382. }
  383. #ifdef CONFIG_IP_PIMSM
  384. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  385. {
  386. struct net *net = dev_net(dev);
  387. struct mr_table *mrt;
  388. struct flowi4 fl4 = {
  389. .flowi4_oif = dev->ifindex,
  390. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  391. .flowi4_mark = skb->mark,
  392. };
  393. int err;
  394. err = ipmr_fib_lookup(net, &fl4, &mrt);
  395. if (err < 0) {
  396. kfree_skb(skb);
  397. return err;
  398. }
  399. read_lock(&mrt_lock);
  400. dev->stats.tx_bytes += skb->len;
  401. dev->stats.tx_packets++;
  402. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  403. read_unlock(&mrt_lock);
  404. kfree_skb(skb);
  405. return NETDEV_TX_OK;
  406. }
  407. static int reg_vif_get_iflink(const struct net_device *dev)
  408. {
  409. return 0;
  410. }
  411. static const struct net_device_ops reg_vif_netdev_ops = {
  412. .ndo_start_xmit = reg_vif_xmit,
  413. .ndo_get_iflink = reg_vif_get_iflink,
  414. };
  415. static void reg_vif_setup(struct net_device *dev)
  416. {
  417. dev->type = ARPHRD_PIMREG;
  418. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  419. dev->flags = IFF_NOARP;
  420. dev->netdev_ops = &reg_vif_netdev_ops;
  421. dev->destructor = free_netdev;
  422. dev->features |= NETIF_F_NETNS_LOCAL;
  423. }
  424. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  425. {
  426. struct net_device *dev;
  427. struct in_device *in_dev;
  428. char name[IFNAMSIZ];
  429. if (mrt->id == RT_TABLE_DEFAULT)
  430. sprintf(name, "pimreg");
  431. else
  432. sprintf(name, "pimreg%u", mrt->id);
  433. dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
  434. if (!dev)
  435. return NULL;
  436. dev_net_set(dev, net);
  437. if (register_netdevice(dev)) {
  438. free_netdev(dev);
  439. return NULL;
  440. }
  441. rcu_read_lock();
  442. in_dev = __in_dev_get_rcu(dev);
  443. if (!in_dev) {
  444. rcu_read_unlock();
  445. goto failure;
  446. }
  447. ipv4_devconf_setall(in_dev);
  448. neigh_parms_data_state_setall(in_dev->arp_parms);
  449. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  450. rcu_read_unlock();
  451. if (dev_open(dev))
  452. goto failure;
  453. dev_hold(dev);
  454. return dev;
  455. failure:
  456. /* allow the register to be completed before unregistering. */
  457. rtnl_unlock();
  458. rtnl_lock();
  459. unregister_netdevice(dev);
  460. return NULL;
  461. }
  462. #endif
  463. /**
  464. * vif_delete - Delete a VIF entry
  465. * @notify: Set to 1, if the caller is a notifier_call
  466. */
  467. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  468. struct list_head *head)
  469. {
  470. struct vif_device *v;
  471. struct net_device *dev;
  472. struct in_device *in_dev;
  473. if (vifi < 0 || vifi >= mrt->maxvif)
  474. return -EADDRNOTAVAIL;
  475. v = &mrt->vif_table[vifi];
  476. write_lock_bh(&mrt_lock);
  477. dev = v->dev;
  478. v->dev = NULL;
  479. if (!dev) {
  480. write_unlock_bh(&mrt_lock);
  481. return -EADDRNOTAVAIL;
  482. }
  483. #ifdef CONFIG_IP_PIMSM
  484. if (vifi == mrt->mroute_reg_vif_num)
  485. mrt->mroute_reg_vif_num = -1;
  486. #endif
  487. if (vifi + 1 == mrt->maxvif) {
  488. int tmp;
  489. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  490. if (VIF_EXISTS(mrt, tmp))
  491. break;
  492. }
  493. mrt->maxvif = tmp+1;
  494. }
  495. write_unlock_bh(&mrt_lock);
  496. dev_set_allmulti(dev, -1);
  497. in_dev = __in_dev_get_rtnl(dev);
  498. if (in_dev) {
  499. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  500. inet_netconf_notify_devconf(dev_net(dev),
  501. NETCONFA_MC_FORWARDING,
  502. dev->ifindex, &in_dev->cnf);
  503. ip_rt_multicast_event(in_dev);
  504. }
  505. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  506. unregister_netdevice_queue(dev, head);
  507. dev_put(dev);
  508. return 0;
  509. }
  510. static void ipmr_cache_free_rcu(struct rcu_head *head)
  511. {
  512. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  513. kmem_cache_free(mrt_cachep, c);
  514. }
  515. static inline void ipmr_cache_free(struct mfc_cache *c)
  516. {
  517. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  518. }
  519. /* Destroy an unresolved cache entry, killing queued skbs
  520. * and reporting error to netlink readers.
  521. */
  522. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  523. {
  524. struct net *net = read_pnet(&mrt->net);
  525. struct sk_buff *skb;
  526. struct nlmsgerr *e;
  527. atomic_dec(&mrt->cache_resolve_queue_len);
  528. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  529. if (ip_hdr(skb)->version == 0) {
  530. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  531. nlh->nlmsg_type = NLMSG_ERROR;
  532. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  533. skb_trim(skb, nlh->nlmsg_len);
  534. e = nlmsg_data(nlh);
  535. e->error = -ETIMEDOUT;
  536. memset(&e->msg, 0, sizeof(e->msg));
  537. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  538. } else {
  539. kfree_skb(skb);
  540. }
  541. }
  542. ipmr_cache_free(c);
  543. }
  544. /* Timer process for the unresolved queue. */
  545. static void ipmr_expire_process(unsigned long arg)
  546. {
  547. struct mr_table *mrt = (struct mr_table *)arg;
  548. unsigned long now;
  549. unsigned long expires;
  550. struct mfc_cache *c, *next;
  551. if (!spin_trylock(&mfc_unres_lock)) {
  552. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  553. return;
  554. }
  555. if (list_empty(&mrt->mfc_unres_queue))
  556. goto out;
  557. now = jiffies;
  558. expires = 10*HZ;
  559. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  560. if (time_after(c->mfc_un.unres.expires, now)) {
  561. unsigned long interval = c->mfc_un.unres.expires - now;
  562. if (interval < expires)
  563. expires = interval;
  564. continue;
  565. }
  566. list_del(&c->list);
  567. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  568. ipmr_destroy_unres(mrt, c);
  569. }
  570. if (!list_empty(&mrt->mfc_unres_queue))
  571. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  572. out:
  573. spin_unlock(&mfc_unres_lock);
  574. }
  575. /* Fill oifs list. It is called under write locked mrt_lock. */
  576. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  577. unsigned char *ttls)
  578. {
  579. int vifi;
  580. cache->mfc_un.res.minvif = MAXVIFS;
  581. cache->mfc_un.res.maxvif = 0;
  582. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  583. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  584. if (VIF_EXISTS(mrt, vifi) &&
  585. ttls[vifi] && ttls[vifi] < 255) {
  586. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  587. if (cache->mfc_un.res.minvif > vifi)
  588. cache->mfc_un.res.minvif = vifi;
  589. if (cache->mfc_un.res.maxvif <= vifi)
  590. cache->mfc_un.res.maxvif = vifi + 1;
  591. }
  592. }
  593. }
  594. static int vif_add(struct net *net, struct mr_table *mrt,
  595. struct vifctl *vifc, int mrtsock)
  596. {
  597. int vifi = vifc->vifc_vifi;
  598. struct vif_device *v = &mrt->vif_table[vifi];
  599. struct net_device *dev;
  600. struct in_device *in_dev;
  601. int err;
  602. /* Is vif busy ? */
  603. if (VIF_EXISTS(mrt, vifi))
  604. return -EADDRINUSE;
  605. switch (vifc->vifc_flags) {
  606. #ifdef CONFIG_IP_PIMSM
  607. case VIFF_REGISTER:
  608. /*
  609. * Special Purpose VIF in PIM
  610. * All the packets will be sent to the daemon
  611. */
  612. if (mrt->mroute_reg_vif_num >= 0)
  613. return -EADDRINUSE;
  614. dev = ipmr_reg_vif(net, mrt);
  615. if (!dev)
  616. return -ENOBUFS;
  617. err = dev_set_allmulti(dev, 1);
  618. if (err) {
  619. unregister_netdevice(dev);
  620. dev_put(dev);
  621. return err;
  622. }
  623. break;
  624. #endif
  625. case VIFF_TUNNEL:
  626. dev = ipmr_new_tunnel(net, vifc);
  627. if (!dev)
  628. return -ENOBUFS;
  629. err = dev_set_allmulti(dev, 1);
  630. if (err) {
  631. ipmr_del_tunnel(dev, vifc);
  632. dev_put(dev);
  633. return err;
  634. }
  635. break;
  636. case VIFF_USE_IFINDEX:
  637. case 0:
  638. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  639. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  640. if (dev && !__in_dev_get_rtnl(dev)) {
  641. dev_put(dev);
  642. return -EADDRNOTAVAIL;
  643. }
  644. } else {
  645. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  646. }
  647. if (!dev)
  648. return -EADDRNOTAVAIL;
  649. err = dev_set_allmulti(dev, 1);
  650. if (err) {
  651. dev_put(dev);
  652. return err;
  653. }
  654. break;
  655. default:
  656. return -EINVAL;
  657. }
  658. in_dev = __in_dev_get_rtnl(dev);
  659. if (!in_dev) {
  660. dev_put(dev);
  661. return -EADDRNOTAVAIL;
  662. }
  663. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  664. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
  665. &in_dev->cnf);
  666. ip_rt_multicast_event(in_dev);
  667. /* Fill in the VIF structures */
  668. v->rate_limit = vifc->vifc_rate_limit;
  669. v->local = vifc->vifc_lcl_addr.s_addr;
  670. v->remote = vifc->vifc_rmt_addr.s_addr;
  671. v->flags = vifc->vifc_flags;
  672. if (!mrtsock)
  673. v->flags |= VIFF_STATIC;
  674. v->threshold = vifc->vifc_threshold;
  675. v->bytes_in = 0;
  676. v->bytes_out = 0;
  677. v->pkt_in = 0;
  678. v->pkt_out = 0;
  679. v->link = dev->ifindex;
  680. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  681. v->link = dev_get_iflink(dev);
  682. /* And finish update writing critical data */
  683. write_lock_bh(&mrt_lock);
  684. v->dev = dev;
  685. #ifdef CONFIG_IP_PIMSM
  686. if (v->flags & VIFF_REGISTER)
  687. mrt->mroute_reg_vif_num = vifi;
  688. #endif
  689. if (vifi+1 > mrt->maxvif)
  690. mrt->maxvif = vifi+1;
  691. write_unlock_bh(&mrt_lock);
  692. return 0;
  693. }
  694. /* called with rcu_read_lock() */
  695. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  696. __be32 origin,
  697. __be32 mcastgrp)
  698. {
  699. int line = MFC_HASH(mcastgrp, origin);
  700. struct mfc_cache *c;
  701. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
  702. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  703. return c;
  704. }
  705. return NULL;
  706. }
  707. /* Look for a (*,*,oif) entry */
  708. static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
  709. int vifi)
  710. {
  711. int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
  712. struct mfc_cache *c;
  713. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  714. if (c->mfc_origin == htonl(INADDR_ANY) &&
  715. c->mfc_mcastgrp == htonl(INADDR_ANY) &&
  716. c->mfc_un.res.ttls[vifi] < 255)
  717. return c;
  718. return NULL;
  719. }
  720. /* Look for a (*,G) entry */
  721. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  722. __be32 mcastgrp, int vifi)
  723. {
  724. int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
  725. struct mfc_cache *c, *proxy;
  726. if (mcastgrp == htonl(INADDR_ANY))
  727. goto skip;
  728. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  729. if (c->mfc_origin == htonl(INADDR_ANY) &&
  730. c->mfc_mcastgrp == mcastgrp) {
  731. if (c->mfc_un.res.ttls[vifi] < 255)
  732. return c;
  733. /* It's ok if the vifi is part of the static tree */
  734. proxy = ipmr_cache_find_any_parent(mrt,
  735. c->mfc_parent);
  736. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  737. return c;
  738. }
  739. skip:
  740. return ipmr_cache_find_any_parent(mrt, vifi);
  741. }
  742. /*
  743. * Allocate a multicast cache entry
  744. */
  745. static struct mfc_cache *ipmr_cache_alloc(void)
  746. {
  747. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  748. if (c)
  749. c->mfc_un.res.minvif = MAXVIFS;
  750. return c;
  751. }
  752. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  753. {
  754. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  755. if (c) {
  756. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  757. c->mfc_un.unres.expires = jiffies + 10*HZ;
  758. }
  759. return c;
  760. }
  761. /*
  762. * A cache entry has gone into a resolved state from queued
  763. */
  764. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  765. struct mfc_cache *uc, struct mfc_cache *c)
  766. {
  767. struct sk_buff *skb;
  768. struct nlmsgerr *e;
  769. /* Play the pending entries through our router */
  770. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  771. if (ip_hdr(skb)->version == 0) {
  772. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  773. if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
  774. nlh->nlmsg_len = skb_tail_pointer(skb) -
  775. (u8 *)nlh;
  776. } else {
  777. nlh->nlmsg_type = NLMSG_ERROR;
  778. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  779. skb_trim(skb, nlh->nlmsg_len);
  780. e = nlmsg_data(nlh);
  781. e->error = -EMSGSIZE;
  782. memset(&e->msg, 0, sizeof(e->msg));
  783. }
  784. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  785. } else {
  786. ip_mr_forward(net, mrt, skb, c, 0);
  787. }
  788. }
  789. }
  790. /*
  791. * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  792. * expects the following bizarre scheme.
  793. *
  794. * Called under mrt_lock.
  795. */
  796. static int ipmr_cache_report(struct mr_table *mrt,
  797. struct sk_buff *pkt, vifi_t vifi, int assert)
  798. {
  799. struct sk_buff *skb;
  800. const int ihl = ip_hdrlen(pkt);
  801. struct igmphdr *igmp;
  802. struct igmpmsg *msg;
  803. struct sock *mroute_sk;
  804. int ret;
  805. #ifdef CONFIG_IP_PIMSM
  806. if (assert == IGMPMSG_WHOLEPKT)
  807. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  808. else
  809. #endif
  810. skb = alloc_skb(128, GFP_ATOMIC);
  811. if (!skb)
  812. return -ENOBUFS;
  813. #ifdef CONFIG_IP_PIMSM
  814. if (assert == IGMPMSG_WHOLEPKT) {
  815. /* Ugly, but we have no choice with this interface.
  816. * Duplicate old header, fix ihl, length etc.
  817. * And all this only to mangle msg->im_msgtype and
  818. * to set msg->im_mbz to "mbz" :-)
  819. */
  820. skb_push(skb, sizeof(struct iphdr));
  821. skb_reset_network_header(skb);
  822. skb_reset_transport_header(skb);
  823. msg = (struct igmpmsg *)skb_network_header(skb);
  824. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  825. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  826. msg->im_mbz = 0;
  827. msg->im_vif = mrt->mroute_reg_vif_num;
  828. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  829. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  830. sizeof(struct iphdr));
  831. } else
  832. #endif
  833. {
  834. /* Copy the IP header */
  835. skb_set_network_header(skb, skb->len);
  836. skb_put(skb, ihl);
  837. skb_copy_to_linear_data(skb, pkt->data, ihl);
  838. ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
  839. msg = (struct igmpmsg *)skb_network_header(skb);
  840. msg->im_vif = vifi;
  841. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  842. /* Add our header */
  843. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  844. igmp->type =
  845. msg->im_msgtype = assert;
  846. igmp->code = 0;
  847. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  848. skb->transport_header = skb->network_header;
  849. }
  850. rcu_read_lock();
  851. mroute_sk = rcu_dereference(mrt->mroute_sk);
  852. if (!mroute_sk) {
  853. rcu_read_unlock();
  854. kfree_skb(skb);
  855. return -EINVAL;
  856. }
  857. /* Deliver to mrouted */
  858. ret = sock_queue_rcv_skb(mroute_sk, skb);
  859. rcu_read_unlock();
  860. if (ret < 0) {
  861. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  862. kfree_skb(skb);
  863. }
  864. return ret;
  865. }
  866. /*
  867. * Queue a packet for resolution. It gets locked cache entry!
  868. */
  869. static int
  870. ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
  871. {
  872. bool found = false;
  873. int err;
  874. struct mfc_cache *c;
  875. const struct iphdr *iph = ip_hdr(skb);
  876. spin_lock_bh(&mfc_unres_lock);
  877. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  878. if (c->mfc_mcastgrp == iph->daddr &&
  879. c->mfc_origin == iph->saddr) {
  880. found = true;
  881. break;
  882. }
  883. }
  884. if (!found) {
  885. /* Create a new entry if allowable */
  886. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  887. (c = ipmr_cache_alloc_unres()) == NULL) {
  888. spin_unlock_bh(&mfc_unres_lock);
  889. kfree_skb(skb);
  890. return -ENOBUFS;
  891. }
  892. /* Fill in the new cache entry */
  893. c->mfc_parent = -1;
  894. c->mfc_origin = iph->saddr;
  895. c->mfc_mcastgrp = iph->daddr;
  896. /* Reflect first query at mrouted. */
  897. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  898. if (err < 0) {
  899. /* If the report failed throw the cache entry
  900. out - Brad Parker
  901. */
  902. spin_unlock_bh(&mfc_unres_lock);
  903. ipmr_cache_free(c);
  904. kfree_skb(skb);
  905. return err;
  906. }
  907. atomic_inc(&mrt->cache_resolve_queue_len);
  908. list_add(&c->list, &mrt->mfc_unres_queue);
  909. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  910. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  911. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  912. }
  913. /* See if we can append the packet */
  914. if (c->mfc_un.unres.unresolved.qlen > 3) {
  915. kfree_skb(skb);
  916. err = -ENOBUFS;
  917. } else {
  918. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  919. err = 0;
  920. }
  921. spin_unlock_bh(&mfc_unres_lock);
  922. return err;
  923. }
  924. /*
  925. * MFC cache manipulation by user space mroute daemon
  926. */
  927. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  928. {
  929. int line;
  930. struct mfc_cache *c, *next;
  931. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  932. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  933. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  934. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  935. (parent == -1 || parent == c->mfc_parent)) {
  936. list_del_rcu(&c->list);
  937. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  938. ipmr_cache_free(c);
  939. return 0;
  940. }
  941. }
  942. return -ENOENT;
  943. }
  944. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  945. struct mfcctl *mfc, int mrtsock, int parent)
  946. {
  947. bool found = false;
  948. int line;
  949. struct mfc_cache *uc, *c;
  950. if (mfc->mfcc_parent >= MAXVIFS)
  951. return -ENFILE;
  952. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  953. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  954. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  955. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  956. (parent == -1 || parent == c->mfc_parent)) {
  957. found = true;
  958. break;
  959. }
  960. }
  961. if (found) {
  962. write_lock_bh(&mrt_lock);
  963. c->mfc_parent = mfc->mfcc_parent;
  964. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  965. if (!mrtsock)
  966. c->mfc_flags |= MFC_STATIC;
  967. write_unlock_bh(&mrt_lock);
  968. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  969. return 0;
  970. }
  971. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  972. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  973. return -EINVAL;
  974. c = ipmr_cache_alloc();
  975. if (!c)
  976. return -ENOMEM;
  977. c->mfc_origin = mfc->mfcc_origin.s_addr;
  978. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  979. c->mfc_parent = mfc->mfcc_parent;
  980. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  981. if (!mrtsock)
  982. c->mfc_flags |= MFC_STATIC;
  983. list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
  984. /*
  985. * Check to see if we resolved a queued list. If so we
  986. * need to send on the frames and tidy up.
  987. */
  988. found = false;
  989. spin_lock_bh(&mfc_unres_lock);
  990. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  991. if (uc->mfc_origin == c->mfc_origin &&
  992. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  993. list_del(&uc->list);
  994. atomic_dec(&mrt->cache_resolve_queue_len);
  995. found = true;
  996. break;
  997. }
  998. }
  999. if (list_empty(&mrt->mfc_unres_queue))
  1000. del_timer(&mrt->ipmr_expire_timer);
  1001. spin_unlock_bh(&mfc_unres_lock);
  1002. if (found) {
  1003. ipmr_cache_resolve(net, mrt, uc, c);
  1004. ipmr_cache_free(uc);
  1005. }
  1006. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1007. return 0;
  1008. }
  1009. /*
  1010. * Close the multicast socket, and clear the vif tables etc
  1011. */
  1012. static void mroute_clean_tables(struct mr_table *mrt)
  1013. {
  1014. int i;
  1015. LIST_HEAD(list);
  1016. struct mfc_cache *c, *next;
  1017. /* Shut down all active vif entries */
  1018. for (i = 0; i < mrt->maxvif; i++) {
  1019. if (!(mrt->vif_table[i].flags & VIFF_STATIC))
  1020. vif_delete(mrt, i, 0, &list);
  1021. }
  1022. unregister_netdevice_many(&list);
  1023. /* Wipe the cache */
  1024. for (i = 0; i < MFC_LINES; i++) {
  1025. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  1026. if (c->mfc_flags & MFC_STATIC)
  1027. continue;
  1028. list_del_rcu(&c->list);
  1029. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1030. ipmr_cache_free(c);
  1031. }
  1032. }
  1033. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1034. spin_lock_bh(&mfc_unres_lock);
  1035. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  1036. list_del(&c->list);
  1037. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1038. ipmr_destroy_unres(mrt, c);
  1039. }
  1040. spin_unlock_bh(&mfc_unres_lock);
  1041. }
  1042. }
  1043. /* called from ip_ra_control(), before an RCU grace period,
  1044. * we dont need to call synchronize_rcu() here
  1045. */
  1046. static void mrtsock_destruct(struct sock *sk)
  1047. {
  1048. struct net *net = sock_net(sk);
  1049. struct mr_table *mrt;
  1050. rtnl_lock();
  1051. ipmr_for_each_table(mrt, net) {
  1052. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1053. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1054. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1055. NETCONFA_IFINDEX_ALL,
  1056. net->ipv4.devconf_all);
  1057. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1058. mroute_clean_tables(mrt);
  1059. }
  1060. }
  1061. rtnl_unlock();
  1062. }
  1063. /*
  1064. * Socket options and virtual interface manipulation. The whole
  1065. * virtual interface system is a complete heap, but unfortunately
  1066. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1067. * MOSPF/PIM router set up we can clean this up.
  1068. */
  1069. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
  1070. {
  1071. int ret, parent = 0;
  1072. struct vifctl vif;
  1073. struct mfcctl mfc;
  1074. struct net *net = sock_net(sk);
  1075. struct mr_table *mrt;
  1076. if (sk->sk_type != SOCK_RAW ||
  1077. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1078. return -EOPNOTSUPP;
  1079. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1080. if (!mrt)
  1081. return -ENOENT;
  1082. if (optname != MRT_INIT) {
  1083. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1084. !ns_capable(net->user_ns, CAP_NET_ADMIN))
  1085. return -EACCES;
  1086. }
  1087. switch (optname) {
  1088. case MRT_INIT:
  1089. if (optlen != sizeof(int))
  1090. return -EINVAL;
  1091. rtnl_lock();
  1092. if (rtnl_dereference(mrt->mroute_sk)) {
  1093. rtnl_unlock();
  1094. return -EADDRINUSE;
  1095. }
  1096. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1097. if (ret == 0) {
  1098. rcu_assign_pointer(mrt->mroute_sk, sk);
  1099. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1100. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1101. NETCONFA_IFINDEX_ALL,
  1102. net->ipv4.devconf_all);
  1103. }
  1104. rtnl_unlock();
  1105. return ret;
  1106. case MRT_DONE:
  1107. if (sk != rcu_access_pointer(mrt->mroute_sk))
  1108. return -EACCES;
  1109. return ip_ra_control(sk, 0, NULL);
  1110. case MRT_ADD_VIF:
  1111. case MRT_DEL_VIF:
  1112. if (optlen != sizeof(vif))
  1113. return -EINVAL;
  1114. if (copy_from_user(&vif, optval, sizeof(vif)))
  1115. return -EFAULT;
  1116. if (vif.vifc_vifi >= MAXVIFS)
  1117. return -ENFILE;
  1118. rtnl_lock();
  1119. if (optname == MRT_ADD_VIF) {
  1120. ret = vif_add(net, mrt, &vif,
  1121. sk == rtnl_dereference(mrt->mroute_sk));
  1122. } else {
  1123. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1124. }
  1125. rtnl_unlock();
  1126. return ret;
  1127. /*
  1128. * Manipulate the forwarding caches. These live
  1129. * in a sort of kernel/user symbiosis.
  1130. */
  1131. case MRT_ADD_MFC:
  1132. case MRT_DEL_MFC:
  1133. parent = -1;
  1134. case MRT_ADD_MFC_PROXY:
  1135. case MRT_DEL_MFC_PROXY:
  1136. if (optlen != sizeof(mfc))
  1137. return -EINVAL;
  1138. if (copy_from_user(&mfc, optval, sizeof(mfc)))
  1139. return -EFAULT;
  1140. if (parent == 0)
  1141. parent = mfc.mfcc_parent;
  1142. rtnl_lock();
  1143. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1144. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1145. else
  1146. ret = ipmr_mfc_add(net, mrt, &mfc,
  1147. sk == rtnl_dereference(mrt->mroute_sk),
  1148. parent);
  1149. rtnl_unlock();
  1150. return ret;
  1151. /*
  1152. * Control PIM assert.
  1153. */
  1154. case MRT_ASSERT:
  1155. {
  1156. int v;
  1157. if (optlen != sizeof(v))
  1158. return -EINVAL;
  1159. if (get_user(v, (int __user *)optval))
  1160. return -EFAULT;
  1161. mrt->mroute_do_assert = v;
  1162. return 0;
  1163. }
  1164. #ifdef CONFIG_IP_PIMSM
  1165. case MRT_PIM:
  1166. {
  1167. int v;
  1168. if (optlen != sizeof(v))
  1169. return -EINVAL;
  1170. if (get_user(v, (int __user *)optval))
  1171. return -EFAULT;
  1172. v = !!v;
  1173. rtnl_lock();
  1174. ret = 0;
  1175. if (v != mrt->mroute_do_pim) {
  1176. mrt->mroute_do_pim = v;
  1177. mrt->mroute_do_assert = v;
  1178. }
  1179. rtnl_unlock();
  1180. return ret;
  1181. }
  1182. #endif
  1183. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  1184. case MRT_TABLE:
  1185. {
  1186. u32 v;
  1187. if (optlen != sizeof(u32))
  1188. return -EINVAL;
  1189. if (get_user(v, (u32 __user *)optval))
  1190. return -EFAULT;
  1191. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  1192. if (v != RT_TABLE_DEFAULT && v >= 1000000000)
  1193. return -EINVAL;
  1194. rtnl_lock();
  1195. ret = 0;
  1196. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1197. ret = -EBUSY;
  1198. } else {
  1199. if (!ipmr_new_table(net, v))
  1200. ret = -ENOMEM;
  1201. else
  1202. raw_sk(sk)->ipmr_table = v;
  1203. }
  1204. rtnl_unlock();
  1205. return ret;
  1206. }
  1207. #endif
  1208. /*
  1209. * Spurious command, or MRT_VERSION which you cannot
  1210. * set.
  1211. */
  1212. default:
  1213. return -ENOPROTOOPT;
  1214. }
  1215. }
  1216. /*
  1217. * Getsock opt support for the multicast routing system.
  1218. */
  1219. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1220. {
  1221. int olr;
  1222. int val;
  1223. struct net *net = sock_net(sk);
  1224. struct mr_table *mrt;
  1225. if (sk->sk_type != SOCK_RAW ||
  1226. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1227. return -EOPNOTSUPP;
  1228. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1229. if (!mrt)
  1230. return -ENOENT;
  1231. if (optname != MRT_VERSION &&
  1232. #ifdef CONFIG_IP_PIMSM
  1233. optname != MRT_PIM &&
  1234. #endif
  1235. optname != MRT_ASSERT)
  1236. return -ENOPROTOOPT;
  1237. if (get_user(olr, optlen))
  1238. return -EFAULT;
  1239. olr = min_t(unsigned int, olr, sizeof(int));
  1240. if (olr < 0)
  1241. return -EINVAL;
  1242. if (put_user(olr, optlen))
  1243. return -EFAULT;
  1244. if (optname == MRT_VERSION)
  1245. val = 0x0305;
  1246. #ifdef CONFIG_IP_PIMSM
  1247. else if (optname == MRT_PIM)
  1248. val = mrt->mroute_do_pim;
  1249. #endif
  1250. else
  1251. val = mrt->mroute_do_assert;
  1252. if (copy_to_user(optval, &val, olr))
  1253. return -EFAULT;
  1254. return 0;
  1255. }
  1256. /*
  1257. * The IP multicast ioctl support routines.
  1258. */
  1259. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1260. {
  1261. struct sioc_sg_req sr;
  1262. struct sioc_vif_req vr;
  1263. struct vif_device *vif;
  1264. struct mfc_cache *c;
  1265. struct net *net = sock_net(sk);
  1266. struct mr_table *mrt;
  1267. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1268. if (!mrt)
  1269. return -ENOENT;
  1270. switch (cmd) {
  1271. case SIOCGETVIFCNT:
  1272. if (copy_from_user(&vr, arg, sizeof(vr)))
  1273. return -EFAULT;
  1274. if (vr.vifi >= mrt->maxvif)
  1275. return -EINVAL;
  1276. read_lock(&mrt_lock);
  1277. vif = &mrt->vif_table[vr.vifi];
  1278. if (VIF_EXISTS(mrt, vr.vifi)) {
  1279. vr.icount = vif->pkt_in;
  1280. vr.ocount = vif->pkt_out;
  1281. vr.ibytes = vif->bytes_in;
  1282. vr.obytes = vif->bytes_out;
  1283. read_unlock(&mrt_lock);
  1284. if (copy_to_user(arg, &vr, sizeof(vr)))
  1285. return -EFAULT;
  1286. return 0;
  1287. }
  1288. read_unlock(&mrt_lock);
  1289. return -EADDRNOTAVAIL;
  1290. case SIOCGETSGCNT:
  1291. if (copy_from_user(&sr, arg, sizeof(sr)))
  1292. return -EFAULT;
  1293. rcu_read_lock();
  1294. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1295. if (c) {
  1296. sr.pktcnt = c->mfc_un.res.pkt;
  1297. sr.bytecnt = c->mfc_un.res.bytes;
  1298. sr.wrong_if = c->mfc_un.res.wrong_if;
  1299. rcu_read_unlock();
  1300. if (copy_to_user(arg, &sr, sizeof(sr)))
  1301. return -EFAULT;
  1302. return 0;
  1303. }
  1304. rcu_read_unlock();
  1305. return -EADDRNOTAVAIL;
  1306. default:
  1307. return -ENOIOCTLCMD;
  1308. }
  1309. }
  1310. #ifdef CONFIG_COMPAT
  1311. struct compat_sioc_sg_req {
  1312. struct in_addr src;
  1313. struct in_addr grp;
  1314. compat_ulong_t pktcnt;
  1315. compat_ulong_t bytecnt;
  1316. compat_ulong_t wrong_if;
  1317. };
  1318. struct compat_sioc_vif_req {
  1319. vifi_t vifi; /* Which iface */
  1320. compat_ulong_t icount;
  1321. compat_ulong_t ocount;
  1322. compat_ulong_t ibytes;
  1323. compat_ulong_t obytes;
  1324. };
  1325. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1326. {
  1327. struct compat_sioc_sg_req sr;
  1328. struct compat_sioc_vif_req vr;
  1329. struct vif_device *vif;
  1330. struct mfc_cache *c;
  1331. struct net *net = sock_net(sk);
  1332. struct mr_table *mrt;
  1333. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1334. if (!mrt)
  1335. return -ENOENT;
  1336. switch (cmd) {
  1337. case SIOCGETVIFCNT:
  1338. if (copy_from_user(&vr, arg, sizeof(vr)))
  1339. return -EFAULT;
  1340. if (vr.vifi >= mrt->maxvif)
  1341. return -EINVAL;
  1342. read_lock(&mrt_lock);
  1343. vif = &mrt->vif_table[vr.vifi];
  1344. if (VIF_EXISTS(mrt, vr.vifi)) {
  1345. vr.icount = vif->pkt_in;
  1346. vr.ocount = vif->pkt_out;
  1347. vr.ibytes = vif->bytes_in;
  1348. vr.obytes = vif->bytes_out;
  1349. read_unlock(&mrt_lock);
  1350. if (copy_to_user(arg, &vr, sizeof(vr)))
  1351. return -EFAULT;
  1352. return 0;
  1353. }
  1354. read_unlock(&mrt_lock);
  1355. return -EADDRNOTAVAIL;
  1356. case SIOCGETSGCNT:
  1357. if (copy_from_user(&sr, arg, sizeof(sr)))
  1358. return -EFAULT;
  1359. rcu_read_lock();
  1360. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1361. if (c) {
  1362. sr.pktcnt = c->mfc_un.res.pkt;
  1363. sr.bytecnt = c->mfc_un.res.bytes;
  1364. sr.wrong_if = c->mfc_un.res.wrong_if;
  1365. rcu_read_unlock();
  1366. if (copy_to_user(arg, &sr, sizeof(sr)))
  1367. return -EFAULT;
  1368. return 0;
  1369. }
  1370. rcu_read_unlock();
  1371. return -EADDRNOTAVAIL;
  1372. default:
  1373. return -ENOIOCTLCMD;
  1374. }
  1375. }
  1376. #endif
  1377. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1378. {
  1379. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1380. struct net *net = dev_net(dev);
  1381. struct mr_table *mrt;
  1382. struct vif_device *v;
  1383. int ct;
  1384. if (event != NETDEV_UNREGISTER)
  1385. return NOTIFY_DONE;
  1386. ipmr_for_each_table(mrt, net) {
  1387. v = &mrt->vif_table[0];
  1388. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1389. if (v->dev == dev)
  1390. vif_delete(mrt, ct, 1, NULL);
  1391. }
  1392. }
  1393. return NOTIFY_DONE;
  1394. }
  1395. static struct notifier_block ip_mr_notifier = {
  1396. .notifier_call = ipmr_device_event,
  1397. };
  1398. /*
  1399. * Encapsulate a packet by attaching a valid IPIP header to it.
  1400. * This avoids tunnel drivers and other mess and gives us the speed so
  1401. * important for multicast video.
  1402. */
  1403. static void ip_encap(struct net *net, struct sk_buff *skb,
  1404. __be32 saddr, __be32 daddr)
  1405. {
  1406. struct iphdr *iph;
  1407. const struct iphdr *old_iph = ip_hdr(skb);
  1408. skb_push(skb, sizeof(struct iphdr));
  1409. skb->transport_header = skb->network_header;
  1410. skb_reset_network_header(skb);
  1411. iph = ip_hdr(skb);
  1412. iph->version = 4;
  1413. iph->tos = old_iph->tos;
  1414. iph->ttl = old_iph->ttl;
  1415. iph->frag_off = 0;
  1416. iph->daddr = daddr;
  1417. iph->saddr = saddr;
  1418. iph->protocol = IPPROTO_IPIP;
  1419. iph->ihl = 5;
  1420. iph->tot_len = htons(skb->len);
  1421. ip_select_ident(net, skb, NULL);
  1422. ip_send_check(iph);
  1423. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1424. nf_reset(skb);
  1425. }
  1426. static inline int ipmr_forward_finish(struct sock *sk, struct sk_buff *skb)
  1427. {
  1428. struct ip_options *opt = &(IPCB(skb)->opt);
  1429. IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
  1430. IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
  1431. if (unlikely(opt->optlen))
  1432. ip_forward_options(skb);
  1433. return dst_output_sk(sk, skb);
  1434. }
  1435. /*
  1436. * Processing handlers for ipmr_forward
  1437. */
  1438. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1439. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1440. {
  1441. const struct iphdr *iph = ip_hdr(skb);
  1442. struct vif_device *vif = &mrt->vif_table[vifi];
  1443. struct net_device *dev;
  1444. struct rtable *rt;
  1445. struct flowi4 fl4;
  1446. int encap = 0;
  1447. if (!vif->dev)
  1448. goto out_free;
  1449. #ifdef CONFIG_IP_PIMSM
  1450. if (vif->flags & VIFF_REGISTER) {
  1451. vif->pkt_out++;
  1452. vif->bytes_out += skb->len;
  1453. vif->dev->stats.tx_bytes += skb->len;
  1454. vif->dev->stats.tx_packets++;
  1455. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1456. goto out_free;
  1457. }
  1458. #endif
  1459. if (vif->flags & VIFF_TUNNEL) {
  1460. rt = ip_route_output_ports(net, &fl4, NULL,
  1461. vif->remote, vif->local,
  1462. 0, 0,
  1463. IPPROTO_IPIP,
  1464. RT_TOS(iph->tos), vif->link);
  1465. if (IS_ERR(rt))
  1466. goto out_free;
  1467. encap = sizeof(struct iphdr);
  1468. } else {
  1469. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1470. 0, 0,
  1471. IPPROTO_IPIP,
  1472. RT_TOS(iph->tos), vif->link);
  1473. if (IS_ERR(rt))
  1474. goto out_free;
  1475. }
  1476. dev = rt->dst.dev;
  1477. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1478. /* Do not fragment multicasts. Alas, IPv4 does not
  1479. * allow to send ICMP, so that packets will disappear
  1480. * to blackhole.
  1481. */
  1482. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
  1483. ip_rt_put(rt);
  1484. goto out_free;
  1485. }
  1486. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1487. if (skb_cow(skb, encap)) {
  1488. ip_rt_put(rt);
  1489. goto out_free;
  1490. }
  1491. vif->pkt_out++;
  1492. vif->bytes_out += skb->len;
  1493. skb_dst_drop(skb);
  1494. skb_dst_set(skb, &rt->dst);
  1495. ip_decrease_ttl(ip_hdr(skb));
  1496. /* FIXME: forward and output firewalls used to be called here.
  1497. * What do we do with netfilter? -- RR
  1498. */
  1499. if (vif->flags & VIFF_TUNNEL) {
  1500. ip_encap(net, skb, vif->local, vif->remote);
  1501. /* FIXME: extra output firewall step used to be here. --RR */
  1502. vif->dev->stats.tx_packets++;
  1503. vif->dev->stats.tx_bytes += skb->len;
  1504. }
  1505. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1506. /*
  1507. * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1508. * not only before forwarding, but after forwarding on all output
  1509. * interfaces. It is clear, if mrouter runs a multicasting
  1510. * program, it should receive packets not depending to what interface
  1511. * program is joined.
  1512. * If we will not make it, the program will have to join on all
  1513. * interfaces. On the other hand, multihoming host (or router, but
  1514. * not mrouter) cannot join to more than one interface - it will
  1515. * result in receiving multiple packets.
  1516. */
  1517. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, NULL, skb,
  1518. skb->dev, dev,
  1519. ipmr_forward_finish);
  1520. return;
  1521. out_free:
  1522. kfree_skb(skb);
  1523. }
  1524. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1525. {
  1526. int ct;
  1527. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1528. if (mrt->vif_table[ct].dev == dev)
  1529. break;
  1530. }
  1531. return ct;
  1532. }
  1533. /* "local" means that we should preserve one skb (for local delivery) */
  1534. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1535. struct sk_buff *skb, struct mfc_cache *cache,
  1536. int local)
  1537. {
  1538. int psend = -1;
  1539. int vif, ct;
  1540. int true_vifi = ipmr_find_vif(mrt, skb->dev);
  1541. vif = cache->mfc_parent;
  1542. cache->mfc_un.res.pkt++;
  1543. cache->mfc_un.res.bytes += skb->len;
  1544. if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1545. struct mfc_cache *cache_proxy;
  1546. /* For an (*,G) entry, we only check that the incomming
  1547. * interface is part of the static tree.
  1548. */
  1549. cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
  1550. if (cache_proxy &&
  1551. cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
  1552. goto forward;
  1553. }
  1554. /*
  1555. * Wrong interface: drop packet and (maybe) send PIM assert.
  1556. */
  1557. if (mrt->vif_table[vif].dev != skb->dev) {
  1558. if (rt_is_output_route(skb_rtable(skb))) {
  1559. /* It is our own packet, looped back.
  1560. * Very complicated situation...
  1561. *
  1562. * The best workaround until routing daemons will be
  1563. * fixed is not to redistribute packet, if it was
  1564. * send through wrong interface. It means, that
  1565. * multicast applications WILL NOT work for
  1566. * (S,G), which have default multicast route pointing
  1567. * to wrong oif. In any case, it is not a good
  1568. * idea to use multicasting applications on router.
  1569. */
  1570. goto dont_forward;
  1571. }
  1572. cache->mfc_un.res.wrong_if++;
  1573. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1574. /* pimsm uses asserts, when switching from RPT to SPT,
  1575. * so that we cannot check that packet arrived on an oif.
  1576. * It is bad, but otherwise we would need to move pretty
  1577. * large chunk of pimd to kernel. Ough... --ANK
  1578. */
  1579. (mrt->mroute_do_pim ||
  1580. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1581. time_after(jiffies,
  1582. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1583. cache->mfc_un.res.last_assert = jiffies;
  1584. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1585. }
  1586. goto dont_forward;
  1587. }
  1588. forward:
  1589. mrt->vif_table[vif].pkt_in++;
  1590. mrt->vif_table[vif].bytes_in += skb->len;
  1591. /*
  1592. * Forward the frame
  1593. */
  1594. if (cache->mfc_origin == htonl(INADDR_ANY) &&
  1595. cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1596. if (true_vifi >= 0 &&
  1597. true_vifi != cache->mfc_parent &&
  1598. ip_hdr(skb)->ttl >
  1599. cache->mfc_un.res.ttls[cache->mfc_parent]) {
  1600. /* It's an (*,*) entry and the packet is not coming from
  1601. * the upstream: forward the packet to the upstream
  1602. * only.
  1603. */
  1604. psend = cache->mfc_parent;
  1605. goto last_forward;
  1606. }
  1607. goto dont_forward;
  1608. }
  1609. for (ct = cache->mfc_un.res.maxvif - 1;
  1610. ct >= cache->mfc_un.res.minvif; ct--) {
  1611. /* For (*,G) entry, don't forward to the incoming interface */
  1612. if ((cache->mfc_origin != htonl(INADDR_ANY) ||
  1613. ct != true_vifi) &&
  1614. ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1615. if (psend != -1) {
  1616. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1617. if (skb2)
  1618. ipmr_queue_xmit(net, mrt, skb2, cache,
  1619. psend);
  1620. }
  1621. psend = ct;
  1622. }
  1623. }
  1624. last_forward:
  1625. if (psend != -1) {
  1626. if (local) {
  1627. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1628. if (skb2)
  1629. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1630. } else {
  1631. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1632. return;
  1633. }
  1634. }
  1635. dont_forward:
  1636. if (!local)
  1637. kfree_skb(skb);
  1638. }
  1639. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1640. {
  1641. struct rtable *rt = skb_rtable(skb);
  1642. struct iphdr *iph = ip_hdr(skb);
  1643. struct flowi4 fl4 = {
  1644. .daddr = iph->daddr,
  1645. .saddr = iph->saddr,
  1646. .flowi4_tos = RT_TOS(iph->tos),
  1647. .flowi4_oif = (rt_is_output_route(rt) ?
  1648. skb->dev->ifindex : 0),
  1649. .flowi4_iif = (rt_is_output_route(rt) ?
  1650. LOOPBACK_IFINDEX :
  1651. skb->dev->ifindex),
  1652. .flowi4_mark = skb->mark,
  1653. };
  1654. struct mr_table *mrt;
  1655. int err;
  1656. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1657. if (err)
  1658. return ERR_PTR(err);
  1659. return mrt;
  1660. }
  1661. /*
  1662. * Multicast packets for forwarding arrive here
  1663. * Called with rcu_read_lock();
  1664. */
  1665. int ip_mr_input(struct sk_buff *skb)
  1666. {
  1667. struct mfc_cache *cache;
  1668. struct net *net = dev_net(skb->dev);
  1669. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1670. struct mr_table *mrt;
  1671. /* Packet is looped back after forward, it should not be
  1672. * forwarded second time, but still can be delivered locally.
  1673. */
  1674. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1675. goto dont_forward;
  1676. mrt = ipmr_rt_fib_lookup(net, skb);
  1677. if (IS_ERR(mrt)) {
  1678. kfree_skb(skb);
  1679. return PTR_ERR(mrt);
  1680. }
  1681. if (!local) {
  1682. if (IPCB(skb)->opt.router_alert) {
  1683. if (ip_call_ra_chain(skb))
  1684. return 0;
  1685. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1686. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1687. * Cisco IOS <= 11.2(8)) do not put router alert
  1688. * option to IGMP packets destined to routable
  1689. * groups. It is very bad, because it means
  1690. * that we can forward NO IGMP messages.
  1691. */
  1692. struct sock *mroute_sk;
  1693. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1694. if (mroute_sk) {
  1695. nf_reset(skb);
  1696. raw_rcv(mroute_sk, skb);
  1697. return 0;
  1698. }
  1699. }
  1700. }
  1701. /* already under rcu_read_lock() */
  1702. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1703. if (!cache) {
  1704. int vif = ipmr_find_vif(mrt, skb->dev);
  1705. if (vif >= 0)
  1706. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1707. vif);
  1708. }
  1709. /*
  1710. * No usable cache entry
  1711. */
  1712. if (!cache) {
  1713. int vif;
  1714. if (local) {
  1715. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1716. ip_local_deliver(skb);
  1717. if (!skb2)
  1718. return -ENOBUFS;
  1719. skb = skb2;
  1720. }
  1721. read_lock(&mrt_lock);
  1722. vif = ipmr_find_vif(mrt, skb->dev);
  1723. if (vif >= 0) {
  1724. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1725. read_unlock(&mrt_lock);
  1726. return err2;
  1727. }
  1728. read_unlock(&mrt_lock);
  1729. kfree_skb(skb);
  1730. return -ENODEV;
  1731. }
  1732. read_lock(&mrt_lock);
  1733. ip_mr_forward(net, mrt, skb, cache, local);
  1734. read_unlock(&mrt_lock);
  1735. if (local)
  1736. return ip_local_deliver(skb);
  1737. return 0;
  1738. dont_forward:
  1739. if (local)
  1740. return ip_local_deliver(skb);
  1741. kfree_skb(skb);
  1742. return 0;
  1743. }
  1744. #ifdef CONFIG_IP_PIMSM
  1745. /* called with rcu_read_lock() */
  1746. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  1747. unsigned int pimlen)
  1748. {
  1749. struct net_device *reg_dev = NULL;
  1750. struct iphdr *encap;
  1751. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  1752. /*
  1753. * Check that:
  1754. * a. packet is really sent to a multicast group
  1755. * b. packet is not a NULL-REGISTER
  1756. * c. packet is not truncated
  1757. */
  1758. if (!ipv4_is_multicast(encap->daddr) ||
  1759. encap->tot_len == 0 ||
  1760. ntohs(encap->tot_len) + pimlen > skb->len)
  1761. return 1;
  1762. read_lock(&mrt_lock);
  1763. if (mrt->mroute_reg_vif_num >= 0)
  1764. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  1765. read_unlock(&mrt_lock);
  1766. if (!reg_dev)
  1767. return 1;
  1768. skb->mac_header = skb->network_header;
  1769. skb_pull(skb, (u8 *)encap - skb->data);
  1770. skb_reset_network_header(skb);
  1771. skb->protocol = htons(ETH_P_IP);
  1772. skb->ip_summed = CHECKSUM_NONE;
  1773. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  1774. netif_rx(skb);
  1775. return NET_RX_SUCCESS;
  1776. }
  1777. #endif
  1778. #ifdef CONFIG_IP_PIMSM_V1
  1779. /*
  1780. * Handle IGMP messages of PIMv1
  1781. */
  1782. int pim_rcv_v1(struct sk_buff *skb)
  1783. {
  1784. struct igmphdr *pim;
  1785. struct net *net = dev_net(skb->dev);
  1786. struct mr_table *mrt;
  1787. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1788. goto drop;
  1789. pim = igmp_hdr(skb);
  1790. mrt = ipmr_rt_fib_lookup(net, skb);
  1791. if (IS_ERR(mrt))
  1792. goto drop;
  1793. if (!mrt->mroute_do_pim ||
  1794. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1795. goto drop;
  1796. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1797. drop:
  1798. kfree_skb(skb);
  1799. }
  1800. return 0;
  1801. }
  1802. #endif
  1803. #ifdef CONFIG_IP_PIMSM_V2
  1804. static int pim_rcv(struct sk_buff *skb)
  1805. {
  1806. struct pimreghdr *pim;
  1807. struct net *net = dev_net(skb->dev);
  1808. struct mr_table *mrt;
  1809. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1810. goto drop;
  1811. pim = (struct pimreghdr *)skb_transport_header(skb);
  1812. if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
  1813. (pim->flags & PIM_NULL_REGISTER) ||
  1814. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1815. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1816. goto drop;
  1817. mrt = ipmr_rt_fib_lookup(net, skb);
  1818. if (IS_ERR(mrt))
  1819. goto drop;
  1820. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1821. drop:
  1822. kfree_skb(skb);
  1823. }
  1824. return 0;
  1825. }
  1826. #endif
  1827. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1828. struct mfc_cache *c, struct rtmsg *rtm)
  1829. {
  1830. int ct;
  1831. struct rtnexthop *nhp;
  1832. struct nlattr *mp_attr;
  1833. struct rta_mfc_stats mfcs;
  1834. /* If cache is unresolved, don't try to parse IIF and OIF */
  1835. if (c->mfc_parent >= MAXVIFS)
  1836. return -ENOENT;
  1837. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  1838. nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  1839. return -EMSGSIZE;
  1840. if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
  1841. return -EMSGSIZE;
  1842. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1843. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1844. if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
  1845. nla_nest_cancel(skb, mp_attr);
  1846. return -EMSGSIZE;
  1847. }
  1848. nhp->rtnh_flags = 0;
  1849. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1850. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1851. nhp->rtnh_len = sizeof(*nhp);
  1852. }
  1853. }
  1854. nla_nest_end(skb, mp_attr);
  1855. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  1856. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  1857. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  1858. if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
  1859. return -EMSGSIZE;
  1860. rtm->rtm_type = RTN_MULTICAST;
  1861. return 1;
  1862. }
  1863. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1864. __be32 saddr, __be32 daddr,
  1865. struct rtmsg *rtm, int nowait)
  1866. {
  1867. struct mfc_cache *cache;
  1868. struct mr_table *mrt;
  1869. int err;
  1870. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1871. if (!mrt)
  1872. return -ENOENT;
  1873. rcu_read_lock();
  1874. cache = ipmr_cache_find(mrt, saddr, daddr);
  1875. if (!cache && skb->dev) {
  1876. int vif = ipmr_find_vif(mrt, skb->dev);
  1877. if (vif >= 0)
  1878. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1879. }
  1880. if (!cache) {
  1881. struct sk_buff *skb2;
  1882. struct iphdr *iph;
  1883. struct net_device *dev;
  1884. int vif = -1;
  1885. if (nowait) {
  1886. rcu_read_unlock();
  1887. return -EAGAIN;
  1888. }
  1889. dev = skb->dev;
  1890. read_lock(&mrt_lock);
  1891. if (dev)
  1892. vif = ipmr_find_vif(mrt, dev);
  1893. if (vif < 0) {
  1894. read_unlock(&mrt_lock);
  1895. rcu_read_unlock();
  1896. return -ENODEV;
  1897. }
  1898. skb2 = skb_clone(skb, GFP_ATOMIC);
  1899. if (!skb2) {
  1900. read_unlock(&mrt_lock);
  1901. rcu_read_unlock();
  1902. return -ENOMEM;
  1903. }
  1904. skb_push(skb2, sizeof(struct iphdr));
  1905. skb_reset_network_header(skb2);
  1906. iph = ip_hdr(skb2);
  1907. iph->ihl = sizeof(struct iphdr) >> 2;
  1908. iph->saddr = saddr;
  1909. iph->daddr = daddr;
  1910. iph->version = 0;
  1911. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1912. read_unlock(&mrt_lock);
  1913. rcu_read_unlock();
  1914. return err;
  1915. }
  1916. read_lock(&mrt_lock);
  1917. if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
  1918. cache->mfc_flags |= MFC_NOTIFY;
  1919. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1920. read_unlock(&mrt_lock);
  1921. rcu_read_unlock();
  1922. return err;
  1923. }
  1924. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1925. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  1926. int flags)
  1927. {
  1928. struct nlmsghdr *nlh;
  1929. struct rtmsg *rtm;
  1930. int err;
  1931. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  1932. if (!nlh)
  1933. return -EMSGSIZE;
  1934. rtm = nlmsg_data(nlh);
  1935. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1936. rtm->rtm_dst_len = 32;
  1937. rtm->rtm_src_len = 32;
  1938. rtm->rtm_tos = 0;
  1939. rtm->rtm_table = mrt->id;
  1940. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  1941. goto nla_put_failure;
  1942. rtm->rtm_type = RTN_MULTICAST;
  1943. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1944. if (c->mfc_flags & MFC_STATIC)
  1945. rtm->rtm_protocol = RTPROT_STATIC;
  1946. else
  1947. rtm->rtm_protocol = RTPROT_MROUTED;
  1948. rtm->rtm_flags = 0;
  1949. if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
  1950. nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
  1951. goto nla_put_failure;
  1952. err = __ipmr_fill_mroute(mrt, skb, c, rtm);
  1953. /* do not break the dump if cache is unresolved */
  1954. if (err < 0 && err != -ENOENT)
  1955. goto nla_put_failure;
  1956. nlmsg_end(skb, nlh);
  1957. return 0;
  1958. nla_put_failure:
  1959. nlmsg_cancel(skb, nlh);
  1960. return -EMSGSIZE;
  1961. }
  1962. static size_t mroute_msgsize(bool unresolved, int maxvif)
  1963. {
  1964. size_t len =
  1965. NLMSG_ALIGN(sizeof(struct rtmsg))
  1966. + nla_total_size(4) /* RTA_TABLE */
  1967. + nla_total_size(4) /* RTA_SRC */
  1968. + nla_total_size(4) /* RTA_DST */
  1969. ;
  1970. if (!unresolved)
  1971. len = len
  1972. + nla_total_size(4) /* RTA_IIF */
  1973. + nla_total_size(0) /* RTA_MULTIPATH */
  1974. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  1975. /* RTA_MFC_STATS */
  1976. + nla_total_size(sizeof(struct rta_mfc_stats))
  1977. ;
  1978. return len;
  1979. }
  1980. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  1981. int cmd)
  1982. {
  1983. struct net *net = read_pnet(&mrt->net);
  1984. struct sk_buff *skb;
  1985. int err = -ENOBUFS;
  1986. skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
  1987. GFP_ATOMIC);
  1988. if (!skb)
  1989. goto errout;
  1990. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  1991. if (err < 0)
  1992. goto errout;
  1993. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  1994. return;
  1995. errout:
  1996. kfree_skb(skb);
  1997. if (err < 0)
  1998. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  1999. }
  2000. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  2001. {
  2002. struct net *net = sock_net(skb->sk);
  2003. struct mr_table *mrt;
  2004. struct mfc_cache *mfc;
  2005. unsigned int t = 0, s_t;
  2006. unsigned int h = 0, s_h;
  2007. unsigned int e = 0, s_e;
  2008. s_t = cb->args[0];
  2009. s_h = cb->args[1];
  2010. s_e = cb->args[2];
  2011. rcu_read_lock();
  2012. ipmr_for_each_table(mrt, net) {
  2013. if (t < s_t)
  2014. goto next_table;
  2015. if (t > s_t)
  2016. s_h = 0;
  2017. for (h = s_h; h < MFC_LINES; h++) {
  2018. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
  2019. if (e < s_e)
  2020. goto next_entry;
  2021. if (ipmr_fill_mroute(mrt, skb,
  2022. NETLINK_CB(cb->skb).portid,
  2023. cb->nlh->nlmsg_seq,
  2024. mfc, RTM_NEWROUTE,
  2025. NLM_F_MULTI) < 0)
  2026. goto done;
  2027. next_entry:
  2028. e++;
  2029. }
  2030. e = s_e = 0;
  2031. }
  2032. spin_lock_bh(&mfc_unres_lock);
  2033. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  2034. if (e < s_e)
  2035. goto next_entry2;
  2036. if (ipmr_fill_mroute(mrt, skb,
  2037. NETLINK_CB(cb->skb).portid,
  2038. cb->nlh->nlmsg_seq,
  2039. mfc, RTM_NEWROUTE,
  2040. NLM_F_MULTI) < 0) {
  2041. spin_unlock_bh(&mfc_unres_lock);
  2042. goto done;
  2043. }
  2044. next_entry2:
  2045. e++;
  2046. }
  2047. spin_unlock_bh(&mfc_unres_lock);
  2048. e = s_e = 0;
  2049. s_h = 0;
  2050. next_table:
  2051. t++;
  2052. }
  2053. done:
  2054. rcu_read_unlock();
  2055. cb->args[2] = e;
  2056. cb->args[1] = h;
  2057. cb->args[0] = t;
  2058. return skb->len;
  2059. }
  2060. #ifdef CONFIG_PROC_FS
  2061. /*
  2062. * The /proc interfaces to multicast routing :
  2063. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2064. */
  2065. struct ipmr_vif_iter {
  2066. struct seq_net_private p;
  2067. struct mr_table *mrt;
  2068. int ct;
  2069. };
  2070. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  2071. struct ipmr_vif_iter *iter,
  2072. loff_t pos)
  2073. {
  2074. struct mr_table *mrt = iter->mrt;
  2075. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  2076. if (!VIF_EXISTS(mrt, iter->ct))
  2077. continue;
  2078. if (pos-- == 0)
  2079. return &mrt->vif_table[iter->ct];
  2080. }
  2081. return NULL;
  2082. }
  2083. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2084. __acquires(mrt_lock)
  2085. {
  2086. struct ipmr_vif_iter *iter = seq->private;
  2087. struct net *net = seq_file_net(seq);
  2088. struct mr_table *mrt;
  2089. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2090. if (!mrt)
  2091. return ERR_PTR(-ENOENT);
  2092. iter->mrt = mrt;
  2093. read_lock(&mrt_lock);
  2094. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  2095. : SEQ_START_TOKEN;
  2096. }
  2097. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2098. {
  2099. struct ipmr_vif_iter *iter = seq->private;
  2100. struct net *net = seq_file_net(seq);
  2101. struct mr_table *mrt = iter->mrt;
  2102. ++*pos;
  2103. if (v == SEQ_START_TOKEN)
  2104. return ipmr_vif_seq_idx(net, iter, 0);
  2105. while (++iter->ct < mrt->maxvif) {
  2106. if (!VIF_EXISTS(mrt, iter->ct))
  2107. continue;
  2108. return &mrt->vif_table[iter->ct];
  2109. }
  2110. return NULL;
  2111. }
  2112. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2113. __releases(mrt_lock)
  2114. {
  2115. read_unlock(&mrt_lock);
  2116. }
  2117. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2118. {
  2119. struct ipmr_vif_iter *iter = seq->private;
  2120. struct mr_table *mrt = iter->mrt;
  2121. if (v == SEQ_START_TOKEN) {
  2122. seq_puts(seq,
  2123. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2124. } else {
  2125. const struct vif_device *vif = v;
  2126. const char *name = vif->dev ? vif->dev->name : "none";
  2127. seq_printf(seq,
  2128. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2129. vif - mrt->vif_table,
  2130. name, vif->bytes_in, vif->pkt_in,
  2131. vif->bytes_out, vif->pkt_out,
  2132. vif->flags, vif->local, vif->remote);
  2133. }
  2134. return 0;
  2135. }
  2136. static const struct seq_operations ipmr_vif_seq_ops = {
  2137. .start = ipmr_vif_seq_start,
  2138. .next = ipmr_vif_seq_next,
  2139. .stop = ipmr_vif_seq_stop,
  2140. .show = ipmr_vif_seq_show,
  2141. };
  2142. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2143. {
  2144. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2145. sizeof(struct ipmr_vif_iter));
  2146. }
  2147. static const struct file_operations ipmr_vif_fops = {
  2148. .owner = THIS_MODULE,
  2149. .open = ipmr_vif_open,
  2150. .read = seq_read,
  2151. .llseek = seq_lseek,
  2152. .release = seq_release_net,
  2153. };
  2154. struct ipmr_mfc_iter {
  2155. struct seq_net_private p;
  2156. struct mr_table *mrt;
  2157. struct list_head *cache;
  2158. int ct;
  2159. };
  2160. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  2161. struct ipmr_mfc_iter *it, loff_t pos)
  2162. {
  2163. struct mr_table *mrt = it->mrt;
  2164. struct mfc_cache *mfc;
  2165. rcu_read_lock();
  2166. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  2167. it->cache = &mrt->mfc_cache_array[it->ct];
  2168. list_for_each_entry_rcu(mfc, it->cache, list)
  2169. if (pos-- == 0)
  2170. return mfc;
  2171. }
  2172. rcu_read_unlock();
  2173. spin_lock_bh(&mfc_unres_lock);
  2174. it->cache = &mrt->mfc_unres_queue;
  2175. list_for_each_entry(mfc, it->cache, list)
  2176. if (pos-- == 0)
  2177. return mfc;
  2178. spin_unlock_bh(&mfc_unres_lock);
  2179. it->cache = NULL;
  2180. return NULL;
  2181. }
  2182. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2183. {
  2184. struct ipmr_mfc_iter *it = seq->private;
  2185. struct net *net = seq_file_net(seq);
  2186. struct mr_table *mrt;
  2187. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2188. if (!mrt)
  2189. return ERR_PTR(-ENOENT);
  2190. it->mrt = mrt;
  2191. it->cache = NULL;
  2192. it->ct = 0;
  2193. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2194. : SEQ_START_TOKEN;
  2195. }
  2196. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2197. {
  2198. struct mfc_cache *mfc = v;
  2199. struct ipmr_mfc_iter *it = seq->private;
  2200. struct net *net = seq_file_net(seq);
  2201. struct mr_table *mrt = it->mrt;
  2202. ++*pos;
  2203. if (v == SEQ_START_TOKEN)
  2204. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2205. if (mfc->list.next != it->cache)
  2206. return list_entry(mfc->list.next, struct mfc_cache, list);
  2207. if (it->cache == &mrt->mfc_unres_queue)
  2208. goto end_of_list;
  2209. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  2210. while (++it->ct < MFC_LINES) {
  2211. it->cache = &mrt->mfc_cache_array[it->ct];
  2212. if (list_empty(it->cache))
  2213. continue;
  2214. return list_first_entry(it->cache, struct mfc_cache, list);
  2215. }
  2216. /* exhausted cache_array, show unresolved */
  2217. rcu_read_unlock();
  2218. it->cache = &mrt->mfc_unres_queue;
  2219. it->ct = 0;
  2220. spin_lock_bh(&mfc_unres_lock);
  2221. if (!list_empty(it->cache))
  2222. return list_first_entry(it->cache, struct mfc_cache, list);
  2223. end_of_list:
  2224. spin_unlock_bh(&mfc_unres_lock);
  2225. it->cache = NULL;
  2226. return NULL;
  2227. }
  2228. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2229. {
  2230. struct ipmr_mfc_iter *it = seq->private;
  2231. struct mr_table *mrt = it->mrt;
  2232. if (it->cache == &mrt->mfc_unres_queue)
  2233. spin_unlock_bh(&mfc_unres_lock);
  2234. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  2235. rcu_read_unlock();
  2236. }
  2237. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2238. {
  2239. int n;
  2240. if (v == SEQ_START_TOKEN) {
  2241. seq_puts(seq,
  2242. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2243. } else {
  2244. const struct mfc_cache *mfc = v;
  2245. const struct ipmr_mfc_iter *it = seq->private;
  2246. const struct mr_table *mrt = it->mrt;
  2247. seq_printf(seq, "%08X %08X %-3hd",
  2248. (__force u32) mfc->mfc_mcastgrp,
  2249. (__force u32) mfc->mfc_origin,
  2250. mfc->mfc_parent);
  2251. if (it->cache != &mrt->mfc_unres_queue) {
  2252. seq_printf(seq, " %8lu %8lu %8lu",
  2253. mfc->mfc_un.res.pkt,
  2254. mfc->mfc_un.res.bytes,
  2255. mfc->mfc_un.res.wrong_if);
  2256. for (n = mfc->mfc_un.res.minvif;
  2257. n < mfc->mfc_un.res.maxvif; n++) {
  2258. if (VIF_EXISTS(mrt, n) &&
  2259. mfc->mfc_un.res.ttls[n] < 255)
  2260. seq_printf(seq,
  2261. " %2d:%-3d",
  2262. n, mfc->mfc_un.res.ttls[n]);
  2263. }
  2264. } else {
  2265. /* unresolved mfc_caches don't contain
  2266. * pkt, bytes and wrong_if values
  2267. */
  2268. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2269. }
  2270. seq_putc(seq, '\n');
  2271. }
  2272. return 0;
  2273. }
  2274. static const struct seq_operations ipmr_mfc_seq_ops = {
  2275. .start = ipmr_mfc_seq_start,
  2276. .next = ipmr_mfc_seq_next,
  2277. .stop = ipmr_mfc_seq_stop,
  2278. .show = ipmr_mfc_seq_show,
  2279. };
  2280. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2281. {
  2282. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2283. sizeof(struct ipmr_mfc_iter));
  2284. }
  2285. static const struct file_operations ipmr_mfc_fops = {
  2286. .owner = THIS_MODULE,
  2287. .open = ipmr_mfc_open,
  2288. .read = seq_read,
  2289. .llseek = seq_lseek,
  2290. .release = seq_release_net,
  2291. };
  2292. #endif
  2293. #ifdef CONFIG_IP_PIMSM_V2
  2294. static const struct net_protocol pim_protocol = {
  2295. .handler = pim_rcv,
  2296. .netns_ok = 1,
  2297. };
  2298. #endif
  2299. /*
  2300. * Setup for IP multicast routing
  2301. */
  2302. static int __net_init ipmr_net_init(struct net *net)
  2303. {
  2304. int err;
  2305. err = ipmr_rules_init(net);
  2306. if (err < 0)
  2307. goto fail;
  2308. #ifdef CONFIG_PROC_FS
  2309. err = -ENOMEM;
  2310. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2311. goto proc_vif_fail;
  2312. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2313. goto proc_cache_fail;
  2314. #endif
  2315. return 0;
  2316. #ifdef CONFIG_PROC_FS
  2317. proc_cache_fail:
  2318. remove_proc_entry("ip_mr_vif", net->proc_net);
  2319. proc_vif_fail:
  2320. ipmr_rules_exit(net);
  2321. #endif
  2322. fail:
  2323. return err;
  2324. }
  2325. static void __net_exit ipmr_net_exit(struct net *net)
  2326. {
  2327. #ifdef CONFIG_PROC_FS
  2328. remove_proc_entry("ip_mr_cache", net->proc_net);
  2329. remove_proc_entry("ip_mr_vif", net->proc_net);
  2330. #endif
  2331. ipmr_rules_exit(net);
  2332. }
  2333. static struct pernet_operations ipmr_net_ops = {
  2334. .init = ipmr_net_init,
  2335. .exit = ipmr_net_exit,
  2336. };
  2337. int __init ip_mr_init(void)
  2338. {
  2339. int err;
  2340. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2341. sizeof(struct mfc_cache),
  2342. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2343. NULL);
  2344. if (!mrt_cachep)
  2345. return -ENOMEM;
  2346. err = register_pernet_subsys(&ipmr_net_ops);
  2347. if (err)
  2348. goto reg_pernet_fail;
  2349. err = register_netdevice_notifier(&ip_mr_notifier);
  2350. if (err)
  2351. goto reg_notif_fail;
  2352. #ifdef CONFIG_IP_PIMSM_V2
  2353. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2354. pr_err("%s: can't add PIM protocol\n", __func__);
  2355. err = -EAGAIN;
  2356. goto add_proto_fail;
  2357. }
  2358. #endif
  2359. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2360. NULL, ipmr_rtm_dumproute, NULL);
  2361. return 0;
  2362. #ifdef CONFIG_IP_PIMSM_V2
  2363. add_proto_fail:
  2364. unregister_netdevice_notifier(&ip_mr_notifier);
  2365. #endif
  2366. reg_notif_fail:
  2367. unregister_pernet_subsys(&ipmr_net_ops);
  2368. reg_pernet_fail:
  2369. kmem_cache_destroy(mrt_cachep);
  2370. return err;
  2371. }