fib_trie.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <asm/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <net/net_namespace.h>
  75. #include <net/ip.h>
  76. #include <net/protocol.h>
  77. #include <net/route.h>
  78. #include <net/tcp.h>
  79. #include <net/sock.h>
  80. #include <net/ip_fib.h>
  81. #include <net/switchdev.h>
  82. #include <trace/events/fib.h>
  83. #include "fib_lookup.h"
  84. #define MAX_STAT_DEPTH 32
  85. #define KEYLENGTH (8*sizeof(t_key))
  86. #define KEY_MAX ((t_key)~0)
  87. typedef unsigned int t_key;
  88. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  89. #define IS_TNODE(n) ((n)->bits)
  90. #define IS_LEAF(n) (!(n)->bits)
  91. struct key_vector {
  92. t_key key;
  93. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  94. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  95. unsigned char slen;
  96. union {
  97. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  98. struct hlist_head leaf;
  99. /* This array is valid if (pos | bits) > 0 (TNODE) */
  100. struct key_vector __rcu *tnode[0];
  101. };
  102. };
  103. struct tnode {
  104. struct rcu_head rcu;
  105. t_key empty_children; /* KEYLENGTH bits needed */
  106. t_key full_children; /* KEYLENGTH bits needed */
  107. struct key_vector __rcu *parent;
  108. struct key_vector kv[1];
  109. #define tn_bits kv[0].bits
  110. };
  111. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  112. #define LEAF_SIZE TNODE_SIZE(1)
  113. #ifdef CONFIG_IP_FIB_TRIE_STATS
  114. struct trie_use_stats {
  115. unsigned int gets;
  116. unsigned int backtrack;
  117. unsigned int semantic_match_passed;
  118. unsigned int semantic_match_miss;
  119. unsigned int null_node_hit;
  120. unsigned int resize_node_skipped;
  121. };
  122. #endif
  123. struct trie_stat {
  124. unsigned int totdepth;
  125. unsigned int maxdepth;
  126. unsigned int tnodes;
  127. unsigned int leaves;
  128. unsigned int nullpointers;
  129. unsigned int prefixes;
  130. unsigned int nodesizes[MAX_STAT_DEPTH];
  131. };
  132. struct trie {
  133. struct key_vector kv[1];
  134. #ifdef CONFIG_IP_FIB_TRIE_STATS
  135. struct trie_use_stats __percpu *stats;
  136. #endif
  137. };
  138. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  139. static size_t tnode_free_size;
  140. /*
  141. * synchronize_rcu after call_rcu for that many pages; it should be especially
  142. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  143. * obtained experimentally, aiming to avoid visible slowdown.
  144. */
  145. static const int sync_pages = 128;
  146. static struct kmem_cache *fn_alias_kmem __read_mostly;
  147. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  148. static inline struct tnode *tn_info(struct key_vector *kv)
  149. {
  150. return container_of(kv, struct tnode, kv[0]);
  151. }
  152. /* caller must hold RTNL */
  153. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  154. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  155. /* caller must hold RCU read lock or RTNL */
  156. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  157. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  158. /* wrapper for rcu_assign_pointer */
  159. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  160. {
  161. if (n)
  162. rcu_assign_pointer(tn_info(n)->parent, tp);
  163. }
  164. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  165. /* This provides us with the number of children in this node, in the case of a
  166. * leaf this will return 0 meaning none of the children are accessible.
  167. */
  168. static inline unsigned long child_length(const struct key_vector *tn)
  169. {
  170. return (1ul << tn->bits) & ~(1ul);
  171. }
  172. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  173. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  174. {
  175. unsigned long index = key ^ kv->key;
  176. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  177. return 0;
  178. return index >> kv->pos;
  179. }
  180. /* To understand this stuff, an understanding of keys and all their bits is
  181. * necessary. Every node in the trie has a key associated with it, but not
  182. * all of the bits in that key are significant.
  183. *
  184. * Consider a node 'n' and its parent 'tp'.
  185. *
  186. * If n is a leaf, every bit in its key is significant. Its presence is
  187. * necessitated by path compression, since during a tree traversal (when
  188. * searching for a leaf - unless we are doing an insertion) we will completely
  189. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  190. * a potentially successful search, that we have indeed been walking the
  191. * correct key path.
  192. *
  193. * Note that we can never "miss" the correct key in the tree if present by
  194. * following the wrong path. Path compression ensures that segments of the key
  195. * that are the same for all keys with a given prefix are skipped, but the
  196. * skipped part *is* identical for each node in the subtrie below the skipped
  197. * bit! trie_insert() in this implementation takes care of that.
  198. *
  199. * if n is an internal node - a 'tnode' here, the various parts of its key
  200. * have many different meanings.
  201. *
  202. * Example:
  203. * _________________________________________________________________
  204. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  205. * -----------------------------------------------------------------
  206. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  207. *
  208. * _________________________________________________________________
  209. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  210. * -----------------------------------------------------------------
  211. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  212. *
  213. * tp->pos = 22
  214. * tp->bits = 3
  215. * n->pos = 13
  216. * n->bits = 4
  217. *
  218. * First, let's just ignore the bits that come before the parent tp, that is
  219. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  220. * point we do not use them for anything.
  221. *
  222. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  223. * index into the parent's child array. That is, they will be used to find
  224. * 'n' among tp's children.
  225. *
  226. * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
  227. * for the node n.
  228. *
  229. * All the bits we have seen so far are significant to the node n. The rest
  230. * of the bits are really not needed or indeed known in n->key.
  231. *
  232. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  233. * n's child array, and will of course be different for each child.
  234. *
  235. * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
  236. * at this point.
  237. */
  238. static const int halve_threshold = 25;
  239. static const int inflate_threshold = 50;
  240. static const int halve_threshold_root = 15;
  241. static const int inflate_threshold_root = 30;
  242. static void __alias_free_mem(struct rcu_head *head)
  243. {
  244. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  245. kmem_cache_free(fn_alias_kmem, fa);
  246. }
  247. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  248. {
  249. call_rcu(&fa->rcu, __alias_free_mem);
  250. }
  251. #define TNODE_KMALLOC_MAX \
  252. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  253. #define TNODE_VMALLOC_MAX \
  254. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  255. static void __node_free_rcu(struct rcu_head *head)
  256. {
  257. struct tnode *n = container_of(head, struct tnode, rcu);
  258. if (!n->tn_bits)
  259. kmem_cache_free(trie_leaf_kmem, n);
  260. else if (n->tn_bits <= TNODE_KMALLOC_MAX)
  261. kfree(n);
  262. else
  263. vfree(n);
  264. }
  265. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  266. static struct tnode *tnode_alloc(int bits)
  267. {
  268. size_t size;
  269. /* verify bits is within bounds */
  270. if (bits > TNODE_VMALLOC_MAX)
  271. return NULL;
  272. /* determine size and verify it is non-zero and didn't overflow */
  273. size = TNODE_SIZE(1ul << bits);
  274. if (size <= PAGE_SIZE)
  275. return kzalloc(size, GFP_KERNEL);
  276. else
  277. return vzalloc(size);
  278. }
  279. static inline void empty_child_inc(struct key_vector *n)
  280. {
  281. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  282. }
  283. static inline void empty_child_dec(struct key_vector *n)
  284. {
  285. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  286. }
  287. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  288. {
  289. struct key_vector *l;
  290. struct tnode *kv;
  291. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  292. if (!kv)
  293. return NULL;
  294. /* initialize key vector */
  295. l = kv->kv;
  296. l->key = key;
  297. l->pos = 0;
  298. l->bits = 0;
  299. l->slen = fa->fa_slen;
  300. /* link leaf to fib alias */
  301. INIT_HLIST_HEAD(&l->leaf);
  302. hlist_add_head(&fa->fa_list, &l->leaf);
  303. return l;
  304. }
  305. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  306. {
  307. unsigned int shift = pos + bits;
  308. struct key_vector *tn;
  309. struct tnode *tnode;
  310. /* verify bits and pos their msb bits clear and values are valid */
  311. BUG_ON(!bits || (shift > KEYLENGTH));
  312. tnode = tnode_alloc(bits);
  313. if (!tnode)
  314. return NULL;
  315. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  316. sizeof(struct key_vector *) << bits);
  317. if (bits == KEYLENGTH)
  318. tnode->full_children = 1;
  319. else
  320. tnode->empty_children = 1ul << bits;
  321. tn = tnode->kv;
  322. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  323. tn->pos = pos;
  324. tn->bits = bits;
  325. tn->slen = pos;
  326. return tn;
  327. }
  328. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  329. * and no bits are skipped. See discussion in dyntree paper p. 6
  330. */
  331. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  332. {
  333. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  334. }
  335. /* Add a child at position i overwriting the old value.
  336. * Update the value of full_children and empty_children.
  337. */
  338. static void put_child(struct key_vector *tn, unsigned long i,
  339. struct key_vector *n)
  340. {
  341. struct key_vector *chi = get_child(tn, i);
  342. int isfull, wasfull;
  343. BUG_ON(i >= child_length(tn));
  344. /* update emptyChildren, overflow into fullChildren */
  345. if (!n && chi)
  346. empty_child_inc(tn);
  347. if (n && !chi)
  348. empty_child_dec(tn);
  349. /* update fullChildren */
  350. wasfull = tnode_full(tn, chi);
  351. isfull = tnode_full(tn, n);
  352. if (wasfull && !isfull)
  353. tn_info(tn)->full_children--;
  354. else if (!wasfull && isfull)
  355. tn_info(tn)->full_children++;
  356. if (n && (tn->slen < n->slen))
  357. tn->slen = n->slen;
  358. rcu_assign_pointer(tn->tnode[i], n);
  359. }
  360. static void update_children(struct key_vector *tn)
  361. {
  362. unsigned long i;
  363. /* update all of the child parent pointers */
  364. for (i = child_length(tn); i;) {
  365. struct key_vector *inode = get_child(tn, --i);
  366. if (!inode)
  367. continue;
  368. /* Either update the children of a tnode that
  369. * already belongs to us or update the child
  370. * to point to ourselves.
  371. */
  372. if (node_parent(inode) == tn)
  373. update_children(inode);
  374. else
  375. node_set_parent(inode, tn);
  376. }
  377. }
  378. static inline void put_child_root(struct key_vector *tp, t_key key,
  379. struct key_vector *n)
  380. {
  381. if (IS_TRIE(tp))
  382. rcu_assign_pointer(tp->tnode[0], n);
  383. else
  384. put_child(tp, get_index(key, tp), n);
  385. }
  386. static inline void tnode_free_init(struct key_vector *tn)
  387. {
  388. tn_info(tn)->rcu.next = NULL;
  389. }
  390. static inline void tnode_free_append(struct key_vector *tn,
  391. struct key_vector *n)
  392. {
  393. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  394. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  395. }
  396. static void tnode_free(struct key_vector *tn)
  397. {
  398. struct callback_head *head = &tn_info(tn)->rcu;
  399. while (head) {
  400. head = head->next;
  401. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  402. node_free(tn);
  403. tn = container_of(head, struct tnode, rcu)->kv;
  404. }
  405. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  406. tnode_free_size = 0;
  407. synchronize_rcu();
  408. }
  409. }
  410. static struct key_vector *replace(struct trie *t,
  411. struct key_vector *oldtnode,
  412. struct key_vector *tn)
  413. {
  414. struct key_vector *tp = node_parent(oldtnode);
  415. unsigned long i;
  416. /* setup the parent pointer out of and back into this node */
  417. NODE_INIT_PARENT(tn, tp);
  418. put_child_root(tp, tn->key, tn);
  419. /* update all of the child parent pointers */
  420. update_children(tn);
  421. /* all pointers should be clean so we are done */
  422. tnode_free(oldtnode);
  423. /* resize children now that oldtnode is freed */
  424. for (i = child_length(tn); i;) {
  425. struct key_vector *inode = get_child(tn, --i);
  426. /* resize child node */
  427. if (tnode_full(tn, inode))
  428. tn = resize(t, inode);
  429. }
  430. return tp;
  431. }
  432. static struct key_vector *inflate(struct trie *t,
  433. struct key_vector *oldtnode)
  434. {
  435. struct key_vector *tn;
  436. unsigned long i;
  437. t_key m;
  438. pr_debug("In inflate\n");
  439. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  440. if (!tn)
  441. goto notnode;
  442. /* prepare oldtnode to be freed */
  443. tnode_free_init(oldtnode);
  444. /* Assemble all of the pointers in our cluster, in this case that
  445. * represents all of the pointers out of our allocated nodes that
  446. * point to existing tnodes and the links between our allocated
  447. * nodes.
  448. */
  449. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  450. struct key_vector *inode = get_child(oldtnode, --i);
  451. struct key_vector *node0, *node1;
  452. unsigned long j, k;
  453. /* An empty child */
  454. if (!inode)
  455. continue;
  456. /* A leaf or an internal node with skipped bits */
  457. if (!tnode_full(oldtnode, inode)) {
  458. put_child(tn, get_index(inode->key, tn), inode);
  459. continue;
  460. }
  461. /* drop the node in the old tnode free list */
  462. tnode_free_append(oldtnode, inode);
  463. /* An internal node with two children */
  464. if (inode->bits == 1) {
  465. put_child(tn, 2 * i + 1, get_child(inode, 1));
  466. put_child(tn, 2 * i, get_child(inode, 0));
  467. continue;
  468. }
  469. /* We will replace this node 'inode' with two new
  470. * ones, 'node0' and 'node1', each with half of the
  471. * original children. The two new nodes will have
  472. * a position one bit further down the key and this
  473. * means that the "significant" part of their keys
  474. * (see the discussion near the top of this file)
  475. * will differ by one bit, which will be "0" in
  476. * node0's key and "1" in node1's key. Since we are
  477. * moving the key position by one step, the bit that
  478. * we are moving away from - the bit at position
  479. * (tn->pos) - is the one that will differ between
  480. * node0 and node1. So... we synthesize that bit in the
  481. * two new keys.
  482. */
  483. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  484. if (!node1)
  485. goto nomem;
  486. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  487. tnode_free_append(tn, node1);
  488. if (!node0)
  489. goto nomem;
  490. tnode_free_append(tn, node0);
  491. /* populate child pointers in new nodes */
  492. for (k = child_length(inode), j = k / 2; j;) {
  493. put_child(node1, --j, get_child(inode, --k));
  494. put_child(node0, j, get_child(inode, j));
  495. put_child(node1, --j, get_child(inode, --k));
  496. put_child(node0, j, get_child(inode, j));
  497. }
  498. /* link new nodes to parent */
  499. NODE_INIT_PARENT(node1, tn);
  500. NODE_INIT_PARENT(node0, tn);
  501. /* link parent to nodes */
  502. put_child(tn, 2 * i + 1, node1);
  503. put_child(tn, 2 * i, node0);
  504. }
  505. /* setup the parent pointers into and out of this node */
  506. return replace(t, oldtnode, tn);
  507. nomem:
  508. /* all pointers should be clean so we are done */
  509. tnode_free(tn);
  510. notnode:
  511. return NULL;
  512. }
  513. static struct key_vector *halve(struct trie *t,
  514. struct key_vector *oldtnode)
  515. {
  516. struct key_vector *tn;
  517. unsigned long i;
  518. pr_debug("In halve\n");
  519. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  520. if (!tn)
  521. goto notnode;
  522. /* prepare oldtnode to be freed */
  523. tnode_free_init(oldtnode);
  524. /* Assemble all of the pointers in our cluster, in this case that
  525. * represents all of the pointers out of our allocated nodes that
  526. * point to existing tnodes and the links between our allocated
  527. * nodes.
  528. */
  529. for (i = child_length(oldtnode); i;) {
  530. struct key_vector *node1 = get_child(oldtnode, --i);
  531. struct key_vector *node0 = get_child(oldtnode, --i);
  532. struct key_vector *inode;
  533. /* At least one of the children is empty */
  534. if (!node1 || !node0) {
  535. put_child(tn, i / 2, node1 ? : node0);
  536. continue;
  537. }
  538. /* Two nonempty children */
  539. inode = tnode_new(node0->key, oldtnode->pos, 1);
  540. if (!inode)
  541. goto nomem;
  542. tnode_free_append(tn, inode);
  543. /* initialize pointers out of node */
  544. put_child(inode, 1, node1);
  545. put_child(inode, 0, node0);
  546. NODE_INIT_PARENT(inode, tn);
  547. /* link parent to node */
  548. put_child(tn, i / 2, inode);
  549. }
  550. /* setup the parent pointers into and out of this node */
  551. return replace(t, oldtnode, tn);
  552. nomem:
  553. /* all pointers should be clean so we are done */
  554. tnode_free(tn);
  555. notnode:
  556. return NULL;
  557. }
  558. static struct key_vector *collapse(struct trie *t,
  559. struct key_vector *oldtnode)
  560. {
  561. struct key_vector *n, *tp;
  562. unsigned long i;
  563. /* scan the tnode looking for that one child that might still exist */
  564. for (n = NULL, i = child_length(oldtnode); !n && i;)
  565. n = get_child(oldtnode, --i);
  566. /* compress one level */
  567. tp = node_parent(oldtnode);
  568. put_child_root(tp, oldtnode->key, n);
  569. node_set_parent(n, tp);
  570. /* drop dead node */
  571. node_free(oldtnode);
  572. return tp;
  573. }
  574. static unsigned char update_suffix(struct key_vector *tn)
  575. {
  576. unsigned char slen = tn->pos;
  577. unsigned long stride, i;
  578. /* search though the list of children looking for nodes that might
  579. * have a suffix greater than the one we currently have. This is
  580. * why we start with a stride of 2 since a stride of 1 would
  581. * represent the nodes with suffix length equal to tn->pos
  582. */
  583. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  584. struct key_vector *n = get_child(tn, i);
  585. if (!n || (n->slen <= slen))
  586. continue;
  587. /* update stride and slen based on new value */
  588. stride <<= (n->slen - slen);
  589. slen = n->slen;
  590. i &= ~(stride - 1);
  591. /* if slen covers all but the last bit we can stop here
  592. * there will be nothing longer than that since only node
  593. * 0 and 1 << (bits - 1) could have that as their suffix
  594. * length.
  595. */
  596. if ((slen + 1) >= (tn->pos + tn->bits))
  597. break;
  598. }
  599. tn->slen = slen;
  600. return slen;
  601. }
  602. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  603. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  604. * Telecommunications, page 6:
  605. * "A node is doubled if the ratio of non-empty children to all
  606. * children in the *doubled* node is at least 'high'."
  607. *
  608. * 'high' in this instance is the variable 'inflate_threshold'. It
  609. * is expressed as a percentage, so we multiply it with
  610. * child_length() and instead of multiplying by 2 (since the
  611. * child array will be doubled by inflate()) and multiplying
  612. * the left-hand side by 100 (to handle the percentage thing) we
  613. * multiply the left-hand side by 50.
  614. *
  615. * The left-hand side may look a bit weird: child_length(tn)
  616. * - tn->empty_children is of course the number of non-null children
  617. * in the current node. tn->full_children is the number of "full"
  618. * children, that is non-null tnodes with a skip value of 0.
  619. * All of those will be doubled in the resulting inflated tnode, so
  620. * we just count them one extra time here.
  621. *
  622. * A clearer way to write this would be:
  623. *
  624. * to_be_doubled = tn->full_children;
  625. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  626. * tn->full_children;
  627. *
  628. * new_child_length = child_length(tn) * 2;
  629. *
  630. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  631. * new_child_length;
  632. * if (new_fill_factor >= inflate_threshold)
  633. *
  634. * ...and so on, tho it would mess up the while () loop.
  635. *
  636. * anyway,
  637. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  638. * inflate_threshold
  639. *
  640. * avoid a division:
  641. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  642. * inflate_threshold * new_child_length
  643. *
  644. * expand not_to_be_doubled and to_be_doubled, and shorten:
  645. * 100 * (child_length(tn) - tn->empty_children +
  646. * tn->full_children) >= inflate_threshold * new_child_length
  647. *
  648. * expand new_child_length:
  649. * 100 * (child_length(tn) - tn->empty_children +
  650. * tn->full_children) >=
  651. * inflate_threshold * child_length(tn) * 2
  652. *
  653. * shorten again:
  654. * 50 * (tn->full_children + child_length(tn) -
  655. * tn->empty_children) >= inflate_threshold *
  656. * child_length(tn)
  657. *
  658. */
  659. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  660. {
  661. unsigned long used = child_length(tn);
  662. unsigned long threshold = used;
  663. /* Keep root node larger */
  664. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  665. used -= tn_info(tn)->empty_children;
  666. used += tn_info(tn)->full_children;
  667. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  668. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  669. }
  670. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  671. {
  672. unsigned long used = child_length(tn);
  673. unsigned long threshold = used;
  674. /* Keep root node larger */
  675. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  676. used -= tn_info(tn)->empty_children;
  677. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  678. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  679. }
  680. static inline bool should_collapse(struct key_vector *tn)
  681. {
  682. unsigned long used = child_length(tn);
  683. used -= tn_info(tn)->empty_children;
  684. /* account for bits == KEYLENGTH case */
  685. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  686. used -= KEY_MAX;
  687. /* One child or none, time to drop us from the trie */
  688. return used < 2;
  689. }
  690. #define MAX_WORK 10
  691. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  692. {
  693. #ifdef CONFIG_IP_FIB_TRIE_STATS
  694. struct trie_use_stats __percpu *stats = t->stats;
  695. #endif
  696. struct key_vector *tp = node_parent(tn);
  697. unsigned long cindex = get_index(tn->key, tp);
  698. int max_work = MAX_WORK;
  699. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  700. tn, inflate_threshold, halve_threshold);
  701. /* track the tnode via the pointer from the parent instead of
  702. * doing it ourselves. This way we can let RCU fully do its
  703. * thing without us interfering
  704. */
  705. BUG_ON(tn != get_child(tp, cindex));
  706. /* Double as long as the resulting node has a number of
  707. * nonempty nodes that are above the threshold.
  708. */
  709. while (should_inflate(tp, tn) && max_work) {
  710. tp = inflate(t, tn);
  711. if (!tp) {
  712. #ifdef CONFIG_IP_FIB_TRIE_STATS
  713. this_cpu_inc(stats->resize_node_skipped);
  714. #endif
  715. break;
  716. }
  717. max_work--;
  718. tn = get_child(tp, cindex);
  719. }
  720. /* update parent in case inflate failed */
  721. tp = node_parent(tn);
  722. /* Return if at least one inflate is run */
  723. if (max_work != MAX_WORK)
  724. return tp;
  725. /* Halve as long as the number of empty children in this
  726. * node is above threshold.
  727. */
  728. while (should_halve(tp, tn) && max_work) {
  729. tp = halve(t, tn);
  730. if (!tp) {
  731. #ifdef CONFIG_IP_FIB_TRIE_STATS
  732. this_cpu_inc(stats->resize_node_skipped);
  733. #endif
  734. break;
  735. }
  736. max_work--;
  737. tn = get_child(tp, cindex);
  738. }
  739. /* Only one child remains */
  740. if (should_collapse(tn))
  741. return collapse(t, tn);
  742. /* update parent in case halve failed */
  743. tp = node_parent(tn);
  744. /* Return if at least one deflate was run */
  745. if (max_work != MAX_WORK)
  746. return tp;
  747. /* push the suffix length to the parent node */
  748. if (tn->slen > tn->pos) {
  749. unsigned char slen = update_suffix(tn);
  750. if (slen > tp->slen)
  751. tp->slen = slen;
  752. }
  753. return tp;
  754. }
  755. static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
  756. {
  757. while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
  758. if (update_suffix(tp) > l->slen)
  759. break;
  760. tp = node_parent(tp);
  761. }
  762. }
  763. static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
  764. {
  765. /* if this is a new leaf then tn will be NULL and we can sort
  766. * out parent suffix lengths as a part of trie_rebalance
  767. */
  768. while (tn->slen < l->slen) {
  769. tn->slen = l->slen;
  770. tn = node_parent(tn);
  771. }
  772. }
  773. /* rcu_read_lock needs to be hold by caller from readside */
  774. static struct key_vector *fib_find_node(struct trie *t,
  775. struct key_vector **tp, u32 key)
  776. {
  777. struct key_vector *pn, *n = t->kv;
  778. unsigned long index = 0;
  779. do {
  780. pn = n;
  781. n = get_child_rcu(n, index);
  782. if (!n)
  783. break;
  784. index = get_cindex(key, n);
  785. /* This bit of code is a bit tricky but it combines multiple
  786. * checks into a single check. The prefix consists of the
  787. * prefix plus zeros for the bits in the cindex. The index
  788. * is the difference between the key and this value. From
  789. * this we can actually derive several pieces of data.
  790. * if (index >= (1ul << bits))
  791. * we have a mismatch in skip bits and failed
  792. * else
  793. * we know the value is cindex
  794. *
  795. * This check is safe even if bits == KEYLENGTH due to the
  796. * fact that we can only allocate a node with 32 bits if a
  797. * long is greater than 32 bits.
  798. */
  799. if (index >= (1ul << n->bits)) {
  800. n = NULL;
  801. break;
  802. }
  803. /* keep searching until we find a perfect match leaf or NULL */
  804. } while (IS_TNODE(n));
  805. *tp = pn;
  806. return n;
  807. }
  808. /* Return the first fib alias matching TOS with
  809. * priority less than or equal to PRIO.
  810. */
  811. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  812. u8 tos, u32 prio, u32 tb_id)
  813. {
  814. struct fib_alias *fa;
  815. if (!fah)
  816. return NULL;
  817. hlist_for_each_entry(fa, fah, fa_list) {
  818. if (fa->fa_slen < slen)
  819. continue;
  820. if (fa->fa_slen != slen)
  821. break;
  822. if (fa->tb_id > tb_id)
  823. continue;
  824. if (fa->tb_id != tb_id)
  825. break;
  826. if (fa->fa_tos > tos)
  827. continue;
  828. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  829. return fa;
  830. }
  831. return NULL;
  832. }
  833. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  834. {
  835. while (!IS_TRIE(tn))
  836. tn = resize(t, tn);
  837. }
  838. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  839. struct fib_alias *new, t_key key)
  840. {
  841. struct key_vector *n, *l;
  842. l = leaf_new(key, new);
  843. if (!l)
  844. goto noleaf;
  845. /* retrieve child from parent node */
  846. n = get_child(tp, get_index(key, tp));
  847. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  848. *
  849. * Add a new tnode here
  850. * first tnode need some special handling
  851. * leaves us in position for handling as case 3
  852. */
  853. if (n) {
  854. struct key_vector *tn;
  855. tn = tnode_new(key, __fls(key ^ n->key), 1);
  856. if (!tn)
  857. goto notnode;
  858. /* initialize routes out of node */
  859. NODE_INIT_PARENT(tn, tp);
  860. put_child(tn, get_index(key, tn) ^ 1, n);
  861. /* start adding routes into the node */
  862. put_child_root(tp, key, tn);
  863. node_set_parent(n, tn);
  864. /* parent now has a NULL spot where the leaf can go */
  865. tp = tn;
  866. }
  867. /* Case 3: n is NULL, and will just insert a new leaf */
  868. NODE_INIT_PARENT(l, tp);
  869. put_child_root(tp, key, l);
  870. trie_rebalance(t, tp);
  871. return 0;
  872. notnode:
  873. node_free(l);
  874. noleaf:
  875. return -ENOMEM;
  876. }
  877. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  878. struct key_vector *l, struct fib_alias *new,
  879. struct fib_alias *fa, t_key key)
  880. {
  881. if (!l)
  882. return fib_insert_node(t, tp, new, key);
  883. if (fa) {
  884. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  885. } else {
  886. struct fib_alias *last;
  887. hlist_for_each_entry(last, &l->leaf, fa_list) {
  888. if (new->fa_slen < last->fa_slen)
  889. break;
  890. if ((new->fa_slen == last->fa_slen) &&
  891. (new->tb_id > last->tb_id))
  892. break;
  893. fa = last;
  894. }
  895. if (fa)
  896. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  897. else
  898. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  899. }
  900. /* if we added to the tail node then we need to update slen */
  901. if (l->slen < new->fa_slen) {
  902. l->slen = new->fa_slen;
  903. leaf_push_suffix(tp, l);
  904. }
  905. return 0;
  906. }
  907. /* Caller must hold RTNL. */
  908. int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
  909. {
  910. struct trie *t = (struct trie *)tb->tb_data;
  911. struct fib_alias *fa, *new_fa;
  912. struct key_vector *l, *tp;
  913. unsigned int nlflags = 0;
  914. struct fib_info *fi;
  915. u8 plen = cfg->fc_dst_len;
  916. u8 slen = KEYLENGTH - plen;
  917. u8 tos = cfg->fc_tos;
  918. u32 key;
  919. int err;
  920. if (plen > KEYLENGTH)
  921. return -EINVAL;
  922. key = ntohl(cfg->fc_dst);
  923. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  924. if ((plen < KEYLENGTH) && (key << plen))
  925. return -EINVAL;
  926. fi = fib_create_info(cfg);
  927. if (IS_ERR(fi)) {
  928. err = PTR_ERR(fi);
  929. goto err;
  930. }
  931. l = fib_find_node(t, &tp, key);
  932. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  933. tb->tb_id) : NULL;
  934. /* Now fa, if non-NULL, points to the first fib alias
  935. * with the same keys [prefix,tos,priority], if such key already
  936. * exists or to the node before which we will insert new one.
  937. *
  938. * If fa is NULL, we will need to allocate a new one and
  939. * insert to the tail of the section matching the suffix length
  940. * of the new alias.
  941. */
  942. if (fa && fa->fa_tos == tos &&
  943. fa->fa_info->fib_priority == fi->fib_priority) {
  944. struct fib_alias *fa_first, *fa_match;
  945. err = -EEXIST;
  946. if (cfg->fc_nlflags & NLM_F_EXCL)
  947. goto out;
  948. /* We have 2 goals:
  949. * 1. Find exact match for type, scope, fib_info to avoid
  950. * duplicate routes
  951. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  952. */
  953. fa_match = NULL;
  954. fa_first = fa;
  955. hlist_for_each_entry_from(fa, fa_list) {
  956. if ((fa->fa_slen != slen) ||
  957. (fa->tb_id != tb->tb_id) ||
  958. (fa->fa_tos != tos))
  959. break;
  960. if (fa->fa_info->fib_priority != fi->fib_priority)
  961. break;
  962. if (fa->fa_type == cfg->fc_type &&
  963. fa->fa_info == fi) {
  964. fa_match = fa;
  965. break;
  966. }
  967. }
  968. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  969. struct fib_info *fi_drop;
  970. u8 state;
  971. fa = fa_first;
  972. if (fa_match) {
  973. if (fa == fa_match)
  974. err = 0;
  975. goto out;
  976. }
  977. err = -ENOBUFS;
  978. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  979. if (!new_fa)
  980. goto out;
  981. fi_drop = fa->fa_info;
  982. new_fa->fa_tos = fa->fa_tos;
  983. new_fa->fa_info = fi;
  984. new_fa->fa_type = cfg->fc_type;
  985. state = fa->fa_state;
  986. new_fa->fa_state = state & ~FA_S_ACCESSED;
  987. new_fa->fa_slen = fa->fa_slen;
  988. new_fa->tb_id = tb->tb_id;
  989. new_fa->fa_default = -1;
  990. err = switchdev_fib_ipv4_add(key, plen, fi,
  991. new_fa->fa_tos,
  992. cfg->fc_type,
  993. cfg->fc_nlflags,
  994. tb->tb_id);
  995. if (err) {
  996. switchdev_fib_ipv4_abort(fi);
  997. kmem_cache_free(fn_alias_kmem, new_fa);
  998. goto out;
  999. }
  1000. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1001. alias_free_mem_rcu(fa);
  1002. fib_release_info(fi_drop);
  1003. if (state & FA_S_ACCESSED)
  1004. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1005. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1006. tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
  1007. goto succeeded;
  1008. }
  1009. /* Error if we find a perfect match which
  1010. * uses the same scope, type, and nexthop
  1011. * information.
  1012. */
  1013. if (fa_match)
  1014. goto out;
  1015. if (cfg->fc_nlflags & NLM_F_APPEND)
  1016. nlflags = NLM_F_APPEND;
  1017. else
  1018. fa = fa_first;
  1019. }
  1020. err = -ENOENT;
  1021. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1022. goto out;
  1023. err = -ENOBUFS;
  1024. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1025. if (!new_fa)
  1026. goto out;
  1027. new_fa->fa_info = fi;
  1028. new_fa->fa_tos = tos;
  1029. new_fa->fa_type = cfg->fc_type;
  1030. new_fa->fa_state = 0;
  1031. new_fa->fa_slen = slen;
  1032. new_fa->tb_id = tb->tb_id;
  1033. new_fa->fa_default = -1;
  1034. /* (Optionally) offload fib entry to switch hardware. */
  1035. err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
  1036. cfg->fc_nlflags, tb->tb_id);
  1037. if (err) {
  1038. switchdev_fib_ipv4_abort(fi);
  1039. goto out_free_new_fa;
  1040. }
  1041. /* Insert new entry to the list. */
  1042. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1043. if (err)
  1044. goto out_sw_fib_del;
  1045. if (!plen)
  1046. tb->tb_num_default++;
  1047. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1048. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1049. &cfg->fc_nlinfo, nlflags);
  1050. succeeded:
  1051. return 0;
  1052. out_sw_fib_del:
  1053. switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
  1054. out_free_new_fa:
  1055. kmem_cache_free(fn_alias_kmem, new_fa);
  1056. out:
  1057. fib_release_info(fi);
  1058. err:
  1059. return err;
  1060. }
  1061. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1062. {
  1063. t_key prefix = n->key;
  1064. return (key ^ prefix) & (prefix | -prefix);
  1065. }
  1066. /* should be called with rcu_read_lock */
  1067. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1068. struct fib_result *res, int fib_flags)
  1069. {
  1070. struct trie *t = (struct trie *) tb->tb_data;
  1071. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1072. struct trie_use_stats __percpu *stats = t->stats;
  1073. #endif
  1074. const t_key key = ntohl(flp->daddr);
  1075. struct key_vector *n, *pn;
  1076. struct fib_alias *fa;
  1077. unsigned long index;
  1078. t_key cindex;
  1079. trace_fib_table_lookup(tb->tb_id, flp);
  1080. pn = t->kv;
  1081. cindex = 0;
  1082. n = get_child_rcu(pn, cindex);
  1083. if (!n)
  1084. return -EAGAIN;
  1085. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1086. this_cpu_inc(stats->gets);
  1087. #endif
  1088. /* Step 1: Travel to the longest prefix match in the trie */
  1089. for (;;) {
  1090. index = get_cindex(key, n);
  1091. /* This bit of code is a bit tricky but it combines multiple
  1092. * checks into a single check. The prefix consists of the
  1093. * prefix plus zeros for the "bits" in the prefix. The index
  1094. * is the difference between the key and this value. From
  1095. * this we can actually derive several pieces of data.
  1096. * if (index >= (1ul << bits))
  1097. * we have a mismatch in skip bits and failed
  1098. * else
  1099. * we know the value is cindex
  1100. *
  1101. * This check is safe even if bits == KEYLENGTH due to the
  1102. * fact that we can only allocate a node with 32 bits if a
  1103. * long is greater than 32 bits.
  1104. */
  1105. if (index >= (1ul << n->bits))
  1106. break;
  1107. /* we have found a leaf. Prefixes have already been compared */
  1108. if (IS_LEAF(n))
  1109. goto found;
  1110. /* only record pn and cindex if we are going to be chopping
  1111. * bits later. Otherwise we are just wasting cycles.
  1112. */
  1113. if (n->slen > n->pos) {
  1114. pn = n;
  1115. cindex = index;
  1116. }
  1117. n = get_child_rcu(n, index);
  1118. if (unlikely(!n))
  1119. goto backtrace;
  1120. }
  1121. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1122. for (;;) {
  1123. /* record the pointer where our next node pointer is stored */
  1124. struct key_vector __rcu **cptr = n->tnode;
  1125. /* This test verifies that none of the bits that differ
  1126. * between the key and the prefix exist in the region of
  1127. * the lsb and higher in the prefix.
  1128. */
  1129. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1130. goto backtrace;
  1131. /* exit out and process leaf */
  1132. if (unlikely(IS_LEAF(n)))
  1133. break;
  1134. /* Don't bother recording parent info. Since we are in
  1135. * prefix match mode we will have to come back to wherever
  1136. * we started this traversal anyway
  1137. */
  1138. while ((n = rcu_dereference(*cptr)) == NULL) {
  1139. backtrace:
  1140. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1141. if (!n)
  1142. this_cpu_inc(stats->null_node_hit);
  1143. #endif
  1144. /* If we are at cindex 0 there are no more bits for
  1145. * us to strip at this level so we must ascend back
  1146. * up one level to see if there are any more bits to
  1147. * be stripped there.
  1148. */
  1149. while (!cindex) {
  1150. t_key pkey = pn->key;
  1151. /* If we don't have a parent then there is
  1152. * nothing for us to do as we do not have any
  1153. * further nodes to parse.
  1154. */
  1155. if (IS_TRIE(pn))
  1156. return -EAGAIN;
  1157. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1158. this_cpu_inc(stats->backtrack);
  1159. #endif
  1160. /* Get Child's index */
  1161. pn = node_parent_rcu(pn);
  1162. cindex = get_index(pkey, pn);
  1163. }
  1164. /* strip the least significant bit from the cindex */
  1165. cindex &= cindex - 1;
  1166. /* grab pointer for next child node */
  1167. cptr = &pn->tnode[cindex];
  1168. }
  1169. }
  1170. found:
  1171. /* this line carries forward the xor from earlier in the function */
  1172. index = key ^ n->key;
  1173. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1174. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1175. struct fib_info *fi = fa->fa_info;
  1176. int nhsel, err;
  1177. if ((index >= (1ul << fa->fa_slen)) &&
  1178. ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
  1179. continue;
  1180. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1181. continue;
  1182. if (fi->fib_dead)
  1183. continue;
  1184. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1185. continue;
  1186. fib_alias_accessed(fa);
  1187. err = fib_props[fa->fa_type].error;
  1188. if (unlikely(err < 0)) {
  1189. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1190. this_cpu_inc(stats->semantic_match_passed);
  1191. #endif
  1192. return err;
  1193. }
  1194. if (fi->fib_flags & RTNH_F_DEAD)
  1195. continue;
  1196. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1197. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1198. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1199. if (nh->nh_flags & RTNH_F_DEAD)
  1200. continue;
  1201. if (in_dev &&
  1202. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1203. nh->nh_flags & RTNH_F_LINKDOWN &&
  1204. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1205. continue;
  1206. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1207. if (flp->flowi4_oif &&
  1208. flp->flowi4_oif != nh->nh_oif)
  1209. continue;
  1210. }
  1211. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1212. atomic_inc(&fi->fib_clntref);
  1213. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1214. res->nh_sel = nhsel;
  1215. res->type = fa->fa_type;
  1216. res->scope = fi->fib_scope;
  1217. res->fi = fi;
  1218. res->table = tb;
  1219. res->fa_head = &n->leaf;
  1220. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1221. this_cpu_inc(stats->semantic_match_passed);
  1222. #endif
  1223. trace_fib_table_lookup_nh(nh);
  1224. return err;
  1225. }
  1226. }
  1227. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1228. this_cpu_inc(stats->semantic_match_miss);
  1229. #endif
  1230. goto backtrace;
  1231. }
  1232. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1233. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1234. struct key_vector *l, struct fib_alias *old)
  1235. {
  1236. /* record the location of the previous list_info entry */
  1237. struct hlist_node **pprev = old->fa_list.pprev;
  1238. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1239. /* remove the fib_alias from the list */
  1240. hlist_del_rcu(&old->fa_list);
  1241. /* if we emptied the list this leaf will be freed and we can sort
  1242. * out parent suffix lengths as a part of trie_rebalance
  1243. */
  1244. if (hlist_empty(&l->leaf)) {
  1245. put_child_root(tp, l->key, NULL);
  1246. node_free(l);
  1247. trie_rebalance(t, tp);
  1248. return;
  1249. }
  1250. /* only access fa if it is pointing at the last valid hlist_node */
  1251. if (*pprev)
  1252. return;
  1253. /* update the trie with the latest suffix length */
  1254. l->slen = fa->fa_slen;
  1255. leaf_pull_suffix(tp, l);
  1256. }
  1257. /* Caller must hold RTNL. */
  1258. int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
  1259. {
  1260. struct trie *t = (struct trie *) tb->tb_data;
  1261. struct fib_alias *fa, *fa_to_delete;
  1262. struct key_vector *l, *tp;
  1263. u8 plen = cfg->fc_dst_len;
  1264. u8 slen = KEYLENGTH - plen;
  1265. u8 tos = cfg->fc_tos;
  1266. u32 key;
  1267. if (plen > KEYLENGTH)
  1268. return -EINVAL;
  1269. key = ntohl(cfg->fc_dst);
  1270. if ((plen < KEYLENGTH) && (key << plen))
  1271. return -EINVAL;
  1272. l = fib_find_node(t, &tp, key);
  1273. if (!l)
  1274. return -ESRCH;
  1275. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1276. if (!fa)
  1277. return -ESRCH;
  1278. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1279. fa_to_delete = NULL;
  1280. hlist_for_each_entry_from(fa, fa_list) {
  1281. struct fib_info *fi = fa->fa_info;
  1282. if ((fa->fa_slen != slen) ||
  1283. (fa->tb_id != tb->tb_id) ||
  1284. (fa->fa_tos != tos))
  1285. break;
  1286. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1287. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1288. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1289. (!cfg->fc_prefsrc ||
  1290. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1291. (!cfg->fc_protocol ||
  1292. fi->fib_protocol == cfg->fc_protocol) &&
  1293. fib_nh_match(cfg, fi) == 0) {
  1294. fa_to_delete = fa;
  1295. break;
  1296. }
  1297. }
  1298. if (!fa_to_delete)
  1299. return -ESRCH;
  1300. switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
  1301. cfg->fc_type, tb->tb_id);
  1302. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1303. &cfg->fc_nlinfo, 0);
  1304. if (!plen)
  1305. tb->tb_num_default--;
  1306. fib_remove_alias(t, tp, l, fa_to_delete);
  1307. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1308. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1309. fib_release_info(fa_to_delete->fa_info);
  1310. alias_free_mem_rcu(fa_to_delete);
  1311. return 0;
  1312. }
  1313. /* Scan for the next leaf starting at the provided key value */
  1314. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1315. {
  1316. struct key_vector *pn, *n = *tn;
  1317. unsigned long cindex;
  1318. /* this loop is meant to try and find the key in the trie */
  1319. do {
  1320. /* record parent and next child index */
  1321. pn = n;
  1322. cindex = key ? get_index(key, pn) : 0;
  1323. if (cindex >> pn->bits)
  1324. break;
  1325. /* descend into the next child */
  1326. n = get_child_rcu(pn, cindex++);
  1327. if (!n)
  1328. break;
  1329. /* guarantee forward progress on the keys */
  1330. if (IS_LEAF(n) && (n->key >= key))
  1331. goto found;
  1332. } while (IS_TNODE(n));
  1333. /* this loop will search for the next leaf with a greater key */
  1334. while (!IS_TRIE(pn)) {
  1335. /* if we exhausted the parent node we will need to climb */
  1336. if (cindex >= (1ul << pn->bits)) {
  1337. t_key pkey = pn->key;
  1338. pn = node_parent_rcu(pn);
  1339. cindex = get_index(pkey, pn) + 1;
  1340. continue;
  1341. }
  1342. /* grab the next available node */
  1343. n = get_child_rcu(pn, cindex++);
  1344. if (!n)
  1345. continue;
  1346. /* no need to compare keys since we bumped the index */
  1347. if (IS_LEAF(n))
  1348. goto found;
  1349. /* Rescan start scanning in new node */
  1350. pn = n;
  1351. cindex = 0;
  1352. }
  1353. *tn = pn;
  1354. return NULL; /* Root of trie */
  1355. found:
  1356. /* if we are at the limit for keys just return NULL for the tnode */
  1357. *tn = pn;
  1358. return n;
  1359. }
  1360. static void fib_trie_free(struct fib_table *tb)
  1361. {
  1362. struct trie *t = (struct trie *)tb->tb_data;
  1363. struct key_vector *pn = t->kv;
  1364. unsigned long cindex = 1;
  1365. struct hlist_node *tmp;
  1366. struct fib_alias *fa;
  1367. /* walk trie in reverse order and free everything */
  1368. for (;;) {
  1369. struct key_vector *n;
  1370. if (!(cindex--)) {
  1371. t_key pkey = pn->key;
  1372. if (IS_TRIE(pn))
  1373. break;
  1374. n = pn;
  1375. pn = node_parent(pn);
  1376. /* drop emptied tnode */
  1377. put_child_root(pn, n->key, NULL);
  1378. node_free(n);
  1379. cindex = get_index(pkey, pn);
  1380. continue;
  1381. }
  1382. /* grab the next available node */
  1383. n = get_child(pn, cindex);
  1384. if (!n)
  1385. continue;
  1386. if (IS_TNODE(n)) {
  1387. /* record pn and cindex for leaf walking */
  1388. pn = n;
  1389. cindex = 1ul << n->bits;
  1390. continue;
  1391. }
  1392. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1393. hlist_del_rcu(&fa->fa_list);
  1394. alias_free_mem_rcu(fa);
  1395. }
  1396. put_child_root(pn, n->key, NULL);
  1397. node_free(n);
  1398. }
  1399. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1400. free_percpu(t->stats);
  1401. #endif
  1402. kfree(tb);
  1403. }
  1404. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1405. {
  1406. struct trie *ot = (struct trie *)oldtb->tb_data;
  1407. struct key_vector *l, *tp = ot->kv;
  1408. struct fib_table *local_tb;
  1409. struct fib_alias *fa;
  1410. struct trie *lt;
  1411. t_key key = 0;
  1412. if (oldtb->tb_data == oldtb->__data)
  1413. return oldtb;
  1414. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1415. if (!local_tb)
  1416. return NULL;
  1417. lt = (struct trie *)local_tb->tb_data;
  1418. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1419. struct key_vector *local_l = NULL, *local_tp;
  1420. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1421. struct fib_alias *new_fa;
  1422. if (local_tb->tb_id != fa->tb_id)
  1423. continue;
  1424. /* clone fa for new local table */
  1425. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1426. if (!new_fa)
  1427. goto out;
  1428. memcpy(new_fa, fa, sizeof(*fa));
  1429. /* insert clone into table */
  1430. if (!local_l)
  1431. local_l = fib_find_node(lt, &local_tp, l->key);
  1432. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1433. NULL, l->key))
  1434. goto out;
  1435. }
  1436. /* stop loop if key wrapped back to 0 */
  1437. key = l->key + 1;
  1438. if (key < l->key)
  1439. break;
  1440. }
  1441. return local_tb;
  1442. out:
  1443. fib_trie_free(local_tb);
  1444. return NULL;
  1445. }
  1446. /* Caller must hold RTNL */
  1447. void fib_table_flush_external(struct fib_table *tb)
  1448. {
  1449. struct trie *t = (struct trie *)tb->tb_data;
  1450. struct key_vector *pn = t->kv;
  1451. unsigned long cindex = 1;
  1452. struct hlist_node *tmp;
  1453. struct fib_alias *fa;
  1454. /* walk trie in reverse order */
  1455. for (;;) {
  1456. unsigned char slen = 0;
  1457. struct key_vector *n;
  1458. if (!(cindex--)) {
  1459. t_key pkey = pn->key;
  1460. /* cannot resize the trie vector */
  1461. if (IS_TRIE(pn))
  1462. break;
  1463. /* resize completed node */
  1464. pn = resize(t, pn);
  1465. cindex = get_index(pkey, pn);
  1466. continue;
  1467. }
  1468. /* grab the next available node */
  1469. n = get_child(pn, cindex);
  1470. if (!n)
  1471. continue;
  1472. if (IS_TNODE(n)) {
  1473. /* record pn and cindex for leaf walking */
  1474. pn = n;
  1475. cindex = 1ul << n->bits;
  1476. continue;
  1477. }
  1478. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1479. struct fib_info *fi = fa->fa_info;
  1480. /* if alias was cloned to local then we just
  1481. * need to remove the local copy from main
  1482. */
  1483. if (tb->tb_id != fa->tb_id) {
  1484. hlist_del_rcu(&fa->fa_list);
  1485. alias_free_mem_rcu(fa);
  1486. continue;
  1487. }
  1488. /* record local slen */
  1489. slen = fa->fa_slen;
  1490. if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
  1491. continue;
  1492. switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
  1493. fi, fa->fa_tos, fa->fa_type,
  1494. tb->tb_id);
  1495. }
  1496. /* update leaf slen */
  1497. n->slen = slen;
  1498. if (hlist_empty(&n->leaf)) {
  1499. put_child_root(pn, n->key, NULL);
  1500. node_free(n);
  1501. }
  1502. }
  1503. }
  1504. /* Caller must hold RTNL. */
  1505. int fib_table_flush(struct fib_table *tb)
  1506. {
  1507. struct trie *t = (struct trie *)tb->tb_data;
  1508. struct key_vector *pn = t->kv;
  1509. unsigned long cindex = 1;
  1510. struct hlist_node *tmp;
  1511. struct fib_alias *fa;
  1512. int found = 0;
  1513. /* walk trie in reverse order */
  1514. for (;;) {
  1515. unsigned char slen = 0;
  1516. struct key_vector *n;
  1517. if (!(cindex--)) {
  1518. t_key pkey = pn->key;
  1519. /* cannot resize the trie vector */
  1520. if (IS_TRIE(pn))
  1521. break;
  1522. /* resize completed node */
  1523. pn = resize(t, pn);
  1524. cindex = get_index(pkey, pn);
  1525. continue;
  1526. }
  1527. /* grab the next available node */
  1528. n = get_child(pn, cindex);
  1529. if (!n)
  1530. continue;
  1531. if (IS_TNODE(n)) {
  1532. /* record pn and cindex for leaf walking */
  1533. pn = n;
  1534. cindex = 1ul << n->bits;
  1535. continue;
  1536. }
  1537. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1538. struct fib_info *fi = fa->fa_info;
  1539. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1540. slen = fa->fa_slen;
  1541. continue;
  1542. }
  1543. switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
  1544. fi, fa->fa_tos, fa->fa_type,
  1545. tb->tb_id);
  1546. hlist_del_rcu(&fa->fa_list);
  1547. fib_release_info(fa->fa_info);
  1548. alias_free_mem_rcu(fa);
  1549. found++;
  1550. }
  1551. /* update leaf slen */
  1552. n->slen = slen;
  1553. if (hlist_empty(&n->leaf)) {
  1554. put_child_root(pn, n->key, NULL);
  1555. node_free(n);
  1556. }
  1557. }
  1558. pr_debug("trie_flush found=%d\n", found);
  1559. return found;
  1560. }
  1561. static void __trie_free_rcu(struct rcu_head *head)
  1562. {
  1563. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1564. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1565. struct trie *t = (struct trie *)tb->tb_data;
  1566. if (tb->tb_data == tb->__data)
  1567. free_percpu(t->stats);
  1568. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1569. kfree(tb);
  1570. }
  1571. void fib_free_table(struct fib_table *tb)
  1572. {
  1573. call_rcu(&tb->rcu, __trie_free_rcu);
  1574. }
  1575. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1576. struct sk_buff *skb, struct netlink_callback *cb)
  1577. {
  1578. __be32 xkey = htonl(l->key);
  1579. struct fib_alias *fa;
  1580. int i, s_i;
  1581. s_i = cb->args[4];
  1582. i = 0;
  1583. /* rcu_read_lock is hold by caller */
  1584. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1585. if (i < s_i) {
  1586. i++;
  1587. continue;
  1588. }
  1589. if (tb->tb_id != fa->tb_id) {
  1590. i++;
  1591. continue;
  1592. }
  1593. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1594. cb->nlh->nlmsg_seq,
  1595. RTM_NEWROUTE,
  1596. tb->tb_id,
  1597. fa->fa_type,
  1598. xkey,
  1599. KEYLENGTH - fa->fa_slen,
  1600. fa->fa_tos,
  1601. fa->fa_info, NLM_F_MULTI) < 0) {
  1602. cb->args[4] = i;
  1603. return -1;
  1604. }
  1605. i++;
  1606. }
  1607. cb->args[4] = i;
  1608. return skb->len;
  1609. }
  1610. /* rcu_read_lock needs to be hold by caller from readside */
  1611. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1612. struct netlink_callback *cb)
  1613. {
  1614. struct trie *t = (struct trie *)tb->tb_data;
  1615. struct key_vector *l, *tp = t->kv;
  1616. /* Dump starting at last key.
  1617. * Note: 0.0.0.0/0 (ie default) is first key.
  1618. */
  1619. int count = cb->args[2];
  1620. t_key key = cb->args[3];
  1621. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1622. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1623. cb->args[3] = key;
  1624. cb->args[2] = count;
  1625. return -1;
  1626. }
  1627. ++count;
  1628. key = l->key + 1;
  1629. memset(&cb->args[4], 0,
  1630. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1631. /* stop loop if key wrapped back to 0 */
  1632. if (key < l->key)
  1633. break;
  1634. }
  1635. cb->args[3] = key;
  1636. cb->args[2] = count;
  1637. return skb->len;
  1638. }
  1639. void __init fib_trie_init(void)
  1640. {
  1641. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1642. sizeof(struct fib_alias),
  1643. 0, SLAB_PANIC, NULL);
  1644. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1645. LEAF_SIZE,
  1646. 0, SLAB_PANIC, NULL);
  1647. }
  1648. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1649. {
  1650. struct fib_table *tb;
  1651. struct trie *t;
  1652. size_t sz = sizeof(*tb);
  1653. if (!alias)
  1654. sz += sizeof(struct trie);
  1655. tb = kzalloc(sz, GFP_KERNEL);
  1656. if (!tb)
  1657. return NULL;
  1658. tb->tb_id = id;
  1659. tb->tb_num_default = 0;
  1660. tb->tb_data = (alias ? alias->__data : tb->__data);
  1661. if (alias)
  1662. return tb;
  1663. t = (struct trie *) tb->tb_data;
  1664. t->kv[0].pos = KEYLENGTH;
  1665. t->kv[0].slen = KEYLENGTH;
  1666. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1667. t->stats = alloc_percpu(struct trie_use_stats);
  1668. if (!t->stats) {
  1669. kfree(tb);
  1670. tb = NULL;
  1671. }
  1672. #endif
  1673. return tb;
  1674. }
  1675. #ifdef CONFIG_PROC_FS
  1676. /* Depth first Trie walk iterator */
  1677. struct fib_trie_iter {
  1678. struct seq_net_private p;
  1679. struct fib_table *tb;
  1680. struct key_vector *tnode;
  1681. unsigned int index;
  1682. unsigned int depth;
  1683. };
  1684. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1685. {
  1686. unsigned long cindex = iter->index;
  1687. struct key_vector *pn = iter->tnode;
  1688. t_key pkey;
  1689. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1690. iter->tnode, iter->index, iter->depth);
  1691. while (!IS_TRIE(pn)) {
  1692. while (cindex < child_length(pn)) {
  1693. struct key_vector *n = get_child_rcu(pn, cindex++);
  1694. if (!n)
  1695. continue;
  1696. if (IS_LEAF(n)) {
  1697. iter->tnode = pn;
  1698. iter->index = cindex;
  1699. } else {
  1700. /* push down one level */
  1701. iter->tnode = n;
  1702. iter->index = 0;
  1703. ++iter->depth;
  1704. }
  1705. return n;
  1706. }
  1707. /* Current node exhausted, pop back up */
  1708. pkey = pn->key;
  1709. pn = node_parent_rcu(pn);
  1710. cindex = get_index(pkey, pn) + 1;
  1711. --iter->depth;
  1712. }
  1713. /* record root node so further searches know we are done */
  1714. iter->tnode = pn;
  1715. iter->index = 0;
  1716. return NULL;
  1717. }
  1718. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1719. struct trie *t)
  1720. {
  1721. struct key_vector *n, *pn;
  1722. if (!t)
  1723. return NULL;
  1724. pn = t->kv;
  1725. n = rcu_dereference(pn->tnode[0]);
  1726. if (!n)
  1727. return NULL;
  1728. if (IS_TNODE(n)) {
  1729. iter->tnode = n;
  1730. iter->index = 0;
  1731. iter->depth = 1;
  1732. } else {
  1733. iter->tnode = pn;
  1734. iter->index = 0;
  1735. iter->depth = 0;
  1736. }
  1737. return n;
  1738. }
  1739. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1740. {
  1741. struct key_vector *n;
  1742. struct fib_trie_iter iter;
  1743. memset(s, 0, sizeof(*s));
  1744. rcu_read_lock();
  1745. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1746. if (IS_LEAF(n)) {
  1747. struct fib_alias *fa;
  1748. s->leaves++;
  1749. s->totdepth += iter.depth;
  1750. if (iter.depth > s->maxdepth)
  1751. s->maxdepth = iter.depth;
  1752. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1753. ++s->prefixes;
  1754. } else {
  1755. s->tnodes++;
  1756. if (n->bits < MAX_STAT_DEPTH)
  1757. s->nodesizes[n->bits]++;
  1758. s->nullpointers += tn_info(n)->empty_children;
  1759. }
  1760. }
  1761. rcu_read_unlock();
  1762. }
  1763. /*
  1764. * This outputs /proc/net/fib_triestats
  1765. */
  1766. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1767. {
  1768. unsigned int i, max, pointers, bytes, avdepth;
  1769. if (stat->leaves)
  1770. avdepth = stat->totdepth*100 / stat->leaves;
  1771. else
  1772. avdepth = 0;
  1773. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1774. avdepth / 100, avdepth % 100);
  1775. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1776. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1777. bytes = LEAF_SIZE * stat->leaves;
  1778. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1779. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1780. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1781. bytes += TNODE_SIZE(0) * stat->tnodes;
  1782. max = MAX_STAT_DEPTH;
  1783. while (max > 0 && stat->nodesizes[max-1] == 0)
  1784. max--;
  1785. pointers = 0;
  1786. for (i = 1; i < max; i++)
  1787. if (stat->nodesizes[i] != 0) {
  1788. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1789. pointers += (1<<i) * stat->nodesizes[i];
  1790. }
  1791. seq_putc(seq, '\n');
  1792. seq_printf(seq, "\tPointers: %u\n", pointers);
  1793. bytes += sizeof(struct key_vector *) * pointers;
  1794. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1795. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1796. }
  1797. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1798. static void trie_show_usage(struct seq_file *seq,
  1799. const struct trie_use_stats __percpu *stats)
  1800. {
  1801. struct trie_use_stats s = { 0 };
  1802. int cpu;
  1803. /* loop through all of the CPUs and gather up the stats */
  1804. for_each_possible_cpu(cpu) {
  1805. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1806. s.gets += pcpu->gets;
  1807. s.backtrack += pcpu->backtrack;
  1808. s.semantic_match_passed += pcpu->semantic_match_passed;
  1809. s.semantic_match_miss += pcpu->semantic_match_miss;
  1810. s.null_node_hit += pcpu->null_node_hit;
  1811. s.resize_node_skipped += pcpu->resize_node_skipped;
  1812. }
  1813. seq_printf(seq, "\nCounters:\n---------\n");
  1814. seq_printf(seq, "gets = %u\n", s.gets);
  1815. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1816. seq_printf(seq, "semantic match passed = %u\n",
  1817. s.semantic_match_passed);
  1818. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1819. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1820. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1821. }
  1822. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1823. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1824. {
  1825. if (tb->tb_id == RT_TABLE_LOCAL)
  1826. seq_puts(seq, "Local:\n");
  1827. else if (tb->tb_id == RT_TABLE_MAIN)
  1828. seq_puts(seq, "Main:\n");
  1829. else
  1830. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1831. }
  1832. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1833. {
  1834. struct net *net = (struct net *)seq->private;
  1835. unsigned int h;
  1836. seq_printf(seq,
  1837. "Basic info: size of leaf:"
  1838. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1839. LEAF_SIZE, TNODE_SIZE(0));
  1840. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1841. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1842. struct fib_table *tb;
  1843. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1844. struct trie *t = (struct trie *) tb->tb_data;
  1845. struct trie_stat stat;
  1846. if (!t)
  1847. continue;
  1848. fib_table_print(seq, tb);
  1849. trie_collect_stats(t, &stat);
  1850. trie_show_stats(seq, &stat);
  1851. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1852. trie_show_usage(seq, t->stats);
  1853. #endif
  1854. }
  1855. }
  1856. return 0;
  1857. }
  1858. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1859. {
  1860. return single_open_net(inode, file, fib_triestat_seq_show);
  1861. }
  1862. static const struct file_operations fib_triestat_fops = {
  1863. .owner = THIS_MODULE,
  1864. .open = fib_triestat_seq_open,
  1865. .read = seq_read,
  1866. .llseek = seq_lseek,
  1867. .release = single_release_net,
  1868. };
  1869. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1870. {
  1871. struct fib_trie_iter *iter = seq->private;
  1872. struct net *net = seq_file_net(seq);
  1873. loff_t idx = 0;
  1874. unsigned int h;
  1875. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1876. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1877. struct fib_table *tb;
  1878. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1879. struct key_vector *n;
  1880. for (n = fib_trie_get_first(iter,
  1881. (struct trie *) tb->tb_data);
  1882. n; n = fib_trie_get_next(iter))
  1883. if (pos == idx++) {
  1884. iter->tb = tb;
  1885. return n;
  1886. }
  1887. }
  1888. }
  1889. return NULL;
  1890. }
  1891. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1892. __acquires(RCU)
  1893. {
  1894. rcu_read_lock();
  1895. return fib_trie_get_idx(seq, *pos);
  1896. }
  1897. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1898. {
  1899. struct fib_trie_iter *iter = seq->private;
  1900. struct net *net = seq_file_net(seq);
  1901. struct fib_table *tb = iter->tb;
  1902. struct hlist_node *tb_node;
  1903. unsigned int h;
  1904. struct key_vector *n;
  1905. ++*pos;
  1906. /* next node in same table */
  1907. n = fib_trie_get_next(iter);
  1908. if (n)
  1909. return n;
  1910. /* walk rest of this hash chain */
  1911. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1912. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1913. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1914. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1915. if (n)
  1916. goto found;
  1917. }
  1918. /* new hash chain */
  1919. while (++h < FIB_TABLE_HASHSZ) {
  1920. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1921. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1922. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1923. if (n)
  1924. goto found;
  1925. }
  1926. }
  1927. return NULL;
  1928. found:
  1929. iter->tb = tb;
  1930. return n;
  1931. }
  1932. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  1933. __releases(RCU)
  1934. {
  1935. rcu_read_unlock();
  1936. }
  1937. static void seq_indent(struct seq_file *seq, int n)
  1938. {
  1939. while (n-- > 0)
  1940. seq_puts(seq, " ");
  1941. }
  1942. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  1943. {
  1944. switch (s) {
  1945. case RT_SCOPE_UNIVERSE: return "universe";
  1946. case RT_SCOPE_SITE: return "site";
  1947. case RT_SCOPE_LINK: return "link";
  1948. case RT_SCOPE_HOST: return "host";
  1949. case RT_SCOPE_NOWHERE: return "nowhere";
  1950. default:
  1951. snprintf(buf, len, "scope=%d", s);
  1952. return buf;
  1953. }
  1954. }
  1955. static const char *const rtn_type_names[__RTN_MAX] = {
  1956. [RTN_UNSPEC] = "UNSPEC",
  1957. [RTN_UNICAST] = "UNICAST",
  1958. [RTN_LOCAL] = "LOCAL",
  1959. [RTN_BROADCAST] = "BROADCAST",
  1960. [RTN_ANYCAST] = "ANYCAST",
  1961. [RTN_MULTICAST] = "MULTICAST",
  1962. [RTN_BLACKHOLE] = "BLACKHOLE",
  1963. [RTN_UNREACHABLE] = "UNREACHABLE",
  1964. [RTN_PROHIBIT] = "PROHIBIT",
  1965. [RTN_THROW] = "THROW",
  1966. [RTN_NAT] = "NAT",
  1967. [RTN_XRESOLVE] = "XRESOLVE",
  1968. };
  1969. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  1970. {
  1971. if (t < __RTN_MAX && rtn_type_names[t])
  1972. return rtn_type_names[t];
  1973. snprintf(buf, len, "type %u", t);
  1974. return buf;
  1975. }
  1976. /* Pretty print the trie */
  1977. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  1978. {
  1979. const struct fib_trie_iter *iter = seq->private;
  1980. struct key_vector *n = v;
  1981. if (IS_TRIE(node_parent_rcu(n)))
  1982. fib_table_print(seq, iter->tb);
  1983. if (IS_TNODE(n)) {
  1984. __be32 prf = htonl(n->key);
  1985. seq_indent(seq, iter->depth-1);
  1986. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  1987. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  1988. tn_info(n)->full_children,
  1989. tn_info(n)->empty_children);
  1990. } else {
  1991. __be32 val = htonl(n->key);
  1992. struct fib_alias *fa;
  1993. seq_indent(seq, iter->depth);
  1994. seq_printf(seq, " |-- %pI4\n", &val);
  1995. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1996. char buf1[32], buf2[32];
  1997. seq_indent(seq, iter->depth + 1);
  1998. seq_printf(seq, " /%zu %s %s",
  1999. KEYLENGTH - fa->fa_slen,
  2000. rtn_scope(buf1, sizeof(buf1),
  2001. fa->fa_info->fib_scope),
  2002. rtn_type(buf2, sizeof(buf2),
  2003. fa->fa_type));
  2004. if (fa->fa_tos)
  2005. seq_printf(seq, " tos=%d", fa->fa_tos);
  2006. seq_putc(seq, '\n');
  2007. }
  2008. }
  2009. return 0;
  2010. }
  2011. static const struct seq_operations fib_trie_seq_ops = {
  2012. .start = fib_trie_seq_start,
  2013. .next = fib_trie_seq_next,
  2014. .stop = fib_trie_seq_stop,
  2015. .show = fib_trie_seq_show,
  2016. };
  2017. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2018. {
  2019. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2020. sizeof(struct fib_trie_iter));
  2021. }
  2022. static const struct file_operations fib_trie_fops = {
  2023. .owner = THIS_MODULE,
  2024. .open = fib_trie_seq_open,
  2025. .read = seq_read,
  2026. .llseek = seq_lseek,
  2027. .release = seq_release_net,
  2028. };
  2029. struct fib_route_iter {
  2030. struct seq_net_private p;
  2031. struct fib_table *main_tb;
  2032. struct key_vector *tnode;
  2033. loff_t pos;
  2034. t_key key;
  2035. };
  2036. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2037. loff_t pos)
  2038. {
  2039. struct fib_table *tb = iter->main_tb;
  2040. struct key_vector *l, **tp = &iter->tnode;
  2041. struct trie *t;
  2042. t_key key;
  2043. /* use cache location of next-to-find key */
  2044. if (iter->pos > 0 && pos >= iter->pos) {
  2045. pos -= iter->pos;
  2046. key = iter->key;
  2047. } else {
  2048. t = (struct trie *)tb->tb_data;
  2049. iter->tnode = t->kv;
  2050. iter->pos = 0;
  2051. key = 0;
  2052. }
  2053. while ((l = leaf_walk_rcu(tp, key)) != NULL) {
  2054. key = l->key + 1;
  2055. iter->pos++;
  2056. if (--pos <= 0)
  2057. break;
  2058. l = NULL;
  2059. /* handle unlikely case of a key wrap */
  2060. if (!key)
  2061. break;
  2062. }
  2063. if (l)
  2064. iter->key = key; /* remember it */
  2065. else
  2066. iter->pos = 0; /* forget it */
  2067. return l;
  2068. }
  2069. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2070. __acquires(RCU)
  2071. {
  2072. struct fib_route_iter *iter = seq->private;
  2073. struct fib_table *tb;
  2074. struct trie *t;
  2075. rcu_read_lock();
  2076. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2077. if (!tb)
  2078. return NULL;
  2079. iter->main_tb = tb;
  2080. if (*pos != 0)
  2081. return fib_route_get_idx(iter, *pos);
  2082. t = (struct trie *)tb->tb_data;
  2083. iter->tnode = t->kv;
  2084. iter->pos = 0;
  2085. iter->key = 0;
  2086. return SEQ_START_TOKEN;
  2087. }
  2088. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2089. {
  2090. struct fib_route_iter *iter = seq->private;
  2091. struct key_vector *l = NULL;
  2092. t_key key = iter->key;
  2093. ++*pos;
  2094. /* only allow key of 0 for start of sequence */
  2095. if ((v == SEQ_START_TOKEN) || key)
  2096. l = leaf_walk_rcu(&iter->tnode, key);
  2097. if (l) {
  2098. iter->key = l->key + 1;
  2099. iter->pos++;
  2100. } else {
  2101. iter->pos = 0;
  2102. }
  2103. return l;
  2104. }
  2105. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2106. __releases(RCU)
  2107. {
  2108. rcu_read_unlock();
  2109. }
  2110. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2111. {
  2112. unsigned int flags = 0;
  2113. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2114. flags = RTF_REJECT;
  2115. if (fi && fi->fib_nh->nh_gw)
  2116. flags |= RTF_GATEWAY;
  2117. if (mask == htonl(0xFFFFFFFF))
  2118. flags |= RTF_HOST;
  2119. flags |= RTF_UP;
  2120. return flags;
  2121. }
  2122. /*
  2123. * This outputs /proc/net/route.
  2124. * The format of the file is not supposed to be changed
  2125. * and needs to be same as fib_hash output to avoid breaking
  2126. * legacy utilities
  2127. */
  2128. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2129. {
  2130. struct fib_route_iter *iter = seq->private;
  2131. struct fib_table *tb = iter->main_tb;
  2132. struct fib_alias *fa;
  2133. struct key_vector *l = v;
  2134. __be32 prefix;
  2135. if (v == SEQ_START_TOKEN) {
  2136. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2137. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2138. "\tWindow\tIRTT");
  2139. return 0;
  2140. }
  2141. prefix = htonl(l->key);
  2142. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2143. const struct fib_info *fi = fa->fa_info;
  2144. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2145. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2146. if ((fa->fa_type == RTN_BROADCAST) ||
  2147. (fa->fa_type == RTN_MULTICAST))
  2148. continue;
  2149. if (fa->tb_id != tb->tb_id)
  2150. continue;
  2151. seq_setwidth(seq, 127);
  2152. if (fi)
  2153. seq_printf(seq,
  2154. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2155. "%d\t%08X\t%d\t%u\t%u",
  2156. fi->fib_dev ? fi->fib_dev->name : "*",
  2157. prefix,
  2158. fi->fib_nh->nh_gw, flags, 0, 0,
  2159. fi->fib_priority,
  2160. mask,
  2161. (fi->fib_advmss ?
  2162. fi->fib_advmss + 40 : 0),
  2163. fi->fib_window,
  2164. fi->fib_rtt >> 3);
  2165. else
  2166. seq_printf(seq,
  2167. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2168. "%d\t%08X\t%d\t%u\t%u",
  2169. prefix, 0, flags, 0, 0, 0,
  2170. mask, 0, 0, 0);
  2171. seq_pad(seq, '\n');
  2172. }
  2173. return 0;
  2174. }
  2175. static const struct seq_operations fib_route_seq_ops = {
  2176. .start = fib_route_seq_start,
  2177. .next = fib_route_seq_next,
  2178. .stop = fib_route_seq_stop,
  2179. .show = fib_route_seq_show,
  2180. };
  2181. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2182. {
  2183. return seq_open_net(inode, file, &fib_route_seq_ops,
  2184. sizeof(struct fib_route_iter));
  2185. }
  2186. static const struct file_operations fib_route_fops = {
  2187. .owner = THIS_MODULE,
  2188. .open = fib_route_seq_open,
  2189. .read = seq_read,
  2190. .llseek = seq_lseek,
  2191. .release = seq_release_net,
  2192. };
  2193. int __net_init fib_proc_init(struct net *net)
  2194. {
  2195. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2196. goto out1;
  2197. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2198. &fib_triestat_fops))
  2199. goto out2;
  2200. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2201. goto out3;
  2202. return 0;
  2203. out3:
  2204. remove_proc_entry("fib_triestat", net->proc_net);
  2205. out2:
  2206. remove_proc_entry("fib_trie", net->proc_net);
  2207. out1:
  2208. return -ENOMEM;
  2209. }
  2210. void __net_exit fib_proc_exit(struct net *net)
  2211. {
  2212. remove_proc_entry("fib_trie", net->proc_net);
  2213. remove_proc_entry("fib_triestat", net->proc_net);
  2214. remove_proc_entry("route", net->proc_net);
  2215. }
  2216. #endif /* CONFIG_PROC_FS */