esp4.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774
  1. #define pr_fmt(fmt) "IPsec: " fmt
  2. #include <crypto/aead.h>
  3. #include <crypto/authenc.h>
  4. #include <linux/err.h>
  5. #include <linux/module.h>
  6. #include <net/ip.h>
  7. #include <net/xfrm.h>
  8. #include <net/esp.h>
  9. #include <linux/scatterlist.h>
  10. #include <linux/kernel.h>
  11. #include <linux/pfkeyv2.h>
  12. #include <linux/rtnetlink.h>
  13. #include <linux/slab.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/in6.h>
  16. #include <net/icmp.h>
  17. #include <net/protocol.h>
  18. #include <net/udp.h>
  19. struct esp_skb_cb {
  20. struct xfrm_skb_cb xfrm;
  21. void *tmp;
  22. };
  23. #define ESP_SKB_CB(__skb) ((struct esp_skb_cb *)&((__skb)->cb[0]))
  24. static u32 esp4_get_mtu(struct xfrm_state *x, int mtu);
  25. /*
  26. * Allocate an AEAD request structure with extra space for SG and IV.
  27. *
  28. * For alignment considerations the IV is placed at the front, followed
  29. * by the request and finally the SG list.
  30. *
  31. * TODO: Use spare space in skb for this where possible.
  32. */
  33. static void *esp_alloc_tmp(struct crypto_aead *aead, int nfrags, int seqhilen)
  34. {
  35. unsigned int len;
  36. len = seqhilen;
  37. len += crypto_aead_ivsize(aead);
  38. if (len) {
  39. len += crypto_aead_alignmask(aead) &
  40. ~(crypto_tfm_ctx_alignment() - 1);
  41. len = ALIGN(len, crypto_tfm_ctx_alignment());
  42. }
  43. len += sizeof(struct aead_request) + crypto_aead_reqsize(aead);
  44. len = ALIGN(len, __alignof__(struct scatterlist));
  45. len += sizeof(struct scatterlist) * nfrags;
  46. return kmalloc(len, GFP_ATOMIC);
  47. }
  48. static inline __be32 *esp_tmp_seqhi(void *tmp)
  49. {
  50. return PTR_ALIGN((__be32 *)tmp, __alignof__(__be32));
  51. }
  52. static inline u8 *esp_tmp_iv(struct crypto_aead *aead, void *tmp, int seqhilen)
  53. {
  54. return crypto_aead_ivsize(aead) ?
  55. PTR_ALIGN((u8 *)tmp + seqhilen,
  56. crypto_aead_alignmask(aead) + 1) : tmp + seqhilen;
  57. }
  58. static inline struct aead_request *esp_tmp_req(struct crypto_aead *aead, u8 *iv)
  59. {
  60. struct aead_request *req;
  61. req = (void *)PTR_ALIGN(iv + crypto_aead_ivsize(aead),
  62. crypto_tfm_ctx_alignment());
  63. aead_request_set_tfm(req, aead);
  64. return req;
  65. }
  66. static inline struct scatterlist *esp_req_sg(struct crypto_aead *aead,
  67. struct aead_request *req)
  68. {
  69. return (void *)ALIGN((unsigned long)(req + 1) +
  70. crypto_aead_reqsize(aead),
  71. __alignof__(struct scatterlist));
  72. }
  73. static void esp_output_done(struct crypto_async_request *base, int err)
  74. {
  75. struct sk_buff *skb = base->data;
  76. kfree(ESP_SKB_CB(skb)->tmp);
  77. xfrm_output_resume(skb, err);
  78. }
  79. /* Move ESP header back into place. */
  80. static void esp_restore_header(struct sk_buff *skb, unsigned int offset)
  81. {
  82. struct ip_esp_hdr *esph = (void *)(skb->data + offset);
  83. void *tmp = ESP_SKB_CB(skb)->tmp;
  84. __be32 *seqhi = esp_tmp_seqhi(tmp);
  85. esph->seq_no = esph->spi;
  86. esph->spi = *seqhi;
  87. }
  88. static void esp_output_restore_header(struct sk_buff *skb)
  89. {
  90. esp_restore_header(skb, skb_transport_offset(skb) - sizeof(__be32));
  91. }
  92. static void esp_output_done_esn(struct crypto_async_request *base, int err)
  93. {
  94. struct sk_buff *skb = base->data;
  95. esp_output_restore_header(skb);
  96. esp_output_done(base, err);
  97. }
  98. static int esp_output(struct xfrm_state *x, struct sk_buff *skb)
  99. {
  100. int err;
  101. struct ip_esp_hdr *esph;
  102. struct crypto_aead *aead;
  103. struct aead_request *req;
  104. struct scatterlist *sg;
  105. struct sk_buff *trailer;
  106. void *tmp;
  107. u8 *iv;
  108. u8 *tail;
  109. int blksize;
  110. int clen;
  111. int alen;
  112. int plen;
  113. int ivlen;
  114. int tfclen;
  115. int nfrags;
  116. int assoclen;
  117. int seqhilen;
  118. __be32 *seqhi;
  119. __be64 seqno;
  120. /* skb is pure payload to encrypt */
  121. aead = x->data;
  122. alen = crypto_aead_authsize(aead);
  123. ivlen = crypto_aead_ivsize(aead);
  124. tfclen = 0;
  125. if (x->tfcpad) {
  126. struct xfrm_dst *dst = (struct xfrm_dst *)skb_dst(skb);
  127. u32 padto;
  128. padto = min(x->tfcpad, esp4_get_mtu(x, dst->child_mtu_cached));
  129. if (skb->len < padto)
  130. tfclen = padto - skb->len;
  131. }
  132. blksize = ALIGN(crypto_aead_blocksize(aead), 4);
  133. clen = ALIGN(skb->len + 2 + tfclen, blksize);
  134. plen = clen - skb->len - tfclen;
  135. err = skb_cow_data(skb, tfclen + plen + alen, &trailer);
  136. if (err < 0)
  137. goto error;
  138. nfrags = err;
  139. assoclen = sizeof(*esph);
  140. seqhilen = 0;
  141. if (x->props.flags & XFRM_STATE_ESN) {
  142. seqhilen += sizeof(__be32);
  143. assoclen += seqhilen;
  144. }
  145. tmp = esp_alloc_tmp(aead, nfrags, seqhilen);
  146. if (!tmp) {
  147. err = -ENOMEM;
  148. goto error;
  149. }
  150. seqhi = esp_tmp_seqhi(tmp);
  151. iv = esp_tmp_iv(aead, tmp, seqhilen);
  152. req = esp_tmp_req(aead, iv);
  153. sg = esp_req_sg(aead, req);
  154. /* Fill padding... */
  155. tail = skb_tail_pointer(trailer);
  156. if (tfclen) {
  157. memset(tail, 0, tfclen);
  158. tail += tfclen;
  159. }
  160. do {
  161. int i;
  162. for (i = 0; i < plen - 2; i++)
  163. tail[i] = i + 1;
  164. } while (0);
  165. tail[plen - 2] = plen - 2;
  166. tail[plen - 1] = *skb_mac_header(skb);
  167. pskb_put(skb, trailer, clen - skb->len + alen);
  168. skb_push(skb, -skb_network_offset(skb));
  169. esph = ip_esp_hdr(skb);
  170. *skb_mac_header(skb) = IPPROTO_ESP;
  171. /* this is non-NULL only with UDP Encapsulation */
  172. if (x->encap) {
  173. struct xfrm_encap_tmpl *encap = x->encap;
  174. struct udphdr *uh;
  175. __be32 *udpdata32;
  176. __be16 sport, dport;
  177. int encap_type;
  178. spin_lock_bh(&x->lock);
  179. sport = encap->encap_sport;
  180. dport = encap->encap_dport;
  181. encap_type = encap->encap_type;
  182. spin_unlock_bh(&x->lock);
  183. uh = (struct udphdr *)esph;
  184. uh->source = sport;
  185. uh->dest = dport;
  186. uh->len = htons(skb->len - skb_transport_offset(skb));
  187. uh->check = 0;
  188. switch (encap_type) {
  189. default:
  190. case UDP_ENCAP_ESPINUDP:
  191. esph = (struct ip_esp_hdr *)(uh + 1);
  192. break;
  193. case UDP_ENCAP_ESPINUDP_NON_IKE:
  194. udpdata32 = (__be32 *)(uh + 1);
  195. udpdata32[0] = udpdata32[1] = 0;
  196. esph = (struct ip_esp_hdr *)(udpdata32 + 2);
  197. break;
  198. }
  199. *skb_mac_header(skb) = IPPROTO_UDP;
  200. }
  201. esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low);
  202. aead_request_set_callback(req, 0, esp_output_done, skb);
  203. /* For ESN we move the header forward by 4 bytes to
  204. * accomodate the high bits. We will move it back after
  205. * encryption.
  206. */
  207. if ((x->props.flags & XFRM_STATE_ESN)) {
  208. esph = (void *)(skb_transport_header(skb) - sizeof(__be32));
  209. *seqhi = esph->spi;
  210. esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.hi);
  211. aead_request_set_callback(req, 0, esp_output_done_esn, skb);
  212. }
  213. esph->spi = x->id.spi;
  214. sg_init_table(sg, nfrags);
  215. skb_to_sgvec(skb, sg,
  216. (unsigned char *)esph - skb->data,
  217. assoclen + ivlen + clen + alen);
  218. aead_request_set_crypt(req, sg, sg, ivlen + clen, iv);
  219. aead_request_set_ad(req, assoclen);
  220. seqno = cpu_to_be64(XFRM_SKB_CB(skb)->seq.output.low +
  221. ((u64)XFRM_SKB_CB(skb)->seq.output.hi << 32));
  222. memset(iv, 0, ivlen);
  223. memcpy(iv + ivlen - min(ivlen, 8), (u8 *)&seqno + 8 - min(ivlen, 8),
  224. min(ivlen, 8));
  225. ESP_SKB_CB(skb)->tmp = tmp;
  226. err = crypto_aead_encrypt(req);
  227. switch (err) {
  228. case -EINPROGRESS:
  229. goto error;
  230. case -EBUSY:
  231. err = NET_XMIT_DROP;
  232. break;
  233. case 0:
  234. if ((x->props.flags & XFRM_STATE_ESN))
  235. esp_output_restore_header(skb);
  236. }
  237. kfree(tmp);
  238. error:
  239. return err;
  240. }
  241. static int esp_input_done2(struct sk_buff *skb, int err)
  242. {
  243. const struct iphdr *iph;
  244. struct xfrm_state *x = xfrm_input_state(skb);
  245. struct crypto_aead *aead = x->data;
  246. int alen = crypto_aead_authsize(aead);
  247. int hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead);
  248. int elen = skb->len - hlen;
  249. int ihl;
  250. u8 nexthdr[2];
  251. int padlen;
  252. kfree(ESP_SKB_CB(skb)->tmp);
  253. if (unlikely(err))
  254. goto out;
  255. if (skb_copy_bits(skb, skb->len-alen-2, nexthdr, 2))
  256. BUG();
  257. err = -EINVAL;
  258. padlen = nexthdr[0];
  259. if (padlen + 2 + alen >= elen)
  260. goto out;
  261. /* ... check padding bits here. Silly. :-) */
  262. iph = ip_hdr(skb);
  263. ihl = iph->ihl * 4;
  264. if (x->encap) {
  265. struct xfrm_encap_tmpl *encap = x->encap;
  266. struct udphdr *uh = (void *)(skb_network_header(skb) + ihl);
  267. /*
  268. * 1) if the NAT-T peer's IP or port changed then
  269. * advertize the change to the keying daemon.
  270. * This is an inbound SA, so just compare
  271. * SRC ports.
  272. */
  273. if (iph->saddr != x->props.saddr.a4 ||
  274. uh->source != encap->encap_sport) {
  275. xfrm_address_t ipaddr;
  276. ipaddr.a4 = iph->saddr;
  277. km_new_mapping(x, &ipaddr, uh->source);
  278. /* XXX: perhaps add an extra
  279. * policy check here, to see
  280. * if we should allow or
  281. * reject a packet from a
  282. * different source
  283. * address/port.
  284. */
  285. }
  286. /*
  287. * 2) ignore UDP/TCP checksums in case
  288. * of NAT-T in Transport Mode, or
  289. * perform other post-processing fixes
  290. * as per draft-ietf-ipsec-udp-encaps-06,
  291. * section 3.1.2
  292. */
  293. if (x->props.mode == XFRM_MODE_TRANSPORT)
  294. skb->ip_summed = CHECKSUM_UNNECESSARY;
  295. }
  296. pskb_trim(skb, skb->len - alen - padlen - 2);
  297. __skb_pull(skb, hlen);
  298. if (x->props.mode == XFRM_MODE_TUNNEL)
  299. skb_reset_transport_header(skb);
  300. else
  301. skb_set_transport_header(skb, -ihl);
  302. err = nexthdr[1];
  303. /* RFC4303: Drop dummy packets without any error */
  304. if (err == IPPROTO_NONE)
  305. err = -EINVAL;
  306. out:
  307. return err;
  308. }
  309. static void esp_input_done(struct crypto_async_request *base, int err)
  310. {
  311. struct sk_buff *skb = base->data;
  312. xfrm_input_resume(skb, esp_input_done2(skb, err));
  313. }
  314. static void esp_input_restore_header(struct sk_buff *skb)
  315. {
  316. esp_restore_header(skb, 0);
  317. __skb_pull(skb, 4);
  318. }
  319. static void esp_input_done_esn(struct crypto_async_request *base, int err)
  320. {
  321. struct sk_buff *skb = base->data;
  322. esp_input_restore_header(skb);
  323. esp_input_done(base, err);
  324. }
  325. /*
  326. * Note: detecting truncated vs. non-truncated authentication data is very
  327. * expensive, so we only support truncated data, which is the recommended
  328. * and common case.
  329. */
  330. static int esp_input(struct xfrm_state *x, struct sk_buff *skb)
  331. {
  332. struct ip_esp_hdr *esph;
  333. struct crypto_aead *aead = x->data;
  334. struct aead_request *req;
  335. struct sk_buff *trailer;
  336. int ivlen = crypto_aead_ivsize(aead);
  337. int elen = skb->len - sizeof(*esph) - ivlen;
  338. int nfrags;
  339. int assoclen;
  340. int seqhilen;
  341. __be32 *seqhi;
  342. void *tmp;
  343. u8 *iv;
  344. struct scatterlist *sg;
  345. int err = -EINVAL;
  346. if (!pskb_may_pull(skb, sizeof(*esph) + ivlen))
  347. goto out;
  348. if (elen <= 0)
  349. goto out;
  350. err = skb_cow_data(skb, 0, &trailer);
  351. if (err < 0)
  352. goto out;
  353. nfrags = err;
  354. assoclen = sizeof(*esph);
  355. seqhilen = 0;
  356. if (x->props.flags & XFRM_STATE_ESN) {
  357. seqhilen += sizeof(__be32);
  358. assoclen += seqhilen;
  359. }
  360. err = -ENOMEM;
  361. tmp = esp_alloc_tmp(aead, nfrags, seqhilen);
  362. if (!tmp)
  363. goto out;
  364. ESP_SKB_CB(skb)->tmp = tmp;
  365. seqhi = esp_tmp_seqhi(tmp);
  366. iv = esp_tmp_iv(aead, tmp, seqhilen);
  367. req = esp_tmp_req(aead, iv);
  368. sg = esp_req_sg(aead, req);
  369. skb->ip_summed = CHECKSUM_NONE;
  370. esph = (struct ip_esp_hdr *)skb->data;
  371. aead_request_set_callback(req, 0, esp_input_done, skb);
  372. /* For ESN we move the header forward by 4 bytes to
  373. * accomodate the high bits. We will move it back after
  374. * decryption.
  375. */
  376. if ((x->props.flags & XFRM_STATE_ESN)) {
  377. esph = (void *)skb_push(skb, 4);
  378. *seqhi = esph->spi;
  379. esph->spi = esph->seq_no;
  380. esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.input.hi);
  381. aead_request_set_callback(req, 0, esp_input_done_esn, skb);
  382. }
  383. sg_init_table(sg, nfrags);
  384. skb_to_sgvec(skb, sg, 0, skb->len);
  385. aead_request_set_crypt(req, sg, sg, elen + ivlen, iv);
  386. aead_request_set_ad(req, assoclen);
  387. err = crypto_aead_decrypt(req);
  388. if (err == -EINPROGRESS)
  389. goto out;
  390. if ((x->props.flags & XFRM_STATE_ESN))
  391. esp_input_restore_header(skb);
  392. err = esp_input_done2(skb, err);
  393. out:
  394. return err;
  395. }
  396. static u32 esp4_get_mtu(struct xfrm_state *x, int mtu)
  397. {
  398. struct crypto_aead *aead = x->data;
  399. u32 blksize = ALIGN(crypto_aead_blocksize(aead), 4);
  400. unsigned int net_adj;
  401. switch (x->props.mode) {
  402. case XFRM_MODE_TRANSPORT:
  403. case XFRM_MODE_BEET:
  404. net_adj = sizeof(struct iphdr);
  405. break;
  406. case XFRM_MODE_TUNNEL:
  407. net_adj = 0;
  408. break;
  409. default:
  410. BUG();
  411. }
  412. return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
  413. net_adj) & ~(blksize - 1)) + net_adj - 2;
  414. }
  415. static int esp4_err(struct sk_buff *skb, u32 info)
  416. {
  417. struct net *net = dev_net(skb->dev);
  418. const struct iphdr *iph = (const struct iphdr *)skb->data;
  419. struct ip_esp_hdr *esph = (struct ip_esp_hdr *)(skb->data+(iph->ihl<<2));
  420. struct xfrm_state *x;
  421. switch (icmp_hdr(skb)->type) {
  422. case ICMP_DEST_UNREACH:
  423. if (icmp_hdr(skb)->code != ICMP_FRAG_NEEDED)
  424. return 0;
  425. case ICMP_REDIRECT:
  426. break;
  427. default:
  428. return 0;
  429. }
  430. x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr,
  431. esph->spi, IPPROTO_ESP, AF_INET);
  432. if (!x)
  433. return 0;
  434. if (icmp_hdr(skb)->type == ICMP_DEST_UNREACH)
  435. ipv4_update_pmtu(skb, net, info, 0, 0, IPPROTO_ESP, 0);
  436. else
  437. ipv4_redirect(skb, net, 0, 0, IPPROTO_ESP, 0);
  438. xfrm_state_put(x);
  439. return 0;
  440. }
  441. static void esp_destroy(struct xfrm_state *x)
  442. {
  443. struct crypto_aead *aead = x->data;
  444. if (!aead)
  445. return;
  446. crypto_free_aead(aead);
  447. }
  448. static int esp_init_aead(struct xfrm_state *x)
  449. {
  450. char aead_name[CRYPTO_MAX_ALG_NAME];
  451. struct crypto_aead *aead;
  452. int err;
  453. err = -ENAMETOOLONG;
  454. if (snprintf(aead_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
  455. x->geniv, x->aead->alg_name) >= CRYPTO_MAX_ALG_NAME)
  456. goto error;
  457. aead = crypto_alloc_aead(aead_name, 0, 0);
  458. err = PTR_ERR(aead);
  459. if (IS_ERR(aead))
  460. goto error;
  461. x->data = aead;
  462. err = crypto_aead_setkey(aead, x->aead->alg_key,
  463. (x->aead->alg_key_len + 7) / 8);
  464. if (err)
  465. goto error;
  466. err = crypto_aead_setauthsize(aead, x->aead->alg_icv_len / 8);
  467. if (err)
  468. goto error;
  469. error:
  470. return err;
  471. }
  472. static int esp_init_authenc(struct xfrm_state *x)
  473. {
  474. struct crypto_aead *aead;
  475. struct crypto_authenc_key_param *param;
  476. struct rtattr *rta;
  477. char *key;
  478. char *p;
  479. char authenc_name[CRYPTO_MAX_ALG_NAME];
  480. unsigned int keylen;
  481. int err;
  482. err = -EINVAL;
  483. if (!x->ealg)
  484. goto error;
  485. err = -ENAMETOOLONG;
  486. if ((x->props.flags & XFRM_STATE_ESN)) {
  487. if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME,
  488. "%s%sauthencesn(%s,%s)%s",
  489. x->geniv ?: "", x->geniv ? "(" : "",
  490. x->aalg ? x->aalg->alg_name : "digest_null",
  491. x->ealg->alg_name,
  492. x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME)
  493. goto error;
  494. } else {
  495. if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME,
  496. "%s%sauthenc(%s,%s)%s",
  497. x->geniv ?: "", x->geniv ? "(" : "",
  498. x->aalg ? x->aalg->alg_name : "digest_null",
  499. x->ealg->alg_name,
  500. x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME)
  501. goto error;
  502. }
  503. aead = crypto_alloc_aead(authenc_name, 0, 0);
  504. err = PTR_ERR(aead);
  505. if (IS_ERR(aead))
  506. goto error;
  507. x->data = aead;
  508. keylen = (x->aalg ? (x->aalg->alg_key_len + 7) / 8 : 0) +
  509. (x->ealg->alg_key_len + 7) / 8 + RTA_SPACE(sizeof(*param));
  510. err = -ENOMEM;
  511. key = kmalloc(keylen, GFP_KERNEL);
  512. if (!key)
  513. goto error;
  514. p = key;
  515. rta = (void *)p;
  516. rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
  517. rta->rta_len = RTA_LENGTH(sizeof(*param));
  518. param = RTA_DATA(rta);
  519. p += RTA_SPACE(sizeof(*param));
  520. if (x->aalg) {
  521. struct xfrm_algo_desc *aalg_desc;
  522. memcpy(p, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8);
  523. p += (x->aalg->alg_key_len + 7) / 8;
  524. aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  525. BUG_ON(!aalg_desc);
  526. err = -EINVAL;
  527. if (aalg_desc->uinfo.auth.icv_fullbits / 8 !=
  528. crypto_aead_authsize(aead)) {
  529. pr_info("ESP: %s digestsize %u != %hu\n",
  530. x->aalg->alg_name,
  531. crypto_aead_authsize(aead),
  532. aalg_desc->uinfo.auth.icv_fullbits / 8);
  533. goto free_key;
  534. }
  535. err = crypto_aead_setauthsize(
  536. aead, x->aalg->alg_trunc_len / 8);
  537. if (err)
  538. goto free_key;
  539. }
  540. param->enckeylen = cpu_to_be32((x->ealg->alg_key_len + 7) / 8);
  541. memcpy(p, x->ealg->alg_key, (x->ealg->alg_key_len + 7) / 8);
  542. err = crypto_aead_setkey(aead, key, keylen);
  543. free_key:
  544. kfree(key);
  545. error:
  546. return err;
  547. }
  548. static int esp_init_state(struct xfrm_state *x)
  549. {
  550. struct crypto_aead *aead;
  551. u32 align;
  552. int err;
  553. x->data = NULL;
  554. if (x->aead)
  555. err = esp_init_aead(x);
  556. else
  557. err = esp_init_authenc(x);
  558. if (err)
  559. goto error;
  560. aead = x->data;
  561. x->props.header_len = sizeof(struct ip_esp_hdr) +
  562. crypto_aead_ivsize(aead);
  563. if (x->props.mode == XFRM_MODE_TUNNEL)
  564. x->props.header_len += sizeof(struct iphdr);
  565. else if (x->props.mode == XFRM_MODE_BEET && x->sel.family != AF_INET6)
  566. x->props.header_len += IPV4_BEET_PHMAXLEN;
  567. if (x->encap) {
  568. struct xfrm_encap_tmpl *encap = x->encap;
  569. switch (encap->encap_type) {
  570. default:
  571. goto error;
  572. case UDP_ENCAP_ESPINUDP:
  573. x->props.header_len += sizeof(struct udphdr);
  574. break;
  575. case UDP_ENCAP_ESPINUDP_NON_IKE:
  576. x->props.header_len += sizeof(struct udphdr) + 2 * sizeof(u32);
  577. break;
  578. }
  579. }
  580. align = ALIGN(crypto_aead_blocksize(aead), 4);
  581. x->props.trailer_len = align + 1 + crypto_aead_authsize(aead);
  582. error:
  583. return err;
  584. }
  585. static int esp4_rcv_cb(struct sk_buff *skb, int err)
  586. {
  587. return 0;
  588. }
  589. static const struct xfrm_type esp_type =
  590. {
  591. .description = "ESP4",
  592. .owner = THIS_MODULE,
  593. .proto = IPPROTO_ESP,
  594. .flags = XFRM_TYPE_REPLAY_PROT,
  595. .init_state = esp_init_state,
  596. .destructor = esp_destroy,
  597. .get_mtu = esp4_get_mtu,
  598. .input = esp_input,
  599. .output = esp_output
  600. };
  601. static struct xfrm4_protocol esp4_protocol = {
  602. .handler = xfrm4_rcv,
  603. .input_handler = xfrm_input,
  604. .cb_handler = esp4_rcv_cb,
  605. .err_handler = esp4_err,
  606. .priority = 0,
  607. };
  608. static int __init esp4_init(void)
  609. {
  610. if (xfrm_register_type(&esp_type, AF_INET) < 0) {
  611. pr_info("%s: can't add xfrm type\n", __func__);
  612. return -EAGAIN;
  613. }
  614. if (xfrm4_protocol_register(&esp4_protocol, IPPROTO_ESP) < 0) {
  615. pr_info("%s: can't add protocol\n", __func__);
  616. xfrm_unregister_type(&esp_type, AF_INET);
  617. return -EAGAIN;
  618. }
  619. return 0;
  620. }
  621. static void __exit esp4_fini(void)
  622. {
  623. if (xfrm4_protocol_deregister(&esp4_protocol, IPPROTO_ESP) < 0)
  624. pr_info("%s: can't remove protocol\n", __func__);
  625. if (xfrm_unregister_type(&esp_type, AF_INET) < 0)
  626. pr_info("%s: can't remove xfrm type\n", __func__);
  627. }
  628. module_init(esp4_init);
  629. module_exit(esp4_fini);
  630. MODULE_LICENSE("GPL");
  631. MODULE_ALIAS_XFRM_TYPE(AF_INET, XFRM_PROTO_ESP);