rtnetlink.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/pci.h>
  40. #include <linux/etherdevice.h>
  41. #include <asm/uaccess.h>
  42. #include <linux/inet.h>
  43. #include <linux/netdevice.h>
  44. #include <net/switchdev.h>
  45. #include <net/ip.h>
  46. #include <net/protocol.h>
  47. #include <net/arp.h>
  48. #include <net/route.h>
  49. #include <net/udp.h>
  50. #include <net/tcp.h>
  51. #include <net/sock.h>
  52. #include <net/pkt_sched.h>
  53. #include <net/fib_rules.h>
  54. #include <net/rtnetlink.h>
  55. #include <net/net_namespace.h>
  56. struct rtnl_link {
  57. rtnl_doit_func doit;
  58. rtnl_dumpit_func dumpit;
  59. rtnl_calcit_func calcit;
  60. };
  61. static DEFINE_MUTEX(rtnl_mutex);
  62. void rtnl_lock(void)
  63. {
  64. mutex_lock(&rtnl_mutex);
  65. }
  66. EXPORT_SYMBOL(rtnl_lock);
  67. void __rtnl_unlock(void)
  68. {
  69. mutex_unlock(&rtnl_mutex);
  70. }
  71. void rtnl_unlock(void)
  72. {
  73. /* This fellow will unlock it for us. */
  74. netdev_run_todo();
  75. }
  76. EXPORT_SYMBOL(rtnl_unlock);
  77. int rtnl_trylock(void)
  78. {
  79. return mutex_trylock(&rtnl_mutex);
  80. }
  81. EXPORT_SYMBOL(rtnl_trylock);
  82. int rtnl_is_locked(void)
  83. {
  84. return mutex_is_locked(&rtnl_mutex);
  85. }
  86. EXPORT_SYMBOL(rtnl_is_locked);
  87. #ifdef CONFIG_PROVE_LOCKING
  88. int lockdep_rtnl_is_held(void)
  89. {
  90. return lockdep_is_held(&rtnl_mutex);
  91. }
  92. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  93. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  94. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  95. static inline int rtm_msgindex(int msgtype)
  96. {
  97. int msgindex = msgtype - RTM_BASE;
  98. /*
  99. * msgindex < 0 implies someone tried to register a netlink
  100. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  101. * the message type has not been added to linux/rtnetlink.h
  102. */
  103. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  104. return msgindex;
  105. }
  106. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  107. {
  108. struct rtnl_link *tab;
  109. if (protocol <= RTNL_FAMILY_MAX)
  110. tab = rtnl_msg_handlers[protocol];
  111. else
  112. tab = NULL;
  113. if (tab == NULL || tab[msgindex].doit == NULL)
  114. tab = rtnl_msg_handlers[PF_UNSPEC];
  115. return tab[msgindex].doit;
  116. }
  117. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  118. {
  119. struct rtnl_link *tab;
  120. if (protocol <= RTNL_FAMILY_MAX)
  121. tab = rtnl_msg_handlers[protocol];
  122. else
  123. tab = NULL;
  124. if (tab == NULL || tab[msgindex].dumpit == NULL)
  125. tab = rtnl_msg_handlers[PF_UNSPEC];
  126. return tab[msgindex].dumpit;
  127. }
  128. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  129. {
  130. struct rtnl_link *tab;
  131. if (protocol <= RTNL_FAMILY_MAX)
  132. tab = rtnl_msg_handlers[protocol];
  133. else
  134. tab = NULL;
  135. if (tab == NULL || tab[msgindex].calcit == NULL)
  136. tab = rtnl_msg_handlers[PF_UNSPEC];
  137. return tab[msgindex].calcit;
  138. }
  139. /**
  140. * __rtnl_register - Register a rtnetlink message type
  141. * @protocol: Protocol family or PF_UNSPEC
  142. * @msgtype: rtnetlink message type
  143. * @doit: Function pointer called for each request message
  144. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  145. * @calcit: Function pointer to calc size of dump message
  146. *
  147. * Registers the specified function pointers (at least one of them has
  148. * to be non-NULL) to be called whenever a request message for the
  149. * specified protocol family and message type is received.
  150. *
  151. * The special protocol family PF_UNSPEC may be used to define fallback
  152. * function pointers for the case when no entry for the specific protocol
  153. * family exists.
  154. *
  155. * Returns 0 on success or a negative error code.
  156. */
  157. int __rtnl_register(int protocol, int msgtype,
  158. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  159. rtnl_calcit_func calcit)
  160. {
  161. struct rtnl_link *tab;
  162. int msgindex;
  163. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  164. msgindex = rtm_msgindex(msgtype);
  165. tab = rtnl_msg_handlers[protocol];
  166. if (tab == NULL) {
  167. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  168. if (tab == NULL)
  169. return -ENOBUFS;
  170. rtnl_msg_handlers[protocol] = tab;
  171. }
  172. if (doit)
  173. tab[msgindex].doit = doit;
  174. if (dumpit)
  175. tab[msgindex].dumpit = dumpit;
  176. if (calcit)
  177. tab[msgindex].calcit = calcit;
  178. return 0;
  179. }
  180. EXPORT_SYMBOL_GPL(__rtnl_register);
  181. /**
  182. * rtnl_register - Register a rtnetlink message type
  183. *
  184. * Identical to __rtnl_register() but panics on failure. This is useful
  185. * as failure of this function is very unlikely, it can only happen due
  186. * to lack of memory when allocating the chain to store all message
  187. * handlers for a protocol. Meant for use in init functions where lack
  188. * of memory implies no sense in continuing.
  189. */
  190. void rtnl_register(int protocol, int msgtype,
  191. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  192. rtnl_calcit_func calcit)
  193. {
  194. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  195. panic("Unable to register rtnetlink message handler, "
  196. "protocol = %d, message type = %d\n",
  197. protocol, msgtype);
  198. }
  199. EXPORT_SYMBOL_GPL(rtnl_register);
  200. /**
  201. * rtnl_unregister - Unregister a rtnetlink message type
  202. * @protocol: Protocol family or PF_UNSPEC
  203. * @msgtype: rtnetlink message type
  204. *
  205. * Returns 0 on success or a negative error code.
  206. */
  207. int rtnl_unregister(int protocol, int msgtype)
  208. {
  209. int msgindex;
  210. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  211. msgindex = rtm_msgindex(msgtype);
  212. if (rtnl_msg_handlers[protocol] == NULL)
  213. return -ENOENT;
  214. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  215. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  216. return 0;
  217. }
  218. EXPORT_SYMBOL_GPL(rtnl_unregister);
  219. /**
  220. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  221. * @protocol : Protocol family or PF_UNSPEC
  222. *
  223. * Identical to calling rtnl_unregster() for all registered message types
  224. * of a certain protocol family.
  225. */
  226. void rtnl_unregister_all(int protocol)
  227. {
  228. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  229. kfree(rtnl_msg_handlers[protocol]);
  230. rtnl_msg_handlers[protocol] = NULL;
  231. }
  232. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  233. static LIST_HEAD(link_ops);
  234. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  235. {
  236. const struct rtnl_link_ops *ops;
  237. list_for_each_entry(ops, &link_ops, list) {
  238. if (!strcmp(ops->kind, kind))
  239. return ops;
  240. }
  241. return NULL;
  242. }
  243. /**
  244. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  245. * @ops: struct rtnl_link_ops * to register
  246. *
  247. * The caller must hold the rtnl_mutex. This function should be used
  248. * by drivers that create devices during module initialization. It
  249. * must be called before registering the devices.
  250. *
  251. * Returns 0 on success or a negative error code.
  252. */
  253. int __rtnl_link_register(struct rtnl_link_ops *ops)
  254. {
  255. if (rtnl_link_ops_get(ops->kind))
  256. return -EEXIST;
  257. /* The check for setup is here because if ops
  258. * does not have that filled up, it is not possible
  259. * to use the ops for creating device. So do not
  260. * fill up dellink as well. That disables rtnl_dellink.
  261. */
  262. if (ops->setup && !ops->dellink)
  263. ops->dellink = unregister_netdevice_queue;
  264. list_add_tail(&ops->list, &link_ops);
  265. return 0;
  266. }
  267. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  268. /**
  269. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  270. * @ops: struct rtnl_link_ops * to register
  271. *
  272. * Returns 0 on success or a negative error code.
  273. */
  274. int rtnl_link_register(struct rtnl_link_ops *ops)
  275. {
  276. int err;
  277. rtnl_lock();
  278. err = __rtnl_link_register(ops);
  279. rtnl_unlock();
  280. return err;
  281. }
  282. EXPORT_SYMBOL_GPL(rtnl_link_register);
  283. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  284. {
  285. struct net_device *dev;
  286. LIST_HEAD(list_kill);
  287. for_each_netdev(net, dev) {
  288. if (dev->rtnl_link_ops == ops)
  289. ops->dellink(dev, &list_kill);
  290. }
  291. unregister_netdevice_many(&list_kill);
  292. }
  293. /**
  294. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  295. * @ops: struct rtnl_link_ops * to unregister
  296. *
  297. * The caller must hold the rtnl_mutex.
  298. */
  299. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  300. {
  301. struct net *net;
  302. for_each_net(net) {
  303. __rtnl_kill_links(net, ops);
  304. }
  305. list_del(&ops->list);
  306. }
  307. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  308. /* Return with the rtnl_lock held when there are no network
  309. * devices unregistering in any network namespace.
  310. */
  311. static void rtnl_lock_unregistering_all(void)
  312. {
  313. struct net *net;
  314. bool unregistering;
  315. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  316. add_wait_queue(&netdev_unregistering_wq, &wait);
  317. for (;;) {
  318. unregistering = false;
  319. rtnl_lock();
  320. for_each_net(net) {
  321. if (net->dev_unreg_count > 0) {
  322. unregistering = true;
  323. break;
  324. }
  325. }
  326. if (!unregistering)
  327. break;
  328. __rtnl_unlock();
  329. wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  330. }
  331. remove_wait_queue(&netdev_unregistering_wq, &wait);
  332. }
  333. /**
  334. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  335. * @ops: struct rtnl_link_ops * to unregister
  336. */
  337. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  338. {
  339. /* Close the race with cleanup_net() */
  340. mutex_lock(&net_mutex);
  341. rtnl_lock_unregistering_all();
  342. __rtnl_link_unregister(ops);
  343. rtnl_unlock();
  344. mutex_unlock(&net_mutex);
  345. }
  346. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  347. static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
  348. {
  349. struct net_device *master_dev;
  350. const struct rtnl_link_ops *ops;
  351. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  352. if (!master_dev)
  353. return 0;
  354. ops = master_dev->rtnl_link_ops;
  355. if (!ops || !ops->get_slave_size)
  356. return 0;
  357. /* IFLA_INFO_SLAVE_DATA + nested data */
  358. return nla_total_size(sizeof(struct nlattr)) +
  359. ops->get_slave_size(master_dev, dev);
  360. }
  361. static size_t rtnl_link_get_size(const struct net_device *dev)
  362. {
  363. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  364. size_t size;
  365. if (!ops)
  366. return 0;
  367. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  368. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  369. if (ops->get_size)
  370. /* IFLA_INFO_DATA + nested data */
  371. size += nla_total_size(sizeof(struct nlattr)) +
  372. ops->get_size(dev);
  373. if (ops->get_xstats_size)
  374. /* IFLA_INFO_XSTATS */
  375. size += nla_total_size(ops->get_xstats_size(dev));
  376. size += rtnl_link_get_slave_info_data_size(dev);
  377. return size;
  378. }
  379. static LIST_HEAD(rtnl_af_ops);
  380. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  381. {
  382. const struct rtnl_af_ops *ops;
  383. list_for_each_entry(ops, &rtnl_af_ops, list) {
  384. if (ops->family == family)
  385. return ops;
  386. }
  387. return NULL;
  388. }
  389. /**
  390. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  391. * @ops: struct rtnl_af_ops * to register
  392. *
  393. * Returns 0 on success or a negative error code.
  394. */
  395. void rtnl_af_register(struct rtnl_af_ops *ops)
  396. {
  397. rtnl_lock();
  398. list_add_tail(&ops->list, &rtnl_af_ops);
  399. rtnl_unlock();
  400. }
  401. EXPORT_SYMBOL_GPL(rtnl_af_register);
  402. /**
  403. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  404. * @ops: struct rtnl_af_ops * to unregister
  405. *
  406. * The caller must hold the rtnl_mutex.
  407. */
  408. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  409. {
  410. list_del(&ops->list);
  411. }
  412. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  413. /**
  414. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  415. * @ops: struct rtnl_af_ops * to unregister
  416. */
  417. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  418. {
  419. rtnl_lock();
  420. __rtnl_af_unregister(ops);
  421. rtnl_unlock();
  422. }
  423. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  424. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  425. {
  426. struct rtnl_af_ops *af_ops;
  427. size_t size;
  428. /* IFLA_AF_SPEC */
  429. size = nla_total_size(sizeof(struct nlattr));
  430. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  431. if (af_ops->get_link_af_size) {
  432. /* AF_* + nested data */
  433. size += nla_total_size(sizeof(struct nlattr)) +
  434. af_ops->get_link_af_size(dev);
  435. }
  436. }
  437. return size;
  438. }
  439. static bool rtnl_have_link_slave_info(const struct net_device *dev)
  440. {
  441. struct net_device *master_dev;
  442. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  443. if (master_dev && master_dev->rtnl_link_ops)
  444. return true;
  445. return false;
  446. }
  447. static int rtnl_link_slave_info_fill(struct sk_buff *skb,
  448. const struct net_device *dev)
  449. {
  450. struct net_device *master_dev;
  451. const struct rtnl_link_ops *ops;
  452. struct nlattr *slave_data;
  453. int err;
  454. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  455. if (!master_dev)
  456. return 0;
  457. ops = master_dev->rtnl_link_ops;
  458. if (!ops)
  459. return 0;
  460. if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
  461. return -EMSGSIZE;
  462. if (ops->fill_slave_info) {
  463. slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
  464. if (!slave_data)
  465. return -EMSGSIZE;
  466. err = ops->fill_slave_info(skb, master_dev, dev);
  467. if (err < 0)
  468. goto err_cancel_slave_data;
  469. nla_nest_end(skb, slave_data);
  470. }
  471. return 0;
  472. err_cancel_slave_data:
  473. nla_nest_cancel(skb, slave_data);
  474. return err;
  475. }
  476. static int rtnl_link_info_fill(struct sk_buff *skb,
  477. const struct net_device *dev)
  478. {
  479. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  480. struct nlattr *data;
  481. int err;
  482. if (!ops)
  483. return 0;
  484. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  485. return -EMSGSIZE;
  486. if (ops->fill_xstats) {
  487. err = ops->fill_xstats(skb, dev);
  488. if (err < 0)
  489. return err;
  490. }
  491. if (ops->fill_info) {
  492. data = nla_nest_start(skb, IFLA_INFO_DATA);
  493. if (data == NULL)
  494. return -EMSGSIZE;
  495. err = ops->fill_info(skb, dev);
  496. if (err < 0)
  497. goto err_cancel_data;
  498. nla_nest_end(skb, data);
  499. }
  500. return 0;
  501. err_cancel_data:
  502. nla_nest_cancel(skb, data);
  503. return err;
  504. }
  505. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  506. {
  507. struct nlattr *linkinfo;
  508. int err = -EMSGSIZE;
  509. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  510. if (linkinfo == NULL)
  511. goto out;
  512. err = rtnl_link_info_fill(skb, dev);
  513. if (err < 0)
  514. goto err_cancel_link;
  515. err = rtnl_link_slave_info_fill(skb, dev);
  516. if (err < 0)
  517. goto err_cancel_link;
  518. nla_nest_end(skb, linkinfo);
  519. return 0;
  520. err_cancel_link:
  521. nla_nest_cancel(skb, linkinfo);
  522. out:
  523. return err;
  524. }
  525. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  526. {
  527. struct sock *rtnl = net->rtnl;
  528. int err = 0;
  529. NETLINK_CB(skb).dst_group = group;
  530. if (echo)
  531. atomic_inc(&skb->users);
  532. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  533. if (echo)
  534. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  535. return err;
  536. }
  537. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  538. {
  539. struct sock *rtnl = net->rtnl;
  540. return nlmsg_unicast(rtnl, skb, pid);
  541. }
  542. EXPORT_SYMBOL(rtnl_unicast);
  543. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  544. struct nlmsghdr *nlh, gfp_t flags)
  545. {
  546. struct sock *rtnl = net->rtnl;
  547. int report = 0;
  548. if (nlh)
  549. report = nlmsg_report(nlh);
  550. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  551. }
  552. EXPORT_SYMBOL(rtnl_notify);
  553. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  554. {
  555. struct sock *rtnl = net->rtnl;
  556. netlink_set_err(rtnl, 0, group, error);
  557. }
  558. EXPORT_SYMBOL(rtnl_set_sk_err);
  559. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  560. {
  561. struct nlattr *mx;
  562. int i, valid = 0;
  563. mx = nla_nest_start(skb, RTA_METRICS);
  564. if (mx == NULL)
  565. return -ENOBUFS;
  566. for (i = 0; i < RTAX_MAX; i++) {
  567. if (metrics[i]) {
  568. if (i == RTAX_CC_ALGO - 1) {
  569. char tmp[TCP_CA_NAME_MAX], *name;
  570. name = tcp_ca_get_name_by_key(metrics[i], tmp);
  571. if (!name)
  572. continue;
  573. if (nla_put_string(skb, i + 1, name))
  574. goto nla_put_failure;
  575. } else if (i == RTAX_FEATURES - 1) {
  576. u32 user_features = metrics[i] & RTAX_FEATURE_MASK;
  577. BUILD_BUG_ON(RTAX_FEATURE_MASK & DST_FEATURE_MASK);
  578. if (nla_put_u32(skb, i + 1, user_features))
  579. goto nla_put_failure;
  580. } else {
  581. if (nla_put_u32(skb, i + 1, metrics[i]))
  582. goto nla_put_failure;
  583. }
  584. valid++;
  585. }
  586. }
  587. if (!valid) {
  588. nla_nest_cancel(skb, mx);
  589. return 0;
  590. }
  591. return nla_nest_end(skb, mx);
  592. nla_put_failure:
  593. nla_nest_cancel(skb, mx);
  594. return -EMSGSIZE;
  595. }
  596. EXPORT_SYMBOL(rtnetlink_put_metrics);
  597. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  598. long expires, u32 error)
  599. {
  600. struct rta_cacheinfo ci = {
  601. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  602. .rta_used = dst->__use,
  603. .rta_clntref = atomic_read(&(dst->__refcnt)),
  604. .rta_error = error,
  605. .rta_id = id,
  606. };
  607. if (expires) {
  608. unsigned long clock;
  609. clock = jiffies_to_clock_t(abs(expires));
  610. clock = min_t(unsigned long, clock, INT_MAX);
  611. ci.rta_expires = (expires > 0) ? clock : -clock;
  612. }
  613. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  614. }
  615. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  616. static void set_operstate(struct net_device *dev, unsigned char transition)
  617. {
  618. unsigned char operstate = dev->operstate;
  619. switch (transition) {
  620. case IF_OPER_UP:
  621. if ((operstate == IF_OPER_DORMANT ||
  622. operstate == IF_OPER_UNKNOWN) &&
  623. !netif_dormant(dev))
  624. operstate = IF_OPER_UP;
  625. break;
  626. case IF_OPER_DORMANT:
  627. if (operstate == IF_OPER_UP ||
  628. operstate == IF_OPER_UNKNOWN)
  629. operstate = IF_OPER_DORMANT;
  630. break;
  631. }
  632. if (dev->operstate != operstate) {
  633. write_lock_bh(&dev_base_lock);
  634. dev->operstate = operstate;
  635. write_unlock_bh(&dev_base_lock);
  636. netdev_state_change(dev);
  637. }
  638. }
  639. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  640. {
  641. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  642. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  643. }
  644. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  645. const struct ifinfomsg *ifm)
  646. {
  647. unsigned int flags = ifm->ifi_flags;
  648. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  649. if (ifm->ifi_change)
  650. flags = (flags & ifm->ifi_change) |
  651. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  652. return flags;
  653. }
  654. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  655. const struct rtnl_link_stats64 *b)
  656. {
  657. a->rx_packets = b->rx_packets;
  658. a->tx_packets = b->tx_packets;
  659. a->rx_bytes = b->rx_bytes;
  660. a->tx_bytes = b->tx_bytes;
  661. a->rx_errors = b->rx_errors;
  662. a->tx_errors = b->tx_errors;
  663. a->rx_dropped = b->rx_dropped;
  664. a->tx_dropped = b->tx_dropped;
  665. a->multicast = b->multicast;
  666. a->collisions = b->collisions;
  667. a->rx_length_errors = b->rx_length_errors;
  668. a->rx_over_errors = b->rx_over_errors;
  669. a->rx_crc_errors = b->rx_crc_errors;
  670. a->rx_frame_errors = b->rx_frame_errors;
  671. a->rx_fifo_errors = b->rx_fifo_errors;
  672. a->rx_missed_errors = b->rx_missed_errors;
  673. a->tx_aborted_errors = b->tx_aborted_errors;
  674. a->tx_carrier_errors = b->tx_carrier_errors;
  675. a->tx_fifo_errors = b->tx_fifo_errors;
  676. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  677. a->tx_window_errors = b->tx_window_errors;
  678. a->rx_compressed = b->rx_compressed;
  679. a->tx_compressed = b->tx_compressed;
  680. }
  681. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  682. {
  683. memcpy(v, b, sizeof(*b));
  684. }
  685. /* All VF info */
  686. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  687. u32 ext_filter_mask)
  688. {
  689. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  690. (ext_filter_mask & RTEXT_FILTER_VF)) {
  691. int num_vfs = dev_num_vf(dev->dev.parent);
  692. size_t size = nla_total_size(sizeof(struct nlattr));
  693. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  694. size += num_vfs *
  695. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  696. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  697. nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
  698. nla_total_size(sizeof(struct ifla_vf_rate)) +
  699. nla_total_size(sizeof(struct ifla_vf_link_state)) +
  700. nla_total_size(sizeof(struct ifla_vf_rss_query_en)) +
  701. /* IFLA_VF_STATS_RX_PACKETS */
  702. nla_total_size(sizeof(__u64)) +
  703. /* IFLA_VF_STATS_TX_PACKETS */
  704. nla_total_size(sizeof(__u64)) +
  705. /* IFLA_VF_STATS_RX_BYTES */
  706. nla_total_size(sizeof(__u64)) +
  707. /* IFLA_VF_STATS_TX_BYTES */
  708. nla_total_size(sizeof(__u64)) +
  709. /* IFLA_VF_STATS_BROADCAST */
  710. nla_total_size(sizeof(__u64)) +
  711. /* IFLA_VF_STATS_MULTICAST */
  712. nla_total_size(sizeof(__u64)));
  713. return size;
  714. } else
  715. return 0;
  716. }
  717. static size_t rtnl_port_size(const struct net_device *dev,
  718. u32 ext_filter_mask)
  719. {
  720. size_t port_size = nla_total_size(4) /* PORT_VF */
  721. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  722. + nla_total_size(sizeof(struct ifla_port_vsi))
  723. /* PORT_VSI_TYPE */
  724. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  725. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  726. + nla_total_size(1) /* PROT_VDP_REQUEST */
  727. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  728. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  729. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  730. + port_size;
  731. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  732. + port_size;
  733. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  734. !(ext_filter_mask & RTEXT_FILTER_VF))
  735. return 0;
  736. if (dev_num_vf(dev->dev.parent))
  737. return port_self_size + vf_ports_size +
  738. vf_port_size * dev_num_vf(dev->dev.parent);
  739. else
  740. return port_self_size;
  741. }
  742. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  743. u32 ext_filter_mask)
  744. {
  745. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  746. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  747. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  748. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  749. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  750. + nla_total_size(sizeof(struct rtnl_link_stats))
  751. + nla_total_size(sizeof(struct rtnl_link_stats64))
  752. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  753. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  754. + nla_total_size(4) /* IFLA_TXQLEN */
  755. + nla_total_size(4) /* IFLA_WEIGHT */
  756. + nla_total_size(4) /* IFLA_MTU */
  757. + nla_total_size(4) /* IFLA_LINK */
  758. + nla_total_size(4) /* IFLA_MASTER */
  759. + nla_total_size(1) /* IFLA_CARRIER */
  760. + nla_total_size(4) /* IFLA_PROMISCUITY */
  761. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  762. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  763. + nla_total_size(1) /* IFLA_OPERSTATE */
  764. + nla_total_size(1) /* IFLA_LINKMODE */
  765. + nla_total_size(4) /* IFLA_CARRIER_CHANGES */
  766. + nla_total_size(4) /* IFLA_LINK_NETNSID */
  767. + nla_total_size(ext_filter_mask
  768. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  769. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  770. + rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  771. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  772. + rtnl_link_get_af_size(dev) /* IFLA_AF_SPEC */
  773. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_PORT_ID */
  774. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_SWITCH_ID */
  775. + nla_total_size(1); /* IFLA_PROTO_DOWN */
  776. }
  777. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  778. {
  779. struct nlattr *vf_ports;
  780. struct nlattr *vf_port;
  781. int vf;
  782. int err;
  783. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  784. if (!vf_ports)
  785. return -EMSGSIZE;
  786. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  787. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  788. if (!vf_port)
  789. goto nla_put_failure;
  790. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  791. goto nla_put_failure;
  792. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  793. if (err == -EMSGSIZE)
  794. goto nla_put_failure;
  795. if (err) {
  796. nla_nest_cancel(skb, vf_port);
  797. continue;
  798. }
  799. nla_nest_end(skb, vf_port);
  800. }
  801. nla_nest_end(skb, vf_ports);
  802. return 0;
  803. nla_put_failure:
  804. nla_nest_cancel(skb, vf_ports);
  805. return -EMSGSIZE;
  806. }
  807. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  808. {
  809. struct nlattr *port_self;
  810. int err;
  811. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  812. if (!port_self)
  813. return -EMSGSIZE;
  814. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  815. if (err) {
  816. nla_nest_cancel(skb, port_self);
  817. return (err == -EMSGSIZE) ? err : 0;
  818. }
  819. nla_nest_end(skb, port_self);
  820. return 0;
  821. }
  822. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
  823. u32 ext_filter_mask)
  824. {
  825. int err;
  826. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  827. !(ext_filter_mask & RTEXT_FILTER_VF))
  828. return 0;
  829. err = rtnl_port_self_fill(skb, dev);
  830. if (err)
  831. return err;
  832. if (dev_num_vf(dev->dev.parent)) {
  833. err = rtnl_vf_ports_fill(skb, dev);
  834. if (err)
  835. return err;
  836. }
  837. return 0;
  838. }
  839. static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
  840. {
  841. int err;
  842. struct netdev_phys_item_id ppid;
  843. err = dev_get_phys_port_id(dev, &ppid);
  844. if (err) {
  845. if (err == -EOPNOTSUPP)
  846. return 0;
  847. return err;
  848. }
  849. if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
  850. return -EMSGSIZE;
  851. return 0;
  852. }
  853. static int rtnl_phys_port_name_fill(struct sk_buff *skb, struct net_device *dev)
  854. {
  855. char name[IFNAMSIZ];
  856. int err;
  857. err = dev_get_phys_port_name(dev, name, sizeof(name));
  858. if (err) {
  859. if (err == -EOPNOTSUPP)
  860. return 0;
  861. return err;
  862. }
  863. if (nla_put(skb, IFLA_PHYS_PORT_NAME, strlen(name), name))
  864. return -EMSGSIZE;
  865. return 0;
  866. }
  867. static int rtnl_phys_switch_id_fill(struct sk_buff *skb, struct net_device *dev)
  868. {
  869. int err;
  870. struct switchdev_attr attr = {
  871. .id = SWITCHDEV_ATTR_PORT_PARENT_ID,
  872. .flags = SWITCHDEV_F_NO_RECURSE,
  873. };
  874. err = switchdev_port_attr_get(dev, &attr);
  875. if (err) {
  876. if (err == -EOPNOTSUPP)
  877. return 0;
  878. return err;
  879. }
  880. if (nla_put(skb, IFLA_PHYS_SWITCH_ID, attr.u.ppid.id_len,
  881. attr.u.ppid.id))
  882. return -EMSGSIZE;
  883. return 0;
  884. }
  885. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  886. int type, u32 pid, u32 seq, u32 change,
  887. unsigned int flags, u32 ext_filter_mask)
  888. {
  889. struct ifinfomsg *ifm;
  890. struct nlmsghdr *nlh;
  891. struct rtnl_link_stats64 temp;
  892. const struct rtnl_link_stats64 *stats;
  893. struct nlattr *attr, *af_spec;
  894. struct rtnl_af_ops *af_ops;
  895. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  896. ASSERT_RTNL();
  897. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  898. if (nlh == NULL)
  899. return -EMSGSIZE;
  900. ifm = nlmsg_data(nlh);
  901. ifm->ifi_family = AF_UNSPEC;
  902. ifm->__ifi_pad = 0;
  903. ifm->ifi_type = dev->type;
  904. ifm->ifi_index = dev->ifindex;
  905. ifm->ifi_flags = dev_get_flags(dev);
  906. ifm->ifi_change = change;
  907. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  908. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  909. nla_put_u8(skb, IFLA_OPERSTATE,
  910. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  911. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  912. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  913. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  914. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  915. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  916. #ifdef CONFIG_RPS
  917. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  918. #endif
  919. (dev->ifindex != dev_get_iflink(dev) &&
  920. nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))) ||
  921. (upper_dev &&
  922. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  923. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  924. (dev->qdisc &&
  925. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  926. (dev->ifalias &&
  927. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)) ||
  928. nla_put_u32(skb, IFLA_CARRIER_CHANGES,
  929. atomic_read(&dev->carrier_changes)) ||
  930. nla_put_u8(skb, IFLA_PROTO_DOWN, dev->proto_down))
  931. goto nla_put_failure;
  932. if (1) {
  933. struct rtnl_link_ifmap map = {
  934. .mem_start = dev->mem_start,
  935. .mem_end = dev->mem_end,
  936. .base_addr = dev->base_addr,
  937. .irq = dev->irq,
  938. .dma = dev->dma,
  939. .port = dev->if_port,
  940. };
  941. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  942. goto nla_put_failure;
  943. }
  944. if (dev->addr_len) {
  945. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  946. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  947. goto nla_put_failure;
  948. }
  949. if (rtnl_phys_port_id_fill(skb, dev))
  950. goto nla_put_failure;
  951. if (rtnl_phys_port_name_fill(skb, dev))
  952. goto nla_put_failure;
  953. if (rtnl_phys_switch_id_fill(skb, dev))
  954. goto nla_put_failure;
  955. attr = nla_reserve(skb, IFLA_STATS,
  956. sizeof(struct rtnl_link_stats));
  957. if (attr == NULL)
  958. goto nla_put_failure;
  959. stats = dev_get_stats(dev, &temp);
  960. copy_rtnl_link_stats(nla_data(attr), stats);
  961. attr = nla_reserve(skb, IFLA_STATS64,
  962. sizeof(struct rtnl_link_stats64));
  963. if (attr == NULL)
  964. goto nla_put_failure;
  965. copy_rtnl_link_stats64(nla_data(attr), stats);
  966. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  967. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  968. goto nla_put_failure;
  969. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  970. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  971. int i;
  972. struct nlattr *vfinfo, *vf, *vfstats;
  973. int num_vfs = dev_num_vf(dev->dev.parent);
  974. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  975. if (!vfinfo)
  976. goto nla_put_failure;
  977. for (i = 0; i < num_vfs; i++) {
  978. struct ifla_vf_info ivi;
  979. struct ifla_vf_mac vf_mac;
  980. struct ifla_vf_vlan vf_vlan;
  981. struct ifla_vf_rate vf_rate;
  982. struct ifla_vf_tx_rate vf_tx_rate;
  983. struct ifla_vf_spoofchk vf_spoofchk;
  984. struct ifla_vf_link_state vf_linkstate;
  985. struct ifla_vf_rss_query_en vf_rss_query_en;
  986. struct ifla_vf_stats vf_stats;
  987. /*
  988. * Not all SR-IOV capable drivers support the
  989. * spoofcheck and "RSS query enable" query. Preset to
  990. * -1 so the user space tool can detect that the driver
  991. * didn't report anything.
  992. */
  993. ivi.spoofchk = -1;
  994. ivi.rss_query_en = -1;
  995. memset(ivi.mac, 0, sizeof(ivi.mac));
  996. /* The default value for VF link state is "auto"
  997. * IFLA_VF_LINK_STATE_AUTO which equals zero
  998. */
  999. ivi.linkstate = 0;
  1000. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  1001. break;
  1002. vf_mac.vf =
  1003. vf_vlan.vf =
  1004. vf_rate.vf =
  1005. vf_tx_rate.vf =
  1006. vf_spoofchk.vf =
  1007. vf_linkstate.vf =
  1008. vf_rss_query_en.vf = ivi.vf;
  1009. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  1010. vf_vlan.vlan = ivi.vlan;
  1011. vf_vlan.qos = ivi.qos;
  1012. vf_tx_rate.rate = ivi.max_tx_rate;
  1013. vf_rate.min_tx_rate = ivi.min_tx_rate;
  1014. vf_rate.max_tx_rate = ivi.max_tx_rate;
  1015. vf_spoofchk.setting = ivi.spoofchk;
  1016. vf_linkstate.link_state = ivi.linkstate;
  1017. vf_rss_query_en.setting = ivi.rss_query_en;
  1018. vf = nla_nest_start(skb, IFLA_VF_INFO);
  1019. if (!vf) {
  1020. nla_nest_cancel(skb, vfinfo);
  1021. goto nla_put_failure;
  1022. }
  1023. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  1024. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  1025. nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
  1026. &vf_rate) ||
  1027. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  1028. &vf_tx_rate) ||
  1029. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  1030. &vf_spoofchk) ||
  1031. nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
  1032. &vf_linkstate) ||
  1033. nla_put(skb, IFLA_VF_RSS_QUERY_EN,
  1034. sizeof(vf_rss_query_en),
  1035. &vf_rss_query_en))
  1036. goto nla_put_failure;
  1037. memset(&vf_stats, 0, sizeof(vf_stats));
  1038. if (dev->netdev_ops->ndo_get_vf_stats)
  1039. dev->netdev_ops->ndo_get_vf_stats(dev, i,
  1040. &vf_stats);
  1041. vfstats = nla_nest_start(skb, IFLA_VF_STATS);
  1042. if (!vfstats) {
  1043. nla_nest_cancel(skb, vf);
  1044. nla_nest_cancel(skb, vfinfo);
  1045. goto nla_put_failure;
  1046. }
  1047. if (nla_put_u64(skb, IFLA_VF_STATS_RX_PACKETS,
  1048. vf_stats.rx_packets) ||
  1049. nla_put_u64(skb, IFLA_VF_STATS_TX_PACKETS,
  1050. vf_stats.tx_packets) ||
  1051. nla_put_u64(skb, IFLA_VF_STATS_RX_BYTES,
  1052. vf_stats.rx_bytes) ||
  1053. nla_put_u64(skb, IFLA_VF_STATS_TX_BYTES,
  1054. vf_stats.tx_bytes) ||
  1055. nla_put_u64(skb, IFLA_VF_STATS_BROADCAST,
  1056. vf_stats.broadcast) ||
  1057. nla_put_u64(skb, IFLA_VF_STATS_MULTICAST,
  1058. vf_stats.multicast))
  1059. goto nla_put_failure;
  1060. nla_nest_end(skb, vfstats);
  1061. nla_nest_end(skb, vf);
  1062. }
  1063. nla_nest_end(skb, vfinfo);
  1064. }
  1065. if (rtnl_port_fill(skb, dev, ext_filter_mask))
  1066. goto nla_put_failure;
  1067. if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
  1068. if (rtnl_link_fill(skb, dev) < 0)
  1069. goto nla_put_failure;
  1070. }
  1071. if (dev->rtnl_link_ops &&
  1072. dev->rtnl_link_ops->get_link_net) {
  1073. struct net *link_net = dev->rtnl_link_ops->get_link_net(dev);
  1074. if (!net_eq(dev_net(dev), link_net)) {
  1075. int id = peernet2id_alloc(dev_net(dev), link_net);
  1076. if (nla_put_s32(skb, IFLA_LINK_NETNSID, id))
  1077. goto nla_put_failure;
  1078. }
  1079. }
  1080. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  1081. goto nla_put_failure;
  1082. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  1083. if (af_ops->fill_link_af) {
  1084. struct nlattr *af;
  1085. int err;
  1086. if (!(af = nla_nest_start(skb, af_ops->family)))
  1087. goto nla_put_failure;
  1088. err = af_ops->fill_link_af(skb, dev);
  1089. /*
  1090. * Caller may return ENODATA to indicate that there
  1091. * was no data to be dumped. This is not an error, it
  1092. * means we should trim the attribute header and
  1093. * continue.
  1094. */
  1095. if (err == -ENODATA)
  1096. nla_nest_cancel(skb, af);
  1097. else if (err < 0)
  1098. goto nla_put_failure;
  1099. nla_nest_end(skb, af);
  1100. }
  1101. }
  1102. nla_nest_end(skb, af_spec);
  1103. nlmsg_end(skb, nlh);
  1104. return 0;
  1105. nla_put_failure:
  1106. nlmsg_cancel(skb, nlh);
  1107. return -EMSGSIZE;
  1108. }
  1109. static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  1110. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  1111. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1112. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1113. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  1114. [IFLA_MTU] = { .type = NLA_U32 },
  1115. [IFLA_LINK] = { .type = NLA_U32 },
  1116. [IFLA_MASTER] = { .type = NLA_U32 },
  1117. [IFLA_CARRIER] = { .type = NLA_U8 },
  1118. [IFLA_TXQLEN] = { .type = NLA_U32 },
  1119. [IFLA_WEIGHT] = { .type = NLA_U32 },
  1120. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  1121. [IFLA_LINKMODE] = { .type = NLA_U8 },
  1122. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  1123. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  1124. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  1125. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  1126. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  1127. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  1128. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  1129. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  1130. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  1131. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  1132. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  1133. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  1134. [IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1135. [IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
  1136. [IFLA_PHYS_SWITCH_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1137. [IFLA_LINK_NETNSID] = { .type = NLA_S32 },
  1138. [IFLA_PROTO_DOWN] = { .type = NLA_U8 },
  1139. };
  1140. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  1141. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  1142. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  1143. [IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
  1144. [IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
  1145. };
  1146. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  1147. [IFLA_VF_MAC] = { .len = sizeof(struct ifla_vf_mac) },
  1148. [IFLA_VF_VLAN] = { .len = sizeof(struct ifla_vf_vlan) },
  1149. [IFLA_VF_TX_RATE] = { .len = sizeof(struct ifla_vf_tx_rate) },
  1150. [IFLA_VF_SPOOFCHK] = { .len = sizeof(struct ifla_vf_spoofchk) },
  1151. [IFLA_VF_RATE] = { .len = sizeof(struct ifla_vf_rate) },
  1152. [IFLA_VF_LINK_STATE] = { .len = sizeof(struct ifla_vf_link_state) },
  1153. [IFLA_VF_RSS_QUERY_EN] = { .len = sizeof(struct ifla_vf_rss_query_en) },
  1154. [IFLA_VF_STATS] = { .type = NLA_NESTED },
  1155. };
  1156. static const struct nla_policy ifla_vf_stats_policy[IFLA_VF_STATS_MAX + 1] = {
  1157. [IFLA_VF_STATS_RX_PACKETS] = { .type = NLA_U64 },
  1158. [IFLA_VF_STATS_TX_PACKETS] = { .type = NLA_U64 },
  1159. [IFLA_VF_STATS_RX_BYTES] = { .type = NLA_U64 },
  1160. [IFLA_VF_STATS_TX_BYTES] = { .type = NLA_U64 },
  1161. [IFLA_VF_STATS_BROADCAST] = { .type = NLA_U64 },
  1162. [IFLA_VF_STATS_MULTICAST] = { .type = NLA_U64 },
  1163. };
  1164. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  1165. [IFLA_PORT_VF] = { .type = NLA_U32 },
  1166. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  1167. .len = PORT_PROFILE_MAX },
  1168. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  1169. .len = sizeof(struct ifla_port_vsi)},
  1170. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  1171. .len = PORT_UUID_MAX },
  1172. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  1173. .len = PORT_UUID_MAX },
  1174. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  1175. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  1176. };
  1177. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  1178. {
  1179. struct net *net = sock_net(skb->sk);
  1180. int h, s_h;
  1181. int idx = 0, s_idx;
  1182. struct net_device *dev;
  1183. struct hlist_head *head;
  1184. struct nlattr *tb[IFLA_MAX+1];
  1185. u32 ext_filter_mask = 0;
  1186. int err;
  1187. int hdrlen;
  1188. s_h = cb->args[0];
  1189. s_idx = cb->args[1];
  1190. cb->seq = net->dev_base_seq;
  1191. /* A hack to preserve kernel<->userspace interface.
  1192. * The correct header is ifinfomsg. It is consistent with rtnl_getlink.
  1193. * However, before Linux v3.9 the code here assumed rtgenmsg and that's
  1194. * what iproute2 < v3.9.0 used.
  1195. * We can detect the old iproute2. Even including the IFLA_EXT_MASK
  1196. * attribute, its netlink message is shorter than struct ifinfomsg.
  1197. */
  1198. hdrlen = nlmsg_len(cb->nlh) < sizeof(struct ifinfomsg) ?
  1199. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1200. if (nlmsg_parse(cb->nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1201. if (tb[IFLA_EXT_MASK])
  1202. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1203. }
  1204. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  1205. idx = 0;
  1206. head = &net->dev_index_head[h];
  1207. hlist_for_each_entry(dev, head, index_hlist) {
  1208. if (idx < s_idx)
  1209. goto cont;
  1210. err = rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  1211. NETLINK_CB(cb->skb).portid,
  1212. cb->nlh->nlmsg_seq, 0,
  1213. NLM_F_MULTI,
  1214. ext_filter_mask);
  1215. /* If we ran out of room on the first message,
  1216. * we're in trouble
  1217. */
  1218. WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
  1219. if (err < 0)
  1220. goto out;
  1221. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  1222. cont:
  1223. idx++;
  1224. }
  1225. }
  1226. out:
  1227. cb->args[1] = idx;
  1228. cb->args[0] = h;
  1229. return skb->len;
  1230. }
  1231. int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len)
  1232. {
  1233. return nla_parse(tb, IFLA_MAX, head, len, ifla_policy);
  1234. }
  1235. EXPORT_SYMBOL(rtnl_nla_parse_ifla);
  1236. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  1237. {
  1238. struct net *net;
  1239. /* Examine the link attributes and figure out which
  1240. * network namespace we are talking about.
  1241. */
  1242. if (tb[IFLA_NET_NS_PID])
  1243. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  1244. else if (tb[IFLA_NET_NS_FD])
  1245. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  1246. else
  1247. net = get_net(src_net);
  1248. return net;
  1249. }
  1250. EXPORT_SYMBOL(rtnl_link_get_net);
  1251. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  1252. {
  1253. if (dev) {
  1254. if (tb[IFLA_ADDRESS] &&
  1255. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1256. return -EINVAL;
  1257. if (tb[IFLA_BROADCAST] &&
  1258. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1259. return -EINVAL;
  1260. }
  1261. if (tb[IFLA_AF_SPEC]) {
  1262. struct nlattr *af;
  1263. int rem, err;
  1264. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1265. const struct rtnl_af_ops *af_ops;
  1266. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1267. return -EAFNOSUPPORT;
  1268. if (!af_ops->set_link_af)
  1269. return -EOPNOTSUPP;
  1270. if (af_ops->validate_link_af) {
  1271. err = af_ops->validate_link_af(dev, af);
  1272. if (err < 0)
  1273. return err;
  1274. }
  1275. }
  1276. }
  1277. return 0;
  1278. }
  1279. static int do_setvfinfo(struct net_device *dev, struct nlattr **tb)
  1280. {
  1281. const struct net_device_ops *ops = dev->netdev_ops;
  1282. int err = -EINVAL;
  1283. if (tb[IFLA_VF_MAC]) {
  1284. struct ifla_vf_mac *ivm = nla_data(tb[IFLA_VF_MAC]);
  1285. err = -EOPNOTSUPP;
  1286. if (ops->ndo_set_vf_mac)
  1287. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1288. ivm->mac);
  1289. if (err < 0)
  1290. return err;
  1291. }
  1292. if (tb[IFLA_VF_VLAN]) {
  1293. struct ifla_vf_vlan *ivv = nla_data(tb[IFLA_VF_VLAN]);
  1294. err = -EOPNOTSUPP;
  1295. if (ops->ndo_set_vf_vlan)
  1296. err = ops->ndo_set_vf_vlan(dev, ivv->vf, ivv->vlan,
  1297. ivv->qos);
  1298. if (err < 0)
  1299. return err;
  1300. }
  1301. if (tb[IFLA_VF_TX_RATE]) {
  1302. struct ifla_vf_tx_rate *ivt = nla_data(tb[IFLA_VF_TX_RATE]);
  1303. struct ifla_vf_info ivf;
  1304. err = -EOPNOTSUPP;
  1305. if (ops->ndo_get_vf_config)
  1306. err = ops->ndo_get_vf_config(dev, ivt->vf, &ivf);
  1307. if (err < 0)
  1308. return err;
  1309. err = -EOPNOTSUPP;
  1310. if (ops->ndo_set_vf_rate)
  1311. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1312. ivf.min_tx_rate,
  1313. ivt->rate);
  1314. if (err < 0)
  1315. return err;
  1316. }
  1317. if (tb[IFLA_VF_RATE]) {
  1318. struct ifla_vf_rate *ivt = nla_data(tb[IFLA_VF_RATE]);
  1319. err = -EOPNOTSUPP;
  1320. if (ops->ndo_set_vf_rate)
  1321. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1322. ivt->min_tx_rate,
  1323. ivt->max_tx_rate);
  1324. if (err < 0)
  1325. return err;
  1326. }
  1327. if (tb[IFLA_VF_SPOOFCHK]) {
  1328. struct ifla_vf_spoofchk *ivs = nla_data(tb[IFLA_VF_SPOOFCHK]);
  1329. err = -EOPNOTSUPP;
  1330. if (ops->ndo_set_vf_spoofchk)
  1331. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1332. ivs->setting);
  1333. if (err < 0)
  1334. return err;
  1335. }
  1336. if (tb[IFLA_VF_LINK_STATE]) {
  1337. struct ifla_vf_link_state *ivl = nla_data(tb[IFLA_VF_LINK_STATE]);
  1338. err = -EOPNOTSUPP;
  1339. if (ops->ndo_set_vf_link_state)
  1340. err = ops->ndo_set_vf_link_state(dev, ivl->vf,
  1341. ivl->link_state);
  1342. if (err < 0)
  1343. return err;
  1344. }
  1345. if (tb[IFLA_VF_RSS_QUERY_EN]) {
  1346. struct ifla_vf_rss_query_en *ivrssq_en;
  1347. err = -EOPNOTSUPP;
  1348. ivrssq_en = nla_data(tb[IFLA_VF_RSS_QUERY_EN]);
  1349. if (ops->ndo_set_vf_rss_query_en)
  1350. err = ops->ndo_set_vf_rss_query_en(dev, ivrssq_en->vf,
  1351. ivrssq_en->setting);
  1352. if (err < 0)
  1353. return err;
  1354. }
  1355. return err;
  1356. }
  1357. static int do_set_master(struct net_device *dev, int ifindex)
  1358. {
  1359. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1360. const struct net_device_ops *ops;
  1361. int err;
  1362. if (upper_dev) {
  1363. if (upper_dev->ifindex == ifindex)
  1364. return 0;
  1365. ops = upper_dev->netdev_ops;
  1366. if (ops->ndo_del_slave) {
  1367. err = ops->ndo_del_slave(upper_dev, dev);
  1368. if (err)
  1369. return err;
  1370. } else {
  1371. return -EOPNOTSUPP;
  1372. }
  1373. }
  1374. if (ifindex) {
  1375. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1376. if (!upper_dev)
  1377. return -EINVAL;
  1378. ops = upper_dev->netdev_ops;
  1379. if (ops->ndo_add_slave) {
  1380. err = ops->ndo_add_slave(upper_dev, dev);
  1381. if (err)
  1382. return err;
  1383. } else {
  1384. return -EOPNOTSUPP;
  1385. }
  1386. }
  1387. return 0;
  1388. }
  1389. #define DO_SETLINK_MODIFIED 0x01
  1390. /* notify flag means notify + modified. */
  1391. #define DO_SETLINK_NOTIFY 0x03
  1392. static int do_setlink(const struct sk_buff *skb,
  1393. struct net_device *dev, struct ifinfomsg *ifm,
  1394. struct nlattr **tb, char *ifname, int status)
  1395. {
  1396. const struct net_device_ops *ops = dev->netdev_ops;
  1397. int err;
  1398. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1399. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1400. if (IS_ERR(net)) {
  1401. err = PTR_ERR(net);
  1402. goto errout;
  1403. }
  1404. if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
  1405. put_net(net);
  1406. err = -EPERM;
  1407. goto errout;
  1408. }
  1409. err = dev_change_net_namespace(dev, net, ifname);
  1410. put_net(net);
  1411. if (err)
  1412. goto errout;
  1413. status |= DO_SETLINK_MODIFIED;
  1414. }
  1415. if (tb[IFLA_MAP]) {
  1416. struct rtnl_link_ifmap *u_map;
  1417. struct ifmap k_map;
  1418. if (!ops->ndo_set_config) {
  1419. err = -EOPNOTSUPP;
  1420. goto errout;
  1421. }
  1422. if (!netif_device_present(dev)) {
  1423. err = -ENODEV;
  1424. goto errout;
  1425. }
  1426. u_map = nla_data(tb[IFLA_MAP]);
  1427. k_map.mem_start = (unsigned long) u_map->mem_start;
  1428. k_map.mem_end = (unsigned long) u_map->mem_end;
  1429. k_map.base_addr = (unsigned short) u_map->base_addr;
  1430. k_map.irq = (unsigned char) u_map->irq;
  1431. k_map.dma = (unsigned char) u_map->dma;
  1432. k_map.port = (unsigned char) u_map->port;
  1433. err = ops->ndo_set_config(dev, &k_map);
  1434. if (err < 0)
  1435. goto errout;
  1436. status |= DO_SETLINK_NOTIFY;
  1437. }
  1438. if (tb[IFLA_ADDRESS]) {
  1439. struct sockaddr *sa;
  1440. int len;
  1441. len = sizeof(sa_family_t) + dev->addr_len;
  1442. sa = kmalloc(len, GFP_KERNEL);
  1443. if (!sa) {
  1444. err = -ENOMEM;
  1445. goto errout;
  1446. }
  1447. sa->sa_family = dev->type;
  1448. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1449. dev->addr_len);
  1450. err = dev_set_mac_address(dev, sa);
  1451. kfree(sa);
  1452. if (err)
  1453. goto errout;
  1454. status |= DO_SETLINK_MODIFIED;
  1455. }
  1456. if (tb[IFLA_MTU]) {
  1457. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1458. if (err < 0)
  1459. goto errout;
  1460. status |= DO_SETLINK_MODIFIED;
  1461. }
  1462. if (tb[IFLA_GROUP]) {
  1463. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1464. status |= DO_SETLINK_NOTIFY;
  1465. }
  1466. /*
  1467. * Interface selected by interface index but interface
  1468. * name provided implies that a name change has been
  1469. * requested.
  1470. */
  1471. if (ifm->ifi_index > 0 && ifname[0]) {
  1472. err = dev_change_name(dev, ifname);
  1473. if (err < 0)
  1474. goto errout;
  1475. status |= DO_SETLINK_MODIFIED;
  1476. }
  1477. if (tb[IFLA_IFALIAS]) {
  1478. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1479. nla_len(tb[IFLA_IFALIAS]));
  1480. if (err < 0)
  1481. goto errout;
  1482. status |= DO_SETLINK_NOTIFY;
  1483. }
  1484. if (tb[IFLA_BROADCAST]) {
  1485. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1486. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1487. }
  1488. if (ifm->ifi_flags || ifm->ifi_change) {
  1489. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1490. if (err < 0)
  1491. goto errout;
  1492. }
  1493. if (tb[IFLA_MASTER]) {
  1494. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1495. if (err)
  1496. goto errout;
  1497. status |= DO_SETLINK_MODIFIED;
  1498. }
  1499. if (tb[IFLA_CARRIER]) {
  1500. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1501. if (err)
  1502. goto errout;
  1503. status |= DO_SETLINK_MODIFIED;
  1504. }
  1505. if (tb[IFLA_TXQLEN]) {
  1506. unsigned long value = nla_get_u32(tb[IFLA_TXQLEN]);
  1507. if (dev->tx_queue_len ^ value)
  1508. status |= DO_SETLINK_NOTIFY;
  1509. dev->tx_queue_len = value;
  1510. }
  1511. if (tb[IFLA_OPERSTATE])
  1512. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1513. if (tb[IFLA_LINKMODE]) {
  1514. unsigned char value = nla_get_u8(tb[IFLA_LINKMODE]);
  1515. write_lock_bh(&dev_base_lock);
  1516. if (dev->link_mode ^ value)
  1517. status |= DO_SETLINK_NOTIFY;
  1518. dev->link_mode = value;
  1519. write_unlock_bh(&dev_base_lock);
  1520. }
  1521. if (tb[IFLA_VFINFO_LIST]) {
  1522. struct nlattr *vfinfo[IFLA_VF_MAX + 1];
  1523. struct nlattr *attr;
  1524. int rem;
  1525. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1526. if (nla_type(attr) != IFLA_VF_INFO ||
  1527. nla_len(attr) < NLA_HDRLEN) {
  1528. err = -EINVAL;
  1529. goto errout;
  1530. }
  1531. err = nla_parse_nested(vfinfo, IFLA_VF_MAX, attr,
  1532. ifla_vf_policy);
  1533. if (err < 0)
  1534. goto errout;
  1535. err = do_setvfinfo(dev, vfinfo);
  1536. if (err < 0)
  1537. goto errout;
  1538. status |= DO_SETLINK_NOTIFY;
  1539. }
  1540. }
  1541. err = 0;
  1542. if (tb[IFLA_VF_PORTS]) {
  1543. struct nlattr *port[IFLA_PORT_MAX+1];
  1544. struct nlattr *attr;
  1545. int vf;
  1546. int rem;
  1547. err = -EOPNOTSUPP;
  1548. if (!ops->ndo_set_vf_port)
  1549. goto errout;
  1550. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1551. if (nla_type(attr) != IFLA_VF_PORT ||
  1552. nla_len(attr) < NLA_HDRLEN) {
  1553. err = -EINVAL;
  1554. goto errout;
  1555. }
  1556. err = nla_parse_nested(port, IFLA_PORT_MAX, attr,
  1557. ifla_port_policy);
  1558. if (err < 0)
  1559. goto errout;
  1560. if (!port[IFLA_PORT_VF]) {
  1561. err = -EOPNOTSUPP;
  1562. goto errout;
  1563. }
  1564. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1565. err = ops->ndo_set_vf_port(dev, vf, port);
  1566. if (err < 0)
  1567. goto errout;
  1568. status |= DO_SETLINK_NOTIFY;
  1569. }
  1570. }
  1571. err = 0;
  1572. if (tb[IFLA_PORT_SELF]) {
  1573. struct nlattr *port[IFLA_PORT_MAX+1];
  1574. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1575. tb[IFLA_PORT_SELF], ifla_port_policy);
  1576. if (err < 0)
  1577. goto errout;
  1578. err = -EOPNOTSUPP;
  1579. if (ops->ndo_set_vf_port)
  1580. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1581. if (err < 0)
  1582. goto errout;
  1583. status |= DO_SETLINK_NOTIFY;
  1584. }
  1585. if (tb[IFLA_AF_SPEC]) {
  1586. struct nlattr *af;
  1587. int rem;
  1588. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1589. const struct rtnl_af_ops *af_ops;
  1590. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1591. BUG();
  1592. err = af_ops->set_link_af(dev, af);
  1593. if (err < 0)
  1594. goto errout;
  1595. status |= DO_SETLINK_NOTIFY;
  1596. }
  1597. }
  1598. err = 0;
  1599. if (tb[IFLA_PROTO_DOWN]) {
  1600. err = dev_change_proto_down(dev,
  1601. nla_get_u8(tb[IFLA_PROTO_DOWN]));
  1602. if (err)
  1603. goto errout;
  1604. status |= DO_SETLINK_NOTIFY;
  1605. }
  1606. errout:
  1607. if (status & DO_SETLINK_MODIFIED) {
  1608. if (status & DO_SETLINK_NOTIFY)
  1609. netdev_state_change(dev);
  1610. if (err < 0)
  1611. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1612. dev->name);
  1613. }
  1614. return err;
  1615. }
  1616. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1617. {
  1618. struct net *net = sock_net(skb->sk);
  1619. struct ifinfomsg *ifm;
  1620. struct net_device *dev;
  1621. int err;
  1622. struct nlattr *tb[IFLA_MAX+1];
  1623. char ifname[IFNAMSIZ];
  1624. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1625. if (err < 0)
  1626. goto errout;
  1627. if (tb[IFLA_IFNAME])
  1628. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1629. else
  1630. ifname[0] = '\0';
  1631. err = -EINVAL;
  1632. ifm = nlmsg_data(nlh);
  1633. if (ifm->ifi_index > 0)
  1634. dev = __dev_get_by_index(net, ifm->ifi_index);
  1635. else if (tb[IFLA_IFNAME])
  1636. dev = __dev_get_by_name(net, ifname);
  1637. else
  1638. goto errout;
  1639. if (dev == NULL) {
  1640. err = -ENODEV;
  1641. goto errout;
  1642. }
  1643. err = validate_linkmsg(dev, tb);
  1644. if (err < 0)
  1645. goto errout;
  1646. err = do_setlink(skb, dev, ifm, tb, ifname, 0);
  1647. errout:
  1648. return err;
  1649. }
  1650. static int rtnl_group_dellink(const struct net *net, int group)
  1651. {
  1652. struct net_device *dev, *aux;
  1653. LIST_HEAD(list_kill);
  1654. bool found = false;
  1655. if (!group)
  1656. return -EPERM;
  1657. for_each_netdev(net, dev) {
  1658. if (dev->group == group) {
  1659. const struct rtnl_link_ops *ops;
  1660. found = true;
  1661. ops = dev->rtnl_link_ops;
  1662. if (!ops || !ops->dellink)
  1663. return -EOPNOTSUPP;
  1664. }
  1665. }
  1666. if (!found)
  1667. return -ENODEV;
  1668. for_each_netdev_safe(net, dev, aux) {
  1669. if (dev->group == group) {
  1670. const struct rtnl_link_ops *ops;
  1671. ops = dev->rtnl_link_ops;
  1672. ops->dellink(dev, &list_kill);
  1673. }
  1674. }
  1675. unregister_netdevice_many(&list_kill);
  1676. return 0;
  1677. }
  1678. int rtnl_delete_link(struct net_device *dev)
  1679. {
  1680. const struct rtnl_link_ops *ops;
  1681. LIST_HEAD(list_kill);
  1682. ops = dev->rtnl_link_ops;
  1683. if (!ops || !ops->dellink)
  1684. return -EOPNOTSUPP;
  1685. ops->dellink(dev, &list_kill);
  1686. unregister_netdevice_many(&list_kill);
  1687. return 0;
  1688. }
  1689. EXPORT_SYMBOL_GPL(rtnl_delete_link);
  1690. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1691. {
  1692. struct net *net = sock_net(skb->sk);
  1693. struct net_device *dev;
  1694. struct ifinfomsg *ifm;
  1695. char ifname[IFNAMSIZ];
  1696. struct nlattr *tb[IFLA_MAX+1];
  1697. int err;
  1698. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1699. if (err < 0)
  1700. return err;
  1701. if (tb[IFLA_IFNAME])
  1702. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1703. ifm = nlmsg_data(nlh);
  1704. if (ifm->ifi_index > 0)
  1705. dev = __dev_get_by_index(net, ifm->ifi_index);
  1706. else if (tb[IFLA_IFNAME])
  1707. dev = __dev_get_by_name(net, ifname);
  1708. else if (tb[IFLA_GROUP])
  1709. return rtnl_group_dellink(net, nla_get_u32(tb[IFLA_GROUP]));
  1710. else
  1711. return -EINVAL;
  1712. if (!dev)
  1713. return -ENODEV;
  1714. return rtnl_delete_link(dev);
  1715. }
  1716. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1717. {
  1718. unsigned int old_flags;
  1719. int err;
  1720. old_flags = dev->flags;
  1721. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1722. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1723. if (err < 0)
  1724. return err;
  1725. }
  1726. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1727. __dev_notify_flags(dev, old_flags, ~0U);
  1728. return 0;
  1729. }
  1730. EXPORT_SYMBOL(rtnl_configure_link);
  1731. struct net_device *rtnl_create_link(struct net *net,
  1732. const char *ifname, unsigned char name_assign_type,
  1733. const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1734. {
  1735. int err;
  1736. struct net_device *dev;
  1737. unsigned int num_tx_queues = 1;
  1738. unsigned int num_rx_queues = 1;
  1739. if (tb[IFLA_NUM_TX_QUEUES])
  1740. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1741. else if (ops->get_num_tx_queues)
  1742. num_tx_queues = ops->get_num_tx_queues();
  1743. if (tb[IFLA_NUM_RX_QUEUES])
  1744. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1745. else if (ops->get_num_rx_queues)
  1746. num_rx_queues = ops->get_num_rx_queues();
  1747. err = -ENOMEM;
  1748. dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
  1749. ops->setup, num_tx_queues, num_rx_queues);
  1750. if (!dev)
  1751. goto err;
  1752. dev_net_set(dev, net);
  1753. dev->rtnl_link_ops = ops;
  1754. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1755. if (tb[IFLA_MTU])
  1756. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1757. if (tb[IFLA_ADDRESS]) {
  1758. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1759. nla_len(tb[IFLA_ADDRESS]));
  1760. dev->addr_assign_type = NET_ADDR_SET;
  1761. }
  1762. if (tb[IFLA_BROADCAST])
  1763. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1764. nla_len(tb[IFLA_BROADCAST]));
  1765. if (tb[IFLA_TXQLEN])
  1766. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1767. if (tb[IFLA_OPERSTATE])
  1768. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1769. if (tb[IFLA_LINKMODE])
  1770. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1771. if (tb[IFLA_GROUP])
  1772. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1773. return dev;
  1774. err:
  1775. return ERR_PTR(err);
  1776. }
  1777. EXPORT_SYMBOL(rtnl_create_link);
  1778. static int rtnl_group_changelink(const struct sk_buff *skb,
  1779. struct net *net, int group,
  1780. struct ifinfomsg *ifm,
  1781. struct nlattr **tb)
  1782. {
  1783. struct net_device *dev, *aux;
  1784. int err;
  1785. for_each_netdev_safe(net, dev, aux) {
  1786. if (dev->group == group) {
  1787. err = do_setlink(skb, dev, ifm, tb, NULL, 0);
  1788. if (err < 0)
  1789. return err;
  1790. }
  1791. }
  1792. return 0;
  1793. }
  1794. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1795. {
  1796. struct net *net = sock_net(skb->sk);
  1797. const struct rtnl_link_ops *ops;
  1798. const struct rtnl_link_ops *m_ops = NULL;
  1799. struct net_device *dev;
  1800. struct net_device *master_dev = NULL;
  1801. struct ifinfomsg *ifm;
  1802. char kind[MODULE_NAME_LEN];
  1803. char ifname[IFNAMSIZ];
  1804. struct nlattr *tb[IFLA_MAX+1];
  1805. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1806. unsigned char name_assign_type = NET_NAME_USER;
  1807. int err;
  1808. #ifdef CONFIG_MODULES
  1809. replay:
  1810. #endif
  1811. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1812. if (err < 0)
  1813. return err;
  1814. if (tb[IFLA_IFNAME])
  1815. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1816. else
  1817. ifname[0] = '\0';
  1818. ifm = nlmsg_data(nlh);
  1819. if (ifm->ifi_index > 0)
  1820. dev = __dev_get_by_index(net, ifm->ifi_index);
  1821. else {
  1822. if (ifname[0])
  1823. dev = __dev_get_by_name(net, ifname);
  1824. else
  1825. dev = NULL;
  1826. }
  1827. if (dev) {
  1828. master_dev = netdev_master_upper_dev_get(dev);
  1829. if (master_dev)
  1830. m_ops = master_dev->rtnl_link_ops;
  1831. }
  1832. err = validate_linkmsg(dev, tb);
  1833. if (err < 0)
  1834. return err;
  1835. if (tb[IFLA_LINKINFO]) {
  1836. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1837. tb[IFLA_LINKINFO], ifla_info_policy);
  1838. if (err < 0)
  1839. return err;
  1840. } else
  1841. memset(linkinfo, 0, sizeof(linkinfo));
  1842. if (linkinfo[IFLA_INFO_KIND]) {
  1843. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1844. ops = rtnl_link_ops_get(kind);
  1845. } else {
  1846. kind[0] = '\0';
  1847. ops = NULL;
  1848. }
  1849. if (1) {
  1850. struct nlattr *attr[ops ? ops->maxtype + 1 : 1];
  1851. struct nlattr *slave_attr[m_ops ? m_ops->slave_maxtype + 1 : 1];
  1852. struct nlattr **data = NULL;
  1853. struct nlattr **slave_data = NULL;
  1854. struct net *dest_net, *link_net = NULL;
  1855. if (ops) {
  1856. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1857. err = nla_parse_nested(attr, ops->maxtype,
  1858. linkinfo[IFLA_INFO_DATA],
  1859. ops->policy);
  1860. if (err < 0)
  1861. return err;
  1862. data = attr;
  1863. }
  1864. if (ops->validate) {
  1865. err = ops->validate(tb, data);
  1866. if (err < 0)
  1867. return err;
  1868. }
  1869. }
  1870. if (m_ops) {
  1871. if (m_ops->slave_maxtype &&
  1872. linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1873. err = nla_parse_nested(slave_attr,
  1874. m_ops->slave_maxtype,
  1875. linkinfo[IFLA_INFO_SLAVE_DATA],
  1876. m_ops->slave_policy);
  1877. if (err < 0)
  1878. return err;
  1879. slave_data = slave_attr;
  1880. }
  1881. if (m_ops->slave_validate) {
  1882. err = m_ops->slave_validate(tb, slave_data);
  1883. if (err < 0)
  1884. return err;
  1885. }
  1886. }
  1887. if (dev) {
  1888. int status = 0;
  1889. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1890. return -EEXIST;
  1891. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1892. return -EOPNOTSUPP;
  1893. if (linkinfo[IFLA_INFO_DATA]) {
  1894. if (!ops || ops != dev->rtnl_link_ops ||
  1895. !ops->changelink)
  1896. return -EOPNOTSUPP;
  1897. err = ops->changelink(dev, tb, data);
  1898. if (err < 0)
  1899. return err;
  1900. status |= DO_SETLINK_NOTIFY;
  1901. }
  1902. if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1903. if (!m_ops || !m_ops->slave_changelink)
  1904. return -EOPNOTSUPP;
  1905. err = m_ops->slave_changelink(master_dev, dev,
  1906. tb, slave_data);
  1907. if (err < 0)
  1908. return err;
  1909. status |= DO_SETLINK_NOTIFY;
  1910. }
  1911. return do_setlink(skb, dev, ifm, tb, ifname, status);
  1912. }
  1913. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1914. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1915. return rtnl_group_changelink(skb, net,
  1916. nla_get_u32(tb[IFLA_GROUP]),
  1917. ifm, tb);
  1918. return -ENODEV;
  1919. }
  1920. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1921. return -EOPNOTSUPP;
  1922. if (!ops) {
  1923. #ifdef CONFIG_MODULES
  1924. if (kind[0]) {
  1925. __rtnl_unlock();
  1926. request_module("rtnl-link-%s", kind);
  1927. rtnl_lock();
  1928. ops = rtnl_link_ops_get(kind);
  1929. if (ops)
  1930. goto replay;
  1931. }
  1932. #endif
  1933. return -EOPNOTSUPP;
  1934. }
  1935. if (!ops->setup)
  1936. return -EOPNOTSUPP;
  1937. if (!ifname[0]) {
  1938. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1939. name_assign_type = NET_NAME_ENUM;
  1940. }
  1941. dest_net = rtnl_link_get_net(net, tb);
  1942. if (IS_ERR(dest_net))
  1943. return PTR_ERR(dest_net);
  1944. err = -EPERM;
  1945. if (!netlink_ns_capable(skb, dest_net->user_ns, CAP_NET_ADMIN))
  1946. goto out;
  1947. if (tb[IFLA_LINK_NETNSID]) {
  1948. int id = nla_get_s32(tb[IFLA_LINK_NETNSID]);
  1949. link_net = get_net_ns_by_id(dest_net, id);
  1950. if (!link_net) {
  1951. err = -EINVAL;
  1952. goto out;
  1953. }
  1954. err = -EPERM;
  1955. if (!netlink_ns_capable(skb, link_net->user_ns, CAP_NET_ADMIN))
  1956. goto out;
  1957. }
  1958. dev = rtnl_create_link(link_net ? : dest_net, ifname,
  1959. name_assign_type, ops, tb);
  1960. if (IS_ERR(dev)) {
  1961. err = PTR_ERR(dev);
  1962. goto out;
  1963. }
  1964. dev->ifindex = ifm->ifi_index;
  1965. if (ops->newlink) {
  1966. err = ops->newlink(link_net ? : net, dev, tb, data);
  1967. /* Drivers should call free_netdev() in ->destructor
  1968. * and unregister it on failure after registration
  1969. * so that device could be finally freed in rtnl_unlock.
  1970. */
  1971. if (err < 0) {
  1972. /* If device is not registered at all, free it now */
  1973. if (dev->reg_state == NETREG_UNINITIALIZED)
  1974. free_netdev(dev);
  1975. goto out;
  1976. }
  1977. } else {
  1978. err = register_netdevice(dev);
  1979. if (err < 0) {
  1980. free_netdev(dev);
  1981. goto out;
  1982. }
  1983. }
  1984. err = rtnl_configure_link(dev, ifm);
  1985. if (err < 0)
  1986. goto out_unregister;
  1987. if (link_net) {
  1988. err = dev_change_net_namespace(dev, dest_net, ifname);
  1989. if (err < 0)
  1990. goto out_unregister;
  1991. }
  1992. out:
  1993. if (link_net)
  1994. put_net(link_net);
  1995. put_net(dest_net);
  1996. return err;
  1997. out_unregister:
  1998. if (ops->newlink) {
  1999. LIST_HEAD(list_kill);
  2000. ops->dellink(dev, &list_kill);
  2001. unregister_netdevice_many(&list_kill);
  2002. } else {
  2003. unregister_netdevice(dev);
  2004. }
  2005. goto out;
  2006. }
  2007. }
  2008. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
  2009. {
  2010. struct net *net = sock_net(skb->sk);
  2011. struct ifinfomsg *ifm;
  2012. char ifname[IFNAMSIZ];
  2013. struct nlattr *tb[IFLA_MAX+1];
  2014. struct net_device *dev = NULL;
  2015. struct sk_buff *nskb;
  2016. int err;
  2017. u32 ext_filter_mask = 0;
  2018. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  2019. if (err < 0)
  2020. return err;
  2021. if (tb[IFLA_IFNAME])
  2022. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  2023. if (tb[IFLA_EXT_MASK])
  2024. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  2025. ifm = nlmsg_data(nlh);
  2026. if (ifm->ifi_index > 0)
  2027. dev = __dev_get_by_index(net, ifm->ifi_index);
  2028. else if (tb[IFLA_IFNAME])
  2029. dev = __dev_get_by_name(net, ifname);
  2030. else
  2031. return -EINVAL;
  2032. if (dev == NULL)
  2033. return -ENODEV;
  2034. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  2035. if (nskb == NULL)
  2036. return -ENOBUFS;
  2037. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  2038. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  2039. if (err < 0) {
  2040. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  2041. WARN_ON(err == -EMSGSIZE);
  2042. kfree_skb(nskb);
  2043. } else
  2044. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  2045. return err;
  2046. }
  2047. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  2048. {
  2049. struct net *net = sock_net(skb->sk);
  2050. struct net_device *dev;
  2051. struct nlattr *tb[IFLA_MAX+1];
  2052. u32 ext_filter_mask = 0;
  2053. u16 min_ifinfo_dump_size = 0;
  2054. int hdrlen;
  2055. /* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
  2056. hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
  2057. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  2058. if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  2059. if (tb[IFLA_EXT_MASK])
  2060. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  2061. }
  2062. if (!ext_filter_mask)
  2063. return NLMSG_GOODSIZE;
  2064. /*
  2065. * traverse the list of net devices and compute the minimum
  2066. * buffer size based upon the filter mask.
  2067. */
  2068. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  2069. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  2070. if_nlmsg_size(dev,
  2071. ext_filter_mask));
  2072. }
  2073. return min_ifinfo_dump_size;
  2074. }
  2075. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  2076. {
  2077. int idx;
  2078. int s_idx = cb->family;
  2079. if (s_idx == 0)
  2080. s_idx = 1;
  2081. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  2082. int type = cb->nlh->nlmsg_type-RTM_BASE;
  2083. if (idx < s_idx || idx == PF_PACKET)
  2084. continue;
  2085. if (rtnl_msg_handlers[idx] == NULL ||
  2086. rtnl_msg_handlers[idx][type].dumpit == NULL)
  2087. continue;
  2088. if (idx > s_idx) {
  2089. memset(&cb->args[0], 0, sizeof(cb->args));
  2090. cb->prev_seq = 0;
  2091. cb->seq = 0;
  2092. }
  2093. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  2094. break;
  2095. }
  2096. cb->family = idx;
  2097. return skb->len;
  2098. }
  2099. struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev,
  2100. unsigned int change, gfp_t flags)
  2101. {
  2102. struct net *net = dev_net(dev);
  2103. struct sk_buff *skb;
  2104. int err = -ENOBUFS;
  2105. size_t if_info_size;
  2106. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
  2107. if (skb == NULL)
  2108. goto errout;
  2109. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  2110. if (err < 0) {
  2111. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  2112. WARN_ON(err == -EMSGSIZE);
  2113. kfree_skb(skb);
  2114. goto errout;
  2115. }
  2116. return skb;
  2117. errout:
  2118. if (err < 0)
  2119. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2120. return NULL;
  2121. }
  2122. void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags)
  2123. {
  2124. struct net *net = dev_net(dev);
  2125. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
  2126. }
  2127. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
  2128. gfp_t flags)
  2129. {
  2130. struct sk_buff *skb;
  2131. if (dev->reg_state != NETREG_REGISTERED)
  2132. return;
  2133. skb = rtmsg_ifinfo_build_skb(type, dev, change, flags);
  2134. if (skb)
  2135. rtmsg_ifinfo_send(skb, dev, flags);
  2136. }
  2137. EXPORT_SYMBOL(rtmsg_ifinfo);
  2138. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  2139. struct net_device *dev,
  2140. u8 *addr, u16 vid, u32 pid, u32 seq,
  2141. int type, unsigned int flags,
  2142. int nlflags)
  2143. {
  2144. struct nlmsghdr *nlh;
  2145. struct ndmsg *ndm;
  2146. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
  2147. if (!nlh)
  2148. return -EMSGSIZE;
  2149. ndm = nlmsg_data(nlh);
  2150. ndm->ndm_family = AF_BRIDGE;
  2151. ndm->ndm_pad1 = 0;
  2152. ndm->ndm_pad2 = 0;
  2153. ndm->ndm_flags = flags;
  2154. ndm->ndm_type = 0;
  2155. ndm->ndm_ifindex = dev->ifindex;
  2156. ndm->ndm_state = NUD_PERMANENT;
  2157. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  2158. goto nla_put_failure;
  2159. if (vid)
  2160. if (nla_put(skb, NDA_VLAN, sizeof(u16), &vid))
  2161. goto nla_put_failure;
  2162. nlmsg_end(skb, nlh);
  2163. return 0;
  2164. nla_put_failure:
  2165. nlmsg_cancel(skb, nlh);
  2166. return -EMSGSIZE;
  2167. }
  2168. static inline size_t rtnl_fdb_nlmsg_size(void)
  2169. {
  2170. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  2171. }
  2172. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, u16 vid, int type)
  2173. {
  2174. struct net *net = dev_net(dev);
  2175. struct sk_buff *skb;
  2176. int err = -ENOBUFS;
  2177. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  2178. if (!skb)
  2179. goto errout;
  2180. err = nlmsg_populate_fdb_fill(skb, dev, addr, vid,
  2181. 0, 0, type, NTF_SELF, 0);
  2182. if (err < 0) {
  2183. kfree_skb(skb);
  2184. goto errout;
  2185. }
  2186. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  2187. return;
  2188. errout:
  2189. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  2190. }
  2191. /**
  2192. * ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
  2193. */
  2194. int ndo_dflt_fdb_add(struct ndmsg *ndm,
  2195. struct nlattr *tb[],
  2196. struct net_device *dev,
  2197. const unsigned char *addr, u16 vid,
  2198. u16 flags)
  2199. {
  2200. int err = -EINVAL;
  2201. /* If aging addresses are supported device will need to
  2202. * implement its own handler for this.
  2203. */
  2204. if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
  2205. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2206. return err;
  2207. }
  2208. if (vid) {
  2209. pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
  2210. return err;
  2211. }
  2212. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2213. err = dev_uc_add_excl(dev, addr);
  2214. else if (is_multicast_ether_addr(addr))
  2215. err = dev_mc_add_excl(dev, addr);
  2216. /* Only return duplicate errors if NLM_F_EXCL is set */
  2217. if (err == -EEXIST && !(flags & NLM_F_EXCL))
  2218. err = 0;
  2219. return err;
  2220. }
  2221. EXPORT_SYMBOL(ndo_dflt_fdb_add);
  2222. static int fdb_vid_parse(struct nlattr *vlan_attr, u16 *p_vid)
  2223. {
  2224. u16 vid = 0;
  2225. if (vlan_attr) {
  2226. if (nla_len(vlan_attr) != sizeof(u16)) {
  2227. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan\n");
  2228. return -EINVAL;
  2229. }
  2230. vid = nla_get_u16(vlan_attr);
  2231. if (!vid || vid >= VLAN_VID_MASK) {
  2232. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan id %d\n",
  2233. vid);
  2234. return -EINVAL;
  2235. }
  2236. }
  2237. *p_vid = vid;
  2238. return 0;
  2239. }
  2240. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
  2241. {
  2242. struct net *net = sock_net(skb->sk);
  2243. struct ndmsg *ndm;
  2244. struct nlattr *tb[NDA_MAX+1];
  2245. struct net_device *dev;
  2246. u8 *addr;
  2247. u16 vid;
  2248. int err;
  2249. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2250. if (err < 0)
  2251. return err;
  2252. ndm = nlmsg_data(nlh);
  2253. if (ndm->ndm_ifindex == 0) {
  2254. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  2255. return -EINVAL;
  2256. }
  2257. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2258. if (dev == NULL) {
  2259. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  2260. return -ENODEV;
  2261. }
  2262. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2263. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  2264. return -EINVAL;
  2265. }
  2266. addr = nla_data(tb[NDA_LLADDR]);
  2267. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2268. if (err)
  2269. return err;
  2270. err = -EOPNOTSUPP;
  2271. /* Support fdb on master device the net/bridge default case */
  2272. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2273. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2274. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2275. const struct net_device_ops *ops = br_dev->netdev_ops;
  2276. err = ops->ndo_fdb_add(ndm, tb, dev, addr, vid,
  2277. nlh->nlmsg_flags);
  2278. if (err)
  2279. goto out;
  2280. else
  2281. ndm->ndm_flags &= ~NTF_MASTER;
  2282. }
  2283. /* Embedded bridge, macvlan, and any other device support */
  2284. if ((ndm->ndm_flags & NTF_SELF)) {
  2285. if (dev->netdev_ops->ndo_fdb_add)
  2286. err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
  2287. vid,
  2288. nlh->nlmsg_flags);
  2289. else
  2290. err = ndo_dflt_fdb_add(ndm, tb, dev, addr, vid,
  2291. nlh->nlmsg_flags);
  2292. if (!err) {
  2293. rtnl_fdb_notify(dev, addr, vid, RTM_NEWNEIGH);
  2294. ndm->ndm_flags &= ~NTF_SELF;
  2295. }
  2296. }
  2297. out:
  2298. return err;
  2299. }
  2300. /**
  2301. * ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
  2302. */
  2303. int ndo_dflt_fdb_del(struct ndmsg *ndm,
  2304. struct nlattr *tb[],
  2305. struct net_device *dev,
  2306. const unsigned char *addr, u16 vid)
  2307. {
  2308. int err = -EINVAL;
  2309. /* If aging addresses are supported device will need to
  2310. * implement its own handler for this.
  2311. */
  2312. if (!(ndm->ndm_state & NUD_PERMANENT)) {
  2313. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2314. return err;
  2315. }
  2316. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2317. err = dev_uc_del(dev, addr);
  2318. else if (is_multicast_ether_addr(addr))
  2319. err = dev_mc_del(dev, addr);
  2320. return err;
  2321. }
  2322. EXPORT_SYMBOL(ndo_dflt_fdb_del);
  2323. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
  2324. {
  2325. struct net *net = sock_net(skb->sk);
  2326. struct ndmsg *ndm;
  2327. struct nlattr *tb[NDA_MAX+1];
  2328. struct net_device *dev;
  2329. int err = -EINVAL;
  2330. __u8 *addr;
  2331. u16 vid;
  2332. if (!netlink_capable(skb, CAP_NET_ADMIN))
  2333. return -EPERM;
  2334. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2335. if (err < 0)
  2336. return err;
  2337. ndm = nlmsg_data(nlh);
  2338. if (ndm->ndm_ifindex == 0) {
  2339. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  2340. return -EINVAL;
  2341. }
  2342. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2343. if (dev == NULL) {
  2344. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  2345. return -ENODEV;
  2346. }
  2347. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2348. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
  2349. return -EINVAL;
  2350. }
  2351. addr = nla_data(tb[NDA_LLADDR]);
  2352. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2353. if (err)
  2354. return err;
  2355. err = -EOPNOTSUPP;
  2356. /* Support fdb on master device the net/bridge default case */
  2357. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2358. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2359. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2360. const struct net_device_ops *ops = br_dev->netdev_ops;
  2361. if (ops->ndo_fdb_del)
  2362. err = ops->ndo_fdb_del(ndm, tb, dev, addr, vid);
  2363. if (err)
  2364. goto out;
  2365. else
  2366. ndm->ndm_flags &= ~NTF_MASTER;
  2367. }
  2368. /* Embedded bridge, macvlan, and any other device support */
  2369. if (ndm->ndm_flags & NTF_SELF) {
  2370. if (dev->netdev_ops->ndo_fdb_del)
  2371. err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr,
  2372. vid);
  2373. else
  2374. err = ndo_dflt_fdb_del(ndm, tb, dev, addr, vid);
  2375. if (!err) {
  2376. rtnl_fdb_notify(dev, addr, vid, RTM_DELNEIGH);
  2377. ndm->ndm_flags &= ~NTF_SELF;
  2378. }
  2379. }
  2380. out:
  2381. return err;
  2382. }
  2383. static int nlmsg_populate_fdb(struct sk_buff *skb,
  2384. struct netlink_callback *cb,
  2385. struct net_device *dev,
  2386. int *idx,
  2387. struct netdev_hw_addr_list *list)
  2388. {
  2389. struct netdev_hw_addr *ha;
  2390. int err;
  2391. u32 portid, seq;
  2392. portid = NETLINK_CB(cb->skb).portid;
  2393. seq = cb->nlh->nlmsg_seq;
  2394. list_for_each_entry(ha, &list->list, list) {
  2395. if (*idx < cb->args[0])
  2396. goto skip;
  2397. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr, 0,
  2398. portid, seq,
  2399. RTM_NEWNEIGH, NTF_SELF,
  2400. NLM_F_MULTI);
  2401. if (err < 0)
  2402. return err;
  2403. skip:
  2404. *idx += 1;
  2405. }
  2406. return 0;
  2407. }
  2408. /**
  2409. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  2410. * @nlh: netlink message header
  2411. * @dev: netdevice
  2412. *
  2413. * Default netdevice operation to dump the existing unicast address list.
  2414. * Returns number of addresses from list put in skb.
  2415. */
  2416. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  2417. struct netlink_callback *cb,
  2418. struct net_device *dev,
  2419. struct net_device *filter_dev,
  2420. int idx)
  2421. {
  2422. int err;
  2423. netif_addr_lock_bh(dev);
  2424. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  2425. if (err)
  2426. goto out;
  2427. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  2428. out:
  2429. netif_addr_unlock_bh(dev);
  2430. return idx;
  2431. }
  2432. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  2433. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  2434. {
  2435. struct net_device *dev;
  2436. struct nlattr *tb[IFLA_MAX+1];
  2437. struct net_device *br_dev = NULL;
  2438. const struct net_device_ops *ops = NULL;
  2439. const struct net_device_ops *cops = NULL;
  2440. struct ifinfomsg *ifm = nlmsg_data(cb->nlh);
  2441. struct net *net = sock_net(skb->sk);
  2442. int brport_idx = 0;
  2443. int br_idx = 0;
  2444. int idx = 0;
  2445. if (nlmsg_parse(cb->nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
  2446. ifla_policy) == 0) {
  2447. if (tb[IFLA_MASTER])
  2448. br_idx = nla_get_u32(tb[IFLA_MASTER]);
  2449. }
  2450. brport_idx = ifm->ifi_index;
  2451. if (br_idx) {
  2452. br_dev = __dev_get_by_index(net, br_idx);
  2453. if (!br_dev)
  2454. return -ENODEV;
  2455. ops = br_dev->netdev_ops;
  2456. }
  2457. for_each_netdev(net, dev) {
  2458. if (brport_idx && (dev->ifindex != brport_idx))
  2459. continue;
  2460. if (!br_idx) { /* user did not specify a specific bridge */
  2461. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2462. br_dev = netdev_master_upper_dev_get(dev);
  2463. cops = br_dev->netdev_ops;
  2464. }
  2465. } else {
  2466. if (dev != br_dev &&
  2467. !(dev->priv_flags & IFF_BRIDGE_PORT))
  2468. continue;
  2469. if (br_dev != netdev_master_upper_dev_get(dev) &&
  2470. !(dev->priv_flags & IFF_EBRIDGE))
  2471. continue;
  2472. cops = ops;
  2473. }
  2474. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2475. if (cops && cops->ndo_fdb_dump)
  2476. idx = cops->ndo_fdb_dump(skb, cb, br_dev, dev,
  2477. idx);
  2478. }
  2479. if (dev->netdev_ops->ndo_fdb_dump)
  2480. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, dev, NULL,
  2481. idx);
  2482. else
  2483. idx = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
  2484. cops = NULL;
  2485. }
  2486. cb->args[0] = idx;
  2487. return skb->len;
  2488. }
  2489. static int brport_nla_put_flag(struct sk_buff *skb, u32 flags, u32 mask,
  2490. unsigned int attrnum, unsigned int flag)
  2491. {
  2492. if (mask & flag)
  2493. return nla_put_u8(skb, attrnum, !!(flags & flag));
  2494. return 0;
  2495. }
  2496. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  2497. struct net_device *dev, u16 mode,
  2498. u32 flags, u32 mask, int nlflags,
  2499. u32 filter_mask,
  2500. int (*vlan_fill)(struct sk_buff *skb,
  2501. struct net_device *dev,
  2502. u32 filter_mask))
  2503. {
  2504. struct nlmsghdr *nlh;
  2505. struct ifinfomsg *ifm;
  2506. struct nlattr *br_afspec;
  2507. struct nlattr *protinfo;
  2508. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  2509. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2510. int err = 0;
  2511. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), nlflags);
  2512. if (nlh == NULL)
  2513. return -EMSGSIZE;
  2514. ifm = nlmsg_data(nlh);
  2515. ifm->ifi_family = AF_BRIDGE;
  2516. ifm->__ifi_pad = 0;
  2517. ifm->ifi_type = dev->type;
  2518. ifm->ifi_index = dev->ifindex;
  2519. ifm->ifi_flags = dev_get_flags(dev);
  2520. ifm->ifi_change = 0;
  2521. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  2522. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  2523. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  2524. (br_dev &&
  2525. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  2526. (dev->addr_len &&
  2527. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  2528. (dev->ifindex != dev_get_iflink(dev) &&
  2529. nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))))
  2530. goto nla_put_failure;
  2531. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  2532. if (!br_afspec)
  2533. goto nla_put_failure;
  2534. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF)) {
  2535. nla_nest_cancel(skb, br_afspec);
  2536. goto nla_put_failure;
  2537. }
  2538. if (mode != BRIDGE_MODE_UNDEF) {
  2539. if (nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  2540. nla_nest_cancel(skb, br_afspec);
  2541. goto nla_put_failure;
  2542. }
  2543. }
  2544. if (vlan_fill) {
  2545. err = vlan_fill(skb, dev, filter_mask);
  2546. if (err) {
  2547. nla_nest_cancel(skb, br_afspec);
  2548. goto nla_put_failure;
  2549. }
  2550. }
  2551. nla_nest_end(skb, br_afspec);
  2552. protinfo = nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
  2553. if (!protinfo)
  2554. goto nla_put_failure;
  2555. if (brport_nla_put_flag(skb, flags, mask,
  2556. IFLA_BRPORT_MODE, BR_HAIRPIN_MODE) ||
  2557. brport_nla_put_flag(skb, flags, mask,
  2558. IFLA_BRPORT_GUARD, BR_BPDU_GUARD) ||
  2559. brport_nla_put_flag(skb, flags, mask,
  2560. IFLA_BRPORT_FAST_LEAVE,
  2561. BR_MULTICAST_FAST_LEAVE) ||
  2562. brport_nla_put_flag(skb, flags, mask,
  2563. IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK) ||
  2564. brport_nla_put_flag(skb, flags, mask,
  2565. IFLA_BRPORT_LEARNING, BR_LEARNING) ||
  2566. brport_nla_put_flag(skb, flags, mask,
  2567. IFLA_BRPORT_LEARNING_SYNC, BR_LEARNING_SYNC) ||
  2568. brport_nla_put_flag(skb, flags, mask,
  2569. IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD) ||
  2570. brport_nla_put_flag(skb, flags, mask,
  2571. IFLA_BRPORT_PROXYARP, BR_PROXYARP)) {
  2572. nla_nest_cancel(skb, protinfo);
  2573. goto nla_put_failure;
  2574. }
  2575. nla_nest_end(skb, protinfo);
  2576. nlmsg_end(skb, nlh);
  2577. return 0;
  2578. nla_put_failure:
  2579. nlmsg_cancel(skb, nlh);
  2580. return err ? err : -EMSGSIZE;
  2581. }
  2582. EXPORT_SYMBOL_GPL(ndo_dflt_bridge_getlink);
  2583. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  2584. {
  2585. struct net *net = sock_net(skb->sk);
  2586. struct net_device *dev;
  2587. int idx = 0;
  2588. u32 portid = NETLINK_CB(cb->skb).portid;
  2589. u32 seq = cb->nlh->nlmsg_seq;
  2590. u32 filter_mask = 0;
  2591. int err;
  2592. if (nlmsg_len(cb->nlh) > sizeof(struct ifinfomsg)) {
  2593. struct nlattr *extfilt;
  2594. extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct ifinfomsg),
  2595. IFLA_EXT_MASK);
  2596. if (extfilt) {
  2597. if (nla_len(extfilt) < sizeof(filter_mask))
  2598. return -EINVAL;
  2599. filter_mask = nla_get_u32(extfilt);
  2600. }
  2601. }
  2602. rcu_read_lock();
  2603. for_each_netdev_rcu(net, dev) {
  2604. const struct net_device_ops *ops = dev->netdev_ops;
  2605. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2606. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2607. if (idx >= cb->args[0]) {
  2608. err = br_dev->netdev_ops->ndo_bridge_getlink(
  2609. skb, portid, seq, dev,
  2610. filter_mask, NLM_F_MULTI);
  2611. if (err < 0 && err != -EOPNOTSUPP)
  2612. break;
  2613. }
  2614. idx++;
  2615. }
  2616. if (ops->ndo_bridge_getlink) {
  2617. if (idx >= cb->args[0]) {
  2618. err = ops->ndo_bridge_getlink(skb, portid,
  2619. seq, dev,
  2620. filter_mask,
  2621. NLM_F_MULTI);
  2622. if (err < 0 && err != -EOPNOTSUPP)
  2623. break;
  2624. }
  2625. idx++;
  2626. }
  2627. }
  2628. rcu_read_unlock();
  2629. cb->args[0] = idx;
  2630. return skb->len;
  2631. }
  2632. static inline size_t bridge_nlmsg_size(void)
  2633. {
  2634. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  2635. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  2636. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  2637. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  2638. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2639. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2640. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2641. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2642. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2643. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2644. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2645. }
  2646. static int rtnl_bridge_notify(struct net_device *dev)
  2647. {
  2648. struct net *net = dev_net(dev);
  2649. struct sk_buff *skb;
  2650. int err = -EOPNOTSUPP;
  2651. if (!dev->netdev_ops->ndo_bridge_getlink)
  2652. return 0;
  2653. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2654. if (!skb) {
  2655. err = -ENOMEM;
  2656. goto errout;
  2657. }
  2658. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0, 0);
  2659. if (err < 0)
  2660. goto errout;
  2661. if (!skb->len)
  2662. goto errout;
  2663. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2664. return 0;
  2665. errout:
  2666. WARN_ON(err == -EMSGSIZE);
  2667. kfree_skb(skb);
  2668. if (err)
  2669. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2670. return err;
  2671. }
  2672. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2673. {
  2674. struct net *net = sock_net(skb->sk);
  2675. struct ifinfomsg *ifm;
  2676. struct net_device *dev;
  2677. struct nlattr *br_spec, *attr = NULL;
  2678. int rem, err = -EOPNOTSUPP;
  2679. u16 flags = 0;
  2680. bool have_flags = false;
  2681. if (nlmsg_len(nlh) < sizeof(*ifm))
  2682. return -EINVAL;
  2683. ifm = nlmsg_data(nlh);
  2684. if (ifm->ifi_family != AF_BRIDGE)
  2685. return -EPFNOSUPPORT;
  2686. dev = __dev_get_by_index(net, ifm->ifi_index);
  2687. if (!dev) {
  2688. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2689. return -ENODEV;
  2690. }
  2691. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2692. if (br_spec) {
  2693. nla_for_each_nested(attr, br_spec, rem) {
  2694. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2695. if (nla_len(attr) < sizeof(flags))
  2696. return -EINVAL;
  2697. have_flags = true;
  2698. flags = nla_get_u16(attr);
  2699. break;
  2700. }
  2701. }
  2702. }
  2703. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2704. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2705. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2706. err = -EOPNOTSUPP;
  2707. goto out;
  2708. }
  2709. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh, flags);
  2710. if (err)
  2711. goto out;
  2712. flags &= ~BRIDGE_FLAGS_MASTER;
  2713. }
  2714. if ((flags & BRIDGE_FLAGS_SELF)) {
  2715. if (!dev->netdev_ops->ndo_bridge_setlink)
  2716. err = -EOPNOTSUPP;
  2717. else
  2718. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh,
  2719. flags);
  2720. if (!err) {
  2721. flags &= ~BRIDGE_FLAGS_SELF;
  2722. /* Generate event to notify upper layer of bridge
  2723. * change
  2724. */
  2725. err = rtnl_bridge_notify(dev);
  2726. }
  2727. }
  2728. if (have_flags)
  2729. memcpy(nla_data(attr), &flags, sizeof(flags));
  2730. out:
  2731. return err;
  2732. }
  2733. static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2734. {
  2735. struct net *net = sock_net(skb->sk);
  2736. struct ifinfomsg *ifm;
  2737. struct net_device *dev;
  2738. struct nlattr *br_spec, *attr = NULL;
  2739. int rem, err = -EOPNOTSUPP;
  2740. u16 flags = 0;
  2741. bool have_flags = false;
  2742. if (nlmsg_len(nlh) < sizeof(*ifm))
  2743. return -EINVAL;
  2744. ifm = nlmsg_data(nlh);
  2745. if (ifm->ifi_family != AF_BRIDGE)
  2746. return -EPFNOSUPPORT;
  2747. dev = __dev_get_by_index(net, ifm->ifi_index);
  2748. if (!dev) {
  2749. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2750. return -ENODEV;
  2751. }
  2752. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2753. if (br_spec) {
  2754. nla_for_each_nested(attr, br_spec, rem) {
  2755. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2756. if (nla_len(attr) < sizeof(flags))
  2757. return -EINVAL;
  2758. have_flags = true;
  2759. flags = nla_get_u16(attr);
  2760. break;
  2761. }
  2762. }
  2763. }
  2764. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2765. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2766. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
  2767. err = -EOPNOTSUPP;
  2768. goto out;
  2769. }
  2770. err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh, flags);
  2771. if (err)
  2772. goto out;
  2773. flags &= ~BRIDGE_FLAGS_MASTER;
  2774. }
  2775. if ((flags & BRIDGE_FLAGS_SELF)) {
  2776. if (!dev->netdev_ops->ndo_bridge_dellink)
  2777. err = -EOPNOTSUPP;
  2778. else
  2779. err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh,
  2780. flags);
  2781. if (!err) {
  2782. flags &= ~BRIDGE_FLAGS_SELF;
  2783. /* Generate event to notify upper layer of bridge
  2784. * change
  2785. */
  2786. err = rtnl_bridge_notify(dev);
  2787. }
  2788. }
  2789. if (have_flags)
  2790. memcpy(nla_data(attr), &flags, sizeof(flags));
  2791. out:
  2792. return err;
  2793. }
  2794. /* Process one rtnetlink message. */
  2795. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  2796. {
  2797. struct net *net = sock_net(skb->sk);
  2798. rtnl_doit_func doit;
  2799. int sz_idx, kind;
  2800. int family;
  2801. int type;
  2802. int err;
  2803. type = nlh->nlmsg_type;
  2804. if (type > RTM_MAX)
  2805. return -EOPNOTSUPP;
  2806. type -= RTM_BASE;
  2807. /* All the messages must have at least 1 byte length */
  2808. if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
  2809. return 0;
  2810. family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
  2811. sz_idx = type>>2;
  2812. kind = type&3;
  2813. if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
  2814. return -EPERM;
  2815. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  2816. struct sock *rtnl;
  2817. rtnl_dumpit_func dumpit;
  2818. rtnl_calcit_func calcit;
  2819. u16 min_dump_alloc = 0;
  2820. dumpit = rtnl_get_dumpit(family, type);
  2821. if (dumpit == NULL)
  2822. return -EOPNOTSUPP;
  2823. calcit = rtnl_get_calcit(family, type);
  2824. if (calcit)
  2825. min_dump_alloc = calcit(skb, nlh);
  2826. __rtnl_unlock();
  2827. rtnl = net->rtnl;
  2828. {
  2829. struct netlink_dump_control c = {
  2830. .dump = dumpit,
  2831. .min_dump_alloc = min_dump_alloc,
  2832. };
  2833. err = netlink_dump_start(rtnl, skb, nlh, &c);
  2834. }
  2835. rtnl_lock();
  2836. return err;
  2837. }
  2838. doit = rtnl_get_doit(family, type);
  2839. if (doit == NULL)
  2840. return -EOPNOTSUPP;
  2841. return doit(skb, nlh);
  2842. }
  2843. static void rtnetlink_rcv(struct sk_buff *skb)
  2844. {
  2845. rtnl_lock();
  2846. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  2847. rtnl_unlock();
  2848. }
  2849. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  2850. {
  2851. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  2852. switch (event) {
  2853. case NETDEV_UP:
  2854. case NETDEV_DOWN:
  2855. case NETDEV_PRE_UP:
  2856. case NETDEV_POST_INIT:
  2857. case NETDEV_REGISTER:
  2858. case NETDEV_CHANGE:
  2859. case NETDEV_PRE_TYPE_CHANGE:
  2860. case NETDEV_GOING_DOWN:
  2861. case NETDEV_UNREGISTER:
  2862. case NETDEV_UNREGISTER_FINAL:
  2863. case NETDEV_RELEASE:
  2864. case NETDEV_JOIN:
  2865. case NETDEV_BONDING_INFO:
  2866. break;
  2867. default:
  2868. rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
  2869. break;
  2870. }
  2871. return NOTIFY_DONE;
  2872. }
  2873. static struct notifier_block rtnetlink_dev_notifier = {
  2874. .notifier_call = rtnetlink_event,
  2875. };
  2876. static int __net_init rtnetlink_net_init(struct net *net)
  2877. {
  2878. struct sock *sk;
  2879. struct netlink_kernel_cfg cfg = {
  2880. .groups = RTNLGRP_MAX,
  2881. .input = rtnetlink_rcv,
  2882. .cb_mutex = &rtnl_mutex,
  2883. .flags = NL_CFG_F_NONROOT_RECV,
  2884. };
  2885. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  2886. if (!sk)
  2887. return -ENOMEM;
  2888. net->rtnl = sk;
  2889. return 0;
  2890. }
  2891. static void __net_exit rtnetlink_net_exit(struct net *net)
  2892. {
  2893. netlink_kernel_release(net->rtnl);
  2894. net->rtnl = NULL;
  2895. }
  2896. static struct pernet_operations rtnetlink_net_ops = {
  2897. .init = rtnetlink_net_init,
  2898. .exit = rtnetlink_net_exit,
  2899. };
  2900. void __init rtnetlink_init(void)
  2901. {
  2902. if (register_pernet_subsys(&rtnetlink_net_ops))
  2903. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2904. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2905. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2906. rtnl_dump_ifinfo, rtnl_calcit);
  2907. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2908. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2909. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2910. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2911. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2912. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2913. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2914. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2915. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  2916. rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
  2917. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  2918. }