flow_dissector.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894
  1. #include <linux/kernel.h>
  2. #include <linux/skbuff.h>
  3. #include <linux/export.h>
  4. #include <linux/ip.h>
  5. #include <linux/ipv6.h>
  6. #include <linux/if_vlan.h>
  7. #include <net/ip.h>
  8. #include <net/ipv6.h>
  9. #include <linux/igmp.h>
  10. #include <linux/icmp.h>
  11. #include <linux/sctp.h>
  12. #include <linux/dccp.h>
  13. #include <linux/if_tunnel.h>
  14. #include <linux/if_pppox.h>
  15. #include <linux/ppp_defs.h>
  16. #include <linux/stddef.h>
  17. #include <linux/if_ether.h>
  18. #include <linux/mpls.h>
  19. #include <net/flow_dissector.h>
  20. #include <scsi/fc/fc_fcoe.h>
  21. static bool dissector_uses_key(const struct flow_dissector *flow_dissector,
  22. enum flow_dissector_key_id key_id)
  23. {
  24. return flow_dissector->used_keys & (1 << key_id);
  25. }
  26. static void dissector_set_key(struct flow_dissector *flow_dissector,
  27. enum flow_dissector_key_id key_id)
  28. {
  29. flow_dissector->used_keys |= (1 << key_id);
  30. }
  31. static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
  32. enum flow_dissector_key_id key_id,
  33. void *target_container)
  34. {
  35. return ((char *) target_container) + flow_dissector->offset[key_id];
  36. }
  37. void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
  38. const struct flow_dissector_key *key,
  39. unsigned int key_count)
  40. {
  41. unsigned int i;
  42. memset(flow_dissector, 0, sizeof(*flow_dissector));
  43. for (i = 0; i < key_count; i++, key++) {
  44. /* User should make sure that every key target offset is withing
  45. * boundaries of unsigned short.
  46. */
  47. BUG_ON(key->offset > USHRT_MAX);
  48. BUG_ON(dissector_uses_key(flow_dissector,
  49. key->key_id));
  50. dissector_set_key(flow_dissector, key->key_id);
  51. flow_dissector->offset[key->key_id] = key->offset;
  52. }
  53. /* Ensure that the dissector always includes control and basic key.
  54. * That way we are able to avoid handling lack of these in fast path.
  55. */
  56. BUG_ON(!dissector_uses_key(flow_dissector,
  57. FLOW_DISSECTOR_KEY_CONTROL));
  58. BUG_ON(!dissector_uses_key(flow_dissector,
  59. FLOW_DISSECTOR_KEY_BASIC));
  60. }
  61. EXPORT_SYMBOL(skb_flow_dissector_init);
  62. /**
  63. * __skb_flow_get_ports - extract the upper layer ports and return them
  64. * @skb: sk_buff to extract the ports from
  65. * @thoff: transport header offset
  66. * @ip_proto: protocol for which to get port offset
  67. * @data: raw buffer pointer to the packet, if NULL use skb->data
  68. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  69. *
  70. * The function will try to retrieve the ports at offset thoff + poff where poff
  71. * is the protocol port offset returned from proto_ports_offset
  72. */
  73. __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
  74. void *data, int hlen)
  75. {
  76. int poff = proto_ports_offset(ip_proto);
  77. if (!data) {
  78. data = skb->data;
  79. hlen = skb_headlen(skb);
  80. }
  81. if (poff >= 0) {
  82. __be32 *ports, _ports;
  83. ports = __skb_header_pointer(skb, thoff + poff,
  84. sizeof(_ports), data, hlen, &_ports);
  85. if (ports)
  86. return *ports;
  87. }
  88. return 0;
  89. }
  90. EXPORT_SYMBOL(__skb_flow_get_ports);
  91. /**
  92. * __skb_flow_dissect - extract the flow_keys struct and return it
  93. * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
  94. * @flow_dissector: list of keys to dissect
  95. * @target_container: target structure to put dissected values into
  96. * @data: raw buffer pointer to the packet, if NULL use skb->data
  97. * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
  98. * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
  99. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  100. *
  101. * The function will try to retrieve individual keys into target specified
  102. * by flow_dissector from either the skbuff or a raw buffer specified by the
  103. * rest parameters.
  104. *
  105. * Caller must take care of zeroing target container memory.
  106. */
  107. bool __skb_flow_dissect(const struct sk_buff *skb,
  108. struct flow_dissector *flow_dissector,
  109. void *target_container,
  110. void *data, __be16 proto, int nhoff, int hlen,
  111. unsigned int flags)
  112. {
  113. struct flow_dissector_key_control *key_control;
  114. struct flow_dissector_key_basic *key_basic;
  115. struct flow_dissector_key_addrs *key_addrs;
  116. struct flow_dissector_key_ports *key_ports;
  117. struct flow_dissector_key_tags *key_tags;
  118. struct flow_dissector_key_keyid *key_keyid;
  119. u8 ip_proto = 0;
  120. bool ret = false;
  121. if (!data) {
  122. data = skb->data;
  123. proto = skb->protocol;
  124. nhoff = skb_network_offset(skb);
  125. hlen = skb_headlen(skb);
  126. }
  127. /* It is ensured by skb_flow_dissector_init() that control key will
  128. * be always present.
  129. */
  130. key_control = skb_flow_dissector_target(flow_dissector,
  131. FLOW_DISSECTOR_KEY_CONTROL,
  132. target_container);
  133. /* It is ensured by skb_flow_dissector_init() that basic key will
  134. * be always present.
  135. */
  136. key_basic = skb_flow_dissector_target(flow_dissector,
  137. FLOW_DISSECTOR_KEY_BASIC,
  138. target_container);
  139. if (dissector_uses_key(flow_dissector,
  140. FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
  141. struct ethhdr *eth = eth_hdr(skb);
  142. struct flow_dissector_key_eth_addrs *key_eth_addrs;
  143. key_eth_addrs = skb_flow_dissector_target(flow_dissector,
  144. FLOW_DISSECTOR_KEY_ETH_ADDRS,
  145. target_container);
  146. memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
  147. }
  148. again:
  149. switch (proto) {
  150. case htons(ETH_P_IP): {
  151. const struct iphdr *iph;
  152. struct iphdr _iph;
  153. ip:
  154. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  155. if (!iph || iph->ihl < 5)
  156. goto out_bad;
  157. nhoff += iph->ihl * 4;
  158. ip_proto = iph->protocol;
  159. if (!dissector_uses_key(flow_dissector,
  160. FLOW_DISSECTOR_KEY_IPV4_ADDRS))
  161. break;
  162. key_addrs = skb_flow_dissector_target(flow_dissector,
  163. FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
  164. memcpy(&key_addrs->v4addrs, &iph->saddr,
  165. sizeof(key_addrs->v4addrs));
  166. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  167. if (ip_is_fragment(iph)) {
  168. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  169. if (iph->frag_off & htons(IP_OFFSET)) {
  170. goto out_good;
  171. } else {
  172. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  173. if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
  174. goto out_good;
  175. }
  176. }
  177. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
  178. goto out_good;
  179. break;
  180. }
  181. case htons(ETH_P_IPV6): {
  182. const struct ipv6hdr *iph;
  183. struct ipv6hdr _iph;
  184. __be32 flow_label;
  185. ipv6:
  186. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  187. if (!iph)
  188. goto out_bad;
  189. ip_proto = iph->nexthdr;
  190. nhoff += sizeof(struct ipv6hdr);
  191. if (dissector_uses_key(flow_dissector,
  192. FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
  193. struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
  194. key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
  195. FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  196. target_container);
  197. memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
  198. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  199. }
  200. flow_label = ip6_flowlabel(iph);
  201. if (flow_label) {
  202. if (dissector_uses_key(flow_dissector,
  203. FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
  204. key_tags = skb_flow_dissector_target(flow_dissector,
  205. FLOW_DISSECTOR_KEY_FLOW_LABEL,
  206. target_container);
  207. key_tags->flow_label = ntohl(flow_label);
  208. }
  209. if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
  210. goto out_good;
  211. }
  212. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
  213. goto out_good;
  214. break;
  215. }
  216. case htons(ETH_P_8021AD):
  217. case htons(ETH_P_8021Q): {
  218. const struct vlan_hdr *vlan;
  219. struct vlan_hdr _vlan;
  220. vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
  221. if (!vlan)
  222. goto out_bad;
  223. if (dissector_uses_key(flow_dissector,
  224. FLOW_DISSECTOR_KEY_VLANID)) {
  225. key_tags = skb_flow_dissector_target(flow_dissector,
  226. FLOW_DISSECTOR_KEY_VLANID,
  227. target_container);
  228. key_tags->vlan_id = skb_vlan_tag_get_id(skb);
  229. }
  230. proto = vlan->h_vlan_encapsulated_proto;
  231. nhoff += sizeof(*vlan);
  232. goto again;
  233. }
  234. case htons(ETH_P_PPP_SES): {
  235. struct {
  236. struct pppoe_hdr hdr;
  237. __be16 proto;
  238. } *hdr, _hdr;
  239. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  240. if (!hdr)
  241. goto out_bad;
  242. proto = hdr->proto;
  243. nhoff += PPPOE_SES_HLEN;
  244. switch (proto) {
  245. case htons(PPP_IP):
  246. goto ip;
  247. case htons(PPP_IPV6):
  248. goto ipv6;
  249. default:
  250. goto out_bad;
  251. }
  252. }
  253. case htons(ETH_P_TIPC): {
  254. struct {
  255. __be32 pre[3];
  256. __be32 srcnode;
  257. } *hdr, _hdr;
  258. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  259. if (!hdr)
  260. goto out_bad;
  261. if (dissector_uses_key(flow_dissector,
  262. FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
  263. key_addrs = skb_flow_dissector_target(flow_dissector,
  264. FLOW_DISSECTOR_KEY_TIPC_ADDRS,
  265. target_container);
  266. key_addrs->tipcaddrs.srcnode = hdr->srcnode;
  267. key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
  268. }
  269. goto out_good;
  270. }
  271. case htons(ETH_P_MPLS_UC):
  272. case htons(ETH_P_MPLS_MC): {
  273. struct mpls_label *hdr, _hdr[2];
  274. mpls:
  275. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
  276. hlen, &_hdr);
  277. if (!hdr)
  278. goto out_bad;
  279. if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
  280. MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
  281. if (dissector_uses_key(flow_dissector,
  282. FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
  283. key_keyid = skb_flow_dissector_target(flow_dissector,
  284. FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
  285. target_container);
  286. key_keyid->keyid = hdr[1].entry &
  287. htonl(MPLS_LS_LABEL_MASK);
  288. }
  289. goto out_good;
  290. }
  291. goto out_good;
  292. }
  293. case htons(ETH_P_FCOE):
  294. key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
  295. /* fall through */
  296. default:
  297. goto out_bad;
  298. }
  299. ip_proto_again:
  300. switch (ip_proto) {
  301. case IPPROTO_GRE: {
  302. struct gre_hdr {
  303. __be16 flags;
  304. __be16 proto;
  305. } *hdr, _hdr;
  306. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  307. if (!hdr)
  308. goto out_bad;
  309. /*
  310. * Only look inside GRE if version zero and no
  311. * routing
  312. */
  313. if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
  314. break;
  315. proto = hdr->proto;
  316. nhoff += 4;
  317. if (hdr->flags & GRE_CSUM)
  318. nhoff += 4;
  319. if (hdr->flags & GRE_KEY) {
  320. const __be32 *keyid;
  321. __be32 _keyid;
  322. keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
  323. data, hlen, &_keyid);
  324. if (!keyid)
  325. goto out_bad;
  326. if (dissector_uses_key(flow_dissector,
  327. FLOW_DISSECTOR_KEY_GRE_KEYID)) {
  328. key_keyid = skb_flow_dissector_target(flow_dissector,
  329. FLOW_DISSECTOR_KEY_GRE_KEYID,
  330. target_container);
  331. key_keyid->keyid = *keyid;
  332. }
  333. nhoff += 4;
  334. }
  335. if (hdr->flags & GRE_SEQ)
  336. nhoff += 4;
  337. if (proto == htons(ETH_P_TEB)) {
  338. const struct ethhdr *eth;
  339. struct ethhdr _eth;
  340. eth = __skb_header_pointer(skb, nhoff,
  341. sizeof(_eth),
  342. data, hlen, &_eth);
  343. if (!eth)
  344. goto out_bad;
  345. proto = eth->h_proto;
  346. nhoff += sizeof(*eth);
  347. }
  348. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  349. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  350. goto out_good;
  351. goto again;
  352. }
  353. case NEXTHDR_HOP:
  354. case NEXTHDR_ROUTING:
  355. case NEXTHDR_DEST: {
  356. u8 _opthdr[2], *opthdr;
  357. if (proto != htons(ETH_P_IPV6))
  358. break;
  359. opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
  360. data, hlen, &_opthdr);
  361. if (!opthdr)
  362. goto out_bad;
  363. ip_proto = opthdr[0];
  364. nhoff += (opthdr[1] + 1) << 3;
  365. goto ip_proto_again;
  366. }
  367. case NEXTHDR_FRAGMENT: {
  368. struct frag_hdr _fh, *fh;
  369. if (proto != htons(ETH_P_IPV6))
  370. break;
  371. fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
  372. data, hlen, &_fh);
  373. if (!fh)
  374. goto out_bad;
  375. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  376. nhoff += sizeof(_fh);
  377. if (!(fh->frag_off & htons(IP6_OFFSET))) {
  378. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  379. if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
  380. ip_proto = fh->nexthdr;
  381. goto ip_proto_again;
  382. }
  383. }
  384. goto out_good;
  385. }
  386. case IPPROTO_IPIP:
  387. proto = htons(ETH_P_IP);
  388. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  389. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  390. goto out_good;
  391. goto ip;
  392. case IPPROTO_IPV6:
  393. proto = htons(ETH_P_IPV6);
  394. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  395. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  396. goto out_good;
  397. goto ipv6;
  398. case IPPROTO_MPLS:
  399. proto = htons(ETH_P_MPLS_UC);
  400. goto mpls;
  401. default:
  402. break;
  403. }
  404. if (dissector_uses_key(flow_dissector,
  405. FLOW_DISSECTOR_KEY_PORTS)) {
  406. key_ports = skb_flow_dissector_target(flow_dissector,
  407. FLOW_DISSECTOR_KEY_PORTS,
  408. target_container);
  409. key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
  410. data, hlen);
  411. }
  412. out_good:
  413. ret = true;
  414. out_bad:
  415. key_basic->n_proto = proto;
  416. key_basic->ip_proto = ip_proto;
  417. key_control->thoff = (u16)nhoff;
  418. return ret;
  419. }
  420. EXPORT_SYMBOL(__skb_flow_dissect);
  421. static u32 hashrnd __read_mostly;
  422. static __always_inline void __flow_hash_secret_init(void)
  423. {
  424. net_get_random_once(&hashrnd, sizeof(hashrnd));
  425. }
  426. static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
  427. u32 keyval)
  428. {
  429. return jhash2(words, length, keyval);
  430. }
  431. static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
  432. {
  433. const void *p = flow;
  434. BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
  435. return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
  436. }
  437. static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
  438. {
  439. size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
  440. BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
  441. BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
  442. sizeof(*flow) - sizeof(flow->addrs));
  443. switch (flow->control.addr_type) {
  444. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  445. diff -= sizeof(flow->addrs.v4addrs);
  446. break;
  447. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  448. diff -= sizeof(flow->addrs.v6addrs);
  449. break;
  450. case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
  451. diff -= sizeof(flow->addrs.tipcaddrs);
  452. break;
  453. }
  454. return (sizeof(*flow) - diff) / sizeof(u32);
  455. }
  456. __be32 flow_get_u32_src(const struct flow_keys *flow)
  457. {
  458. switch (flow->control.addr_type) {
  459. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  460. return flow->addrs.v4addrs.src;
  461. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  462. return (__force __be32)ipv6_addr_hash(
  463. &flow->addrs.v6addrs.src);
  464. case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
  465. return flow->addrs.tipcaddrs.srcnode;
  466. default:
  467. return 0;
  468. }
  469. }
  470. EXPORT_SYMBOL(flow_get_u32_src);
  471. __be32 flow_get_u32_dst(const struct flow_keys *flow)
  472. {
  473. switch (flow->control.addr_type) {
  474. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  475. return flow->addrs.v4addrs.dst;
  476. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  477. return (__force __be32)ipv6_addr_hash(
  478. &flow->addrs.v6addrs.dst);
  479. default:
  480. return 0;
  481. }
  482. }
  483. EXPORT_SYMBOL(flow_get_u32_dst);
  484. static inline void __flow_hash_consistentify(struct flow_keys *keys)
  485. {
  486. int addr_diff, i;
  487. switch (keys->control.addr_type) {
  488. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  489. addr_diff = (__force u32)keys->addrs.v4addrs.dst -
  490. (__force u32)keys->addrs.v4addrs.src;
  491. if ((addr_diff < 0) ||
  492. (addr_diff == 0 &&
  493. ((__force u16)keys->ports.dst <
  494. (__force u16)keys->ports.src))) {
  495. swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
  496. swap(keys->ports.src, keys->ports.dst);
  497. }
  498. break;
  499. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  500. addr_diff = memcmp(&keys->addrs.v6addrs.dst,
  501. &keys->addrs.v6addrs.src,
  502. sizeof(keys->addrs.v6addrs.dst));
  503. if ((addr_diff < 0) ||
  504. (addr_diff == 0 &&
  505. ((__force u16)keys->ports.dst <
  506. (__force u16)keys->ports.src))) {
  507. for (i = 0; i < 4; i++)
  508. swap(keys->addrs.v6addrs.src.s6_addr32[i],
  509. keys->addrs.v6addrs.dst.s6_addr32[i]);
  510. swap(keys->ports.src, keys->ports.dst);
  511. }
  512. break;
  513. }
  514. }
  515. static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
  516. {
  517. u32 hash;
  518. __flow_hash_consistentify(keys);
  519. hash = __flow_hash_words(flow_keys_hash_start(keys),
  520. flow_keys_hash_length(keys), keyval);
  521. if (!hash)
  522. hash = 1;
  523. return hash;
  524. }
  525. u32 flow_hash_from_keys(struct flow_keys *keys)
  526. {
  527. __flow_hash_secret_init();
  528. return __flow_hash_from_keys(keys, hashrnd);
  529. }
  530. EXPORT_SYMBOL(flow_hash_from_keys);
  531. static inline u32 ___skb_get_hash(const struct sk_buff *skb,
  532. struct flow_keys *keys, u32 keyval)
  533. {
  534. skb_flow_dissect_flow_keys(skb, keys,
  535. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  536. return __flow_hash_from_keys(keys, keyval);
  537. }
  538. struct _flow_keys_digest_data {
  539. __be16 n_proto;
  540. u8 ip_proto;
  541. u8 padding;
  542. __be32 ports;
  543. __be32 src;
  544. __be32 dst;
  545. };
  546. void make_flow_keys_digest(struct flow_keys_digest *digest,
  547. const struct flow_keys *flow)
  548. {
  549. struct _flow_keys_digest_data *data =
  550. (struct _flow_keys_digest_data *)digest;
  551. BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
  552. memset(digest, 0, sizeof(*digest));
  553. data->n_proto = flow->basic.n_proto;
  554. data->ip_proto = flow->basic.ip_proto;
  555. data->ports = flow->ports.ports;
  556. data->src = flow->addrs.v4addrs.src;
  557. data->dst = flow->addrs.v4addrs.dst;
  558. }
  559. EXPORT_SYMBOL(make_flow_keys_digest);
  560. /**
  561. * __skb_get_hash: calculate a flow hash
  562. * @skb: sk_buff to calculate flow hash from
  563. *
  564. * This function calculates a flow hash based on src/dst addresses
  565. * and src/dst port numbers. Sets hash in skb to non-zero hash value
  566. * on success, zero indicates no valid hash. Also, sets l4_hash in skb
  567. * if hash is a canonical 4-tuple hash over transport ports.
  568. */
  569. void __skb_get_hash(struct sk_buff *skb)
  570. {
  571. struct flow_keys keys;
  572. __flow_hash_secret_init();
  573. __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
  574. flow_keys_have_l4(&keys));
  575. }
  576. EXPORT_SYMBOL(__skb_get_hash);
  577. __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
  578. {
  579. struct flow_keys keys;
  580. return ___skb_get_hash(skb, &keys, perturb);
  581. }
  582. EXPORT_SYMBOL(skb_get_hash_perturb);
  583. __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
  584. {
  585. struct flow_keys keys;
  586. memset(&keys, 0, sizeof(keys));
  587. memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
  588. sizeof(keys.addrs.v6addrs.src));
  589. memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
  590. sizeof(keys.addrs.v6addrs.dst));
  591. keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  592. keys.ports.src = fl6->fl6_sport;
  593. keys.ports.dst = fl6->fl6_dport;
  594. keys.keyid.keyid = fl6->fl6_gre_key;
  595. keys.tags.flow_label = (__force u32)fl6->flowlabel;
  596. keys.basic.ip_proto = fl6->flowi6_proto;
  597. __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
  598. flow_keys_have_l4(&keys));
  599. return skb->hash;
  600. }
  601. EXPORT_SYMBOL(__skb_get_hash_flowi6);
  602. __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
  603. {
  604. struct flow_keys keys;
  605. memset(&keys, 0, sizeof(keys));
  606. keys.addrs.v4addrs.src = fl4->saddr;
  607. keys.addrs.v4addrs.dst = fl4->daddr;
  608. keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  609. keys.ports.src = fl4->fl4_sport;
  610. keys.ports.dst = fl4->fl4_dport;
  611. keys.keyid.keyid = fl4->fl4_gre_key;
  612. keys.basic.ip_proto = fl4->flowi4_proto;
  613. __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
  614. flow_keys_have_l4(&keys));
  615. return skb->hash;
  616. }
  617. EXPORT_SYMBOL(__skb_get_hash_flowi4);
  618. u32 __skb_get_poff(const struct sk_buff *skb, void *data,
  619. const struct flow_keys *keys, int hlen)
  620. {
  621. u32 poff = keys->control.thoff;
  622. switch (keys->basic.ip_proto) {
  623. case IPPROTO_TCP: {
  624. /* access doff as u8 to avoid unaligned access */
  625. const u8 *doff;
  626. u8 _doff;
  627. doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
  628. data, hlen, &_doff);
  629. if (!doff)
  630. return poff;
  631. poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
  632. break;
  633. }
  634. case IPPROTO_UDP:
  635. case IPPROTO_UDPLITE:
  636. poff += sizeof(struct udphdr);
  637. break;
  638. /* For the rest, we do not really care about header
  639. * extensions at this point for now.
  640. */
  641. case IPPROTO_ICMP:
  642. poff += sizeof(struct icmphdr);
  643. break;
  644. case IPPROTO_ICMPV6:
  645. poff += sizeof(struct icmp6hdr);
  646. break;
  647. case IPPROTO_IGMP:
  648. poff += sizeof(struct igmphdr);
  649. break;
  650. case IPPROTO_DCCP:
  651. poff += sizeof(struct dccp_hdr);
  652. break;
  653. case IPPROTO_SCTP:
  654. poff += sizeof(struct sctphdr);
  655. break;
  656. }
  657. return poff;
  658. }
  659. /**
  660. * skb_get_poff - get the offset to the payload
  661. * @skb: sk_buff to get the payload offset from
  662. *
  663. * The function will get the offset to the payload as far as it could
  664. * be dissected. The main user is currently BPF, so that we can dynamically
  665. * truncate packets without needing to push actual payload to the user
  666. * space and can analyze headers only, instead.
  667. */
  668. u32 skb_get_poff(const struct sk_buff *skb)
  669. {
  670. struct flow_keys keys;
  671. if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
  672. return 0;
  673. return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
  674. }
  675. __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
  676. {
  677. memset(keys, 0, sizeof(*keys));
  678. memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
  679. sizeof(keys->addrs.v6addrs.src));
  680. memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
  681. sizeof(keys->addrs.v6addrs.dst));
  682. keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  683. keys->ports.src = fl6->fl6_sport;
  684. keys->ports.dst = fl6->fl6_dport;
  685. keys->keyid.keyid = fl6->fl6_gre_key;
  686. keys->tags.flow_label = (__force u32)fl6->flowlabel;
  687. keys->basic.ip_proto = fl6->flowi6_proto;
  688. return flow_hash_from_keys(keys);
  689. }
  690. EXPORT_SYMBOL(__get_hash_from_flowi6);
  691. __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
  692. {
  693. memset(keys, 0, sizeof(*keys));
  694. keys->addrs.v4addrs.src = fl4->saddr;
  695. keys->addrs.v4addrs.dst = fl4->daddr;
  696. keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  697. keys->ports.src = fl4->fl4_sport;
  698. keys->ports.dst = fl4->fl4_dport;
  699. keys->keyid.keyid = fl4->fl4_gre_key;
  700. keys->basic.ip_proto = fl4->flowi4_proto;
  701. return flow_hash_from_keys(keys);
  702. }
  703. EXPORT_SYMBOL(__get_hash_from_flowi4);
  704. static const struct flow_dissector_key flow_keys_dissector_keys[] = {
  705. {
  706. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  707. .offset = offsetof(struct flow_keys, control),
  708. },
  709. {
  710. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  711. .offset = offsetof(struct flow_keys, basic),
  712. },
  713. {
  714. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  715. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  716. },
  717. {
  718. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  719. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  720. },
  721. {
  722. .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
  723. .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
  724. },
  725. {
  726. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  727. .offset = offsetof(struct flow_keys, ports),
  728. },
  729. {
  730. .key_id = FLOW_DISSECTOR_KEY_VLANID,
  731. .offset = offsetof(struct flow_keys, tags),
  732. },
  733. {
  734. .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
  735. .offset = offsetof(struct flow_keys, tags),
  736. },
  737. {
  738. .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
  739. .offset = offsetof(struct flow_keys, keyid),
  740. },
  741. };
  742. static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
  743. {
  744. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  745. .offset = offsetof(struct flow_keys, control),
  746. },
  747. {
  748. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  749. .offset = offsetof(struct flow_keys, basic),
  750. },
  751. };
  752. struct flow_dissector flow_keys_dissector __read_mostly;
  753. EXPORT_SYMBOL(flow_keys_dissector);
  754. struct flow_dissector flow_keys_buf_dissector __read_mostly;
  755. static int __init init_default_flow_dissectors(void)
  756. {
  757. skb_flow_dissector_init(&flow_keys_dissector,
  758. flow_keys_dissector_keys,
  759. ARRAY_SIZE(flow_keys_dissector_keys));
  760. skb_flow_dissector_init(&flow_keys_buf_dissector,
  761. flow_keys_buf_dissector_keys,
  762. ARRAY_SIZE(flow_keys_buf_dissector_keys));
  763. return 0;
  764. }
  765. late_initcall_sync(init_default_flow_dissectors);