br_netlink.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925
  1. /*
  2. * Bridge netlink control interface
  3. *
  4. * Authors:
  5. * Stephen Hemminger <shemminger@osdl.org>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/slab.h>
  14. #include <linux/etherdevice.h>
  15. #include <net/rtnetlink.h>
  16. #include <net/net_namespace.h>
  17. #include <net/sock.h>
  18. #include <uapi/linux/if_bridge.h>
  19. #include "br_private.h"
  20. #include "br_private_stp.h"
  21. static int br_get_num_vlan_infos(const struct net_port_vlans *pv,
  22. u32 filter_mask)
  23. {
  24. u16 vid_range_start = 0, vid_range_end = 0;
  25. u16 vid_range_flags = 0;
  26. u16 pvid, vid, flags;
  27. int num_vlans = 0;
  28. if (filter_mask & RTEXT_FILTER_BRVLAN)
  29. return pv->num_vlans;
  30. if (!(filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED))
  31. return 0;
  32. /* Count number of vlan info's
  33. */
  34. pvid = br_get_pvid(pv);
  35. for_each_set_bit(vid, pv->vlan_bitmap, VLAN_N_VID) {
  36. flags = 0;
  37. if (vid == pvid)
  38. flags |= BRIDGE_VLAN_INFO_PVID;
  39. if (test_bit(vid, pv->untagged_bitmap))
  40. flags |= BRIDGE_VLAN_INFO_UNTAGGED;
  41. if (vid_range_start == 0) {
  42. goto initvars;
  43. } else if ((vid - vid_range_end) == 1 &&
  44. flags == vid_range_flags) {
  45. vid_range_end = vid;
  46. continue;
  47. } else {
  48. if ((vid_range_end - vid_range_start) > 0)
  49. num_vlans += 2;
  50. else
  51. num_vlans += 1;
  52. }
  53. initvars:
  54. vid_range_start = vid;
  55. vid_range_end = vid;
  56. vid_range_flags = flags;
  57. }
  58. if (vid_range_start != 0) {
  59. if ((vid_range_end - vid_range_start) > 0)
  60. num_vlans += 2;
  61. else
  62. num_vlans += 1;
  63. }
  64. return num_vlans;
  65. }
  66. static size_t br_get_link_af_size_filtered(const struct net_device *dev,
  67. u32 filter_mask)
  68. {
  69. struct net_port_vlans *pv;
  70. int num_vlan_infos;
  71. rcu_read_lock();
  72. if (br_port_exists(dev))
  73. pv = nbp_get_vlan_info(br_port_get_rcu(dev));
  74. else if (dev->priv_flags & IFF_EBRIDGE)
  75. pv = br_get_vlan_info((struct net_bridge *)netdev_priv(dev));
  76. else
  77. pv = NULL;
  78. if (pv)
  79. num_vlan_infos = br_get_num_vlan_infos(pv, filter_mask);
  80. else
  81. num_vlan_infos = 0;
  82. rcu_read_unlock();
  83. if (!num_vlan_infos)
  84. return 0;
  85. /* Each VLAN is returned in bridge_vlan_info along with flags */
  86. return num_vlan_infos * nla_total_size(sizeof(struct bridge_vlan_info));
  87. }
  88. static inline size_t br_port_info_size(void)
  89. {
  90. return nla_total_size(1) /* IFLA_BRPORT_STATE */
  91. + nla_total_size(2) /* IFLA_BRPORT_PRIORITY */
  92. + nla_total_size(4) /* IFLA_BRPORT_COST */
  93. + nla_total_size(1) /* IFLA_BRPORT_MODE */
  94. + nla_total_size(1) /* IFLA_BRPORT_GUARD */
  95. + nla_total_size(1) /* IFLA_BRPORT_PROTECT */
  96. + nla_total_size(1) /* IFLA_BRPORT_FAST_LEAVE */
  97. + nla_total_size(1) /* IFLA_BRPORT_LEARNING */
  98. + nla_total_size(1) /* IFLA_BRPORT_UNICAST_FLOOD */
  99. + nla_total_size(1) /* IFLA_BRPORT_PROXYARP */
  100. + nla_total_size(1) /* IFLA_BRPORT_PROXYARP_WIFI */
  101. + 0;
  102. }
  103. static inline size_t br_nlmsg_size(struct net_device *dev, u32 filter_mask)
  104. {
  105. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  106. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  107. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  108. + nla_total_size(4) /* IFLA_MASTER */
  109. + nla_total_size(4) /* IFLA_MTU */
  110. + nla_total_size(4) /* IFLA_LINK */
  111. + nla_total_size(1) /* IFLA_OPERSTATE */
  112. + nla_total_size(br_port_info_size()) /* IFLA_PROTINFO */
  113. + nla_total_size(br_get_link_af_size_filtered(dev,
  114. filter_mask)); /* IFLA_AF_SPEC */
  115. }
  116. static int br_port_fill_attrs(struct sk_buff *skb,
  117. const struct net_bridge_port *p)
  118. {
  119. u8 mode = !!(p->flags & BR_HAIRPIN_MODE);
  120. if (nla_put_u8(skb, IFLA_BRPORT_STATE, p->state) ||
  121. nla_put_u16(skb, IFLA_BRPORT_PRIORITY, p->priority) ||
  122. nla_put_u32(skb, IFLA_BRPORT_COST, p->path_cost) ||
  123. nla_put_u8(skb, IFLA_BRPORT_MODE, mode) ||
  124. nla_put_u8(skb, IFLA_BRPORT_GUARD, !!(p->flags & BR_BPDU_GUARD)) ||
  125. nla_put_u8(skb, IFLA_BRPORT_PROTECT, !!(p->flags & BR_ROOT_BLOCK)) ||
  126. nla_put_u8(skb, IFLA_BRPORT_FAST_LEAVE, !!(p->flags & BR_MULTICAST_FAST_LEAVE)) ||
  127. nla_put_u8(skb, IFLA_BRPORT_LEARNING, !!(p->flags & BR_LEARNING)) ||
  128. nla_put_u8(skb, IFLA_BRPORT_UNICAST_FLOOD, !!(p->flags & BR_FLOOD)) ||
  129. nla_put_u8(skb, IFLA_BRPORT_PROXYARP, !!(p->flags & BR_PROXYARP)) ||
  130. nla_put_u8(skb, IFLA_BRPORT_PROXYARP_WIFI,
  131. !!(p->flags & BR_PROXYARP_WIFI)))
  132. return -EMSGSIZE;
  133. return 0;
  134. }
  135. static int br_fill_ifvlaninfo_range(struct sk_buff *skb, u16 vid_start,
  136. u16 vid_end, u16 flags)
  137. {
  138. struct bridge_vlan_info vinfo;
  139. if ((vid_end - vid_start) > 0) {
  140. /* add range to skb */
  141. vinfo.vid = vid_start;
  142. vinfo.flags = flags | BRIDGE_VLAN_INFO_RANGE_BEGIN;
  143. if (nla_put(skb, IFLA_BRIDGE_VLAN_INFO,
  144. sizeof(vinfo), &vinfo))
  145. goto nla_put_failure;
  146. vinfo.vid = vid_end;
  147. vinfo.flags = flags | BRIDGE_VLAN_INFO_RANGE_END;
  148. if (nla_put(skb, IFLA_BRIDGE_VLAN_INFO,
  149. sizeof(vinfo), &vinfo))
  150. goto nla_put_failure;
  151. } else {
  152. vinfo.vid = vid_start;
  153. vinfo.flags = flags;
  154. if (nla_put(skb, IFLA_BRIDGE_VLAN_INFO,
  155. sizeof(vinfo), &vinfo))
  156. goto nla_put_failure;
  157. }
  158. return 0;
  159. nla_put_failure:
  160. return -EMSGSIZE;
  161. }
  162. static int br_fill_ifvlaninfo_compressed(struct sk_buff *skb,
  163. const struct net_port_vlans *pv)
  164. {
  165. u16 vid_range_start = 0, vid_range_end = 0;
  166. u16 vid_range_flags = 0;
  167. u16 pvid, vid, flags;
  168. int err = 0;
  169. /* Pack IFLA_BRIDGE_VLAN_INFO's for every vlan
  170. * and mark vlan info with begin and end flags
  171. * if vlaninfo represents a range
  172. */
  173. pvid = br_get_pvid(pv);
  174. for_each_set_bit(vid, pv->vlan_bitmap, VLAN_N_VID) {
  175. flags = 0;
  176. if (vid == pvid)
  177. flags |= BRIDGE_VLAN_INFO_PVID;
  178. if (test_bit(vid, pv->untagged_bitmap))
  179. flags |= BRIDGE_VLAN_INFO_UNTAGGED;
  180. if (vid_range_start == 0) {
  181. goto initvars;
  182. } else if ((vid - vid_range_end) == 1 &&
  183. flags == vid_range_flags) {
  184. vid_range_end = vid;
  185. continue;
  186. } else {
  187. err = br_fill_ifvlaninfo_range(skb, vid_range_start,
  188. vid_range_end,
  189. vid_range_flags);
  190. if (err)
  191. return err;
  192. }
  193. initvars:
  194. vid_range_start = vid;
  195. vid_range_end = vid;
  196. vid_range_flags = flags;
  197. }
  198. if (vid_range_start != 0) {
  199. /* Call it once more to send any left over vlans */
  200. err = br_fill_ifvlaninfo_range(skb, vid_range_start,
  201. vid_range_end,
  202. vid_range_flags);
  203. if (err)
  204. return err;
  205. }
  206. return 0;
  207. }
  208. static int br_fill_ifvlaninfo(struct sk_buff *skb,
  209. const struct net_port_vlans *pv)
  210. {
  211. struct bridge_vlan_info vinfo;
  212. u16 pvid, vid;
  213. pvid = br_get_pvid(pv);
  214. for_each_set_bit(vid, pv->vlan_bitmap, VLAN_N_VID) {
  215. vinfo.vid = vid;
  216. vinfo.flags = 0;
  217. if (vid == pvid)
  218. vinfo.flags |= BRIDGE_VLAN_INFO_PVID;
  219. if (test_bit(vid, pv->untagged_bitmap))
  220. vinfo.flags |= BRIDGE_VLAN_INFO_UNTAGGED;
  221. if (nla_put(skb, IFLA_BRIDGE_VLAN_INFO,
  222. sizeof(vinfo), &vinfo))
  223. goto nla_put_failure;
  224. }
  225. return 0;
  226. nla_put_failure:
  227. return -EMSGSIZE;
  228. }
  229. /*
  230. * Create one netlink message for one interface
  231. * Contains port and master info as well as carrier and bridge state.
  232. */
  233. static int br_fill_ifinfo(struct sk_buff *skb,
  234. const struct net_bridge_port *port,
  235. u32 pid, u32 seq, int event, unsigned int flags,
  236. u32 filter_mask, const struct net_device *dev)
  237. {
  238. const struct net_bridge *br;
  239. struct ifinfomsg *hdr;
  240. struct nlmsghdr *nlh;
  241. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  242. if (port)
  243. br = port->br;
  244. else
  245. br = netdev_priv(dev);
  246. br_debug(br, "br_fill_info event %d port %s master %s\n",
  247. event, dev->name, br->dev->name);
  248. nlh = nlmsg_put(skb, pid, seq, event, sizeof(*hdr), flags);
  249. if (nlh == NULL)
  250. return -EMSGSIZE;
  251. hdr = nlmsg_data(nlh);
  252. hdr->ifi_family = AF_BRIDGE;
  253. hdr->__ifi_pad = 0;
  254. hdr->ifi_type = dev->type;
  255. hdr->ifi_index = dev->ifindex;
  256. hdr->ifi_flags = dev_get_flags(dev);
  257. hdr->ifi_change = 0;
  258. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  259. nla_put_u32(skb, IFLA_MASTER, br->dev->ifindex) ||
  260. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  261. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  262. (dev->addr_len &&
  263. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  264. (dev->ifindex != dev_get_iflink(dev) &&
  265. nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))))
  266. goto nla_put_failure;
  267. if (event == RTM_NEWLINK && port) {
  268. struct nlattr *nest
  269. = nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
  270. if (nest == NULL || br_port_fill_attrs(skb, port) < 0)
  271. goto nla_put_failure;
  272. nla_nest_end(skb, nest);
  273. }
  274. /* Check if the VID information is requested */
  275. if ((filter_mask & RTEXT_FILTER_BRVLAN) ||
  276. (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)) {
  277. const struct net_port_vlans *pv;
  278. struct nlattr *af;
  279. int err;
  280. if (port)
  281. pv = nbp_get_vlan_info(port);
  282. else
  283. pv = br_get_vlan_info(br);
  284. if (!pv || bitmap_empty(pv->vlan_bitmap, VLAN_N_VID))
  285. goto done;
  286. af = nla_nest_start(skb, IFLA_AF_SPEC);
  287. if (!af)
  288. goto nla_put_failure;
  289. if (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)
  290. err = br_fill_ifvlaninfo_compressed(skb, pv);
  291. else
  292. err = br_fill_ifvlaninfo(skb, pv);
  293. if (err)
  294. goto nla_put_failure;
  295. nla_nest_end(skb, af);
  296. }
  297. done:
  298. nlmsg_end(skb, nlh);
  299. return 0;
  300. nla_put_failure:
  301. nlmsg_cancel(skb, nlh);
  302. return -EMSGSIZE;
  303. }
  304. /*
  305. * Notify listeners of a change in port information
  306. */
  307. void br_ifinfo_notify(int event, struct net_bridge_port *port)
  308. {
  309. struct net *net;
  310. struct sk_buff *skb;
  311. int err = -ENOBUFS;
  312. u32 filter = RTEXT_FILTER_BRVLAN_COMPRESSED;
  313. if (!port)
  314. return;
  315. net = dev_net(port->dev);
  316. br_debug(port->br, "port %u(%s) event %d\n",
  317. (unsigned int)port->port_no, port->dev->name, event);
  318. skb = nlmsg_new(br_nlmsg_size(port->dev, filter), GFP_ATOMIC);
  319. if (skb == NULL)
  320. goto errout;
  321. err = br_fill_ifinfo(skb, port, 0, 0, event, 0, filter, port->dev);
  322. if (err < 0) {
  323. /* -EMSGSIZE implies BUG in br_nlmsg_size() */
  324. WARN_ON(err == -EMSGSIZE);
  325. kfree_skb(skb);
  326. goto errout;
  327. }
  328. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  329. return;
  330. errout:
  331. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  332. }
  333. /*
  334. * Dump information about all ports, in response to GETLINK
  335. */
  336. int br_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  337. struct net_device *dev, u32 filter_mask, int nlflags)
  338. {
  339. struct net_bridge_port *port = br_port_get_rtnl(dev);
  340. if (!port && !(filter_mask & RTEXT_FILTER_BRVLAN) &&
  341. !(filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED))
  342. return 0;
  343. return br_fill_ifinfo(skb, port, pid, seq, RTM_NEWLINK, nlflags,
  344. filter_mask, dev);
  345. }
  346. static int br_vlan_info(struct net_bridge *br, struct net_bridge_port *p,
  347. int cmd, struct bridge_vlan_info *vinfo)
  348. {
  349. int err = 0;
  350. switch (cmd) {
  351. case RTM_SETLINK:
  352. if (p) {
  353. err = nbp_vlan_add(p, vinfo->vid, vinfo->flags);
  354. if (err)
  355. break;
  356. if (vinfo->flags & BRIDGE_VLAN_INFO_MASTER)
  357. err = br_vlan_add(p->br, vinfo->vid,
  358. vinfo->flags);
  359. } else {
  360. err = br_vlan_add(br, vinfo->vid, vinfo->flags);
  361. }
  362. break;
  363. case RTM_DELLINK:
  364. if (p) {
  365. nbp_vlan_delete(p, vinfo->vid);
  366. if (vinfo->flags & BRIDGE_VLAN_INFO_MASTER)
  367. br_vlan_delete(p->br, vinfo->vid);
  368. } else {
  369. br_vlan_delete(br, vinfo->vid);
  370. }
  371. break;
  372. }
  373. return err;
  374. }
  375. static int br_afspec(struct net_bridge *br,
  376. struct net_bridge_port *p,
  377. struct nlattr *af_spec,
  378. int cmd)
  379. {
  380. struct bridge_vlan_info *vinfo_start = NULL;
  381. struct bridge_vlan_info *vinfo = NULL;
  382. struct nlattr *attr;
  383. int err = 0;
  384. int rem;
  385. nla_for_each_nested(attr, af_spec, rem) {
  386. if (nla_type(attr) != IFLA_BRIDGE_VLAN_INFO)
  387. continue;
  388. if (nla_len(attr) != sizeof(struct bridge_vlan_info))
  389. return -EINVAL;
  390. vinfo = nla_data(attr);
  391. if (!vinfo->vid || vinfo->vid >= VLAN_VID_MASK)
  392. return -EINVAL;
  393. if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) {
  394. if (vinfo_start)
  395. return -EINVAL;
  396. vinfo_start = vinfo;
  397. continue;
  398. }
  399. if (vinfo_start) {
  400. struct bridge_vlan_info tmp_vinfo;
  401. int v;
  402. if (!(vinfo->flags & BRIDGE_VLAN_INFO_RANGE_END))
  403. return -EINVAL;
  404. if (vinfo->vid <= vinfo_start->vid)
  405. return -EINVAL;
  406. memcpy(&tmp_vinfo, vinfo_start,
  407. sizeof(struct bridge_vlan_info));
  408. for (v = vinfo_start->vid; v <= vinfo->vid; v++) {
  409. tmp_vinfo.vid = v;
  410. err = br_vlan_info(br, p, cmd, &tmp_vinfo);
  411. if (err)
  412. break;
  413. }
  414. vinfo_start = NULL;
  415. } else {
  416. err = br_vlan_info(br, p, cmd, vinfo);
  417. }
  418. if (err)
  419. break;
  420. }
  421. return err;
  422. }
  423. static const struct nla_policy br_port_policy[IFLA_BRPORT_MAX + 1] = {
  424. [IFLA_BRPORT_STATE] = { .type = NLA_U8 },
  425. [IFLA_BRPORT_COST] = { .type = NLA_U32 },
  426. [IFLA_BRPORT_PRIORITY] = { .type = NLA_U16 },
  427. [IFLA_BRPORT_MODE] = { .type = NLA_U8 },
  428. [IFLA_BRPORT_GUARD] = { .type = NLA_U8 },
  429. [IFLA_BRPORT_PROTECT] = { .type = NLA_U8 },
  430. [IFLA_BRPORT_FAST_LEAVE]= { .type = NLA_U8 },
  431. [IFLA_BRPORT_LEARNING] = { .type = NLA_U8 },
  432. [IFLA_BRPORT_UNICAST_FLOOD] = { .type = NLA_U8 },
  433. [IFLA_BRPORT_PROXYARP] = { .type = NLA_U8 },
  434. [IFLA_BRPORT_PROXYARP_WIFI] = { .type = NLA_U8 },
  435. };
  436. /* Change the state of the port and notify spanning tree */
  437. static int br_set_port_state(struct net_bridge_port *p, u8 state)
  438. {
  439. if (state > BR_STATE_BLOCKING)
  440. return -EINVAL;
  441. /* if kernel STP is running, don't allow changes */
  442. if (p->br->stp_enabled == BR_KERNEL_STP)
  443. return -EBUSY;
  444. /* if device is not up, change is not allowed
  445. * if link is not present, only allowable state is disabled
  446. */
  447. if (!netif_running(p->dev) ||
  448. (!netif_oper_up(p->dev) && state != BR_STATE_DISABLED))
  449. return -ENETDOWN;
  450. br_set_state(p, state);
  451. br_log_state(p);
  452. br_port_state_selection(p->br);
  453. return 0;
  454. }
  455. /* Set/clear or port flags based on attribute */
  456. static void br_set_port_flag(struct net_bridge_port *p, struct nlattr *tb[],
  457. int attrtype, unsigned long mask)
  458. {
  459. if (tb[attrtype]) {
  460. u8 flag = nla_get_u8(tb[attrtype]);
  461. if (flag)
  462. p->flags |= mask;
  463. else
  464. p->flags &= ~mask;
  465. }
  466. }
  467. /* Process bridge protocol info on port */
  468. static int br_setport(struct net_bridge_port *p, struct nlattr *tb[])
  469. {
  470. int err;
  471. unsigned long old_flags = p->flags;
  472. br_set_port_flag(p, tb, IFLA_BRPORT_MODE, BR_HAIRPIN_MODE);
  473. br_set_port_flag(p, tb, IFLA_BRPORT_GUARD, BR_BPDU_GUARD);
  474. br_set_port_flag(p, tb, IFLA_BRPORT_FAST_LEAVE, BR_MULTICAST_FAST_LEAVE);
  475. br_set_port_flag(p, tb, IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK);
  476. br_set_port_flag(p, tb, IFLA_BRPORT_LEARNING, BR_LEARNING);
  477. br_set_port_flag(p, tb, IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD);
  478. br_set_port_flag(p, tb, IFLA_BRPORT_PROXYARP, BR_PROXYARP);
  479. br_set_port_flag(p, tb, IFLA_BRPORT_PROXYARP_WIFI, BR_PROXYARP_WIFI);
  480. if (tb[IFLA_BRPORT_COST]) {
  481. err = br_stp_set_path_cost(p, nla_get_u32(tb[IFLA_BRPORT_COST]));
  482. if (err)
  483. return err;
  484. }
  485. if (tb[IFLA_BRPORT_PRIORITY]) {
  486. err = br_stp_set_port_priority(p, nla_get_u16(tb[IFLA_BRPORT_PRIORITY]));
  487. if (err)
  488. return err;
  489. }
  490. if (tb[IFLA_BRPORT_STATE]) {
  491. err = br_set_port_state(p, nla_get_u8(tb[IFLA_BRPORT_STATE]));
  492. if (err)
  493. return err;
  494. }
  495. br_port_flags_change(p, old_flags ^ p->flags);
  496. return 0;
  497. }
  498. /* Change state and parameters on port. */
  499. int br_setlink(struct net_device *dev, struct nlmsghdr *nlh, u16 flags)
  500. {
  501. struct nlattr *protinfo;
  502. struct nlattr *afspec;
  503. struct net_bridge_port *p;
  504. struct nlattr *tb[IFLA_BRPORT_MAX + 1];
  505. int err = 0;
  506. protinfo = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_PROTINFO);
  507. afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  508. if (!protinfo && !afspec)
  509. return 0;
  510. p = br_port_get_rtnl(dev);
  511. /* We want to accept dev as bridge itself if the AF_SPEC
  512. * is set to see if someone is setting vlan info on the bridge
  513. */
  514. if (!p && !afspec)
  515. return -EINVAL;
  516. if (p && protinfo) {
  517. if (protinfo->nla_type & NLA_F_NESTED) {
  518. err = nla_parse_nested(tb, IFLA_BRPORT_MAX,
  519. protinfo, br_port_policy);
  520. if (err)
  521. return err;
  522. spin_lock_bh(&p->br->lock);
  523. err = br_setport(p, tb);
  524. spin_unlock_bh(&p->br->lock);
  525. } else {
  526. /* Binary compatibility with old RSTP */
  527. if (nla_len(protinfo) < sizeof(u8))
  528. return -EINVAL;
  529. spin_lock_bh(&p->br->lock);
  530. err = br_set_port_state(p, nla_get_u8(protinfo));
  531. spin_unlock_bh(&p->br->lock);
  532. }
  533. if (err)
  534. goto out;
  535. }
  536. if (afspec) {
  537. err = br_afspec((struct net_bridge *)netdev_priv(dev), p,
  538. afspec, RTM_SETLINK);
  539. }
  540. if (err == 0)
  541. br_ifinfo_notify(RTM_NEWLINK, p);
  542. out:
  543. return err;
  544. }
  545. /* Delete port information */
  546. int br_dellink(struct net_device *dev, struct nlmsghdr *nlh, u16 flags)
  547. {
  548. struct nlattr *afspec;
  549. struct net_bridge_port *p;
  550. int err = 0;
  551. afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  552. if (!afspec)
  553. return 0;
  554. p = br_port_get_rtnl(dev);
  555. /* We want to accept dev as bridge itself as well */
  556. if (!p && !(dev->priv_flags & IFF_EBRIDGE))
  557. return -EINVAL;
  558. err = br_afspec((struct net_bridge *)netdev_priv(dev), p,
  559. afspec, RTM_DELLINK);
  560. if (err == 0)
  561. /* Send RTM_NEWLINK because userspace
  562. * expects RTM_NEWLINK for vlan dels
  563. */
  564. br_ifinfo_notify(RTM_NEWLINK, p);
  565. return err;
  566. }
  567. static int br_validate(struct nlattr *tb[], struct nlattr *data[])
  568. {
  569. if (tb[IFLA_ADDRESS]) {
  570. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
  571. return -EINVAL;
  572. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
  573. return -EADDRNOTAVAIL;
  574. }
  575. if (!data)
  576. return 0;
  577. #ifdef CONFIG_BRIDGE_VLAN_FILTERING
  578. if (data[IFLA_BR_VLAN_PROTOCOL]) {
  579. switch (nla_get_be16(data[IFLA_BR_VLAN_PROTOCOL])) {
  580. case htons(ETH_P_8021Q):
  581. case htons(ETH_P_8021AD):
  582. break;
  583. default:
  584. return -EPROTONOSUPPORT;
  585. }
  586. }
  587. #endif
  588. return 0;
  589. }
  590. static int br_dev_newlink(struct net *src_net, struct net_device *dev,
  591. struct nlattr *tb[], struct nlattr *data[])
  592. {
  593. struct net_bridge *br = netdev_priv(dev);
  594. if (tb[IFLA_ADDRESS]) {
  595. spin_lock_bh(&br->lock);
  596. br_stp_change_bridge_id(br, nla_data(tb[IFLA_ADDRESS]));
  597. spin_unlock_bh(&br->lock);
  598. }
  599. return register_netdevice(dev);
  600. }
  601. static int br_port_slave_changelink(struct net_device *brdev,
  602. struct net_device *dev,
  603. struct nlattr *tb[],
  604. struct nlattr *data[])
  605. {
  606. struct net_bridge *br = netdev_priv(brdev);
  607. int ret;
  608. if (!data)
  609. return 0;
  610. spin_lock_bh(&br->lock);
  611. ret = br_setport(br_port_get_rtnl(dev), data);
  612. spin_unlock_bh(&br->lock);
  613. return ret;
  614. }
  615. static int br_port_fill_slave_info(struct sk_buff *skb,
  616. const struct net_device *brdev,
  617. const struct net_device *dev)
  618. {
  619. return br_port_fill_attrs(skb, br_port_get_rtnl(dev));
  620. }
  621. static size_t br_port_get_slave_size(const struct net_device *brdev,
  622. const struct net_device *dev)
  623. {
  624. return br_port_info_size();
  625. }
  626. static const struct nla_policy br_policy[IFLA_BR_MAX + 1] = {
  627. [IFLA_BR_FORWARD_DELAY] = { .type = NLA_U32 },
  628. [IFLA_BR_HELLO_TIME] = { .type = NLA_U32 },
  629. [IFLA_BR_MAX_AGE] = { .type = NLA_U32 },
  630. [IFLA_BR_AGEING_TIME] = { .type = NLA_U32 },
  631. [IFLA_BR_STP_STATE] = { .type = NLA_U32 },
  632. [IFLA_BR_PRIORITY] = { .type = NLA_U16 },
  633. [IFLA_BR_VLAN_FILTERING] = { .type = NLA_U8 },
  634. [IFLA_BR_VLAN_PROTOCOL] = { .type = NLA_U16 },
  635. };
  636. static int br_changelink(struct net_device *brdev, struct nlattr *tb[],
  637. struct nlattr *data[])
  638. {
  639. struct net_bridge *br = netdev_priv(brdev);
  640. int err;
  641. if (!data)
  642. return 0;
  643. if (data[IFLA_BR_FORWARD_DELAY]) {
  644. err = br_set_forward_delay(br, nla_get_u32(data[IFLA_BR_FORWARD_DELAY]));
  645. if (err)
  646. return err;
  647. }
  648. if (data[IFLA_BR_HELLO_TIME]) {
  649. err = br_set_hello_time(br, nla_get_u32(data[IFLA_BR_HELLO_TIME]));
  650. if (err)
  651. return err;
  652. }
  653. if (data[IFLA_BR_MAX_AGE]) {
  654. err = br_set_max_age(br, nla_get_u32(data[IFLA_BR_MAX_AGE]));
  655. if (err)
  656. return err;
  657. }
  658. if (data[IFLA_BR_AGEING_TIME]) {
  659. u32 ageing_time = nla_get_u32(data[IFLA_BR_AGEING_TIME]);
  660. br->ageing_time = clock_t_to_jiffies(ageing_time);
  661. }
  662. if (data[IFLA_BR_STP_STATE]) {
  663. u32 stp_enabled = nla_get_u32(data[IFLA_BR_STP_STATE]);
  664. br_stp_set_enabled(br, stp_enabled);
  665. }
  666. if (data[IFLA_BR_PRIORITY]) {
  667. u32 priority = nla_get_u16(data[IFLA_BR_PRIORITY]);
  668. br_stp_set_bridge_priority(br, priority);
  669. }
  670. if (data[IFLA_BR_VLAN_FILTERING]) {
  671. u8 vlan_filter = nla_get_u8(data[IFLA_BR_VLAN_FILTERING]);
  672. err = __br_vlan_filter_toggle(br, vlan_filter);
  673. if (err)
  674. return err;
  675. }
  676. #ifdef CONFIG_BRIDGE_VLAN_FILTERING
  677. if (data[IFLA_BR_VLAN_PROTOCOL]) {
  678. __be16 vlan_proto = nla_get_be16(data[IFLA_BR_VLAN_PROTOCOL]);
  679. err = __br_vlan_set_proto(br, vlan_proto);
  680. if (err)
  681. return err;
  682. }
  683. #endif
  684. return 0;
  685. }
  686. static size_t br_get_size(const struct net_device *brdev)
  687. {
  688. return nla_total_size(sizeof(u32)) + /* IFLA_BR_FORWARD_DELAY */
  689. nla_total_size(sizeof(u32)) + /* IFLA_BR_HELLO_TIME */
  690. nla_total_size(sizeof(u32)) + /* IFLA_BR_MAX_AGE */
  691. nla_total_size(sizeof(u32)) + /* IFLA_BR_AGEING_TIME */
  692. nla_total_size(sizeof(u32)) + /* IFLA_BR_STP_STATE */
  693. nla_total_size(sizeof(u16)) + /* IFLA_BR_PRIORITY */
  694. nla_total_size(sizeof(u8)) + /* IFLA_BR_VLAN_FILTERING */
  695. #ifdef CONFIG_BRIDGE_VLAN_FILTERING
  696. nla_total_size(sizeof(__be16)) + /* IFLA_BR_VLAN_PROTOCOL */
  697. #endif
  698. 0;
  699. }
  700. static int br_fill_info(struct sk_buff *skb, const struct net_device *brdev)
  701. {
  702. struct net_bridge *br = netdev_priv(brdev);
  703. u32 forward_delay = jiffies_to_clock_t(br->forward_delay);
  704. u32 hello_time = jiffies_to_clock_t(br->hello_time);
  705. u32 age_time = jiffies_to_clock_t(br->max_age);
  706. u32 ageing_time = jiffies_to_clock_t(br->ageing_time);
  707. u32 stp_enabled = br->stp_enabled;
  708. u16 priority = (br->bridge_id.prio[0] << 8) | br->bridge_id.prio[1];
  709. u8 vlan_enabled = br_vlan_enabled(br);
  710. if (nla_put_u32(skb, IFLA_BR_FORWARD_DELAY, forward_delay) ||
  711. nla_put_u32(skb, IFLA_BR_HELLO_TIME, hello_time) ||
  712. nla_put_u32(skb, IFLA_BR_MAX_AGE, age_time) ||
  713. nla_put_u32(skb, IFLA_BR_AGEING_TIME, ageing_time) ||
  714. nla_put_u32(skb, IFLA_BR_STP_STATE, stp_enabled) ||
  715. nla_put_u16(skb, IFLA_BR_PRIORITY, priority) ||
  716. nla_put_u8(skb, IFLA_BR_VLAN_FILTERING, vlan_enabled))
  717. return -EMSGSIZE;
  718. #ifdef CONFIG_BRIDGE_VLAN_FILTERING
  719. if (nla_put_be16(skb, IFLA_BR_VLAN_PROTOCOL, br->vlan_proto))
  720. return -EMSGSIZE;
  721. #endif
  722. return 0;
  723. }
  724. static size_t br_get_link_af_size(const struct net_device *dev)
  725. {
  726. struct net_port_vlans *pv;
  727. if (br_port_exists(dev))
  728. pv = nbp_get_vlan_info(br_port_get_rtnl(dev));
  729. else if (dev->priv_flags & IFF_EBRIDGE)
  730. pv = br_get_vlan_info((struct net_bridge *)netdev_priv(dev));
  731. else
  732. return 0;
  733. if (!pv)
  734. return 0;
  735. /* Each VLAN is returned in bridge_vlan_info along with flags */
  736. return pv->num_vlans * nla_total_size(sizeof(struct bridge_vlan_info));
  737. }
  738. static struct rtnl_af_ops br_af_ops __read_mostly = {
  739. .family = AF_BRIDGE,
  740. .get_link_af_size = br_get_link_af_size,
  741. };
  742. struct rtnl_link_ops br_link_ops __read_mostly = {
  743. .kind = "bridge",
  744. .priv_size = sizeof(struct net_bridge),
  745. .setup = br_dev_setup,
  746. .maxtype = IFLA_BR_MAX,
  747. .policy = br_policy,
  748. .validate = br_validate,
  749. .newlink = br_dev_newlink,
  750. .changelink = br_changelink,
  751. .dellink = br_dev_delete,
  752. .get_size = br_get_size,
  753. .fill_info = br_fill_info,
  754. .slave_maxtype = IFLA_BRPORT_MAX,
  755. .slave_policy = br_port_policy,
  756. .slave_changelink = br_port_slave_changelink,
  757. .get_slave_size = br_port_get_slave_size,
  758. .fill_slave_info = br_port_fill_slave_info,
  759. };
  760. int __init br_netlink_init(void)
  761. {
  762. int err;
  763. br_mdb_init();
  764. rtnl_af_register(&br_af_ops);
  765. err = rtnl_link_register(&br_link_ops);
  766. if (err)
  767. goto out_af;
  768. return 0;
  769. out_af:
  770. rtnl_af_unregister(&br_af_ops);
  771. br_mdb_uninit();
  772. return err;
  773. }
  774. void br_netlink_fini(void)
  775. {
  776. br_mdb_uninit();
  777. rtnl_af_unregister(&br_af_ops);
  778. rtnl_link_unregister(&br_link_ops);
  779. }