memcontrol.c 146 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * Native page reclaim
  18. * Charge lifetime sanitation
  19. * Lockless page tracking & accounting
  20. * Unified hierarchy configuration model
  21. * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22. *
  23. * This program is free software; you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation; either version 2 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. */
  33. #include <linux/page_counter.h>
  34. #include <linux/memcontrol.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/mm.h>
  37. #include <linux/hugetlb.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/smp.h>
  40. #include <linux/page-flags.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/bit_spinlock.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/limits.h>
  45. #include <linux/export.h>
  46. #include <linux/mutex.h>
  47. #include <linux/rbtree.h>
  48. #include <linux/slab.h>
  49. #include <linux/swap.h>
  50. #include <linux/swapops.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/eventfd.h>
  53. #include <linux/poll.h>
  54. #include <linux/sort.h>
  55. #include <linux/fs.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/vmpressure.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/swap_cgroup.h>
  60. #include <linux/cpu.h>
  61. #include <linux/oom.h>
  62. #include <linux/lockdep.h>
  63. #include <linux/file.h>
  64. #include "internal.h"
  65. #include <net/sock.h>
  66. #include <net/ip.h>
  67. #include <net/tcp_memcontrol.h>
  68. #include "slab.h"
  69. #include <asm/uaccess.h>
  70. #include <trace/events/vmscan.h>
  71. struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  72. EXPORT_SYMBOL(memory_cgrp_subsys);
  73. #define MEM_CGROUP_RECLAIM_RETRIES 5
  74. static struct mem_cgroup *root_mem_cgroup __read_mostly;
  75. struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
  76. /* Whether the swap controller is active */
  77. #ifdef CONFIG_MEMCG_SWAP
  78. int do_swap_account __read_mostly;
  79. #else
  80. #define do_swap_account 0
  81. #endif
  82. static const char * const mem_cgroup_stat_names[] = {
  83. "cache",
  84. "rss",
  85. "rss_huge",
  86. "mapped_file",
  87. "dirty",
  88. "writeback",
  89. "swap",
  90. };
  91. static const char * const mem_cgroup_events_names[] = {
  92. "pgpgin",
  93. "pgpgout",
  94. "pgfault",
  95. "pgmajfault",
  96. };
  97. static const char * const mem_cgroup_lru_names[] = {
  98. "inactive_anon",
  99. "active_anon",
  100. "inactive_file",
  101. "active_file",
  102. "unevictable",
  103. };
  104. #define THRESHOLDS_EVENTS_TARGET 128
  105. #define SOFTLIMIT_EVENTS_TARGET 1024
  106. #define NUMAINFO_EVENTS_TARGET 1024
  107. /*
  108. * Cgroups above their limits are maintained in a RB-Tree, independent of
  109. * their hierarchy representation
  110. */
  111. struct mem_cgroup_tree_per_zone {
  112. struct rb_root rb_root;
  113. spinlock_t lock;
  114. };
  115. struct mem_cgroup_tree_per_node {
  116. struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
  117. };
  118. struct mem_cgroup_tree {
  119. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  120. };
  121. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  122. /* for OOM */
  123. struct mem_cgroup_eventfd_list {
  124. struct list_head list;
  125. struct eventfd_ctx *eventfd;
  126. };
  127. /*
  128. * cgroup_event represents events which userspace want to receive.
  129. */
  130. struct mem_cgroup_event {
  131. /*
  132. * memcg which the event belongs to.
  133. */
  134. struct mem_cgroup *memcg;
  135. /*
  136. * eventfd to signal userspace about the event.
  137. */
  138. struct eventfd_ctx *eventfd;
  139. /*
  140. * Each of these stored in a list by the cgroup.
  141. */
  142. struct list_head list;
  143. /*
  144. * register_event() callback will be used to add new userspace
  145. * waiter for changes related to this event. Use eventfd_signal()
  146. * on eventfd to send notification to userspace.
  147. */
  148. int (*register_event)(struct mem_cgroup *memcg,
  149. struct eventfd_ctx *eventfd, const char *args);
  150. /*
  151. * unregister_event() callback will be called when userspace closes
  152. * the eventfd or on cgroup removing. This callback must be set,
  153. * if you want provide notification functionality.
  154. */
  155. void (*unregister_event)(struct mem_cgroup *memcg,
  156. struct eventfd_ctx *eventfd);
  157. /*
  158. * All fields below needed to unregister event when
  159. * userspace closes eventfd.
  160. */
  161. poll_table pt;
  162. wait_queue_head_t *wqh;
  163. wait_queue_t wait;
  164. struct work_struct remove;
  165. };
  166. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  167. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  168. /* Stuffs for move charges at task migration. */
  169. /*
  170. * Types of charges to be moved.
  171. */
  172. #define MOVE_ANON 0x1U
  173. #define MOVE_FILE 0x2U
  174. #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
  175. /* "mc" and its members are protected by cgroup_mutex */
  176. static struct move_charge_struct {
  177. spinlock_t lock; /* for from, to */
  178. struct mem_cgroup *from;
  179. struct mem_cgroup *to;
  180. unsigned long flags;
  181. unsigned long precharge;
  182. unsigned long moved_charge;
  183. unsigned long moved_swap;
  184. struct task_struct *moving_task; /* a task moving charges */
  185. wait_queue_head_t waitq; /* a waitq for other context */
  186. } mc = {
  187. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  188. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  189. };
  190. /*
  191. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  192. * limit reclaim to prevent infinite loops, if they ever occur.
  193. */
  194. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  195. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  196. enum charge_type {
  197. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  198. MEM_CGROUP_CHARGE_TYPE_ANON,
  199. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  200. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  201. NR_CHARGE_TYPE,
  202. };
  203. /* for encoding cft->private value on file */
  204. enum res_type {
  205. _MEM,
  206. _MEMSWAP,
  207. _OOM_TYPE,
  208. _KMEM,
  209. };
  210. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  211. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  212. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  213. /* Used for OOM nofiier */
  214. #define OOM_CONTROL (0)
  215. /*
  216. * The memcg_create_mutex will be held whenever a new cgroup is created.
  217. * As a consequence, any change that needs to protect against new child cgroups
  218. * appearing has to hold it as well.
  219. */
  220. static DEFINE_MUTEX(memcg_create_mutex);
  221. /* Some nice accessors for the vmpressure. */
  222. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  223. {
  224. if (!memcg)
  225. memcg = root_mem_cgroup;
  226. return &memcg->vmpressure;
  227. }
  228. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  229. {
  230. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  231. }
  232. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  233. {
  234. return (memcg == root_mem_cgroup);
  235. }
  236. /*
  237. * We restrict the id in the range of [1, 65535], so it can fit into
  238. * an unsigned short.
  239. */
  240. #define MEM_CGROUP_ID_MAX USHRT_MAX
  241. static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
  242. {
  243. return memcg->css.id;
  244. }
  245. /*
  246. * A helper function to get mem_cgroup from ID. must be called under
  247. * rcu_read_lock(). The caller is responsible for calling
  248. * css_tryget_online() if the mem_cgroup is used for charging. (dropping
  249. * refcnt from swap can be called against removed memcg.)
  250. */
  251. static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
  252. {
  253. struct cgroup_subsys_state *css;
  254. css = css_from_id(id, &memory_cgrp_subsys);
  255. return mem_cgroup_from_css(css);
  256. }
  257. /* Writing them here to avoid exposing memcg's inner layout */
  258. #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
  259. void sock_update_memcg(struct sock *sk)
  260. {
  261. if (mem_cgroup_sockets_enabled) {
  262. struct mem_cgroup *memcg;
  263. struct cg_proto *cg_proto;
  264. BUG_ON(!sk->sk_prot->proto_cgroup);
  265. /* Socket cloning can throw us here with sk_cgrp already
  266. * filled. It won't however, necessarily happen from
  267. * process context. So the test for root memcg given
  268. * the current task's memcg won't help us in this case.
  269. *
  270. * Respecting the original socket's memcg is a better
  271. * decision in this case.
  272. */
  273. if (sk->sk_cgrp) {
  274. BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
  275. css_get(&sk->sk_cgrp->memcg->css);
  276. return;
  277. }
  278. rcu_read_lock();
  279. memcg = mem_cgroup_from_task(current);
  280. cg_proto = sk->sk_prot->proto_cgroup(memcg);
  281. if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
  282. css_tryget_online(&memcg->css)) {
  283. sk->sk_cgrp = cg_proto;
  284. }
  285. rcu_read_unlock();
  286. }
  287. }
  288. EXPORT_SYMBOL(sock_update_memcg);
  289. void sock_release_memcg(struct sock *sk)
  290. {
  291. if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
  292. struct mem_cgroup *memcg;
  293. WARN_ON(!sk->sk_cgrp->memcg);
  294. memcg = sk->sk_cgrp->memcg;
  295. css_put(&sk->sk_cgrp->memcg->css);
  296. }
  297. }
  298. struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
  299. {
  300. if (!memcg || mem_cgroup_is_root(memcg))
  301. return NULL;
  302. return &memcg->tcp_mem;
  303. }
  304. EXPORT_SYMBOL(tcp_proto_cgroup);
  305. #endif
  306. #ifdef CONFIG_MEMCG_KMEM
  307. /*
  308. * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
  309. * The main reason for not using cgroup id for this:
  310. * this works better in sparse environments, where we have a lot of memcgs,
  311. * but only a few kmem-limited. Or also, if we have, for instance, 200
  312. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  313. * 200 entry array for that.
  314. *
  315. * The current size of the caches array is stored in memcg_nr_cache_ids. It
  316. * will double each time we have to increase it.
  317. */
  318. static DEFINE_IDA(memcg_cache_ida);
  319. int memcg_nr_cache_ids;
  320. /* Protects memcg_nr_cache_ids */
  321. static DECLARE_RWSEM(memcg_cache_ids_sem);
  322. void memcg_get_cache_ids(void)
  323. {
  324. down_read(&memcg_cache_ids_sem);
  325. }
  326. void memcg_put_cache_ids(void)
  327. {
  328. up_read(&memcg_cache_ids_sem);
  329. }
  330. /*
  331. * MIN_SIZE is different than 1, because we would like to avoid going through
  332. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  333. * cgroups is a reasonable guess. In the future, it could be a parameter or
  334. * tunable, but that is strictly not necessary.
  335. *
  336. * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
  337. * this constant directly from cgroup, but it is understandable that this is
  338. * better kept as an internal representation in cgroup.c. In any case, the
  339. * cgrp_id space is not getting any smaller, and we don't have to necessarily
  340. * increase ours as well if it increases.
  341. */
  342. #define MEMCG_CACHES_MIN_SIZE 4
  343. #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
  344. /*
  345. * A lot of the calls to the cache allocation functions are expected to be
  346. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  347. * conditional to this static branch, we'll have to allow modules that does
  348. * kmem_cache_alloc and the such to see this symbol as well
  349. */
  350. struct static_key memcg_kmem_enabled_key;
  351. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  352. #endif /* CONFIG_MEMCG_KMEM */
  353. static struct mem_cgroup_per_zone *
  354. mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
  355. {
  356. int nid = zone_to_nid(zone);
  357. int zid = zone_idx(zone);
  358. return &memcg->nodeinfo[nid]->zoneinfo[zid];
  359. }
  360. /**
  361. * mem_cgroup_css_from_page - css of the memcg associated with a page
  362. * @page: page of interest
  363. *
  364. * If memcg is bound to the default hierarchy, css of the memcg associated
  365. * with @page is returned. The returned css remains associated with @page
  366. * until it is released.
  367. *
  368. * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
  369. * is returned.
  370. *
  371. * XXX: The above description of behavior on the default hierarchy isn't
  372. * strictly true yet as replace_page_cache_page() can modify the
  373. * association before @page is released even on the default hierarchy;
  374. * however, the current and planned usages don't mix the the two functions
  375. * and replace_page_cache_page() will soon be updated to make the invariant
  376. * actually true.
  377. */
  378. struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
  379. {
  380. struct mem_cgroup *memcg;
  381. rcu_read_lock();
  382. memcg = page->mem_cgroup;
  383. if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
  384. memcg = root_mem_cgroup;
  385. rcu_read_unlock();
  386. return &memcg->css;
  387. }
  388. /**
  389. * page_cgroup_ino - return inode number of the memcg a page is charged to
  390. * @page: the page
  391. *
  392. * Look up the closest online ancestor of the memory cgroup @page is charged to
  393. * and return its inode number or 0 if @page is not charged to any cgroup. It
  394. * is safe to call this function without holding a reference to @page.
  395. *
  396. * Note, this function is inherently racy, because there is nothing to prevent
  397. * the cgroup inode from getting torn down and potentially reallocated a moment
  398. * after page_cgroup_ino() returns, so it only should be used by callers that
  399. * do not care (such as procfs interfaces).
  400. */
  401. ino_t page_cgroup_ino(struct page *page)
  402. {
  403. struct mem_cgroup *memcg;
  404. unsigned long ino = 0;
  405. rcu_read_lock();
  406. memcg = READ_ONCE(page->mem_cgroup);
  407. while (memcg && !(memcg->css.flags & CSS_ONLINE))
  408. memcg = parent_mem_cgroup(memcg);
  409. if (memcg)
  410. ino = cgroup_ino(memcg->css.cgroup);
  411. rcu_read_unlock();
  412. return ino;
  413. }
  414. static struct mem_cgroup_per_zone *
  415. mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
  416. {
  417. int nid = page_to_nid(page);
  418. int zid = page_zonenum(page);
  419. return &memcg->nodeinfo[nid]->zoneinfo[zid];
  420. }
  421. static struct mem_cgroup_tree_per_zone *
  422. soft_limit_tree_node_zone(int nid, int zid)
  423. {
  424. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  425. }
  426. static struct mem_cgroup_tree_per_zone *
  427. soft_limit_tree_from_page(struct page *page)
  428. {
  429. int nid = page_to_nid(page);
  430. int zid = page_zonenum(page);
  431. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  432. }
  433. static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
  434. struct mem_cgroup_tree_per_zone *mctz,
  435. unsigned long new_usage_in_excess)
  436. {
  437. struct rb_node **p = &mctz->rb_root.rb_node;
  438. struct rb_node *parent = NULL;
  439. struct mem_cgroup_per_zone *mz_node;
  440. if (mz->on_tree)
  441. return;
  442. mz->usage_in_excess = new_usage_in_excess;
  443. if (!mz->usage_in_excess)
  444. return;
  445. while (*p) {
  446. parent = *p;
  447. mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
  448. tree_node);
  449. if (mz->usage_in_excess < mz_node->usage_in_excess)
  450. p = &(*p)->rb_left;
  451. /*
  452. * We can't avoid mem cgroups that are over their soft
  453. * limit by the same amount
  454. */
  455. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  456. p = &(*p)->rb_right;
  457. }
  458. rb_link_node(&mz->tree_node, parent, p);
  459. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  460. mz->on_tree = true;
  461. }
  462. static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
  463. struct mem_cgroup_tree_per_zone *mctz)
  464. {
  465. if (!mz->on_tree)
  466. return;
  467. rb_erase(&mz->tree_node, &mctz->rb_root);
  468. mz->on_tree = false;
  469. }
  470. static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
  471. struct mem_cgroup_tree_per_zone *mctz)
  472. {
  473. unsigned long flags;
  474. spin_lock_irqsave(&mctz->lock, flags);
  475. __mem_cgroup_remove_exceeded(mz, mctz);
  476. spin_unlock_irqrestore(&mctz->lock, flags);
  477. }
  478. static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
  479. {
  480. unsigned long nr_pages = page_counter_read(&memcg->memory);
  481. unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
  482. unsigned long excess = 0;
  483. if (nr_pages > soft_limit)
  484. excess = nr_pages - soft_limit;
  485. return excess;
  486. }
  487. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  488. {
  489. unsigned long excess;
  490. struct mem_cgroup_per_zone *mz;
  491. struct mem_cgroup_tree_per_zone *mctz;
  492. mctz = soft_limit_tree_from_page(page);
  493. /*
  494. * Necessary to update all ancestors when hierarchy is used.
  495. * because their event counter is not touched.
  496. */
  497. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  498. mz = mem_cgroup_page_zoneinfo(memcg, page);
  499. excess = soft_limit_excess(memcg);
  500. /*
  501. * We have to update the tree if mz is on RB-tree or
  502. * mem is over its softlimit.
  503. */
  504. if (excess || mz->on_tree) {
  505. unsigned long flags;
  506. spin_lock_irqsave(&mctz->lock, flags);
  507. /* if on-tree, remove it */
  508. if (mz->on_tree)
  509. __mem_cgroup_remove_exceeded(mz, mctz);
  510. /*
  511. * Insert again. mz->usage_in_excess will be updated.
  512. * If excess is 0, no tree ops.
  513. */
  514. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  515. spin_unlock_irqrestore(&mctz->lock, flags);
  516. }
  517. }
  518. }
  519. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  520. {
  521. struct mem_cgroup_tree_per_zone *mctz;
  522. struct mem_cgroup_per_zone *mz;
  523. int nid, zid;
  524. for_each_node(nid) {
  525. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  526. mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
  527. mctz = soft_limit_tree_node_zone(nid, zid);
  528. mem_cgroup_remove_exceeded(mz, mctz);
  529. }
  530. }
  531. }
  532. static struct mem_cgroup_per_zone *
  533. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  534. {
  535. struct rb_node *rightmost = NULL;
  536. struct mem_cgroup_per_zone *mz;
  537. retry:
  538. mz = NULL;
  539. rightmost = rb_last(&mctz->rb_root);
  540. if (!rightmost)
  541. goto done; /* Nothing to reclaim from */
  542. mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
  543. /*
  544. * Remove the node now but someone else can add it back,
  545. * we will to add it back at the end of reclaim to its correct
  546. * position in the tree.
  547. */
  548. __mem_cgroup_remove_exceeded(mz, mctz);
  549. if (!soft_limit_excess(mz->memcg) ||
  550. !css_tryget_online(&mz->memcg->css))
  551. goto retry;
  552. done:
  553. return mz;
  554. }
  555. static struct mem_cgroup_per_zone *
  556. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  557. {
  558. struct mem_cgroup_per_zone *mz;
  559. spin_lock_irq(&mctz->lock);
  560. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  561. spin_unlock_irq(&mctz->lock);
  562. return mz;
  563. }
  564. /*
  565. * Return page count for single (non recursive) @memcg.
  566. *
  567. * Implementation Note: reading percpu statistics for memcg.
  568. *
  569. * Both of vmstat[] and percpu_counter has threshold and do periodic
  570. * synchronization to implement "quick" read. There are trade-off between
  571. * reading cost and precision of value. Then, we may have a chance to implement
  572. * a periodic synchronization of counter in memcg's counter.
  573. *
  574. * But this _read() function is used for user interface now. The user accounts
  575. * memory usage by memory cgroup and he _always_ requires exact value because
  576. * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  577. * have to visit all online cpus and make sum. So, for now, unnecessary
  578. * synchronization is not implemented. (just implemented for cpu hotplug)
  579. *
  580. * If there are kernel internal actions which can make use of some not-exact
  581. * value, and reading all cpu value can be performance bottleneck in some
  582. * common workload, threshold and synchronization as vmstat[] should be
  583. * implemented.
  584. */
  585. static unsigned long
  586. mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
  587. {
  588. long val = 0;
  589. int cpu;
  590. /* Per-cpu values can be negative, use a signed accumulator */
  591. for_each_possible_cpu(cpu)
  592. val += per_cpu(memcg->stat->count[idx], cpu);
  593. /*
  594. * Summing races with updates, so val may be negative. Avoid exposing
  595. * transient negative values.
  596. */
  597. if (val < 0)
  598. val = 0;
  599. return val;
  600. }
  601. static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  602. enum mem_cgroup_events_index idx)
  603. {
  604. unsigned long val = 0;
  605. int cpu;
  606. for_each_possible_cpu(cpu)
  607. val += per_cpu(memcg->stat->events[idx], cpu);
  608. return val;
  609. }
  610. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  611. struct page *page,
  612. int nr_pages)
  613. {
  614. /*
  615. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  616. * counted as CACHE even if it's on ANON LRU.
  617. */
  618. if (PageAnon(page))
  619. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  620. nr_pages);
  621. else
  622. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  623. nr_pages);
  624. if (PageTransHuge(page))
  625. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  626. nr_pages);
  627. /* pagein of a big page is an event. So, ignore page size */
  628. if (nr_pages > 0)
  629. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  630. else {
  631. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  632. nr_pages = -nr_pages; /* for event */
  633. }
  634. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  635. }
  636. static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  637. int nid,
  638. unsigned int lru_mask)
  639. {
  640. unsigned long nr = 0;
  641. int zid;
  642. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  643. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  644. struct mem_cgroup_per_zone *mz;
  645. enum lru_list lru;
  646. for_each_lru(lru) {
  647. if (!(BIT(lru) & lru_mask))
  648. continue;
  649. mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
  650. nr += mz->lru_size[lru];
  651. }
  652. }
  653. return nr;
  654. }
  655. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  656. unsigned int lru_mask)
  657. {
  658. unsigned long nr = 0;
  659. int nid;
  660. for_each_node_state(nid, N_MEMORY)
  661. nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  662. return nr;
  663. }
  664. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  665. enum mem_cgroup_events_target target)
  666. {
  667. unsigned long val, next;
  668. val = __this_cpu_read(memcg->stat->nr_page_events);
  669. next = __this_cpu_read(memcg->stat->targets[target]);
  670. /* from time_after() in jiffies.h */
  671. if ((long)next - (long)val < 0) {
  672. switch (target) {
  673. case MEM_CGROUP_TARGET_THRESH:
  674. next = val + THRESHOLDS_EVENTS_TARGET;
  675. break;
  676. case MEM_CGROUP_TARGET_SOFTLIMIT:
  677. next = val + SOFTLIMIT_EVENTS_TARGET;
  678. break;
  679. case MEM_CGROUP_TARGET_NUMAINFO:
  680. next = val + NUMAINFO_EVENTS_TARGET;
  681. break;
  682. default:
  683. break;
  684. }
  685. __this_cpu_write(memcg->stat->targets[target], next);
  686. return true;
  687. }
  688. return false;
  689. }
  690. /*
  691. * Check events in order.
  692. *
  693. */
  694. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  695. {
  696. /* threshold event is triggered in finer grain than soft limit */
  697. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  698. MEM_CGROUP_TARGET_THRESH))) {
  699. bool do_softlimit;
  700. bool do_numainfo __maybe_unused;
  701. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  702. MEM_CGROUP_TARGET_SOFTLIMIT);
  703. #if MAX_NUMNODES > 1
  704. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  705. MEM_CGROUP_TARGET_NUMAINFO);
  706. #endif
  707. mem_cgroup_threshold(memcg);
  708. if (unlikely(do_softlimit))
  709. mem_cgroup_update_tree(memcg, page);
  710. #if MAX_NUMNODES > 1
  711. if (unlikely(do_numainfo))
  712. atomic_inc(&memcg->numainfo_events);
  713. #endif
  714. }
  715. }
  716. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  717. {
  718. /*
  719. * mm_update_next_owner() may clear mm->owner to NULL
  720. * if it races with swapoff, page migration, etc.
  721. * So this can be called with p == NULL.
  722. */
  723. if (unlikely(!p))
  724. return NULL;
  725. return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
  726. }
  727. EXPORT_SYMBOL(mem_cgroup_from_task);
  728. static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
  729. {
  730. struct mem_cgroup *memcg = NULL;
  731. rcu_read_lock();
  732. do {
  733. /*
  734. * Page cache insertions can happen withou an
  735. * actual mm context, e.g. during disk probing
  736. * on boot, loopback IO, acct() writes etc.
  737. */
  738. if (unlikely(!mm))
  739. memcg = root_mem_cgroup;
  740. else {
  741. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  742. if (unlikely(!memcg))
  743. memcg = root_mem_cgroup;
  744. }
  745. } while (!css_tryget_online(&memcg->css));
  746. rcu_read_unlock();
  747. return memcg;
  748. }
  749. /**
  750. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  751. * @root: hierarchy root
  752. * @prev: previously returned memcg, NULL on first invocation
  753. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  754. *
  755. * Returns references to children of the hierarchy below @root, or
  756. * @root itself, or %NULL after a full round-trip.
  757. *
  758. * Caller must pass the return value in @prev on subsequent
  759. * invocations for reference counting, or use mem_cgroup_iter_break()
  760. * to cancel a hierarchy walk before the round-trip is complete.
  761. *
  762. * Reclaimers can specify a zone and a priority level in @reclaim to
  763. * divide up the memcgs in the hierarchy among all concurrent
  764. * reclaimers operating on the same zone and priority.
  765. */
  766. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  767. struct mem_cgroup *prev,
  768. struct mem_cgroup_reclaim_cookie *reclaim)
  769. {
  770. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  771. struct cgroup_subsys_state *css = NULL;
  772. struct mem_cgroup *memcg = NULL;
  773. struct mem_cgroup *pos = NULL;
  774. if (mem_cgroup_disabled())
  775. return NULL;
  776. if (!root)
  777. root = root_mem_cgroup;
  778. if (prev && !reclaim)
  779. pos = prev;
  780. if (!root->use_hierarchy && root != root_mem_cgroup) {
  781. if (prev)
  782. goto out;
  783. return root;
  784. }
  785. rcu_read_lock();
  786. if (reclaim) {
  787. struct mem_cgroup_per_zone *mz;
  788. mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
  789. iter = &mz->iter[reclaim->priority];
  790. if (prev && reclaim->generation != iter->generation)
  791. goto out_unlock;
  792. do {
  793. pos = READ_ONCE(iter->position);
  794. /*
  795. * A racing update may change the position and
  796. * put the last reference, hence css_tryget(),
  797. * or retry to see the updated position.
  798. */
  799. } while (pos && !css_tryget(&pos->css));
  800. }
  801. if (pos)
  802. css = &pos->css;
  803. for (;;) {
  804. css = css_next_descendant_pre(css, &root->css);
  805. if (!css) {
  806. /*
  807. * Reclaimers share the hierarchy walk, and a
  808. * new one might jump in right at the end of
  809. * the hierarchy - make sure they see at least
  810. * one group and restart from the beginning.
  811. */
  812. if (!prev)
  813. continue;
  814. break;
  815. }
  816. /*
  817. * Verify the css and acquire a reference. The root
  818. * is provided by the caller, so we know it's alive
  819. * and kicking, and don't take an extra reference.
  820. */
  821. memcg = mem_cgroup_from_css(css);
  822. if (css == &root->css)
  823. break;
  824. if (css_tryget(css)) {
  825. /*
  826. * Make sure the memcg is initialized:
  827. * mem_cgroup_css_online() orders the the
  828. * initialization against setting the flag.
  829. */
  830. if (smp_load_acquire(&memcg->initialized))
  831. break;
  832. css_put(css);
  833. }
  834. memcg = NULL;
  835. }
  836. if (reclaim) {
  837. if (cmpxchg(&iter->position, pos, memcg) == pos) {
  838. if (memcg)
  839. css_get(&memcg->css);
  840. if (pos)
  841. css_put(&pos->css);
  842. }
  843. /*
  844. * pairs with css_tryget when dereferencing iter->position
  845. * above.
  846. */
  847. if (pos)
  848. css_put(&pos->css);
  849. if (!memcg)
  850. iter->generation++;
  851. else if (!prev)
  852. reclaim->generation = iter->generation;
  853. }
  854. out_unlock:
  855. rcu_read_unlock();
  856. out:
  857. if (prev && prev != root)
  858. css_put(&prev->css);
  859. return memcg;
  860. }
  861. /**
  862. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  863. * @root: hierarchy root
  864. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  865. */
  866. void mem_cgroup_iter_break(struct mem_cgroup *root,
  867. struct mem_cgroup *prev)
  868. {
  869. if (!root)
  870. root = root_mem_cgroup;
  871. if (prev && prev != root)
  872. css_put(&prev->css);
  873. }
  874. /*
  875. * Iteration constructs for visiting all cgroups (under a tree). If
  876. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  877. * be used for reference counting.
  878. */
  879. #define for_each_mem_cgroup_tree(iter, root) \
  880. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  881. iter != NULL; \
  882. iter = mem_cgroup_iter(root, iter, NULL))
  883. #define for_each_mem_cgroup(iter) \
  884. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  885. iter != NULL; \
  886. iter = mem_cgroup_iter(NULL, iter, NULL))
  887. /**
  888. * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
  889. * @zone: zone of the wanted lruvec
  890. * @memcg: memcg of the wanted lruvec
  891. *
  892. * Returns the lru list vector holding pages for the given @zone and
  893. * @mem. This can be the global zone lruvec, if the memory controller
  894. * is disabled.
  895. */
  896. struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
  897. struct mem_cgroup *memcg)
  898. {
  899. struct mem_cgroup_per_zone *mz;
  900. struct lruvec *lruvec;
  901. if (mem_cgroup_disabled()) {
  902. lruvec = &zone->lruvec;
  903. goto out;
  904. }
  905. mz = mem_cgroup_zone_zoneinfo(memcg, zone);
  906. lruvec = &mz->lruvec;
  907. out:
  908. /*
  909. * Since a node can be onlined after the mem_cgroup was created,
  910. * we have to be prepared to initialize lruvec->zone here;
  911. * and if offlined then reonlined, we need to reinitialize it.
  912. */
  913. if (unlikely(lruvec->zone != zone))
  914. lruvec->zone = zone;
  915. return lruvec;
  916. }
  917. /**
  918. * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
  919. * @page: the page
  920. * @zone: zone of the page
  921. *
  922. * This function is only safe when following the LRU page isolation
  923. * and putback protocol: the LRU lock must be held, and the page must
  924. * either be PageLRU() or the caller must have isolated/allocated it.
  925. */
  926. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
  927. {
  928. struct mem_cgroup_per_zone *mz;
  929. struct mem_cgroup *memcg;
  930. struct lruvec *lruvec;
  931. if (mem_cgroup_disabled()) {
  932. lruvec = &zone->lruvec;
  933. goto out;
  934. }
  935. memcg = page->mem_cgroup;
  936. /*
  937. * Swapcache readahead pages are added to the LRU - and
  938. * possibly migrated - before they are charged.
  939. */
  940. if (!memcg)
  941. memcg = root_mem_cgroup;
  942. mz = mem_cgroup_page_zoneinfo(memcg, page);
  943. lruvec = &mz->lruvec;
  944. out:
  945. /*
  946. * Since a node can be onlined after the mem_cgroup was created,
  947. * we have to be prepared to initialize lruvec->zone here;
  948. * and if offlined then reonlined, we need to reinitialize it.
  949. */
  950. if (unlikely(lruvec->zone != zone))
  951. lruvec->zone = zone;
  952. return lruvec;
  953. }
  954. /**
  955. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  956. * @lruvec: mem_cgroup per zone lru vector
  957. * @lru: index of lru list the page is sitting on
  958. * @nr_pages: positive when adding or negative when removing
  959. *
  960. * This function must be called when a page is added to or removed from an
  961. * lru list.
  962. */
  963. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  964. int nr_pages)
  965. {
  966. struct mem_cgroup_per_zone *mz;
  967. unsigned long *lru_size;
  968. if (mem_cgroup_disabled())
  969. return;
  970. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  971. lru_size = mz->lru_size + lru;
  972. *lru_size += nr_pages;
  973. VM_BUG_ON((long)(*lru_size) < 0);
  974. }
  975. bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
  976. {
  977. struct mem_cgroup *task_memcg;
  978. struct task_struct *p;
  979. bool ret;
  980. p = find_lock_task_mm(task);
  981. if (p) {
  982. task_memcg = get_mem_cgroup_from_mm(p->mm);
  983. task_unlock(p);
  984. } else {
  985. /*
  986. * All threads may have already detached their mm's, but the oom
  987. * killer still needs to detect if they have already been oom
  988. * killed to prevent needlessly killing additional tasks.
  989. */
  990. rcu_read_lock();
  991. task_memcg = mem_cgroup_from_task(task);
  992. css_get(&task_memcg->css);
  993. rcu_read_unlock();
  994. }
  995. ret = mem_cgroup_is_descendant(task_memcg, memcg);
  996. css_put(&task_memcg->css);
  997. return ret;
  998. }
  999. #define mem_cgroup_from_counter(counter, member) \
  1000. container_of(counter, struct mem_cgroup, member)
  1001. /**
  1002. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  1003. * @memcg: the memory cgroup
  1004. *
  1005. * Returns the maximum amount of memory @mem can be charged with, in
  1006. * pages.
  1007. */
  1008. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  1009. {
  1010. unsigned long margin = 0;
  1011. unsigned long count;
  1012. unsigned long limit;
  1013. count = page_counter_read(&memcg->memory);
  1014. limit = READ_ONCE(memcg->memory.limit);
  1015. if (count < limit)
  1016. margin = limit - count;
  1017. if (do_swap_account) {
  1018. count = page_counter_read(&memcg->memsw);
  1019. limit = READ_ONCE(memcg->memsw.limit);
  1020. if (count <= limit)
  1021. margin = min(margin, limit - count);
  1022. }
  1023. return margin;
  1024. }
  1025. /*
  1026. * A routine for checking "mem" is under move_account() or not.
  1027. *
  1028. * Checking a cgroup is mc.from or mc.to or under hierarchy of
  1029. * moving cgroups. This is for waiting at high-memory pressure
  1030. * caused by "move".
  1031. */
  1032. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  1033. {
  1034. struct mem_cgroup *from;
  1035. struct mem_cgroup *to;
  1036. bool ret = false;
  1037. /*
  1038. * Unlike task_move routines, we access mc.to, mc.from not under
  1039. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  1040. */
  1041. spin_lock(&mc.lock);
  1042. from = mc.from;
  1043. to = mc.to;
  1044. if (!from)
  1045. goto unlock;
  1046. ret = mem_cgroup_is_descendant(from, memcg) ||
  1047. mem_cgroup_is_descendant(to, memcg);
  1048. unlock:
  1049. spin_unlock(&mc.lock);
  1050. return ret;
  1051. }
  1052. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  1053. {
  1054. if (mc.moving_task && current != mc.moving_task) {
  1055. if (mem_cgroup_under_move(memcg)) {
  1056. DEFINE_WAIT(wait);
  1057. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  1058. /* moving charge context might have finished. */
  1059. if (mc.moving_task)
  1060. schedule();
  1061. finish_wait(&mc.waitq, &wait);
  1062. return true;
  1063. }
  1064. }
  1065. return false;
  1066. }
  1067. #define K(x) ((x) << (PAGE_SHIFT-10))
  1068. /**
  1069. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  1070. * @memcg: The memory cgroup that went over limit
  1071. * @p: Task that is going to be killed
  1072. *
  1073. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  1074. * enabled
  1075. */
  1076. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  1077. {
  1078. /* oom_info_lock ensures that parallel ooms do not interleave */
  1079. static DEFINE_MUTEX(oom_info_lock);
  1080. struct mem_cgroup *iter;
  1081. unsigned int i;
  1082. mutex_lock(&oom_info_lock);
  1083. rcu_read_lock();
  1084. if (p) {
  1085. pr_info("Task in ");
  1086. pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
  1087. pr_cont(" killed as a result of limit of ");
  1088. } else {
  1089. pr_info("Memory limit reached of cgroup ");
  1090. }
  1091. pr_cont_cgroup_path(memcg->css.cgroup);
  1092. pr_cont("\n");
  1093. rcu_read_unlock();
  1094. pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
  1095. K((u64)page_counter_read(&memcg->memory)),
  1096. K((u64)memcg->memory.limit), memcg->memory.failcnt);
  1097. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
  1098. K((u64)page_counter_read(&memcg->memsw)),
  1099. K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
  1100. pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
  1101. K((u64)page_counter_read(&memcg->kmem)),
  1102. K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
  1103. for_each_mem_cgroup_tree(iter, memcg) {
  1104. pr_info("Memory cgroup stats for ");
  1105. pr_cont_cgroup_path(iter->css.cgroup);
  1106. pr_cont(":");
  1107. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  1108. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  1109. continue;
  1110. pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
  1111. K(mem_cgroup_read_stat(iter, i)));
  1112. }
  1113. for (i = 0; i < NR_LRU_LISTS; i++)
  1114. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1115. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1116. pr_cont("\n");
  1117. }
  1118. mutex_unlock(&oom_info_lock);
  1119. }
  1120. /*
  1121. * This function returns the number of memcg under hierarchy tree. Returns
  1122. * 1(self count) if no children.
  1123. */
  1124. static int mem_cgroup_count_children(struct mem_cgroup *memcg)
  1125. {
  1126. int num = 0;
  1127. struct mem_cgroup *iter;
  1128. for_each_mem_cgroup_tree(iter, memcg)
  1129. num++;
  1130. return num;
  1131. }
  1132. /*
  1133. * Return the memory (and swap, if configured) limit for a memcg.
  1134. */
  1135. static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1136. {
  1137. unsigned long limit;
  1138. limit = memcg->memory.limit;
  1139. if (mem_cgroup_swappiness(memcg)) {
  1140. unsigned long memsw_limit;
  1141. memsw_limit = memcg->memsw.limit;
  1142. limit = min(limit + total_swap_pages, memsw_limit);
  1143. }
  1144. return limit;
  1145. }
  1146. static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1147. int order)
  1148. {
  1149. struct oom_control oc = {
  1150. .zonelist = NULL,
  1151. .nodemask = NULL,
  1152. .gfp_mask = gfp_mask,
  1153. .order = order,
  1154. };
  1155. struct mem_cgroup *iter;
  1156. unsigned long chosen_points = 0;
  1157. unsigned long totalpages;
  1158. unsigned int points = 0;
  1159. struct task_struct *chosen = NULL;
  1160. mutex_lock(&oom_lock);
  1161. /*
  1162. * If current has a pending SIGKILL or is exiting, then automatically
  1163. * select it. The goal is to allow it to allocate so that it may
  1164. * quickly exit and free its memory.
  1165. */
  1166. if (fatal_signal_pending(current) || task_will_free_mem(current)) {
  1167. mark_oom_victim(current);
  1168. goto unlock;
  1169. }
  1170. check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
  1171. totalpages = mem_cgroup_get_limit(memcg) ? : 1;
  1172. for_each_mem_cgroup_tree(iter, memcg) {
  1173. struct css_task_iter it;
  1174. struct task_struct *task;
  1175. css_task_iter_start(&iter->css, &it);
  1176. while ((task = css_task_iter_next(&it))) {
  1177. switch (oom_scan_process_thread(&oc, task, totalpages)) {
  1178. case OOM_SCAN_SELECT:
  1179. if (chosen)
  1180. put_task_struct(chosen);
  1181. chosen = task;
  1182. chosen_points = ULONG_MAX;
  1183. get_task_struct(chosen);
  1184. /* fall through */
  1185. case OOM_SCAN_CONTINUE:
  1186. continue;
  1187. case OOM_SCAN_ABORT:
  1188. css_task_iter_end(&it);
  1189. mem_cgroup_iter_break(memcg, iter);
  1190. if (chosen)
  1191. put_task_struct(chosen);
  1192. goto unlock;
  1193. case OOM_SCAN_OK:
  1194. break;
  1195. };
  1196. points = oom_badness(task, memcg, NULL, totalpages);
  1197. if (!points || points < chosen_points)
  1198. continue;
  1199. /* Prefer thread group leaders for display purposes */
  1200. if (points == chosen_points &&
  1201. thread_group_leader(chosen))
  1202. continue;
  1203. if (chosen)
  1204. put_task_struct(chosen);
  1205. chosen = task;
  1206. chosen_points = points;
  1207. get_task_struct(chosen);
  1208. }
  1209. css_task_iter_end(&it);
  1210. }
  1211. if (chosen) {
  1212. points = chosen_points * 1000 / totalpages;
  1213. oom_kill_process(&oc, chosen, points, totalpages, memcg,
  1214. "Memory cgroup out of memory");
  1215. }
  1216. unlock:
  1217. mutex_unlock(&oom_lock);
  1218. }
  1219. #if MAX_NUMNODES > 1
  1220. /**
  1221. * test_mem_cgroup_node_reclaimable
  1222. * @memcg: the target memcg
  1223. * @nid: the node ID to be checked.
  1224. * @noswap : specify true here if the user wants flle only information.
  1225. *
  1226. * This function returns whether the specified memcg contains any
  1227. * reclaimable pages on a node. Returns true if there are any reclaimable
  1228. * pages in the node.
  1229. */
  1230. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1231. int nid, bool noswap)
  1232. {
  1233. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1234. return true;
  1235. if (noswap || !total_swap_pages)
  1236. return false;
  1237. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1238. return true;
  1239. return false;
  1240. }
  1241. /*
  1242. * Always updating the nodemask is not very good - even if we have an empty
  1243. * list or the wrong list here, we can start from some node and traverse all
  1244. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1245. *
  1246. */
  1247. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1248. {
  1249. int nid;
  1250. /*
  1251. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1252. * pagein/pageout changes since the last update.
  1253. */
  1254. if (!atomic_read(&memcg->numainfo_events))
  1255. return;
  1256. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1257. return;
  1258. /* make a nodemask where this memcg uses memory from */
  1259. memcg->scan_nodes = node_states[N_MEMORY];
  1260. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1261. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1262. node_clear(nid, memcg->scan_nodes);
  1263. }
  1264. atomic_set(&memcg->numainfo_events, 0);
  1265. atomic_set(&memcg->numainfo_updating, 0);
  1266. }
  1267. /*
  1268. * Selecting a node where we start reclaim from. Because what we need is just
  1269. * reducing usage counter, start from anywhere is O,K. Considering
  1270. * memory reclaim from current node, there are pros. and cons.
  1271. *
  1272. * Freeing memory from current node means freeing memory from a node which
  1273. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1274. * hit limits, it will see a contention on a node. But freeing from remote
  1275. * node means more costs for memory reclaim because of memory latency.
  1276. *
  1277. * Now, we use round-robin. Better algorithm is welcomed.
  1278. */
  1279. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1280. {
  1281. int node;
  1282. mem_cgroup_may_update_nodemask(memcg);
  1283. node = memcg->last_scanned_node;
  1284. node = next_node(node, memcg->scan_nodes);
  1285. if (node == MAX_NUMNODES)
  1286. node = first_node(memcg->scan_nodes);
  1287. /*
  1288. * We call this when we hit limit, not when pages are added to LRU.
  1289. * No LRU may hold pages because all pages are UNEVICTABLE or
  1290. * memcg is too small and all pages are not on LRU. In that case,
  1291. * we use curret node.
  1292. */
  1293. if (unlikely(node == MAX_NUMNODES))
  1294. node = numa_node_id();
  1295. memcg->last_scanned_node = node;
  1296. return node;
  1297. }
  1298. #else
  1299. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1300. {
  1301. return 0;
  1302. }
  1303. #endif
  1304. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1305. struct zone *zone,
  1306. gfp_t gfp_mask,
  1307. unsigned long *total_scanned)
  1308. {
  1309. struct mem_cgroup *victim = NULL;
  1310. int total = 0;
  1311. int loop = 0;
  1312. unsigned long excess;
  1313. unsigned long nr_scanned;
  1314. struct mem_cgroup_reclaim_cookie reclaim = {
  1315. .zone = zone,
  1316. .priority = 0,
  1317. };
  1318. excess = soft_limit_excess(root_memcg);
  1319. while (1) {
  1320. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1321. if (!victim) {
  1322. loop++;
  1323. if (loop >= 2) {
  1324. /*
  1325. * If we have not been able to reclaim
  1326. * anything, it might because there are
  1327. * no reclaimable pages under this hierarchy
  1328. */
  1329. if (!total)
  1330. break;
  1331. /*
  1332. * We want to do more targeted reclaim.
  1333. * excess >> 2 is not to excessive so as to
  1334. * reclaim too much, nor too less that we keep
  1335. * coming back to reclaim from this cgroup
  1336. */
  1337. if (total >= (excess >> 2) ||
  1338. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1339. break;
  1340. }
  1341. continue;
  1342. }
  1343. total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
  1344. zone, &nr_scanned);
  1345. *total_scanned += nr_scanned;
  1346. if (!soft_limit_excess(root_memcg))
  1347. break;
  1348. }
  1349. mem_cgroup_iter_break(root_memcg, victim);
  1350. return total;
  1351. }
  1352. #ifdef CONFIG_LOCKDEP
  1353. static struct lockdep_map memcg_oom_lock_dep_map = {
  1354. .name = "memcg_oom_lock",
  1355. };
  1356. #endif
  1357. static DEFINE_SPINLOCK(memcg_oom_lock);
  1358. /*
  1359. * Check OOM-Killer is already running under our hierarchy.
  1360. * If someone is running, return false.
  1361. */
  1362. static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
  1363. {
  1364. struct mem_cgroup *iter, *failed = NULL;
  1365. spin_lock(&memcg_oom_lock);
  1366. for_each_mem_cgroup_tree(iter, memcg) {
  1367. if (iter->oom_lock) {
  1368. /*
  1369. * this subtree of our hierarchy is already locked
  1370. * so we cannot give a lock.
  1371. */
  1372. failed = iter;
  1373. mem_cgroup_iter_break(memcg, iter);
  1374. break;
  1375. } else
  1376. iter->oom_lock = true;
  1377. }
  1378. if (failed) {
  1379. /*
  1380. * OK, we failed to lock the whole subtree so we have
  1381. * to clean up what we set up to the failing subtree
  1382. */
  1383. for_each_mem_cgroup_tree(iter, memcg) {
  1384. if (iter == failed) {
  1385. mem_cgroup_iter_break(memcg, iter);
  1386. break;
  1387. }
  1388. iter->oom_lock = false;
  1389. }
  1390. } else
  1391. mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
  1392. spin_unlock(&memcg_oom_lock);
  1393. return !failed;
  1394. }
  1395. static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1396. {
  1397. struct mem_cgroup *iter;
  1398. spin_lock(&memcg_oom_lock);
  1399. mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
  1400. for_each_mem_cgroup_tree(iter, memcg)
  1401. iter->oom_lock = false;
  1402. spin_unlock(&memcg_oom_lock);
  1403. }
  1404. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1405. {
  1406. struct mem_cgroup *iter;
  1407. spin_lock(&memcg_oom_lock);
  1408. for_each_mem_cgroup_tree(iter, memcg)
  1409. iter->under_oom++;
  1410. spin_unlock(&memcg_oom_lock);
  1411. }
  1412. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1413. {
  1414. struct mem_cgroup *iter;
  1415. /*
  1416. * When a new child is created while the hierarchy is under oom,
  1417. * mem_cgroup_oom_lock() may not be called. Watch for underflow.
  1418. */
  1419. spin_lock(&memcg_oom_lock);
  1420. for_each_mem_cgroup_tree(iter, memcg)
  1421. if (iter->under_oom > 0)
  1422. iter->under_oom--;
  1423. spin_unlock(&memcg_oom_lock);
  1424. }
  1425. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1426. struct oom_wait_info {
  1427. struct mem_cgroup *memcg;
  1428. wait_queue_t wait;
  1429. };
  1430. static int memcg_oom_wake_function(wait_queue_t *wait,
  1431. unsigned mode, int sync, void *arg)
  1432. {
  1433. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1434. struct mem_cgroup *oom_wait_memcg;
  1435. struct oom_wait_info *oom_wait_info;
  1436. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1437. oom_wait_memcg = oom_wait_info->memcg;
  1438. if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
  1439. !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
  1440. return 0;
  1441. return autoremove_wake_function(wait, mode, sync, arg);
  1442. }
  1443. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1444. {
  1445. /*
  1446. * For the following lockless ->under_oom test, the only required
  1447. * guarantee is that it must see the state asserted by an OOM when
  1448. * this function is called as a result of userland actions
  1449. * triggered by the notification of the OOM. This is trivially
  1450. * achieved by invoking mem_cgroup_mark_under_oom() before
  1451. * triggering notification.
  1452. */
  1453. if (memcg && memcg->under_oom)
  1454. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1455. }
  1456. static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
  1457. {
  1458. if (!current->memcg_oom.may_oom)
  1459. return;
  1460. /*
  1461. * We are in the middle of the charge context here, so we
  1462. * don't want to block when potentially sitting on a callstack
  1463. * that holds all kinds of filesystem and mm locks.
  1464. *
  1465. * Also, the caller may handle a failed allocation gracefully
  1466. * (like optional page cache readahead) and so an OOM killer
  1467. * invocation might not even be necessary.
  1468. *
  1469. * That's why we don't do anything here except remember the
  1470. * OOM context and then deal with it at the end of the page
  1471. * fault when the stack is unwound, the locks are released,
  1472. * and when we know whether the fault was overall successful.
  1473. */
  1474. css_get(&memcg->css);
  1475. current->memcg_oom.memcg = memcg;
  1476. current->memcg_oom.gfp_mask = mask;
  1477. current->memcg_oom.order = order;
  1478. }
  1479. /**
  1480. * mem_cgroup_oom_synchronize - complete memcg OOM handling
  1481. * @handle: actually kill/wait or just clean up the OOM state
  1482. *
  1483. * This has to be called at the end of a page fault if the memcg OOM
  1484. * handler was enabled.
  1485. *
  1486. * Memcg supports userspace OOM handling where failed allocations must
  1487. * sleep on a waitqueue until the userspace task resolves the
  1488. * situation. Sleeping directly in the charge context with all kinds
  1489. * of locks held is not a good idea, instead we remember an OOM state
  1490. * in the task and mem_cgroup_oom_synchronize() has to be called at
  1491. * the end of the page fault to complete the OOM handling.
  1492. *
  1493. * Returns %true if an ongoing memcg OOM situation was detected and
  1494. * completed, %false otherwise.
  1495. */
  1496. bool mem_cgroup_oom_synchronize(bool handle)
  1497. {
  1498. struct mem_cgroup *memcg = current->memcg_oom.memcg;
  1499. struct oom_wait_info owait;
  1500. bool locked;
  1501. /* OOM is global, do not handle */
  1502. if (!memcg)
  1503. return false;
  1504. if (!handle || oom_killer_disabled)
  1505. goto cleanup;
  1506. owait.memcg = memcg;
  1507. owait.wait.flags = 0;
  1508. owait.wait.func = memcg_oom_wake_function;
  1509. owait.wait.private = current;
  1510. INIT_LIST_HEAD(&owait.wait.task_list);
  1511. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1512. mem_cgroup_mark_under_oom(memcg);
  1513. locked = mem_cgroup_oom_trylock(memcg);
  1514. if (locked)
  1515. mem_cgroup_oom_notify(memcg);
  1516. if (locked && !memcg->oom_kill_disable) {
  1517. mem_cgroup_unmark_under_oom(memcg);
  1518. finish_wait(&memcg_oom_waitq, &owait.wait);
  1519. mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
  1520. current->memcg_oom.order);
  1521. } else {
  1522. schedule();
  1523. mem_cgroup_unmark_under_oom(memcg);
  1524. finish_wait(&memcg_oom_waitq, &owait.wait);
  1525. }
  1526. if (locked) {
  1527. mem_cgroup_oom_unlock(memcg);
  1528. /*
  1529. * There is no guarantee that an OOM-lock contender
  1530. * sees the wakeups triggered by the OOM kill
  1531. * uncharges. Wake any sleepers explicitely.
  1532. */
  1533. memcg_oom_recover(memcg);
  1534. }
  1535. cleanup:
  1536. current->memcg_oom.memcg = NULL;
  1537. css_put(&memcg->css);
  1538. return true;
  1539. }
  1540. /**
  1541. * mem_cgroup_begin_page_stat - begin a page state statistics transaction
  1542. * @page: page that is going to change accounted state
  1543. *
  1544. * This function must mark the beginning of an accounted page state
  1545. * change to prevent double accounting when the page is concurrently
  1546. * being moved to another memcg:
  1547. *
  1548. * memcg = mem_cgroup_begin_page_stat(page);
  1549. * if (TestClearPageState(page))
  1550. * mem_cgroup_update_page_stat(memcg, state, -1);
  1551. * mem_cgroup_end_page_stat(memcg);
  1552. */
  1553. struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
  1554. {
  1555. struct mem_cgroup *memcg;
  1556. unsigned long flags;
  1557. /*
  1558. * The RCU lock is held throughout the transaction. The fast
  1559. * path can get away without acquiring the memcg->move_lock
  1560. * because page moving starts with an RCU grace period.
  1561. *
  1562. * The RCU lock also protects the memcg from being freed when
  1563. * the page state that is going to change is the only thing
  1564. * preventing the page from being uncharged.
  1565. * E.g. end-writeback clearing PageWriteback(), which allows
  1566. * migration to go ahead and uncharge the page before the
  1567. * account transaction might be complete.
  1568. */
  1569. rcu_read_lock();
  1570. if (mem_cgroup_disabled())
  1571. return NULL;
  1572. again:
  1573. memcg = page->mem_cgroup;
  1574. if (unlikely(!memcg))
  1575. return NULL;
  1576. if (atomic_read(&memcg->moving_account) <= 0)
  1577. return memcg;
  1578. spin_lock_irqsave(&memcg->move_lock, flags);
  1579. if (memcg != page->mem_cgroup) {
  1580. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1581. goto again;
  1582. }
  1583. /*
  1584. * When charge migration first begins, we can have locked and
  1585. * unlocked page stat updates happening concurrently. Track
  1586. * the task who has the lock for mem_cgroup_end_page_stat().
  1587. */
  1588. memcg->move_lock_task = current;
  1589. memcg->move_lock_flags = flags;
  1590. return memcg;
  1591. }
  1592. EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
  1593. /**
  1594. * mem_cgroup_end_page_stat - finish a page state statistics transaction
  1595. * @memcg: the memcg that was accounted against
  1596. */
  1597. void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
  1598. {
  1599. if (memcg && memcg->move_lock_task == current) {
  1600. unsigned long flags = memcg->move_lock_flags;
  1601. memcg->move_lock_task = NULL;
  1602. memcg->move_lock_flags = 0;
  1603. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1604. }
  1605. rcu_read_unlock();
  1606. }
  1607. EXPORT_SYMBOL(mem_cgroup_end_page_stat);
  1608. /*
  1609. * size of first charge trial. "32" comes from vmscan.c's magic value.
  1610. * TODO: maybe necessary to use big numbers in big irons.
  1611. */
  1612. #define CHARGE_BATCH 32U
  1613. struct memcg_stock_pcp {
  1614. struct mem_cgroup *cached; /* this never be root cgroup */
  1615. unsigned int nr_pages;
  1616. struct work_struct work;
  1617. unsigned long flags;
  1618. #define FLUSHING_CACHED_CHARGE 0
  1619. };
  1620. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1621. static DEFINE_MUTEX(percpu_charge_mutex);
  1622. /**
  1623. * consume_stock: Try to consume stocked charge on this cpu.
  1624. * @memcg: memcg to consume from.
  1625. * @nr_pages: how many pages to charge.
  1626. *
  1627. * The charges will only happen if @memcg matches the current cpu's memcg
  1628. * stock, and at least @nr_pages are available in that stock. Failure to
  1629. * service an allocation will refill the stock.
  1630. *
  1631. * returns true if successful, false otherwise.
  1632. */
  1633. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1634. {
  1635. struct memcg_stock_pcp *stock;
  1636. bool ret = false;
  1637. if (nr_pages > CHARGE_BATCH)
  1638. return ret;
  1639. stock = &get_cpu_var(memcg_stock);
  1640. if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
  1641. stock->nr_pages -= nr_pages;
  1642. ret = true;
  1643. }
  1644. put_cpu_var(memcg_stock);
  1645. return ret;
  1646. }
  1647. /*
  1648. * Returns stocks cached in percpu and reset cached information.
  1649. */
  1650. static void drain_stock(struct memcg_stock_pcp *stock)
  1651. {
  1652. struct mem_cgroup *old = stock->cached;
  1653. if (stock->nr_pages) {
  1654. page_counter_uncharge(&old->memory, stock->nr_pages);
  1655. if (do_swap_account)
  1656. page_counter_uncharge(&old->memsw, stock->nr_pages);
  1657. css_put_many(&old->css, stock->nr_pages);
  1658. stock->nr_pages = 0;
  1659. }
  1660. stock->cached = NULL;
  1661. }
  1662. /*
  1663. * This must be called under preempt disabled or must be called by
  1664. * a thread which is pinned to local cpu.
  1665. */
  1666. static void drain_local_stock(struct work_struct *dummy)
  1667. {
  1668. struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
  1669. drain_stock(stock);
  1670. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  1671. }
  1672. /*
  1673. * Cache charges(val) to local per_cpu area.
  1674. * This will be consumed by consume_stock() function, later.
  1675. */
  1676. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1677. {
  1678. struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
  1679. if (stock->cached != memcg) { /* reset if necessary */
  1680. drain_stock(stock);
  1681. stock->cached = memcg;
  1682. }
  1683. stock->nr_pages += nr_pages;
  1684. put_cpu_var(memcg_stock);
  1685. }
  1686. /*
  1687. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  1688. * of the hierarchy under it.
  1689. */
  1690. static void drain_all_stock(struct mem_cgroup *root_memcg)
  1691. {
  1692. int cpu, curcpu;
  1693. /* If someone's already draining, avoid adding running more workers. */
  1694. if (!mutex_trylock(&percpu_charge_mutex))
  1695. return;
  1696. /* Notify other cpus that system-wide "drain" is running */
  1697. get_online_cpus();
  1698. curcpu = get_cpu();
  1699. for_each_online_cpu(cpu) {
  1700. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1701. struct mem_cgroup *memcg;
  1702. memcg = stock->cached;
  1703. if (!memcg || !stock->nr_pages)
  1704. continue;
  1705. if (!mem_cgroup_is_descendant(memcg, root_memcg))
  1706. continue;
  1707. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  1708. if (cpu == curcpu)
  1709. drain_local_stock(&stock->work);
  1710. else
  1711. schedule_work_on(cpu, &stock->work);
  1712. }
  1713. }
  1714. put_cpu();
  1715. put_online_cpus();
  1716. mutex_unlock(&percpu_charge_mutex);
  1717. }
  1718. static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
  1719. unsigned long action,
  1720. void *hcpu)
  1721. {
  1722. int cpu = (unsigned long)hcpu;
  1723. struct memcg_stock_pcp *stock;
  1724. if (action == CPU_ONLINE)
  1725. return NOTIFY_OK;
  1726. if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
  1727. return NOTIFY_OK;
  1728. stock = &per_cpu(memcg_stock, cpu);
  1729. drain_stock(stock);
  1730. return NOTIFY_OK;
  1731. }
  1732. static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1733. unsigned int nr_pages)
  1734. {
  1735. unsigned int batch = max(CHARGE_BATCH, nr_pages);
  1736. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1737. struct mem_cgroup *mem_over_limit;
  1738. struct page_counter *counter;
  1739. unsigned long nr_reclaimed;
  1740. bool may_swap = true;
  1741. bool drained = false;
  1742. int ret = 0;
  1743. if (mem_cgroup_is_root(memcg))
  1744. goto done;
  1745. retry:
  1746. if (consume_stock(memcg, nr_pages))
  1747. goto done;
  1748. if (!do_swap_account ||
  1749. !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
  1750. if (!page_counter_try_charge(&memcg->memory, batch, &counter))
  1751. goto done_restock;
  1752. if (do_swap_account)
  1753. page_counter_uncharge(&memcg->memsw, batch);
  1754. mem_over_limit = mem_cgroup_from_counter(counter, memory);
  1755. } else {
  1756. mem_over_limit = mem_cgroup_from_counter(counter, memsw);
  1757. may_swap = false;
  1758. }
  1759. if (batch > nr_pages) {
  1760. batch = nr_pages;
  1761. goto retry;
  1762. }
  1763. /*
  1764. * Unlike in global OOM situations, memcg is not in a physical
  1765. * memory shortage. Allow dying and OOM-killed tasks to
  1766. * bypass the last charges so that they can exit quickly and
  1767. * free their memory.
  1768. */
  1769. if (unlikely(test_thread_flag(TIF_MEMDIE) ||
  1770. fatal_signal_pending(current) ||
  1771. current->flags & PF_EXITING))
  1772. goto bypass;
  1773. if (unlikely(task_in_memcg_oom(current)))
  1774. goto nomem;
  1775. if (!(gfp_mask & __GFP_WAIT))
  1776. goto nomem;
  1777. mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
  1778. nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
  1779. gfp_mask, may_swap);
  1780. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  1781. goto retry;
  1782. if (!drained) {
  1783. drain_all_stock(mem_over_limit);
  1784. drained = true;
  1785. goto retry;
  1786. }
  1787. if (gfp_mask & __GFP_NORETRY)
  1788. goto nomem;
  1789. /*
  1790. * Even though the limit is exceeded at this point, reclaim
  1791. * may have been able to free some pages. Retry the charge
  1792. * before killing the task.
  1793. *
  1794. * Only for regular pages, though: huge pages are rather
  1795. * unlikely to succeed so close to the limit, and we fall back
  1796. * to regular pages anyway in case of failure.
  1797. */
  1798. if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
  1799. goto retry;
  1800. /*
  1801. * At task move, charge accounts can be doubly counted. So, it's
  1802. * better to wait until the end of task_move if something is going on.
  1803. */
  1804. if (mem_cgroup_wait_acct_move(mem_over_limit))
  1805. goto retry;
  1806. if (nr_retries--)
  1807. goto retry;
  1808. if (gfp_mask & __GFP_NOFAIL)
  1809. goto bypass;
  1810. if (fatal_signal_pending(current))
  1811. goto bypass;
  1812. mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
  1813. mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
  1814. nomem:
  1815. if (!(gfp_mask & __GFP_NOFAIL))
  1816. return -ENOMEM;
  1817. bypass:
  1818. return -EINTR;
  1819. done_restock:
  1820. css_get_many(&memcg->css, batch);
  1821. if (batch > nr_pages)
  1822. refill_stock(memcg, batch - nr_pages);
  1823. if (!(gfp_mask & __GFP_WAIT))
  1824. goto done;
  1825. /*
  1826. * If the hierarchy is above the normal consumption range,
  1827. * make the charging task trim their excess contribution.
  1828. */
  1829. do {
  1830. if (page_counter_read(&memcg->memory) <= memcg->high)
  1831. continue;
  1832. mem_cgroup_events(memcg, MEMCG_HIGH, 1);
  1833. try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
  1834. } while ((memcg = parent_mem_cgroup(memcg)));
  1835. done:
  1836. return ret;
  1837. }
  1838. static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
  1839. {
  1840. if (mem_cgroup_is_root(memcg))
  1841. return;
  1842. page_counter_uncharge(&memcg->memory, nr_pages);
  1843. if (do_swap_account)
  1844. page_counter_uncharge(&memcg->memsw, nr_pages);
  1845. css_put_many(&memcg->css, nr_pages);
  1846. }
  1847. static void lock_page_lru(struct page *page, int *isolated)
  1848. {
  1849. struct zone *zone = page_zone(page);
  1850. spin_lock_irq(&zone->lru_lock);
  1851. if (PageLRU(page)) {
  1852. struct lruvec *lruvec;
  1853. lruvec = mem_cgroup_page_lruvec(page, zone);
  1854. ClearPageLRU(page);
  1855. del_page_from_lru_list(page, lruvec, page_lru(page));
  1856. *isolated = 1;
  1857. } else
  1858. *isolated = 0;
  1859. }
  1860. static void unlock_page_lru(struct page *page, int isolated)
  1861. {
  1862. struct zone *zone = page_zone(page);
  1863. if (isolated) {
  1864. struct lruvec *lruvec;
  1865. lruvec = mem_cgroup_page_lruvec(page, zone);
  1866. VM_BUG_ON_PAGE(PageLRU(page), page);
  1867. SetPageLRU(page);
  1868. add_page_to_lru_list(page, lruvec, page_lru(page));
  1869. }
  1870. spin_unlock_irq(&zone->lru_lock);
  1871. }
  1872. static void commit_charge(struct page *page, struct mem_cgroup *memcg,
  1873. bool lrucare)
  1874. {
  1875. int isolated;
  1876. VM_BUG_ON_PAGE(page->mem_cgroup, page);
  1877. /*
  1878. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  1879. * may already be on some other mem_cgroup's LRU. Take care of it.
  1880. */
  1881. if (lrucare)
  1882. lock_page_lru(page, &isolated);
  1883. /*
  1884. * Nobody should be changing or seriously looking at
  1885. * page->mem_cgroup at this point:
  1886. *
  1887. * - the page is uncharged
  1888. *
  1889. * - the page is off-LRU
  1890. *
  1891. * - an anonymous fault has exclusive page access, except for
  1892. * a locked page table
  1893. *
  1894. * - a page cache insertion, a swapin fault, or a migration
  1895. * have the page locked
  1896. */
  1897. page->mem_cgroup = memcg;
  1898. if (lrucare)
  1899. unlock_page_lru(page, isolated);
  1900. }
  1901. #ifdef CONFIG_MEMCG_KMEM
  1902. int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
  1903. unsigned long nr_pages)
  1904. {
  1905. struct page_counter *counter;
  1906. int ret = 0;
  1907. ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
  1908. if (ret < 0)
  1909. return ret;
  1910. ret = try_charge(memcg, gfp, nr_pages);
  1911. if (ret == -EINTR) {
  1912. /*
  1913. * try_charge() chose to bypass to root due to OOM kill or
  1914. * fatal signal. Since our only options are to either fail
  1915. * the allocation or charge it to this cgroup, do it as a
  1916. * temporary condition. But we can't fail. From a kmem/slab
  1917. * perspective, the cache has already been selected, by
  1918. * mem_cgroup_kmem_get_cache(), so it is too late to change
  1919. * our minds.
  1920. *
  1921. * This condition will only trigger if the task entered
  1922. * memcg_charge_kmem in a sane state, but was OOM-killed
  1923. * during try_charge() above. Tasks that were already dying
  1924. * when the allocation triggers should have been already
  1925. * directed to the root cgroup in memcontrol.h
  1926. */
  1927. page_counter_charge(&memcg->memory, nr_pages);
  1928. if (do_swap_account)
  1929. page_counter_charge(&memcg->memsw, nr_pages);
  1930. css_get_many(&memcg->css, nr_pages);
  1931. ret = 0;
  1932. } else if (ret)
  1933. page_counter_uncharge(&memcg->kmem, nr_pages);
  1934. return ret;
  1935. }
  1936. void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
  1937. {
  1938. page_counter_uncharge(&memcg->memory, nr_pages);
  1939. if (do_swap_account)
  1940. page_counter_uncharge(&memcg->memsw, nr_pages);
  1941. page_counter_uncharge(&memcg->kmem, nr_pages);
  1942. css_put_many(&memcg->css, nr_pages);
  1943. }
  1944. static int memcg_alloc_cache_id(void)
  1945. {
  1946. int id, size;
  1947. int err;
  1948. id = ida_simple_get(&memcg_cache_ida,
  1949. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  1950. if (id < 0)
  1951. return id;
  1952. if (id < memcg_nr_cache_ids)
  1953. return id;
  1954. /*
  1955. * There's no space for the new id in memcg_caches arrays,
  1956. * so we have to grow them.
  1957. */
  1958. down_write(&memcg_cache_ids_sem);
  1959. size = 2 * (id + 1);
  1960. if (size < MEMCG_CACHES_MIN_SIZE)
  1961. size = MEMCG_CACHES_MIN_SIZE;
  1962. else if (size > MEMCG_CACHES_MAX_SIZE)
  1963. size = MEMCG_CACHES_MAX_SIZE;
  1964. err = memcg_update_all_caches(size);
  1965. if (!err)
  1966. err = memcg_update_all_list_lrus(size);
  1967. if (!err)
  1968. memcg_nr_cache_ids = size;
  1969. up_write(&memcg_cache_ids_sem);
  1970. if (err) {
  1971. ida_simple_remove(&memcg_cache_ida, id);
  1972. return err;
  1973. }
  1974. return id;
  1975. }
  1976. static void memcg_free_cache_id(int id)
  1977. {
  1978. ida_simple_remove(&memcg_cache_ida, id);
  1979. }
  1980. struct memcg_kmem_cache_create_work {
  1981. struct mem_cgroup *memcg;
  1982. struct kmem_cache *cachep;
  1983. struct work_struct work;
  1984. };
  1985. static void memcg_kmem_cache_create_func(struct work_struct *w)
  1986. {
  1987. struct memcg_kmem_cache_create_work *cw =
  1988. container_of(w, struct memcg_kmem_cache_create_work, work);
  1989. struct mem_cgroup *memcg = cw->memcg;
  1990. struct kmem_cache *cachep = cw->cachep;
  1991. memcg_create_kmem_cache(memcg, cachep);
  1992. css_put(&memcg->css);
  1993. kfree(cw);
  1994. }
  1995. /*
  1996. * Enqueue the creation of a per-memcg kmem_cache.
  1997. */
  1998. static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1999. struct kmem_cache *cachep)
  2000. {
  2001. struct memcg_kmem_cache_create_work *cw;
  2002. cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
  2003. if (!cw)
  2004. return;
  2005. css_get(&memcg->css);
  2006. cw->memcg = memcg;
  2007. cw->cachep = cachep;
  2008. INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
  2009. schedule_work(&cw->work);
  2010. }
  2011. static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  2012. struct kmem_cache *cachep)
  2013. {
  2014. /*
  2015. * We need to stop accounting when we kmalloc, because if the
  2016. * corresponding kmalloc cache is not yet created, the first allocation
  2017. * in __memcg_schedule_kmem_cache_create will recurse.
  2018. *
  2019. * However, it is better to enclose the whole function. Depending on
  2020. * the debugging options enabled, INIT_WORK(), for instance, can
  2021. * trigger an allocation. This too, will make us recurse. Because at
  2022. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  2023. * the safest choice is to do it like this, wrapping the whole function.
  2024. */
  2025. current->memcg_kmem_skip_account = 1;
  2026. __memcg_schedule_kmem_cache_create(memcg, cachep);
  2027. current->memcg_kmem_skip_account = 0;
  2028. }
  2029. /*
  2030. * Return the kmem_cache we're supposed to use for a slab allocation.
  2031. * We try to use the current memcg's version of the cache.
  2032. *
  2033. * If the cache does not exist yet, if we are the first user of it,
  2034. * we either create it immediately, if possible, or create it asynchronously
  2035. * in a workqueue.
  2036. * In the latter case, we will let the current allocation go through with
  2037. * the original cache.
  2038. *
  2039. * Can't be called in interrupt context or from kernel threads.
  2040. * This function needs to be called with rcu_read_lock() held.
  2041. */
  2042. struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
  2043. {
  2044. struct mem_cgroup *memcg;
  2045. struct kmem_cache *memcg_cachep;
  2046. int kmemcg_id;
  2047. VM_BUG_ON(!is_root_cache(cachep));
  2048. if (current->memcg_kmem_skip_account)
  2049. return cachep;
  2050. memcg = get_mem_cgroup_from_mm(current->mm);
  2051. kmemcg_id = READ_ONCE(memcg->kmemcg_id);
  2052. if (kmemcg_id < 0)
  2053. goto out;
  2054. memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
  2055. if (likely(memcg_cachep))
  2056. return memcg_cachep;
  2057. /*
  2058. * If we are in a safe context (can wait, and not in interrupt
  2059. * context), we could be be predictable and return right away.
  2060. * This would guarantee that the allocation being performed
  2061. * already belongs in the new cache.
  2062. *
  2063. * However, there are some clashes that can arrive from locking.
  2064. * For instance, because we acquire the slab_mutex while doing
  2065. * memcg_create_kmem_cache, this means no further allocation
  2066. * could happen with the slab_mutex held. So it's better to
  2067. * defer everything.
  2068. */
  2069. memcg_schedule_kmem_cache_create(memcg, cachep);
  2070. out:
  2071. css_put(&memcg->css);
  2072. return cachep;
  2073. }
  2074. void __memcg_kmem_put_cache(struct kmem_cache *cachep)
  2075. {
  2076. if (!is_root_cache(cachep))
  2077. css_put(&cachep->memcg_params.memcg->css);
  2078. }
  2079. /*
  2080. * We need to verify if the allocation against current->mm->owner's memcg is
  2081. * possible for the given order. But the page is not allocated yet, so we'll
  2082. * need a further commit step to do the final arrangements.
  2083. *
  2084. * It is possible for the task to switch cgroups in this mean time, so at
  2085. * commit time, we can't rely on task conversion any longer. We'll then use
  2086. * the handle argument to return to the caller which cgroup we should commit
  2087. * against. We could also return the memcg directly and avoid the pointer
  2088. * passing, but a boolean return value gives better semantics considering
  2089. * the compiled-out case as well.
  2090. *
  2091. * Returning true means the allocation is possible.
  2092. */
  2093. bool
  2094. __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
  2095. {
  2096. struct mem_cgroup *memcg;
  2097. int ret;
  2098. *_memcg = NULL;
  2099. memcg = get_mem_cgroup_from_mm(current->mm);
  2100. if (!memcg_kmem_is_active(memcg)) {
  2101. css_put(&memcg->css);
  2102. return true;
  2103. }
  2104. ret = memcg_charge_kmem(memcg, gfp, 1 << order);
  2105. if (!ret)
  2106. *_memcg = memcg;
  2107. css_put(&memcg->css);
  2108. return (ret == 0);
  2109. }
  2110. void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
  2111. int order)
  2112. {
  2113. VM_BUG_ON(mem_cgroup_is_root(memcg));
  2114. /* The page allocation failed. Revert */
  2115. if (!page) {
  2116. memcg_uncharge_kmem(memcg, 1 << order);
  2117. return;
  2118. }
  2119. page->mem_cgroup = memcg;
  2120. }
  2121. void __memcg_kmem_uncharge_pages(struct page *page, int order)
  2122. {
  2123. struct mem_cgroup *memcg = page->mem_cgroup;
  2124. if (!memcg)
  2125. return;
  2126. VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
  2127. memcg_uncharge_kmem(memcg, 1 << order);
  2128. page->mem_cgroup = NULL;
  2129. }
  2130. struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
  2131. {
  2132. struct mem_cgroup *memcg = NULL;
  2133. struct kmem_cache *cachep;
  2134. struct page *page;
  2135. page = virt_to_head_page(ptr);
  2136. if (PageSlab(page)) {
  2137. cachep = page->slab_cache;
  2138. if (!is_root_cache(cachep))
  2139. memcg = cachep->memcg_params.memcg;
  2140. } else
  2141. /* page allocated by alloc_kmem_pages */
  2142. memcg = page->mem_cgroup;
  2143. return memcg;
  2144. }
  2145. #endif /* CONFIG_MEMCG_KMEM */
  2146. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2147. /*
  2148. * Because tail pages are not marked as "used", set it. We're under
  2149. * zone->lru_lock, 'splitting on pmd' and compound_lock.
  2150. * charge/uncharge will be never happen and move_account() is done under
  2151. * compound_lock(), so we don't have to take care of races.
  2152. */
  2153. void mem_cgroup_split_huge_fixup(struct page *head)
  2154. {
  2155. int i;
  2156. if (mem_cgroup_disabled())
  2157. return;
  2158. for (i = 1; i < HPAGE_PMD_NR; i++)
  2159. head[i].mem_cgroup = head->mem_cgroup;
  2160. __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  2161. HPAGE_PMD_NR);
  2162. }
  2163. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2164. #ifdef CONFIG_MEMCG_SWAP
  2165. static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  2166. bool charge)
  2167. {
  2168. int val = (charge) ? 1 : -1;
  2169. this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
  2170. }
  2171. /**
  2172. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  2173. * @entry: swap entry to be moved
  2174. * @from: mem_cgroup which the entry is moved from
  2175. * @to: mem_cgroup which the entry is moved to
  2176. *
  2177. * It succeeds only when the swap_cgroup's record for this entry is the same
  2178. * as the mem_cgroup's id of @from.
  2179. *
  2180. * Returns 0 on success, -EINVAL on failure.
  2181. *
  2182. * The caller must have charged to @to, IOW, called page_counter_charge() about
  2183. * both res and memsw, and called css_get().
  2184. */
  2185. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  2186. struct mem_cgroup *from, struct mem_cgroup *to)
  2187. {
  2188. unsigned short old_id, new_id;
  2189. old_id = mem_cgroup_id(from);
  2190. new_id = mem_cgroup_id(to);
  2191. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  2192. mem_cgroup_swap_statistics(from, false);
  2193. mem_cgroup_swap_statistics(to, true);
  2194. return 0;
  2195. }
  2196. return -EINVAL;
  2197. }
  2198. #else
  2199. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  2200. struct mem_cgroup *from, struct mem_cgroup *to)
  2201. {
  2202. return -EINVAL;
  2203. }
  2204. #endif
  2205. static DEFINE_MUTEX(memcg_limit_mutex);
  2206. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  2207. unsigned long limit)
  2208. {
  2209. unsigned long curusage;
  2210. unsigned long oldusage;
  2211. bool enlarge = false;
  2212. int retry_count;
  2213. int ret;
  2214. /*
  2215. * For keeping hierarchical_reclaim simple, how long we should retry
  2216. * is depends on callers. We set our retry-count to be function
  2217. * of # of children which we should visit in this loop.
  2218. */
  2219. retry_count = MEM_CGROUP_RECLAIM_RETRIES *
  2220. mem_cgroup_count_children(memcg);
  2221. oldusage = page_counter_read(&memcg->memory);
  2222. do {
  2223. if (signal_pending(current)) {
  2224. ret = -EINTR;
  2225. break;
  2226. }
  2227. mutex_lock(&memcg_limit_mutex);
  2228. if (limit > memcg->memsw.limit) {
  2229. mutex_unlock(&memcg_limit_mutex);
  2230. ret = -EINVAL;
  2231. break;
  2232. }
  2233. if (limit > memcg->memory.limit)
  2234. enlarge = true;
  2235. ret = page_counter_limit(&memcg->memory, limit);
  2236. mutex_unlock(&memcg_limit_mutex);
  2237. if (!ret)
  2238. break;
  2239. try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
  2240. curusage = page_counter_read(&memcg->memory);
  2241. /* Usage is reduced ? */
  2242. if (curusage >= oldusage)
  2243. retry_count--;
  2244. else
  2245. oldusage = curusage;
  2246. } while (retry_count);
  2247. if (!ret && enlarge)
  2248. memcg_oom_recover(memcg);
  2249. return ret;
  2250. }
  2251. static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
  2252. unsigned long limit)
  2253. {
  2254. unsigned long curusage;
  2255. unsigned long oldusage;
  2256. bool enlarge = false;
  2257. int retry_count;
  2258. int ret;
  2259. /* see mem_cgroup_resize_res_limit */
  2260. retry_count = MEM_CGROUP_RECLAIM_RETRIES *
  2261. mem_cgroup_count_children(memcg);
  2262. oldusage = page_counter_read(&memcg->memsw);
  2263. do {
  2264. if (signal_pending(current)) {
  2265. ret = -EINTR;
  2266. break;
  2267. }
  2268. mutex_lock(&memcg_limit_mutex);
  2269. if (limit < memcg->memory.limit) {
  2270. mutex_unlock(&memcg_limit_mutex);
  2271. ret = -EINVAL;
  2272. break;
  2273. }
  2274. if (limit > memcg->memsw.limit)
  2275. enlarge = true;
  2276. ret = page_counter_limit(&memcg->memsw, limit);
  2277. mutex_unlock(&memcg_limit_mutex);
  2278. if (!ret)
  2279. break;
  2280. try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
  2281. curusage = page_counter_read(&memcg->memsw);
  2282. /* Usage is reduced ? */
  2283. if (curusage >= oldusage)
  2284. retry_count--;
  2285. else
  2286. oldusage = curusage;
  2287. } while (retry_count);
  2288. if (!ret && enlarge)
  2289. memcg_oom_recover(memcg);
  2290. return ret;
  2291. }
  2292. unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
  2293. gfp_t gfp_mask,
  2294. unsigned long *total_scanned)
  2295. {
  2296. unsigned long nr_reclaimed = 0;
  2297. struct mem_cgroup_per_zone *mz, *next_mz = NULL;
  2298. unsigned long reclaimed;
  2299. int loop = 0;
  2300. struct mem_cgroup_tree_per_zone *mctz;
  2301. unsigned long excess;
  2302. unsigned long nr_scanned;
  2303. if (order > 0)
  2304. return 0;
  2305. mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
  2306. /*
  2307. * This loop can run a while, specially if mem_cgroup's continuously
  2308. * keep exceeding their soft limit and putting the system under
  2309. * pressure
  2310. */
  2311. do {
  2312. if (next_mz)
  2313. mz = next_mz;
  2314. else
  2315. mz = mem_cgroup_largest_soft_limit_node(mctz);
  2316. if (!mz)
  2317. break;
  2318. nr_scanned = 0;
  2319. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
  2320. gfp_mask, &nr_scanned);
  2321. nr_reclaimed += reclaimed;
  2322. *total_scanned += nr_scanned;
  2323. spin_lock_irq(&mctz->lock);
  2324. __mem_cgroup_remove_exceeded(mz, mctz);
  2325. /*
  2326. * If we failed to reclaim anything from this memory cgroup
  2327. * it is time to move on to the next cgroup
  2328. */
  2329. next_mz = NULL;
  2330. if (!reclaimed)
  2331. next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
  2332. excess = soft_limit_excess(mz->memcg);
  2333. /*
  2334. * One school of thought says that we should not add
  2335. * back the node to the tree if reclaim returns 0.
  2336. * But our reclaim could return 0, simply because due
  2337. * to priority we are exposing a smaller subset of
  2338. * memory to reclaim from. Consider this as a longer
  2339. * term TODO.
  2340. */
  2341. /* If excess == 0, no tree ops */
  2342. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  2343. spin_unlock_irq(&mctz->lock);
  2344. css_put(&mz->memcg->css);
  2345. loop++;
  2346. /*
  2347. * Could not reclaim anything and there are no more
  2348. * mem cgroups to try or we seem to be looping without
  2349. * reclaiming anything.
  2350. */
  2351. if (!nr_reclaimed &&
  2352. (next_mz == NULL ||
  2353. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  2354. break;
  2355. } while (!nr_reclaimed);
  2356. if (next_mz)
  2357. css_put(&next_mz->memcg->css);
  2358. return nr_reclaimed;
  2359. }
  2360. /*
  2361. * Test whether @memcg has children, dead or alive. Note that this
  2362. * function doesn't care whether @memcg has use_hierarchy enabled and
  2363. * returns %true if there are child csses according to the cgroup
  2364. * hierarchy. Testing use_hierarchy is the caller's responsiblity.
  2365. */
  2366. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  2367. {
  2368. bool ret;
  2369. /*
  2370. * The lock does not prevent addition or deletion of children, but
  2371. * it prevents a new child from being initialized based on this
  2372. * parent in css_online(), so it's enough to decide whether
  2373. * hierarchically inherited attributes can still be changed or not.
  2374. */
  2375. lockdep_assert_held(&memcg_create_mutex);
  2376. rcu_read_lock();
  2377. ret = css_next_child(NULL, &memcg->css);
  2378. rcu_read_unlock();
  2379. return ret;
  2380. }
  2381. /*
  2382. * Reclaims as many pages from the given memcg as possible and moves
  2383. * the rest to the parent.
  2384. *
  2385. * Caller is responsible for holding css reference for memcg.
  2386. */
  2387. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  2388. {
  2389. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2390. /* we call try-to-free pages for make this cgroup empty */
  2391. lru_add_drain_all();
  2392. /* try to free all pages in this cgroup */
  2393. while (nr_retries && page_counter_read(&memcg->memory)) {
  2394. int progress;
  2395. if (signal_pending(current))
  2396. return -EINTR;
  2397. progress = try_to_free_mem_cgroup_pages(memcg, 1,
  2398. GFP_KERNEL, true);
  2399. if (!progress) {
  2400. nr_retries--;
  2401. /* maybe some writeback is necessary */
  2402. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2403. }
  2404. }
  2405. return 0;
  2406. }
  2407. static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
  2408. char *buf, size_t nbytes,
  2409. loff_t off)
  2410. {
  2411. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2412. if (mem_cgroup_is_root(memcg))
  2413. return -EINVAL;
  2414. return mem_cgroup_force_empty(memcg) ?: nbytes;
  2415. }
  2416. static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
  2417. struct cftype *cft)
  2418. {
  2419. return mem_cgroup_from_css(css)->use_hierarchy;
  2420. }
  2421. static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
  2422. struct cftype *cft, u64 val)
  2423. {
  2424. int retval = 0;
  2425. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2426. struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
  2427. mutex_lock(&memcg_create_mutex);
  2428. if (memcg->use_hierarchy == val)
  2429. goto out;
  2430. /*
  2431. * If parent's use_hierarchy is set, we can't make any modifications
  2432. * in the child subtrees. If it is unset, then the change can
  2433. * occur, provided the current cgroup has no children.
  2434. *
  2435. * For the root cgroup, parent_mem is NULL, we allow value to be
  2436. * set if there are no children.
  2437. */
  2438. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  2439. (val == 1 || val == 0)) {
  2440. if (!memcg_has_children(memcg))
  2441. memcg->use_hierarchy = val;
  2442. else
  2443. retval = -EBUSY;
  2444. } else
  2445. retval = -EINVAL;
  2446. out:
  2447. mutex_unlock(&memcg_create_mutex);
  2448. return retval;
  2449. }
  2450. static unsigned long tree_stat(struct mem_cgroup *memcg,
  2451. enum mem_cgroup_stat_index idx)
  2452. {
  2453. struct mem_cgroup *iter;
  2454. unsigned long val = 0;
  2455. for_each_mem_cgroup_tree(iter, memcg)
  2456. val += mem_cgroup_read_stat(iter, idx);
  2457. return val;
  2458. }
  2459. static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  2460. {
  2461. u64 val;
  2462. if (mem_cgroup_is_root(memcg)) {
  2463. val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
  2464. val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
  2465. if (swap)
  2466. val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
  2467. } else {
  2468. if (!swap)
  2469. val = page_counter_read(&memcg->memory);
  2470. else
  2471. val = page_counter_read(&memcg->memsw);
  2472. }
  2473. return val << PAGE_SHIFT;
  2474. }
  2475. enum {
  2476. RES_USAGE,
  2477. RES_LIMIT,
  2478. RES_MAX_USAGE,
  2479. RES_FAILCNT,
  2480. RES_SOFT_LIMIT,
  2481. };
  2482. static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
  2483. struct cftype *cft)
  2484. {
  2485. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2486. struct page_counter *counter;
  2487. switch (MEMFILE_TYPE(cft->private)) {
  2488. case _MEM:
  2489. counter = &memcg->memory;
  2490. break;
  2491. case _MEMSWAP:
  2492. counter = &memcg->memsw;
  2493. break;
  2494. case _KMEM:
  2495. counter = &memcg->kmem;
  2496. break;
  2497. default:
  2498. BUG();
  2499. }
  2500. switch (MEMFILE_ATTR(cft->private)) {
  2501. case RES_USAGE:
  2502. if (counter == &memcg->memory)
  2503. return mem_cgroup_usage(memcg, false);
  2504. if (counter == &memcg->memsw)
  2505. return mem_cgroup_usage(memcg, true);
  2506. return (u64)page_counter_read(counter) * PAGE_SIZE;
  2507. case RES_LIMIT:
  2508. return (u64)counter->limit * PAGE_SIZE;
  2509. case RES_MAX_USAGE:
  2510. return (u64)counter->watermark * PAGE_SIZE;
  2511. case RES_FAILCNT:
  2512. return counter->failcnt;
  2513. case RES_SOFT_LIMIT:
  2514. return (u64)memcg->soft_limit * PAGE_SIZE;
  2515. default:
  2516. BUG();
  2517. }
  2518. }
  2519. #ifdef CONFIG_MEMCG_KMEM
  2520. static int memcg_activate_kmem(struct mem_cgroup *memcg,
  2521. unsigned long nr_pages)
  2522. {
  2523. int err = 0;
  2524. int memcg_id;
  2525. BUG_ON(memcg->kmemcg_id >= 0);
  2526. BUG_ON(memcg->kmem_acct_activated);
  2527. BUG_ON(memcg->kmem_acct_active);
  2528. /*
  2529. * For simplicity, we won't allow this to be disabled. It also can't
  2530. * be changed if the cgroup has children already, or if tasks had
  2531. * already joined.
  2532. *
  2533. * If tasks join before we set the limit, a person looking at
  2534. * kmem.usage_in_bytes will have no way to determine when it took
  2535. * place, which makes the value quite meaningless.
  2536. *
  2537. * After it first became limited, changes in the value of the limit are
  2538. * of course permitted.
  2539. */
  2540. mutex_lock(&memcg_create_mutex);
  2541. if (cgroup_has_tasks(memcg->css.cgroup) ||
  2542. (memcg->use_hierarchy && memcg_has_children(memcg)))
  2543. err = -EBUSY;
  2544. mutex_unlock(&memcg_create_mutex);
  2545. if (err)
  2546. goto out;
  2547. memcg_id = memcg_alloc_cache_id();
  2548. if (memcg_id < 0) {
  2549. err = memcg_id;
  2550. goto out;
  2551. }
  2552. /*
  2553. * We couldn't have accounted to this cgroup, because it hasn't got
  2554. * activated yet, so this should succeed.
  2555. */
  2556. err = page_counter_limit(&memcg->kmem, nr_pages);
  2557. VM_BUG_ON(err);
  2558. static_key_slow_inc(&memcg_kmem_enabled_key);
  2559. /*
  2560. * A memory cgroup is considered kmem-active as soon as it gets
  2561. * kmemcg_id. Setting the id after enabling static branching will
  2562. * guarantee no one starts accounting before all call sites are
  2563. * patched.
  2564. */
  2565. memcg->kmemcg_id = memcg_id;
  2566. memcg->kmem_acct_activated = true;
  2567. memcg->kmem_acct_active = true;
  2568. out:
  2569. return err;
  2570. }
  2571. static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
  2572. unsigned long limit)
  2573. {
  2574. int ret;
  2575. mutex_lock(&memcg_limit_mutex);
  2576. if (!memcg_kmem_is_active(memcg))
  2577. ret = memcg_activate_kmem(memcg, limit);
  2578. else
  2579. ret = page_counter_limit(&memcg->kmem, limit);
  2580. mutex_unlock(&memcg_limit_mutex);
  2581. return ret;
  2582. }
  2583. static int memcg_propagate_kmem(struct mem_cgroup *memcg)
  2584. {
  2585. int ret = 0;
  2586. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  2587. if (!parent)
  2588. return 0;
  2589. mutex_lock(&memcg_limit_mutex);
  2590. /*
  2591. * If the parent cgroup is not kmem-active now, it cannot be activated
  2592. * after this point, because it has at least one child already.
  2593. */
  2594. if (memcg_kmem_is_active(parent))
  2595. ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
  2596. mutex_unlock(&memcg_limit_mutex);
  2597. return ret;
  2598. }
  2599. #else
  2600. static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
  2601. unsigned long limit)
  2602. {
  2603. return -EINVAL;
  2604. }
  2605. #endif /* CONFIG_MEMCG_KMEM */
  2606. /*
  2607. * The user of this function is...
  2608. * RES_LIMIT.
  2609. */
  2610. static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
  2611. char *buf, size_t nbytes, loff_t off)
  2612. {
  2613. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2614. unsigned long nr_pages;
  2615. int ret;
  2616. buf = strstrip(buf);
  2617. ret = page_counter_memparse(buf, "-1", &nr_pages);
  2618. if (ret)
  2619. return ret;
  2620. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2621. case RES_LIMIT:
  2622. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  2623. ret = -EINVAL;
  2624. break;
  2625. }
  2626. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2627. case _MEM:
  2628. ret = mem_cgroup_resize_limit(memcg, nr_pages);
  2629. break;
  2630. case _MEMSWAP:
  2631. ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
  2632. break;
  2633. case _KMEM:
  2634. ret = memcg_update_kmem_limit(memcg, nr_pages);
  2635. break;
  2636. }
  2637. break;
  2638. case RES_SOFT_LIMIT:
  2639. memcg->soft_limit = nr_pages;
  2640. ret = 0;
  2641. break;
  2642. }
  2643. return ret ?: nbytes;
  2644. }
  2645. static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
  2646. size_t nbytes, loff_t off)
  2647. {
  2648. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2649. struct page_counter *counter;
  2650. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2651. case _MEM:
  2652. counter = &memcg->memory;
  2653. break;
  2654. case _MEMSWAP:
  2655. counter = &memcg->memsw;
  2656. break;
  2657. case _KMEM:
  2658. counter = &memcg->kmem;
  2659. break;
  2660. default:
  2661. BUG();
  2662. }
  2663. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2664. case RES_MAX_USAGE:
  2665. page_counter_reset_watermark(counter);
  2666. break;
  2667. case RES_FAILCNT:
  2668. counter->failcnt = 0;
  2669. break;
  2670. default:
  2671. BUG();
  2672. }
  2673. return nbytes;
  2674. }
  2675. static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
  2676. struct cftype *cft)
  2677. {
  2678. return mem_cgroup_from_css(css)->move_charge_at_immigrate;
  2679. }
  2680. #ifdef CONFIG_MMU
  2681. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2682. struct cftype *cft, u64 val)
  2683. {
  2684. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2685. if (val & ~MOVE_MASK)
  2686. return -EINVAL;
  2687. /*
  2688. * No kind of locking is needed in here, because ->can_attach() will
  2689. * check this value once in the beginning of the process, and then carry
  2690. * on with stale data. This means that changes to this value will only
  2691. * affect task migrations starting after the change.
  2692. */
  2693. memcg->move_charge_at_immigrate = val;
  2694. return 0;
  2695. }
  2696. #else
  2697. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2698. struct cftype *cft, u64 val)
  2699. {
  2700. return -ENOSYS;
  2701. }
  2702. #endif
  2703. #ifdef CONFIG_NUMA
  2704. static int memcg_numa_stat_show(struct seq_file *m, void *v)
  2705. {
  2706. struct numa_stat {
  2707. const char *name;
  2708. unsigned int lru_mask;
  2709. };
  2710. static const struct numa_stat stats[] = {
  2711. { "total", LRU_ALL },
  2712. { "file", LRU_ALL_FILE },
  2713. { "anon", LRU_ALL_ANON },
  2714. { "unevictable", BIT(LRU_UNEVICTABLE) },
  2715. };
  2716. const struct numa_stat *stat;
  2717. int nid;
  2718. unsigned long nr;
  2719. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2720. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2721. nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
  2722. seq_printf(m, "%s=%lu", stat->name, nr);
  2723. for_each_node_state(nid, N_MEMORY) {
  2724. nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  2725. stat->lru_mask);
  2726. seq_printf(m, " N%d=%lu", nid, nr);
  2727. }
  2728. seq_putc(m, '\n');
  2729. }
  2730. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2731. struct mem_cgroup *iter;
  2732. nr = 0;
  2733. for_each_mem_cgroup_tree(iter, memcg)
  2734. nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
  2735. seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
  2736. for_each_node_state(nid, N_MEMORY) {
  2737. nr = 0;
  2738. for_each_mem_cgroup_tree(iter, memcg)
  2739. nr += mem_cgroup_node_nr_lru_pages(
  2740. iter, nid, stat->lru_mask);
  2741. seq_printf(m, " N%d=%lu", nid, nr);
  2742. }
  2743. seq_putc(m, '\n');
  2744. }
  2745. return 0;
  2746. }
  2747. #endif /* CONFIG_NUMA */
  2748. static int memcg_stat_show(struct seq_file *m, void *v)
  2749. {
  2750. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2751. unsigned long memory, memsw;
  2752. struct mem_cgroup *mi;
  2753. unsigned int i;
  2754. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
  2755. MEM_CGROUP_STAT_NSTATS);
  2756. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
  2757. MEM_CGROUP_EVENTS_NSTATS);
  2758. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  2759. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2760. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  2761. continue;
  2762. seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
  2763. mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
  2764. }
  2765. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
  2766. seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
  2767. mem_cgroup_read_events(memcg, i));
  2768. for (i = 0; i < NR_LRU_LISTS; i++)
  2769. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  2770. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  2771. /* Hierarchical information */
  2772. memory = memsw = PAGE_COUNTER_MAX;
  2773. for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
  2774. memory = min(memory, mi->memory.limit);
  2775. memsw = min(memsw, mi->memsw.limit);
  2776. }
  2777. seq_printf(m, "hierarchical_memory_limit %llu\n",
  2778. (u64)memory * PAGE_SIZE);
  2779. if (do_swap_account)
  2780. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  2781. (u64)memsw * PAGE_SIZE);
  2782. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2783. unsigned long long val = 0;
  2784. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  2785. continue;
  2786. for_each_mem_cgroup_tree(mi, memcg)
  2787. val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
  2788. seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
  2789. }
  2790. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  2791. unsigned long long val = 0;
  2792. for_each_mem_cgroup_tree(mi, memcg)
  2793. val += mem_cgroup_read_events(mi, i);
  2794. seq_printf(m, "total_%s %llu\n",
  2795. mem_cgroup_events_names[i], val);
  2796. }
  2797. for (i = 0; i < NR_LRU_LISTS; i++) {
  2798. unsigned long long val = 0;
  2799. for_each_mem_cgroup_tree(mi, memcg)
  2800. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  2801. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  2802. }
  2803. #ifdef CONFIG_DEBUG_VM
  2804. {
  2805. int nid, zid;
  2806. struct mem_cgroup_per_zone *mz;
  2807. struct zone_reclaim_stat *rstat;
  2808. unsigned long recent_rotated[2] = {0, 0};
  2809. unsigned long recent_scanned[2] = {0, 0};
  2810. for_each_online_node(nid)
  2811. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  2812. mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
  2813. rstat = &mz->lruvec.reclaim_stat;
  2814. recent_rotated[0] += rstat->recent_rotated[0];
  2815. recent_rotated[1] += rstat->recent_rotated[1];
  2816. recent_scanned[0] += rstat->recent_scanned[0];
  2817. recent_scanned[1] += rstat->recent_scanned[1];
  2818. }
  2819. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  2820. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  2821. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  2822. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  2823. }
  2824. #endif
  2825. return 0;
  2826. }
  2827. static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
  2828. struct cftype *cft)
  2829. {
  2830. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2831. return mem_cgroup_swappiness(memcg);
  2832. }
  2833. static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
  2834. struct cftype *cft, u64 val)
  2835. {
  2836. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2837. if (val > 100)
  2838. return -EINVAL;
  2839. if (css->parent)
  2840. memcg->swappiness = val;
  2841. else
  2842. vm_swappiness = val;
  2843. return 0;
  2844. }
  2845. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  2846. {
  2847. struct mem_cgroup_threshold_ary *t;
  2848. unsigned long usage;
  2849. int i;
  2850. rcu_read_lock();
  2851. if (!swap)
  2852. t = rcu_dereference(memcg->thresholds.primary);
  2853. else
  2854. t = rcu_dereference(memcg->memsw_thresholds.primary);
  2855. if (!t)
  2856. goto unlock;
  2857. usage = mem_cgroup_usage(memcg, swap);
  2858. /*
  2859. * current_threshold points to threshold just below or equal to usage.
  2860. * If it's not true, a threshold was crossed after last
  2861. * call of __mem_cgroup_threshold().
  2862. */
  2863. i = t->current_threshold;
  2864. /*
  2865. * Iterate backward over array of thresholds starting from
  2866. * current_threshold and check if a threshold is crossed.
  2867. * If none of thresholds below usage is crossed, we read
  2868. * only one element of the array here.
  2869. */
  2870. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  2871. eventfd_signal(t->entries[i].eventfd, 1);
  2872. /* i = current_threshold + 1 */
  2873. i++;
  2874. /*
  2875. * Iterate forward over array of thresholds starting from
  2876. * current_threshold+1 and check if a threshold is crossed.
  2877. * If none of thresholds above usage is crossed, we read
  2878. * only one element of the array here.
  2879. */
  2880. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  2881. eventfd_signal(t->entries[i].eventfd, 1);
  2882. /* Update current_threshold */
  2883. t->current_threshold = i - 1;
  2884. unlock:
  2885. rcu_read_unlock();
  2886. }
  2887. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  2888. {
  2889. while (memcg) {
  2890. __mem_cgroup_threshold(memcg, false);
  2891. if (do_swap_account)
  2892. __mem_cgroup_threshold(memcg, true);
  2893. memcg = parent_mem_cgroup(memcg);
  2894. }
  2895. }
  2896. static int compare_thresholds(const void *a, const void *b)
  2897. {
  2898. const struct mem_cgroup_threshold *_a = a;
  2899. const struct mem_cgroup_threshold *_b = b;
  2900. if (_a->threshold > _b->threshold)
  2901. return 1;
  2902. if (_a->threshold < _b->threshold)
  2903. return -1;
  2904. return 0;
  2905. }
  2906. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  2907. {
  2908. struct mem_cgroup_eventfd_list *ev;
  2909. spin_lock(&memcg_oom_lock);
  2910. list_for_each_entry(ev, &memcg->oom_notify, list)
  2911. eventfd_signal(ev->eventfd, 1);
  2912. spin_unlock(&memcg_oom_lock);
  2913. return 0;
  2914. }
  2915. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  2916. {
  2917. struct mem_cgroup *iter;
  2918. for_each_mem_cgroup_tree(iter, memcg)
  2919. mem_cgroup_oom_notify_cb(iter);
  2920. }
  2921. static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2922. struct eventfd_ctx *eventfd, const char *args, enum res_type type)
  2923. {
  2924. struct mem_cgroup_thresholds *thresholds;
  2925. struct mem_cgroup_threshold_ary *new;
  2926. unsigned long threshold;
  2927. unsigned long usage;
  2928. int i, size, ret;
  2929. ret = page_counter_memparse(args, "-1", &threshold);
  2930. if (ret)
  2931. return ret;
  2932. mutex_lock(&memcg->thresholds_lock);
  2933. if (type == _MEM) {
  2934. thresholds = &memcg->thresholds;
  2935. usage = mem_cgroup_usage(memcg, false);
  2936. } else if (type == _MEMSWAP) {
  2937. thresholds = &memcg->memsw_thresholds;
  2938. usage = mem_cgroup_usage(memcg, true);
  2939. } else
  2940. BUG();
  2941. /* Check if a threshold crossed before adding a new one */
  2942. if (thresholds->primary)
  2943. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2944. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  2945. /* Allocate memory for new array of thresholds */
  2946. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  2947. GFP_KERNEL);
  2948. if (!new) {
  2949. ret = -ENOMEM;
  2950. goto unlock;
  2951. }
  2952. new->size = size;
  2953. /* Copy thresholds (if any) to new array */
  2954. if (thresholds->primary) {
  2955. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  2956. sizeof(struct mem_cgroup_threshold));
  2957. }
  2958. /* Add new threshold */
  2959. new->entries[size - 1].eventfd = eventfd;
  2960. new->entries[size - 1].threshold = threshold;
  2961. /* Sort thresholds. Registering of new threshold isn't time-critical */
  2962. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  2963. compare_thresholds, NULL);
  2964. /* Find current threshold */
  2965. new->current_threshold = -1;
  2966. for (i = 0; i < size; i++) {
  2967. if (new->entries[i].threshold <= usage) {
  2968. /*
  2969. * new->current_threshold will not be used until
  2970. * rcu_assign_pointer(), so it's safe to increment
  2971. * it here.
  2972. */
  2973. ++new->current_threshold;
  2974. } else
  2975. break;
  2976. }
  2977. /* Free old spare buffer and save old primary buffer as spare */
  2978. kfree(thresholds->spare);
  2979. thresholds->spare = thresholds->primary;
  2980. rcu_assign_pointer(thresholds->primary, new);
  2981. /* To be sure that nobody uses thresholds */
  2982. synchronize_rcu();
  2983. unlock:
  2984. mutex_unlock(&memcg->thresholds_lock);
  2985. return ret;
  2986. }
  2987. static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2988. struct eventfd_ctx *eventfd, const char *args)
  2989. {
  2990. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
  2991. }
  2992. static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2993. struct eventfd_ctx *eventfd, const char *args)
  2994. {
  2995. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
  2996. }
  2997. static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  2998. struct eventfd_ctx *eventfd, enum res_type type)
  2999. {
  3000. struct mem_cgroup_thresholds *thresholds;
  3001. struct mem_cgroup_threshold_ary *new;
  3002. unsigned long usage;
  3003. int i, j, size;
  3004. mutex_lock(&memcg->thresholds_lock);
  3005. if (type == _MEM) {
  3006. thresholds = &memcg->thresholds;
  3007. usage = mem_cgroup_usage(memcg, false);
  3008. } else if (type == _MEMSWAP) {
  3009. thresholds = &memcg->memsw_thresholds;
  3010. usage = mem_cgroup_usage(memcg, true);
  3011. } else
  3012. BUG();
  3013. if (!thresholds->primary)
  3014. goto unlock;
  3015. /* Check if a threshold crossed before removing */
  3016. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  3017. /* Calculate new number of threshold */
  3018. size = 0;
  3019. for (i = 0; i < thresholds->primary->size; i++) {
  3020. if (thresholds->primary->entries[i].eventfd != eventfd)
  3021. size++;
  3022. }
  3023. new = thresholds->spare;
  3024. /* Set thresholds array to NULL if we don't have thresholds */
  3025. if (!size) {
  3026. kfree(new);
  3027. new = NULL;
  3028. goto swap_buffers;
  3029. }
  3030. new->size = size;
  3031. /* Copy thresholds and find current threshold */
  3032. new->current_threshold = -1;
  3033. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  3034. if (thresholds->primary->entries[i].eventfd == eventfd)
  3035. continue;
  3036. new->entries[j] = thresholds->primary->entries[i];
  3037. if (new->entries[j].threshold <= usage) {
  3038. /*
  3039. * new->current_threshold will not be used
  3040. * until rcu_assign_pointer(), so it's safe to increment
  3041. * it here.
  3042. */
  3043. ++new->current_threshold;
  3044. }
  3045. j++;
  3046. }
  3047. swap_buffers:
  3048. /* Swap primary and spare array */
  3049. thresholds->spare = thresholds->primary;
  3050. /* If all events are unregistered, free the spare array */
  3051. if (!new) {
  3052. kfree(thresholds->spare);
  3053. thresholds->spare = NULL;
  3054. }
  3055. rcu_assign_pointer(thresholds->primary, new);
  3056. /* To be sure that nobody uses thresholds */
  3057. synchronize_rcu();
  3058. unlock:
  3059. mutex_unlock(&memcg->thresholds_lock);
  3060. }
  3061. static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3062. struct eventfd_ctx *eventfd)
  3063. {
  3064. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
  3065. }
  3066. static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3067. struct eventfd_ctx *eventfd)
  3068. {
  3069. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
  3070. }
  3071. static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
  3072. struct eventfd_ctx *eventfd, const char *args)
  3073. {
  3074. struct mem_cgroup_eventfd_list *event;
  3075. event = kmalloc(sizeof(*event), GFP_KERNEL);
  3076. if (!event)
  3077. return -ENOMEM;
  3078. spin_lock(&memcg_oom_lock);
  3079. event->eventfd = eventfd;
  3080. list_add(&event->list, &memcg->oom_notify);
  3081. /* already in OOM ? */
  3082. if (memcg->under_oom)
  3083. eventfd_signal(eventfd, 1);
  3084. spin_unlock(&memcg_oom_lock);
  3085. return 0;
  3086. }
  3087. static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
  3088. struct eventfd_ctx *eventfd)
  3089. {
  3090. struct mem_cgroup_eventfd_list *ev, *tmp;
  3091. spin_lock(&memcg_oom_lock);
  3092. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  3093. if (ev->eventfd == eventfd) {
  3094. list_del(&ev->list);
  3095. kfree(ev);
  3096. }
  3097. }
  3098. spin_unlock(&memcg_oom_lock);
  3099. }
  3100. static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
  3101. {
  3102. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
  3103. seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
  3104. seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
  3105. return 0;
  3106. }
  3107. static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
  3108. struct cftype *cft, u64 val)
  3109. {
  3110. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3111. /* cannot set to root cgroup and only 0 and 1 are allowed */
  3112. if (!css->parent || !((val == 0) || (val == 1)))
  3113. return -EINVAL;
  3114. memcg->oom_kill_disable = val;
  3115. if (!val)
  3116. memcg_oom_recover(memcg);
  3117. return 0;
  3118. }
  3119. #ifdef CONFIG_MEMCG_KMEM
  3120. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  3121. {
  3122. int ret;
  3123. ret = memcg_propagate_kmem(memcg);
  3124. if (ret)
  3125. return ret;
  3126. return mem_cgroup_sockets_init(memcg, ss);
  3127. }
  3128. static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
  3129. {
  3130. struct cgroup_subsys_state *css;
  3131. struct mem_cgroup *parent, *child;
  3132. int kmemcg_id;
  3133. if (!memcg->kmem_acct_active)
  3134. return;
  3135. /*
  3136. * Clear the 'active' flag before clearing memcg_caches arrays entries.
  3137. * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
  3138. * guarantees no cache will be created for this cgroup after we are
  3139. * done (see memcg_create_kmem_cache()).
  3140. */
  3141. memcg->kmem_acct_active = false;
  3142. memcg_deactivate_kmem_caches(memcg);
  3143. kmemcg_id = memcg->kmemcg_id;
  3144. BUG_ON(kmemcg_id < 0);
  3145. parent = parent_mem_cgroup(memcg);
  3146. if (!parent)
  3147. parent = root_mem_cgroup;
  3148. /*
  3149. * Change kmemcg_id of this cgroup and all its descendants to the
  3150. * parent's id, and then move all entries from this cgroup's list_lrus
  3151. * to ones of the parent. After we have finished, all list_lrus
  3152. * corresponding to this cgroup are guaranteed to remain empty. The
  3153. * ordering is imposed by list_lru_node->lock taken by
  3154. * memcg_drain_all_list_lrus().
  3155. */
  3156. css_for_each_descendant_pre(css, &memcg->css) {
  3157. child = mem_cgroup_from_css(css);
  3158. BUG_ON(child->kmemcg_id != kmemcg_id);
  3159. child->kmemcg_id = parent->kmemcg_id;
  3160. if (!memcg->use_hierarchy)
  3161. break;
  3162. }
  3163. memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
  3164. memcg_free_cache_id(kmemcg_id);
  3165. }
  3166. static void memcg_destroy_kmem(struct mem_cgroup *memcg)
  3167. {
  3168. if (memcg->kmem_acct_activated) {
  3169. memcg_destroy_kmem_caches(memcg);
  3170. static_key_slow_dec(&memcg_kmem_enabled_key);
  3171. WARN_ON(page_counter_read(&memcg->kmem));
  3172. }
  3173. mem_cgroup_sockets_destroy(memcg);
  3174. }
  3175. #else
  3176. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  3177. {
  3178. return 0;
  3179. }
  3180. static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
  3181. {
  3182. }
  3183. static void memcg_destroy_kmem(struct mem_cgroup *memcg)
  3184. {
  3185. }
  3186. #endif
  3187. #ifdef CONFIG_CGROUP_WRITEBACK
  3188. struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
  3189. {
  3190. return &memcg->cgwb_list;
  3191. }
  3192. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3193. {
  3194. return wb_domain_init(&memcg->cgwb_domain, gfp);
  3195. }
  3196. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3197. {
  3198. wb_domain_exit(&memcg->cgwb_domain);
  3199. }
  3200. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3201. {
  3202. wb_domain_size_changed(&memcg->cgwb_domain);
  3203. }
  3204. struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
  3205. {
  3206. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3207. if (!memcg->css.parent)
  3208. return NULL;
  3209. return &memcg->cgwb_domain;
  3210. }
  3211. /**
  3212. * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
  3213. * @wb: bdi_writeback in question
  3214. * @pavail: out parameter for number of available pages
  3215. * @pdirty: out parameter for number of dirty pages
  3216. * @pwriteback: out parameter for number of pages under writeback
  3217. *
  3218. * Determine the numbers of available, dirty, and writeback pages in @wb's
  3219. * memcg. Dirty and writeback are self-explanatory. Available is a bit
  3220. * more involved.
  3221. *
  3222. * A memcg's headroom is "min(max, high) - used". The available memory is
  3223. * calculated as the lowest headroom of itself and the ancestors plus the
  3224. * number of pages already being used for file pages. Note that this
  3225. * doesn't consider the actual amount of available memory in the system.
  3226. * The caller should further cap *@pavail accordingly.
  3227. */
  3228. void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
  3229. unsigned long *pdirty, unsigned long *pwriteback)
  3230. {
  3231. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3232. struct mem_cgroup *parent;
  3233. unsigned long head_room = PAGE_COUNTER_MAX;
  3234. unsigned long file_pages;
  3235. *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
  3236. /* this should eventually include NR_UNSTABLE_NFS */
  3237. *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
  3238. file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
  3239. (1 << LRU_ACTIVE_FILE));
  3240. while ((parent = parent_mem_cgroup(memcg))) {
  3241. unsigned long ceiling = min(memcg->memory.limit, memcg->high);
  3242. unsigned long used = page_counter_read(&memcg->memory);
  3243. head_room = min(head_room, ceiling - min(ceiling, used));
  3244. memcg = parent;
  3245. }
  3246. *pavail = file_pages + head_room;
  3247. }
  3248. #else /* CONFIG_CGROUP_WRITEBACK */
  3249. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3250. {
  3251. return 0;
  3252. }
  3253. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3254. {
  3255. }
  3256. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3257. {
  3258. }
  3259. #endif /* CONFIG_CGROUP_WRITEBACK */
  3260. /*
  3261. * DO NOT USE IN NEW FILES.
  3262. *
  3263. * "cgroup.event_control" implementation.
  3264. *
  3265. * This is way over-engineered. It tries to support fully configurable
  3266. * events for each user. Such level of flexibility is completely
  3267. * unnecessary especially in the light of the planned unified hierarchy.
  3268. *
  3269. * Please deprecate this and replace with something simpler if at all
  3270. * possible.
  3271. */
  3272. /*
  3273. * Unregister event and free resources.
  3274. *
  3275. * Gets called from workqueue.
  3276. */
  3277. static void memcg_event_remove(struct work_struct *work)
  3278. {
  3279. struct mem_cgroup_event *event =
  3280. container_of(work, struct mem_cgroup_event, remove);
  3281. struct mem_cgroup *memcg = event->memcg;
  3282. remove_wait_queue(event->wqh, &event->wait);
  3283. event->unregister_event(memcg, event->eventfd);
  3284. /* Notify userspace the event is going away. */
  3285. eventfd_signal(event->eventfd, 1);
  3286. eventfd_ctx_put(event->eventfd);
  3287. kfree(event);
  3288. css_put(&memcg->css);
  3289. }
  3290. /*
  3291. * Gets called on POLLHUP on eventfd when user closes it.
  3292. *
  3293. * Called with wqh->lock held and interrupts disabled.
  3294. */
  3295. static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
  3296. int sync, void *key)
  3297. {
  3298. struct mem_cgroup_event *event =
  3299. container_of(wait, struct mem_cgroup_event, wait);
  3300. struct mem_cgroup *memcg = event->memcg;
  3301. unsigned long flags = (unsigned long)key;
  3302. if (flags & POLLHUP) {
  3303. /*
  3304. * If the event has been detached at cgroup removal, we
  3305. * can simply return knowing the other side will cleanup
  3306. * for us.
  3307. *
  3308. * We can't race against event freeing since the other
  3309. * side will require wqh->lock via remove_wait_queue(),
  3310. * which we hold.
  3311. */
  3312. spin_lock(&memcg->event_list_lock);
  3313. if (!list_empty(&event->list)) {
  3314. list_del_init(&event->list);
  3315. /*
  3316. * We are in atomic context, but cgroup_event_remove()
  3317. * may sleep, so we have to call it in workqueue.
  3318. */
  3319. schedule_work(&event->remove);
  3320. }
  3321. spin_unlock(&memcg->event_list_lock);
  3322. }
  3323. return 0;
  3324. }
  3325. static void memcg_event_ptable_queue_proc(struct file *file,
  3326. wait_queue_head_t *wqh, poll_table *pt)
  3327. {
  3328. struct mem_cgroup_event *event =
  3329. container_of(pt, struct mem_cgroup_event, pt);
  3330. event->wqh = wqh;
  3331. add_wait_queue(wqh, &event->wait);
  3332. }
  3333. /*
  3334. * DO NOT USE IN NEW FILES.
  3335. *
  3336. * Parse input and register new cgroup event handler.
  3337. *
  3338. * Input must be in format '<event_fd> <control_fd> <args>'.
  3339. * Interpretation of args is defined by control file implementation.
  3340. */
  3341. static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
  3342. char *buf, size_t nbytes, loff_t off)
  3343. {
  3344. struct cgroup_subsys_state *css = of_css(of);
  3345. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3346. struct mem_cgroup_event *event;
  3347. struct cgroup_subsys_state *cfile_css;
  3348. unsigned int efd, cfd;
  3349. struct fd efile;
  3350. struct fd cfile;
  3351. const char *name;
  3352. char *endp;
  3353. int ret;
  3354. buf = strstrip(buf);
  3355. efd = simple_strtoul(buf, &endp, 10);
  3356. if (*endp != ' ')
  3357. return -EINVAL;
  3358. buf = endp + 1;
  3359. cfd = simple_strtoul(buf, &endp, 10);
  3360. if ((*endp != ' ') && (*endp != '\0'))
  3361. return -EINVAL;
  3362. buf = endp + 1;
  3363. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3364. if (!event)
  3365. return -ENOMEM;
  3366. event->memcg = memcg;
  3367. INIT_LIST_HEAD(&event->list);
  3368. init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
  3369. init_waitqueue_func_entry(&event->wait, memcg_event_wake);
  3370. INIT_WORK(&event->remove, memcg_event_remove);
  3371. efile = fdget(efd);
  3372. if (!efile.file) {
  3373. ret = -EBADF;
  3374. goto out_kfree;
  3375. }
  3376. event->eventfd = eventfd_ctx_fileget(efile.file);
  3377. if (IS_ERR(event->eventfd)) {
  3378. ret = PTR_ERR(event->eventfd);
  3379. goto out_put_efile;
  3380. }
  3381. cfile = fdget(cfd);
  3382. if (!cfile.file) {
  3383. ret = -EBADF;
  3384. goto out_put_eventfd;
  3385. }
  3386. /* the process need read permission on control file */
  3387. /* AV: shouldn't we check that it's been opened for read instead? */
  3388. ret = inode_permission(file_inode(cfile.file), MAY_READ);
  3389. if (ret < 0)
  3390. goto out_put_cfile;
  3391. /*
  3392. * Determine the event callbacks and set them in @event. This used
  3393. * to be done via struct cftype but cgroup core no longer knows
  3394. * about these events. The following is crude but the whole thing
  3395. * is for compatibility anyway.
  3396. *
  3397. * DO NOT ADD NEW FILES.
  3398. */
  3399. name = cfile.file->f_path.dentry->d_name.name;
  3400. if (!strcmp(name, "memory.usage_in_bytes")) {
  3401. event->register_event = mem_cgroup_usage_register_event;
  3402. event->unregister_event = mem_cgroup_usage_unregister_event;
  3403. } else if (!strcmp(name, "memory.oom_control")) {
  3404. event->register_event = mem_cgroup_oom_register_event;
  3405. event->unregister_event = mem_cgroup_oom_unregister_event;
  3406. } else if (!strcmp(name, "memory.pressure_level")) {
  3407. event->register_event = vmpressure_register_event;
  3408. event->unregister_event = vmpressure_unregister_event;
  3409. } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
  3410. event->register_event = memsw_cgroup_usage_register_event;
  3411. event->unregister_event = memsw_cgroup_usage_unregister_event;
  3412. } else {
  3413. ret = -EINVAL;
  3414. goto out_put_cfile;
  3415. }
  3416. /*
  3417. * Verify @cfile should belong to @css. Also, remaining events are
  3418. * automatically removed on cgroup destruction but the removal is
  3419. * asynchronous, so take an extra ref on @css.
  3420. */
  3421. cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
  3422. &memory_cgrp_subsys);
  3423. ret = -EINVAL;
  3424. if (IS_ERR(cfile_css))
  3425. goto out_put_cfile;
  3426. if (cfile_css != css) {
  3427. css_put(cfile_css);
  3428. goto out_put_cfile;
  3429. }
  3430. ret = event->register_event(memcg, event->eventfd, buf);
  3431. if (ret)
  3432. goto out_put_css;
  3433. efile.file->f_op->poll(efile.file, &event->pt);
  3434. spin_lock(&memcg->event_list_lock);
  3435. list_add(&event->list, &memcg->event_list);
  3436. spin_unlock(&memcg->event_list_lock);
  3437. fdput(cfile);
  3438. fdput(efile);
  3439. return nbytes;
  3440. out_put_css:
  3441. css_put(css);
  3442. out_put_cfile:
  3443. fdput(cfile);
  3444. out_put_eventfd:
  3445. eventfd_ctx_put(event->eventfd);
  3446. out_put_efile:
  3447. fdput(efile);
  3448. out_kfree:
  3449. kfree(event);
  3450. return ret;
  3451. }
  3452. static struct cftype mem_cgroup_legacy_files[] = {
  3453. {
  3454. .name = "usage_in_bytes",
  3455. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  3456. .read_u64 = mem_cgroup_read_u64,
  3457. },
  3458. {
  3459. .name = "max_usage_in_bytes",
  3460. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  3461. .write = mem_cgroup_reset,
  3462. .read_u64 = mem_cgroup_read_u64,
  3463. },
  3464. {
  3465. .name = "limit_in_bytes",
  3466. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  3467. .write = mem_cgroup_write,
  3468. .read_u64 = mem_cgroup_read_u64,
  3469. },
  3470. {
  3471. .name = "soft_limit_in_bytes",
  3472. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  3473. .write = mem_cgroup_write,
  3474. .read_u64 = mem_cgroup_read_u64,
  3475. },
  3476. {
  3477. .name = "failcnt",
  3478. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  3479. .write = mem_cgroup_reset,
  3480. .read_u64 = mem_cgroup_read_u64,
  3481. },
  3482. {
  3483. .name = "stat",
  3484. .seq_show = memcg_stat_show,
  3485. },
  3486. {
  3487. .name = "force_empty",
  3488. .write = mem_cgroup_force_empty_write,
  3489. },
  3490. {
  3491. .name = "use_hierarchy",
  3492. .write_u64 = mem_cgroup_hierarchy_write,
  3493. .read_u64 = mem_cgroup_hierarchy_read,
  3494. },
  3495. {
  3496. .name = "cgroup.event_control", /* XXX: for compat */
  3497. .write = memcg_write_event_control,
  3498. .flags = CFTYPE_NO_PREFIX,
  3499. .mode = S_IWUGO,
  3500. },
  3501. {
  3502. .name = "swappiness",
  3503. .read_u64 = mem_cgroup_swappiness_read,
  3504. .write_u64 = mem_cgroup_swappiness_write,
  3505. },
  3506. {
  3507. .name = "move_charge_at_immigrate",
  3508. .read_u64 = mem_cgroup_move_charge_read,
  3509. .write_u64 = mem_cgroup_move_charge_write,
  3510. },
  3511. {
  3512. .name = "oom_control",
  3513. .seq_show = mem_cgroup_oom_control_read,
  3514. .write_u64 = mem_cgroup_oom_control_write,
  3515. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  3516. },
  3517. {
  3518. .name = "pressure_level",
  3519. },
  3520. #ifdef CONFIG_NUMA
  3521. {
  3522. .name = "numa_stat",
  3523. .seq_show = memcg_numa_stat_show,
  3524. },
  3525. #endif
  3526. #ifdef CONFIG_MEMCG_KMEM
  3527. {
  3528. .name = "kmem.limit_in_bytes",
  3529. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  3530. .write = mem_cgroup_write,
  3531. .read_u64 = mem_cgroup_read_u64,
  3532. },
  3533. {
  3534. .name = "kmem.usage_in_bytes",
  3535. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  3536. .read_u64 = mem_cgroup_read_u64,
  3537. },
  3538. {
  3539. .name = "kmem.failcnt",
  3540. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  3541. .write = mem_cgroup_reset,
  3542. .read_u64 = mem_cgroup_read_u64,
  3543. },
  3544. {
  3545. .name = "kmem.max_usage_in_bytes",
  3546. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  3547. .write = mem_cgroup_reset,
  3548. .read_u64 = mem_cgroup_read_u64,
  3549. },
  3550. #ifdef CONFIG_SLABINFO
  3551. {
  3552. .name = "kmem.slabinfo",
  3553. .seq_start = slab_start,
  3554. .seq_next = slab_next,
  3555. .seq_stop = slab_stop,
  3556. .seq_show = memcg_slab_show,
  3557. },
  3558. #endif
  3559. #endif
  3560. { }, /* terminate */
  3561. };
  3562. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  3563. {
  3564. struct mem_cgroup_per_node *pn;
  3565. struct mem_cgroup_per_zone *mz;
  3566. int zone, tmp = node;
  3567. /*
  3568. * This routine is called against possible nodes.
  3569. * But it's BUG to call kmalloc() against offline node.
  3570. *
  3571. * TODO: this routine can waste much memory for nodes which will
  3572. * never be onlined. It's better to use memory hotplug callback
  3573. * function.
  3574. */
  3575. if (!node_state(node, N_NORMAL_MEMORY))
  3576. tmp = -1;
  3577. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  3578. if (!pn)
  3579. return 1;
  3580. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  3581. mz = &pn->zoneinfo[zone];
  3582. lruvec_init(&mz->lruvec);
  3583. mz->usage_in_excess = 0;
  3584. mz->on_tree = false;
  3585. mz->memcg = memcg;
  3586. }
  3587. memcg->nodeinfo[node] = pn;
  3588. return 0;
  3589. }
  3590. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  3591. {
  3592. kfree(memcg->nodeinfo[node]);
  3593. }
  3594. static struct mem_cgroup *mem_cgroup_alloc(void)
  3595. {
  3596. struct mem_cgroup *memcg;
  3597. size_t size;
  3598. size = sizeof(struct mem_cgroup);
  3599. size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
  3600. memcg = kzalloc(size, GFP_KERNEL);
  3601. if (!memcg)
  3602. return NULL;
  3603. memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
  3604. if (!memcg->stat)
  3605. goto out_free;
  3606. if (memcg_wb_domain_init(memcg, GFP_KERNEL))
  3607. goto out_free_stat;
  3608. return memcg;
  3609. out_free_stat:
  3610. free_percpu(memcg->stat);
  3611. out_free:
  3612. kfree(memcg);
  3613. return NULL;
  3614. }
  3615. /*
  3616. * At destroying mem_cgroup, references from swap_cgroup can remain.
  3617. * (scanning all at force_empty is too costly...)
  3618. *
  3619. * Instead of clearing all references at force_empty, we remember
  3620. * the number of reference from swap_cgroup and free mem_cgroup when
  3621. * it goes down to 0.
  3622. *
  3623. * Removal of cgroup itself succeeds regardless of refs from swap.
  3624. */
  3625. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  3626. {
  3627. int node;
  3628. mem_cgroup_remove_from_trees(memcg);
  3629. for_each_node(node)
  3630. free_mem_cgroup_per_zone_info(memcg, node);
  3631. free_percpu(memcg->stat);
  3632. memcg_wb_domain_exit(memcg);
  3633. kfree(memcg);
  3634. }
  3635. /*
  3636. * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
  3637. */
  3638. struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
  3639. {
  3640. if (!memcg->memory.parent)
  3641. return NULL;
  3642. return mem_cgroup_from_counter(memcg->memory.parent, memory);
  3643. }
  3644. EXPORT_SYMBOL(parent_mem_cgroup);
  3645. static struct cgroup_subsys_state * __ref
  3646. mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  3647. {
  3648. struct mem_cgroup *memcg;
  3649. long error = -ENOMEM;
  3650. int node;
  3651. memcg = mem_cgroup_alloc();
  3652. if (!memcg)
  3653. return ERR_PTR(error);
  3654. for_each_node(node)
  3655. if (alloc_mem_cgroup_per_zone_info(memcg, node))
  3656. goto free_out;
  3657. /* root ? */
  3658. if (parent_css == NULL) {
  3659. root_mem_cgroup = memcg;
  3660. mem_cgroup_root_css = &memcg->css;
  3661. page_counter_init(&memcg->memory, NULL);
  3662. memcg->high = PAGE_COUNTER_MAX;
  3663. memcg->soft_limit = PAGE_COUNTER_MAX;
  3664. page_counter_init(&memcg->memsw, NULL);
  3665. page_counter_init(&memcg->kmem, NULL);
  3666. }
  3667. memcg->last_scanned_node = MAX_NUMNODES;
  3668. INIT_LIST_HEAD(&memcg->oom_notify);
  3669. memcg->move_charge_at_immigrate = 0;
  3670. mutex_init(&memcg->thresholds_lock);
  3671. spin_lock_init(&memcg->move_lock);
  3672. vmpressure_init(&memcg->vmpressure);
  3673. INIT_LIST_HEAD(&memcg->event_list);
  3674. spin_lock_init(&memcg->event_list_lock);
  3675. #ifdef CONFIG_MEMCG_KMEM
  3676. memcg->kmemcg_id = -1;
  3677. #endif
  3678. #ifdef CONFIG_CGROUP_WRITEBACK
  3679. INIT_LIST_HEAD(&memcg->cgwb_list);
  3680. #endif
  3681. return &memcg->css;
  3682. free_out:
  3683. __mem_cgroup_free(memcg);
  3684. return ERR_PTR(error);
  3685. }
  3686. static int
  3687. mem_cgroup_css_online(struct cgroup_subsys_state *css)
  3688. {
  3689. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3690. struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
  3691. int ret;
  3692. if (css->id > MEM_CGROUP_ID_MAX)
  3693. return -ENOSPC;
  3694. if (!parent)
  3695. return 0;
  3696. mutex_lock(&memcg_create_mutex);
  3697. memcg->use_hierarchy = parent->use_hierarchy;
  3698. memcg->oom_kill_disable = parent->oom_kill_disable;
  3699. memcg->swappiness = mem_cgroup_swappiness(parent);
  3700. if (parent->use_hierarchy) {
  3701. page_counter_init(&memcg->memory, &parent->memory);
  3702. memcg->high = PAGE_COUNTER_MAX;
  3703. memcg->soft_limit = PAGE_COUNTER_MAX;
  3704. page_counter_init(&memcg->memsw, &parent->memsw);
  3705. page_counter_init(&memcg->kmem, &parent->kmem);
  3706. /*
  3707. * No need to take a reference to the parent because cgroup
  3708. * core guarantees its existence.
  3709. */
  3710. } else {
  3711. page_counter_init(&memcg->memory, NULL);
  3712. memcg->high = PAGE_COUNTER_MAX;
  3713. memcg->soft_limit = PAGE_COUNTER_MAX;
  3714. page_counter_init(&memcg->memsw, NULL);
  3715. page_counter_init(&memcg->kmem, NULL);
  3716. /*
  3717. * Deeper hierachy with use_hierarchy == false doesn't make
  3718. * much sense so let cgroup subsystem know about this
  3719. * unfortunate state in our controller.
  3720. */
  3721. if (parent != root_mem_cgroup)
  3722. memory_cgrp_subsys.broken_hierarchy = true;
  3723. }
  3724. mutex_unlock(&memcg_create_mutex);
  3725. ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
  3726. if (ret)
  3727. return ret;
  3728. /*
  3729. * Make sure the memcg is initialized: mem_cgroup_iter()
  3730. * orders reading memcg->initialized against its callers
  3731. * reading the memcg members.
  3732. */
  3733. smp_store_release(&memcg->initialized, 1);
  3734. return 0;
  3735. }
  3736. static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
  3737. {
  3738. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3739. struct mem_cgroup_event *event, *tmp;
  3740. /*
  3741. * Unregister events and notify userspace.
  3742. * Notify userspace about cgroup removing only after rmdir of cgroup
  3743. * directory to avoid race between userspace and kernelspace.
  3744. */
  3745. spin_lock(&memcg->event_list_lock);
  3746. list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
  3747. list_del_init(&event->list);
  3748. schedule_work(&event->remove);
  3749. }
  3750. spin_unlock(&memcg->event_list_lock);
  3751. vmpressure_cleanup(&memcg->vmpressure);
  3752. memcg_deactivate_kmem(memcg);
  3753. wb_memcg_offline(memcg);
  3754. }
  3755. static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
  3756. {
  3757. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3758. memcg_destroy_kmem(memcg);
  3759. __mem_cgroup_free(memcg);
  3760. }
  3761. /**
  3762. * mem_cgroup_css_reset - reset the states of a mem_cgroup
  3763. * @css: the target css
  3764. *
  3765. * Reset the states of the mem_cgroup associated with @css. This is
  3766. * invoked when the userland requests disabling on the default hierarchy
  3767. * but the memcg is pinned through dependency. The memcg should stop
  3768. * applying policies and should revert to the vanilla state as it may be
  3769. * made visible again.
  3770. *
  3771. * The current implementation only resets the essential configurations.
  3772. * This needs to be expanded to cover all the visible parts.
  3773. */
  3774. static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
  3775. {
  3776. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3777. mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
  3778. mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
  3779. memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
  3780. memcg->low = 0;
  3781. memcg->high = PAGE_COUNTER_MAX;
  3782. memcg->soft_limit = PAGE_COUNTER_MAX;
  3783. memcg_wb_domain_size_changed(memcg);
  3784. }
  3785. #ifdef CONFIG_MMU
  3786. /* Handlers for move charge at task migration. */
  3787. static int mem_cgroup_do_precharge(unsigned long count)
  3788. {
  3789. int ret;
  3790. /* Try a single bulk charge without reclaim first */
  3791. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
  3792. if (!ret) {
  3793. mc.precharge += count;
  3794. return ret;
  3795. }
  3796. if (ret == -EINTR) {
  3797. cancel_charge(root_mem_cgroup, count);
  3798. return ret;
  3799. }
  3800. /* Try charges one by one with reclaim */
  3801. while (count--) {
  3802. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
  3803. /*
  3804. * In case of failure, any residual charges against
  3805. * mc.to will be dropped by mem_cgroup_clear_mc()
  3806. * later on. However, cancel any charges that are
  3807. * bypassed to root right away or they'll be lost.
  3808. */
  3809. if (ret == -EINTR)
  3810. cancel_charge(root_mem_cgroup, 1);
  3811. if (ret)
  3812. return ret;
  3813. mc.precharge++;
  3814. cond_resched();
  3815. }
  3816. return 0;
  3817. }
  3818. /**
  3819. * get_mctgt_type - get target type of moving charge
  3820. * @vma: the vma the pte to be checked belongs
  3821. * @addr: the address corresponding to the pte to be checked
  3822. * @ptent: the pte to be checked
  3823. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  3824. *
  3825. * Returns
  3826. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  3827. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  3828. * move charge. if @target is not NULL, the page is stored in target->page
  3829. * with extra refcnt got(Callers should handle it).
  3830. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  3831. * target for charge migration. if @target is not NULL, the entry is stored
  3832. * in target->ent.
  3833. *
  3834. * Called with pte lock held.
  3835. */
  3836. union mc_target {
  3837. struct page *page;
  3838. swp_entry_t ent;
  3839. };
  3840. enum mc_target_type {
  3841. MC_TARGET_NONE = 0,
  3842. MC_TARGET_PAGE,
  3843. MC_TARGET_SWAP,
  3844. };
  3845. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  3846. unsigned long addr, pte_t ptent)
  3847. {
  3848. struct page *page = vm_normal_page(vma, addr, ptent);
  3849. if (!page || !page_mapped(page))
  3850. return NULL;
  3851. if (PageAnon(page)) {
  3852. if (!(mc.flags & MOVE_ANON))
  3853. return NULL;
  3854. } else {
  3855. if (!(mc.flags & MOVE_FILE))
  3856. return NULL;
  3857. }
  3858. if (!get_page_unless_zero(page))
  3859. return NULL;
  3860. return page;
  3861. }
  3862. #ifdef CONFIG_SWAP
  3863. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3864. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  3865. {
  3866. struct page *page = NULL;
  3867. swp_entry_t ent = pte_to_swp_entry(ptent);
  3868. if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
  3869. return NULL;
  3870. /*
  3871. * Because lookup_swap_cache() updates some statistics counter,
  3872. * we call find_get_page() with swapper_space directly.
  3873. */
  3874. page = find_get_page(swap_address_space(ent), ent.val);
  3875. if (do_swap_account)
  3876. entry->val = ent.val;
  3877. return page;
  3878. }
  3879. #else
  3880. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3881. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  3882. {
  3883. return NULL;
  3884. }
  3885. #endif
  3886. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  3887. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  3888. {
  3889. struct page *page = NULL;
  3890. struct address_space *mapping;
  3891. pgoff_t pgoff;
  3892. if (!vma->vm_file) /* anonymous vma */
  3893. return NULL;
  3894. if (!(mc.flags & MOVE_FILE))
  3895. return NULL;
  3896. mapping = vma->vm_file->f_mapping;
  3897. pgoff = linear_page_index(vma, addr);
  3898. /* page is moved even if it's not RSS of this task(page-faulted). */
  3899. #ifdef CONFIG_SWAP
  3900. /* shmem/tmpfs may report page out on swap: account for that too. */
  3901. if (shmem_mapping(mapping)) {
  3902. page = find_get_entry(mapping, pgoff);
  3903. if (radix_tree_exceptional_entry(page)) {
  3904. swp_entry_t swp = radix_to_swp_entry(page);
  3905. if (do_swap_account)
  3906. *entry = swp;
  3907. page = find_get_page(swap_address_space(swp), swp.val);
  3908. }
  3909. } else
  3910. page = find_get_page(mapping, pgoff);
  3911. #else
  3912. page = find_get_page(mapping, pgoff);
  3913. #endif
  3914. return page;
  3915. }
  3916. /**
  3917. * mem_cgroup_move_account - move account of the page
  3918. * @page: the page
  3919. * @nr_pages: number of regular pages (>1 for huge pages)
  3920. * @from: mem_cgroup which the page is moved from.
  3921. * @to: mem_cgroup which the page is moved to. @from != @to.
  3922. *
  3923. * The caller must confirm following.
  3924. * - page is not on LRU (isolate_page() is useful.)
  3925. * - compound_lock is held when nr_pages > 1
  3926. *
  3927. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  3928. * from old cgroup.
  3929. */
  3930. static int mem_cgroup_move_account(struct page *page,
  3931. unsigned int nr_pages,
  3932. struct mem_cgroup *from,
  3933. struct mem_cgroup *to)
  3934. {
  3935. unsigned long flags;
  3936. int ret;
  3937. bool anon;
  3938. VM_BUG_ON(from == to);
  3939. VM_BUG_ON_PAGE(PageLRU(page), page);
  3940. /*
  3941. * The page is isolated from LRU. So, collapse function
  3942. * will not handle this page. But page splitting can happen.
  3943. * Do this check under compound_page_lock(). The caller should
  3944. * hold it.
  3945. */
  3946. ret = -EBUSY;
  3947. if (nr_pages > 1 && !PageTransHuge(page))
  3948. goto out;
  3949. /*
  3950. * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
  3951. * of its source page while we change it: page migration takes
  3952. * both pages off the LRU, but page cache replacement doesn't.
  3953. */
  3954. if (!trylock_page(page))
  3955. goto out;
  3956. ret = -EINVAL;
  3957. if (page->mem_cgroup != from)
  3958. goto out_unlock;
  3959. anon = PageAnon(page);
  3960. spin_lock_irqsave(&from->move_lock, flags);
  3961. if (!anon && page_mapped(page)) {
  3962. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
  3963. nr_pages);
  3964. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
  3965. nr_pages);
  3966. }
  3967. /*
  3968. * move_lock grabbed above and caller set from->moving_account, so
  3969. * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
  3970. * So mapping should be stable for dirty pages.
  3971. */
  3972. if (!anon && PageDirty(page)) {
  3973. struct address_space *mapping = page_mapping(page);
  3974. if (mapping_cap_account_dirty(mapping)) {
  3975. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
  3976. nr_pages);
  3977. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
  3978. nr_pages);
  3979. }
  3980. }
  3981. if (PageWriteback(page)) {
  3982. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
  3983. nr_pages);
  3984. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
  3985. nr_pages);
  3986. }
  3987. /*
  3988. * It is safe to change page->mem_cgroup here because the page
  3989. * is referenced, charged, and isolated - we can't race with
  3990. * uncharging, charging, migration, or LRU putback.
  3991. */
  3992. /* caller should have done css_get */
  3993. page->mem_cgroup = to;
  3994. spin_unlock_irqrestore(&from->move_lock, flags);
  3995. ret = 0;
  3996. local_irq_disable();
  3997. mem_cgroup_charge_statistics(to, page, nr_pages);
  3998. memcg_check_events(to, page);
  3999. mem_cgroup_charge_statistics(from, page, -nr_pages);
  4000. memcg_check_events(from, page);
  4001. local_irq_enable();
  4002. out_unlock:
  4003. unlock_page(page);
  4004. out:
  4005. return ret;
  4006. }
  4007. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  4008. unsigned long addr, pte_t ptent, union mc_target *target)
  4009. {
  4010. struct page *page = NULL;
  4011. enum mc_target_type ret = MC_TARGET_NONE;
  4012. swp_entry_t ent = { .val = 0 };
  4013. if (pte_present(ptent))
  4014. page = mc_handle_present_pte(vma, addr, ptent);
  4015. else if (is_swap_pte(ptent))
  4016. page = mc_handle_swap_pte(vma, addr, ptent, &ent);
  4017. else if (pte_none(ptent))
  4018. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  4019. if (!page && !ent.val)
  4020. return ret;
  4021. if (page) {
  4022. /*
  4023. * Do only loose check w/o serialization.
  4024. * mem_cgroup_move_account() checks the page is valid or
  4025. * not under LRU exclusion.
  4026. */
  4027. if (page->mem_cgroup == mc.from) {
  4028. ret = MC_TARGET_PAGE;
  4029. if (target)
  4030. target->page = page;
  4031. }
  4032. if (!ret || !target)
  4033. put_page(page);
  4034. }
  4035. /* There is a swap entry and a page doesn't exist or isn't charged */
  4036. if (ent.val && !ret &&
  4037. mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
  4038. ret = MC_TARGET_SWAP;
  4039. if (target)
  4040. target->ent = ent;
  4041. }
  4042. return ret;
  4043. }
  4044. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4045. /*
  4046. * We don't consider swapping or file mapped pages because THP does not
  4047. * support them for now.
  4048. * Caller should make sure that pmd_trans_huge(pmd) is true.
  4049. */
  4050. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4051. unsigned long addr, pmd_t pmd, union mc_target *target)
  4052. {
  4053. struct page *page = NULL;
  4054. enum mc_target_type ret = MC_TARGET_NONE;
  4055. page = pmd_page(pmd);
  4056. VM_BUG_ON_PAGE(!page || !PageHead(page), page);
  4057. if (!(mc.flags & MOVE_ANON))
  4058. return ret;
  4059. if (page->mem_cgroup == mc.from) {
  4060. ret = MC_TARGET_PAGE;
  4061. if (target) {
  4062. get_page(page);
  4063. target->page = page;
  4064. }
  4065. }
  4066. return ret;
  4067. }
  4068. #else
  4069. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4070. unsigned long addr, pmd_t pmd, union mc_target *target)
  4071. {
  4072. return MC_TARGET_NONE;
  4073. }
  4074. #endif
  4075. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  4076. unsigned long addr, unsigned long end,
  4077. struct mm_walk *walk)
  4078. {
  4079. struct vm_area_struct *vma = walk->vma;
  4080. pte_t *pte;
  4081. spinlock_t *ptl;
  4082. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  4083. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  4084. mc.precharge += HPAGE_PMD_NR;
  4085. spin_unlock(ptl);
  4086. return 0;
  4087. }
  4088. if (pmd_trans_unstable(pmd))
  4089. return 0;
  4090. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4091. for (; addr != end; pte++, addr += PAGE_SIZE)
  4092. if (get_mctgt_type(vma, addr, *pte, NULL))
  4093. mc.precharge++; /* increment precharge temporarily */
  4094. pte_unmap_unlock(pte - 1, ptl);
  4095. cond_resched();
  4096. return 0;
  4097. }
  4098. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  4099. {
  4100. unsigned long precharge;
  4101. struct mm_walk mem_cgroup_count_precharge_walk = {
  4102. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  4103. .mm = mm,
  4104. };
  4105. down_read(&mm->mmap_sem);
  4106. walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
  4107. up_read(&mm->mmap_sem);
  4108. precharge = mc.precharge;
  4109. mc.precharge = 0;
  4110. return precharge;
  4111. }
  4112. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  4113. {
  4114. unsigned long precharge = mem_cgroup_count_precharge(mm);
  4115. VM_BUG_ON(mc.moving_task);
  4116. mc.moving_task = current;
  4117. return mem_cgroup_do_precharge(precharge);
  4118. }
  4119. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  4120. static void __mem_cgroup_clear_mc(void)
  4121. {
  4122. struct mem_cgroup *from = mc.from;
  4123. struct mem_cgroup *to = mc.to;
  4124. /* we must uncharge all the leftover precharges from mc.to */
  4125. if (mc.precharge) {
  4126. cancel_charge(mc.to, mc.precharge);
  4127. mc.precharge = 0;
  4128. }
  4129. /*
  4130. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  4131. * we must uncharge here.
  4132. */
  4133. if (mc.moved_charge) {
  4134. cancel_charge(mc.from, mc.moved_charge);
  4135. mc.moved_charge = 0;
  4136. }
  4137. /* we must fixup refcnts and charges */
  4138. if (mc.moved_swap) {
  4139. /* uncharge swap account from the old cgroup */
  4140. if (!mem_cgroup_is_root(mc.from))
  4141. page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
  4142. /*
  4143. * we charged both to->memory and to->memsw, so we
  4144. * should uncharge to->memory.
  4145. */
  4146. if (!mem_cgroup_is_root(mc.to))
  4147. page_counter_uncharge(&mc.to->memory, mc.moved_swap);
  4148. css_put_many(&mc.from->css, mc.moved_swap);
  4149. /* we've already done css_get(mc.to) */
  4150. mc.moved_swap = 0;
  4151. }
  4152. memcg_oom_recover(from);
  4153. memcg_oom_recover(to);
  4154. wake_up_all(&mc.waitq);
  4155. }
  4156. static void mem_cgroup_clear_mc(void)
  4157. {
  4158. /*
  4159. * we must clear moving_task before waking up waiters at the end of
  4160. * task migration.
  4161. */
  4162. mc.moving_task = NULL;
  4163. __mem_cgroup_clear_mc();
  4164. spin_lock(&mc.lock);
  4165. mc.from = NULL;
  4166. mc.to = NULL;
  4167. spin_unlock(&mc.lock);
  4168. }
  4169. static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
  4170. struct cgroup_taskset *tset)
  4171. {
  4172. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4173. struct mem_cgroup *from;
  4174. struct task_struct *p;
  4175. struct mm_struct *mm;
  4176. unsigned long move_flags;
  4177. int ret = 0;
  4178. /*
  4179. * We are now commited to this value whatever it is. Changes in this
  4180. * tunable will only affect upcoming migrations, not the current one.
  4181. * So we need to save it, and keep it going.
  4182. */
  4183. move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
  4184. if (!move_flags)
  4185. return 0;
  4186. p = cgroup_taskset_first(tset);
  4187. from = mem_cgroup_from_task(p);
  4188. VM_BUG_ON(from == memcg);
  4189. mm = get_task_mm(p);
  4190. if (!mm)
  4191. return 0;
  4192. /* We move charges only when we move a owner of the mm */
  4193. if (mm->owner == p) {
  4194. VM_BUG_ON(mc.from);
  4195. VM_BUG_ON(mc.to);
  4196. VM_BUG_ON(mc.precharge);
  4197. VM_BUG_ON(mc.moved_charge);
  4198. VM_BUG_ON(mc.moved_swap);
  4199. spin_lock(&mc.lock);
  4200. mc.from = from;
  4201. mc.to = memcg;
  4202. mc.flags = move_flags;
  4203. spin_unlock(&mc.lock);
  4204. /* We set mc.moving_task later */
  4205. ret = mem_cgroup_precharge_mc(mm);
  4206. if (ret)
  4207. mem_cgroup_clear_mc();
  4208. }
  4209. mmput(mm);
  4210. return ret;
  4211. }
  4212. static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
  4213. struct cgroup_taskset *tset)
  4214. {
  4215. if (mc.to)
  4216. mem_cgroup_clear_mc();
  4217. }
  4218. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  4219. unsigned long addr, unsigned long end,
  4220. struct mm_walk *walk)
  4221. {
  4222. int ret = 0;
  4223. struct vm_area_struct *vma = walk->vma;
  4224. pte_t *pte;
  4225. spinlock_t *ptl;
  4226. enum mc_target_type target_type;
  4227. union mc_target target;
  4228. struct page *page;
  4229. /*
  4230. * We don't take compound_lock() here but no race with splitting thp
  4231. * happens because:
  4232. * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
  4233. * under splitting, which means there's no concurrent thp split,
  4234. * - if another thread runs into split_huge_page() just after we
  4235. * entered this if-block, the thread must wait for page table lock
  4236. * to be unlocked in __split_huge_page_splitting(), where the main
  4237. * part of thp split is not executed yet.
  4238. */
  4239. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  4240. if (mc.precharge < HPAGE_PMD_NR) {
  4241. spin_unlock(ptl);
  4242. return 0;
  4243. }
  4244. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  4245. if (target_type == MC_TARGET_PAGE) {
  4246. page = target.page;
  4247. if (!isolate_lru_page(page)) {
  4248. if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
  4249. mc.from, mc.to)) {
  4250. mc.precharge -= HPAGE_PMD_NR;
  4251. mc.moved_charge += HPAGE_PMD_NR;
  4252. }
  4253. putback_lru_page(page);
  4254. }
  4255. put_page(page);
  4256. }
  4257. spin_unlock(ptl);
  4258. return 0;
  4259. }
  4260. if (pmd_trans_unstable(pmd))
  4261. return 0;
  4262. retry:
  4263. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4264. for (; addr != end; addr += PAGE_SIZE) {
  4265. pte_t ptent = *(pte++);
  4266. swp_entry_t ent;
  4267. if (!mc.precharge)
  4268. break;
  4269. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  4270. case MC_TARGET_PAGE:
  4271. page = target.page;
  4272. if (isolate_lru_page(page))
  4273. goto put;
  4274. if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
  4275. mc.precharge--;
  4276. /* we uncharge from mc.from later. */
  4277. mc.moved_charge++;
  4278. }
  4279. putback_lru_page(page);
  4280. put: /* get_mctgt_type() gets the page */
  4281. put_page(page);
  4282. break;
  4283. case MC_TARGET_SWAP:
  4284. ent = target.ent;
  4285. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  4286. mc.precharge--;
  4287. /* we fixup refcnts and charges later. */
  4288. mc.moved_swap++;
  4289. }
  4290. break;
  4291. default:
  4292. break;
  4293. }
  4294. }
  4295. pte_unmap_unlock(pte - 1, ptl);
  4296. cond_resched();
  4297. if (addr != end) {
  4298. /*
  4299. * We have consumed all precharges we got in can_attach().
  4300. * We try charge one by one, but don't do any additional
  4301. * charges to mc.to if we have failed in charge once in attach()
  4302. * phase.
  4303. */
  4304. ret = mem_cgroup_do_precharge(1);
  4305. if (!ret)
  4306. goto retry;
  4307. }
  4308. return ret;
  4309. }
  4310. static void mem_cgroup_move_charge(struct mm_struct *mm)
  4311. {
  4312. struct mm_walk mem_cgroup_move_charge_walk = {
  4313. .pmd_entry = mem_cgroup_move_charge_pte_range,
  4314. .mm = mm,
  4315. };
  4316. lru_add_drain_all();
  4317. /*
  4318. * Signal mem_cgroup_begin_page_stat() to take the memcg's
  4319. * move_lock while we're moving its pages to another memcg.
  4320. * Then wait for already started RCU-only updates to finish.
  4321. */
  4322. atomic_inc(&mc.from->moving_account);
  4323. synchronize_rcu();
  4324. retry:
  4325. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  4326. /*
  4327. * Someone who are holding the mmap_sem might be waiting in
  4328. * waitq. So we cancel all extra charges, wake up all waiters,
  4329. * and retry. Because we cancel precharges, we might not be able
  4330. * to move enough charges, but moving charge is a best-effort
  4331. * feature anyway, so it wouldn't be a big problem.
  4332. */
  4333. __mem_cgroup_clear_mc();
  4334. cond_resched();
  4335. goto retry;
  4336. }
  4337. /*
  4338. * When we have consumed all precharges and failed in doing
  4339. * additional charge, the page walk just aborts.
  4340. */
  4341. walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
  4342. up_read(&mm->mmap_sem);
  4343. atomic_dec(&mc.from->moving_account);
  4344. }
  4345. static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
  4346. struct cgroup_taskset *tset)
  4347. {
  4348. struct task_struct *p = cgroup_taskset_first(tset);
  4349. struct mm_struct *mm = get_task_mm(p);
  4350. if (mm) {
  4351. if (mc.to)
  4352. mem_cgroup_move_charge(mm);
  4353. mmput(mm);
  4354. }
  4355. if (mc.to)
  4356. mem_cgroup_clear_mc();
  4357. }
  4358. #else /* !CONFIG_MMU */
  4359. static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
  4360. struct cgroup_taskset *tset)
  4361. {
  4362. return 0;
  4363. }
  4364. static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
  4365. struct cgroup_taskset *tset)
  4366. {
  4367. }
  4368. static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
  4369. struct cgroup_taskset *tset)
  4370. {
  4371. }
  4372. #endif
  4373. /*
  4374. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  4375. * to verify whether we're attached to the default hierarchy on each mount
  4376. * attempt.
  4377. */
  4378. static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
  4379. {
  4380. /*
  4381. * use_hierarchy is forced on the default hierarchy. cgroup core
  4382. * guarantees that @root doesn't have any children, so turning it
  4383. * on for the root memcg is enough.
  4384. */
  4385. if (cgroup_on_dfl(root_css->cgroup))
  4386. root_mem_cgroup->use_hierarchy = true;
  4387. else
  4388. root_mem_cgroup->use_hierarchy = false;
  4389. }
  4390. static u64 memory_current_read(struct cgroup_subsys_state *css,
  4391. struct cftype *cft)
  4392. {
  4393. return mem_cgroup_usage(mem_cgroup_from_css(css), false);
  4394. }
  4395. static int memory_low_show(struct seq_file *m, void *v)
  4396. {
  4397. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4398. unsigned long low = READ_ONCE(memcg->low);
  4399. if (low == PAGE_COUNTER_MAX)
  4400. seq_puts(m, "max\n");
  4401. else
  4402. seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
  4403. return 0;
  4404. }
  4405. static ssize_t memory_low_write(struct kernfs_open_file *of,
  4406. char *buf, size_t nbytes, loff_t off)
  4407. {
  4408. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4409. unsigned long low;
  4410. int err;
  4411. buf = strstrip(buf);
  4412. err = page_counter_memparse(buf, "max", &low);
  4413. if (err)
  4414. return err;
  4415. memcg->low = low;
  4416. return nbytes;
  4417. }
  4418. static int memory_high_show(struct seq_file *m, void *v)
  4419. {
  4420. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4421. unsigned long high = READ_ONCE(memcg->high);
  4422. if (high == PAGE_COUNTER_MAX)
  4423. seq_puts(m, "max\n");
  4424. else
  4425. seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
  4426. return 0;
  4427. }
  4428. static ssize_t memory_high_write(struct kernfs_open_file *of,
  4429. char *buf, size_t nbytes, loff_t off)
  4430. {
  4431. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4432. unsigned long high;
  4433. int err;
  4434. buf = strstrip(buf);
  4435. err = page_counter_memparse(buf, "max", &high);
  4436. if (err)
  4437. return err;
  4438. memcg->high = high;
  4439. memcg_wb_domain_size_changed(memcg);
  4440. return nbytes;
  4441. }
  4442. static int memory_max_show(struct seq_file *m, void *v)
  4443. {
  4444. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4445. unsigned long max = READ_ONCE(memcg->memory.limit);
  4446. if (max == PAGE_COUNTER_MAX)
  4447. seq_puts(m, "max\n");
  4448. else
  4449. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  4450. return 0;
  4451. }
  4452. static ssize_t memory_max_write(struct kernfs_open_file *of,
  4453. char *buf, size_t nbytes, loff_t off)
  4454. {
  4455. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4456. unsigned long max;
  4457. int err;
  4458. buf = strstrip(buf);
  4459. err = page_counter_memparse(buf, "max", &max);
  4460. if (err)
  4461. return err;
  4462. err = mem_cgroup_resize_limit(memcg, max);
  4463. if (err)
  4464. return err;
  4465. memcg_wb_domain_size_changed(memcg);
  4466. return nbytes;
  4467. }
  4468. static int memory_events_show(struct seq_file *m, void *v)
  4469. {
  4470. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4471. seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
  4472. seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
  4473. seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
  4474. seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
  4475. return 0;
  4476. }
  4477. static struct cftype memory_files[] = {
  4478. {
  4479. .name = "current",
  4480. .read_u64 = memory_current_read,
  4481. },
  4482. {
  4483. .name = "low",
  4484. .flags = CFTYPE_NOT_ON_ROOT,
  4485. .seq_show = memory_low_show,
  4486. .write = memory_low_write,
  4487. },
  4488. {
  4489. .name = "high",
  4490. .flags = CFTYPE_NOT_ON_ROOT,
  4491. .seq_show = memory_high_show,
  4492. .write = memory_high_write,
  4493. },
  4494. {
  4495. .name = "max",
  4496. .flags = CFTYPE_NOT_ON_ROOT,
  4497. .seq_show = memory_max_show,
  4498. .write = memory_max_write,
  4499. },
  4500. {
  4501. .name = "events",
  4502. .flags = CFTYPE_NOT_ON_ROOT,
  4503. .seq_show = memory_events_show,
  4504. },
  4505. { } /* terminate */
  4506. };
  4507. struct cgroup_subsys memory_cgrp_subsys = {
  4508. .css_alloc = mem_cgroup_css_alloc,
  4509. .css_online = mem_cgroup_css_online,
  4510. .css_offline = mem_cgroup_css_offline,
  4511. .css_free = mem_cgroup_css_free,
  4512. .css_reset = mem_cgroup_css_reset,
  4513. .can_attach = mem_cgroup_can_attach,
  4514. .cancel_attach = mem_cgroup_cancel_attach,
  4515. .attach = mem_cgroup_move_task,
  4516. .bind = mem_cgroup_bind,
  4517. .dfl_cftypes = memory_files,
  4518. .legacy_cftypes = mem_cgroup_legacy_files,
  4519. .early_init = 0,
  4520. };
  4521. /**
  4522. * mem_cgroup_low - check if memory consumption is below the normal range
  4523. * @root: the highest ancestor to consider
  4524. * @memcg: the memory cgroup to check
  4525. *
  4526. * Returns %true if memory consumption of @memcg, and that of all
  4527. * configurable ancestors up to @root, is below the normal range.
  4528. */
  4529. bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
  4530. {
  4531. if (mem_cgroup_disabled())
  4532. return false;
  4533. /*
  4534. * The toplevel group doesn't have a configurable range, so
  4535. * it's never low when looked at directly, and it is not
  4536. * considered an ancestor when assessing the hierarchy.
  4537. */
  4538. if (memcg == root_mem_cgroup)
  4539. return false;
  4540. if (page_counter_read(&memcg->memory) >= memcg->low)
  4541. return false;
  4542. while (memcg != root) {
  4543. memcg = parent_mem_cgroup(memcg);
  4544. if (memcg == root_mem_cgroup)
  4545. break;
  4546. if (page_counter_read(&memcg->memory) >= memcg->low)
  4547. return false;
  4548. }
  4549. return true;
  4550. }
  4551. /**
  4552. * mem_cgroup_try_charge - try charging a page
  4553. * @page: page to charge
  4554. * @mm: mm context of the victim
  4555. * @gfp_mask: reclaim mode
  4556. * @memcgp: charged memcg return
  4557. *
  4558. * Try to charge @page to the memcg that @mm belongs to, reclaiming
  4559. * pages according to @gfp_mask if necessary.
  4560. *
  4561. * Returns 0 on success, with *@memcgp pointing to the charged memcg.
  4562. * Otherwise, an error code is returned.
  4563. *
  4564. * After page->mapping has been set up, the caller must finalize the
  4565. * charge with mem_cgroup_commit_charge(). Or abort the transaction
  4566. * with mem_cgroup_cancel_charge() in case page instantiation fails.
  4567. */
  4568. int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  4569. gfp_t gfp_mask, struct mem_cgroup **memcgp)
  4570. {
  4571. struct mem_cgroup *memcg = NULL;
  4572. unsigned int nr_pages = 1;
  4573. int ret = 0;
  4574. if (mem_cgroup_disabled())
  4575. goto out;
  4576. if (PageSwapCache(page)) {
  4577. /*
  4578. * Every swap fault against a single page tries to charge the
  4579. * page, bail as early as possible. shmem_unuse() encounters
  4580. * already charged pages, too. The USED bit is protected by
  4581. * the page lock, which serializes swap cache removal, which
  4582. * in turn serializes uncharging.
  4583. */
  4584. VM_BUG_ON_PAGE(!PageLocked(page), page);
  4585. if (page->mem_cgroup)
  4586. goto out;
  4587. if (do_swap_account) {
  4588. swp_entry_t ent = { .val = page_private(page), };
  4589. unsigned short id = lookup_swap_cgroup_id(ent);
  4590. rcu_read_lock();
  4591. memcg = mem_cgroup_from_id(id);
  4592. if (memcg && !css_tryget_online(&memcg->css))
  4593. memcg = NULL;
  4594. rcu_read_unlock();
  4595. }
  4596. }
  4597. if (PageTransHuge(page)) {
  4598. nr_pages <<= compound_order(page);
  4599. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  4600. }
  4601. if (!memcg)
  4602. memcg = get_mem_cgroup_from_mm(mm);
  4603. ret = try_charge(memcg, gfp_mask, nr_pages);
  4604. css_put(&memcg->css);
  4605. if (ret == -EINTR) {
  4606. memcg = root_mem_cgroup;
  4607. ret = 0;
  4608. }
  4609. out:
  4610. *memcgp = memcg;
  4611. return ret;
  4612. }
  4613. /**
  4614. * mem_cgroup_commit_charge - commit a page charge
  4615. * @page: page to charge
  4616. * @memcg: memcg to charge the page to
  4617. * @lrucare: page might be on LRU already
  4618. *
  4619. * Finalize a charge transaction started by mem_cgroup_try_charge(),
  4620. * after page->mapping has been set up. This must happen atomically
  4621. * as part of the page instantiation, i.e. under the page table lock
  4622. * for anonymous pages, under the page lock for page and swap cache.
  4623. *
  4624. * In addition, the page must not be on the LRU during the commit, to
  4625. * prevent racing with task migration. If it might be, use @lrucare.
  4626. *
  4627. * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
  4628. */
  4629. void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
  4630. bool lrucare)
  4631. {
  4632. unsigned int nr_pages = 1;
  4633. VM_BUG_ON_PAGE(!page->mapping, page);
  4634. VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
  4635. if (mem_cgroup_disabled())
  4636. return;
  4637. /*
  4638. * Swap faults will attempt to charge the same page multiple
  4639. * times. But reuse_swap_page() might have removed the page
  4640. * from swapcache already, so we can't check PageSwapCache().
  4641. */
  4642. if (!memcg)
  4643. return;
  4644. commit_charge(page, memcg, lrucare);
  4645. if (PageTransHuge(page)) {
  4646. nr_pages <<= compound_order(page);
  4647. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  4648. }
  4649. local_irq_disable();
  4650. mem_cgroup_charge_statistics(memcg, page, nr_pages);
  4651. memcg_check_events(memcg, page);
  4652. local_irq_enable();
  4653. if (do_swap_account && PageSwapCache(page)) {
  4654. swp_entry_t entry = { .val = page_private(page) };
  4655. /*
  4656. * The swap entry might not get freed for a long time,
  4657. * let's not wait for it. The page already received a
  4658. * memory+swap charge, drop the swap entry duplicate.
  4659. */
  4660. mem_cgroup_uncharge_swap(entry);
  4661. }
  4662. }
  4663. /**
  4664. * mem_cgroup_cancel_charge - cancel a page charge
  4665. * @page: page to charge
  4666. * @memcg: memcg to charge the page to
  4667. *
  4668. * Cancel a charge transaction started by mem_cgroup_try_charge().
  4669. */
  4670. void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
  4671. {
  4672. unsigned int nr_pages = 1;
  4673. if (mem_cgroup_disabled())
  4674. return;
  4675. /*
  4676. * Swap faults will attempt to charge the same page multiple
  4677. * times. But reuse_swap_page() might have removed the page
  4678. * from swapcache already, so we can't check PageSwapCache().
  4679. */
  4680. if (!memcg)
  4681. return;
  4682. if (PageTransHuge(page)) {
  4683. nr_pages <<= compound_order(page);
  4684. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  4685. }
  4686. cancel_charge(memcg, nr_pages);
  4687. }
  4688. static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
  4689. unsigned long nr_anon, unsigned long nr_file,
  4690. unsigned long nr_huge, struct page *dummy_page)
  4691. {
  4692. unsigned long nr_pages = nr_anon + nr_file;
  4693. unsigned long flags;
  4694. if (!mem_cgroup_is_root(memcg)) {
  4695. page_counter_uncharge(&memcg->memory, nr_pages);
  4696. if (do_swap_account)
  4697. page_counter_uncharge(&memcg->memsw, nr_pages);
  4698. memcg_oom_recover(memcg);
  4699. }
  4700. local_irq_save(flags);
  4701. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
  4702. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
  4703. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
  4704. __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
  4705. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  4706. memcg_check_events(memcg, dummy_page);
  4707. local_irq_restore(flags);
  4708. if (!mem_cgroup_is_root(memcg))
  4709. css_put_many(&memcg->css, nr_pages);
  4710. }
  4711. static void uncharge_list(struct list_head *page_list)
  4712. {
  4713. struct mem_cgroup *memcg = NULL;
  4714. unsigned long nr_anon = 0;
  4715. unsigned long nr_file = 0;
  4716. unsigned long nr_huge = 0;
  4717. unsigned long pgpgout = 0;
  4718. struct list_head *next;
  4719. struct page *page;
  4720. next = page_list->next;
  4721. do {
  4722. unsigned int nr_pages = 1;
  4723. page = list_entry(next, struct page, lru);
  4724. next = page->lru.next;
  4725. VM_BUG_ON_PAGE(PageLRU(page), page);
  4726. VM_BUG_ON_PAGE(page_count(page), page);
  4727. if (!page->mem_cgroup)
  4728. continue;
  4729. /*
  4730. * Nobody should be changing or seriously looking at
  4731. * page->mem_cgroup at this point, we have fully
  4732. * exclusive access to the page.
  4733. */
  4734. if (memcg != page->mem_cgroup) {
  4735. if (memcg) {
  4736. uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
  4737. nr_huge, page);
  4738. pgpgout = nr_anon = nr_file = nr_huge = 0;
  4739. }
  4740. memcg = page->mem_cgroup;
  4741. }
  4742. if (PageTransHuge(page)) {
  4743. nr_pages <<= compound_order(page);
  4744. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  4745. nr_huge += nr_pages;
  4746. }
  4747. if (PageAnon(page))
  4748. nr_anon += nr_pages;
  4749. else
  4750. nr_file += nr_pages;
  4751. page->mem_cgroup = NULL;
  4752. pgpgout++;
  4753. } while (next != page_list);
  4754. if (memcg)
  4755. uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
  4756. nr_huge, page);
  4757. }
  4758. /**
  4759. * mem_cgroup_uncharge - uncharge a page
  4760. * @page: page to uncharge
  4761. *
  4762. * Uncharge a page previously charged with mem_cgroup_try_charge() and
  4763. * mem_cgroup_commit_charge().
  4764. */
  4765. void mem_cgroup_uncharge(struct page *page)
  4766. {
  4767. if (mem_cgroup_disabled())
  4768. return;
  4769. /* Don't touch page->lru of any random page, pre-check: */
  4770. if (!page->mem_cgroup)
  4771. return;
  4772. INIT_LIST_HEAD(&page->lru);
  4773. uncharge_list(&page->lru);
  4774. }
  4775. /**
  4776. * mem_cgroup_uncharge_list - uncharge a list of page
  4777. * @page_list: list of pages to uncharge
  4778. *
  4779. * Uncharge a list of pages previously charged with
  4780. * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
  4781. */
  4782. void mem_cgroup_uncharge_list(struct list_head *page_list)
  4783. {
  4784. if (mem_cgroup_disabled())
  4785. return;
  4786. if (!list_empty(page_list))
  4787. uncharge_list(page_list);
  4788. }
  4789. /**
  4790. * mem_cgroup_migrate - migrate a charge to another page
  4791. * @oldpage: currently charged page
  4792. * @newpage: page to transfer the charge to
  4793. * @lrucare: either or both pages might be on the LRU already
  4794. *
  4795. * Migrate the charge from @oldpage to @newpage.
  4796. *
  4797. * Both pages must be locked, @newpage->mapping must be set up.
  4798. */
  4799. void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
  4800. bool lrucare)
  4801. {
  4802. struct mem_cgroup *memcg;
  4803. int isolated;
  4804. VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
  4805. VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
  4806. VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
  4807. VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
  4808. VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
  4809. VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
  4810. newpage);
  4811. if (mem_cgroup_disabled())
  4812. return;
  4813. /* Page cache replacement: new page already charged? */
  4814. if (newpage->mem_cgroup)
  4815. return;
  4816. /*
  4817. * Swapcache readahead pages can get migrated before being
  4818. * charged, and migration from compaction can happen to an
  4819. * uncharged page when the PFN walker finds a page that
  4820. * reclaim just put back on the LRU but has not released yet.
  4821. */
  4822. memcg = oldpage->mem_cgroup;
  4823. if (!memcg)
  4824. return;
  4825. if (lrucare)
  4826. lock_page_lru(oldpage, &isolated);
  4827. oldpage->mem_cgroup = NULL;
  4828. if (lrucare)
  4829. unlock_page_lru(oldpage, isolated);
  4830. commit_charge(newpage, memcg, lrucare);
  4831. }
  4832. /*
  4833. * subsys_initcall() for memory controller.
  4834. *
  4835. * Some parts like hotcpu_notifier() have to be initialized from this context
  4836. * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
  4837. * everything that doesn't depend on a specific mem_cgroup structure should
  4838. * be initialized from here.
  4839. */
  4840. static int __init mem_cgroup_init(void)
  4841. {
  4842. int cpu, node;
  4843. hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
  4844. for_each_possible_cpu(cpu)
  4845. INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
  4846. drain_local_stock);
  4847. for_each_node(node) {
  4848. struct mem_cgroup_tree_per_node *rtpn;
  4849. int zone;
  4850. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
  4851. node_online(node) ? node : NUMA_NO_NODE);
  4852. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  4853. struct mem_cgroup_tree_per_zone *rtpz;
  4854. rtpz = &rtpn->rb_tree_per_zone[zone];
  4855. rtpz->rb_root = RB_ROOT;
  4856. spin_lock_init(&rtpz->lock);
  4857. }
  4858. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  4859. }
  4860. return 0;
  4861. }
  4862. subsys_initcall(mem_cgroup_init);
  4863. #ifdef CONFIG_MEMCG_SWAP
  4864. /**
  4865. * mem_cgroup_swapout - transfer a memsw charge to swap
  4866. * @page: page whose memsw charge to transfer
  4867. * @entry: swap entry to move the charge to
  4868. *
  4869. * Transfer the memsw charge of @page to @entry.
  4870. */
  4871. void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
  4872. {
  4873. struct mem_cgroup *memcg;
  4874. unsigned short oldid;
  4875. VM_BUG_ON_PAGE(PageLRU(page), page);
  4876. VM_BUG_ON_PAGE(page_count(page), page);
  4877. if (!do_swap_account)
  4878. return;
  4879. memcg = page->mem_cgroup;
  4880. /* Readahead page, never charged */
  4881. if (!memcg)
  4882. return;
  4883. oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
  4884. VM_BUG_ON_PAGE(oldid, page);
  4885. mem_cgroup_swap_statistics(memcg, true);
  4886. page->mem_cgroup = NULL;
  4887. if (!mem_cgroup_is_root(memcg))
  4888. page_counter_uncharge(&memcg->memory, 1);
  4889. /*
  4890. * Interrupts should be disabled here because the caller holds the
  4891. * mapping->tree_lock lock which is taken with interrupts-off. It is
  4892. * important here to have the interrupts disabled because it is the
  4893. * only synchronisation we have for udpating the per-CPU variables.
  4894. */
  4895. VM_BUG_ON(!irqs_disabled());
  4896. mem_cgroup_charge_statistics(memcg, page, -1);
  4897. memcg_check_events(memcg, page);
  4898. }
  4899. /**
  4900. * mem_cgroup_uncharge_swap - uncharge a swap entry
  4901. * @entry: swap entry to uncharge
  4902. *
  4903. * Drop the memsw charge associated with @entry.
  4904. */
  4905. void mem_cgroup_uncharge_swap(swp_entry_t entry)
  4906. {
  4907. struct mem_cgroup *memcg;
  4908. unsigned short id;
  4909. if (!do_swap_account)
  4910. return;
  4911. id = swap_cgroup_record(entry, 0);
  4912. rcu_read_lock();
  4913. memcg = mem_cgroup_from_id(id);
  4914. if (memcg) {
  4915. if (!mem_cgroup_is_root(memcg))
  4916. page_counter_uncharge(&memcg->memsw, 1);
  4917. mem_cgroup_swap_statistics(memcg, false);
  4918. css_put(&memcg->css);
  4919. }
  4920. rcu_read_unlock();
  4921. }
  4922. /* for remember boot option*/
  4923. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  4924. static int really_do_swap_account __initdata = 1;
  4925. #else
  4926. static int really_do_swap_account __initdata;
  4927. #endif
  4928. static int __init enable_swap_account(char *s)
  4929. {
  4930. if (!strcmp(s, "1"))
  4931. really_do_swap_account = 1;
  4932. else if (!strcmp(s, "0"))
  4933. really_do_swap_account = 0;
  4934. return 1;
  4935. }
  4936. __setup("swapaccount=", enable_swap_account);
  4937. static struct cftype memsw_cgroup_files[] = {
  4938. {
  4939. .name = "memsw.usage_in_bytes",
  4940. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  4941. .read_u64 = mem_cgroup_read_u64,
  4942. },
  4943. {
  4944. .name = "memsw.max_usage_in_bytes",
  4945. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  4946. .write = mem_cgroup_reset,
  4947. .read_u64 = mem_cgroup_read_u64,
  4948. },
  4949. {
  4950. .name = "memsw.limit_in_bytes",
  4951. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  4952. .write = mem_cgroup_write,
  4953. .read_u64 = mem_cgroup_read_u64,
  4954. },
  4955. {
  4956. .name = "memsw.failcnt",
  4957. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  4958. .write = mem_cgroup_reset,
  4959. .read_u64 = mem_cgroup_read_u64,
  4960. },
  4961. { }, /* terminate */
  4962. };
  4963. static int __init mem_cgroup_swap_init(void)
  4964. {
  4965. if (!mem_cgroup_disabled() && really_do_swap_account) {
  4966. do_swap_account = 1;
  4967. WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
  4968. memsw_cgroup_files));
  4969. }
  4970. return 0;
  4971. }
  4972. subsys_initcall(mem_cgroup_swap_init);
  4973. #endif /* CONFIG_MEMCG_SWAP */